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UNIFORM LOCAL SOLVABILITY FOR THE NAVIER-STOKES

EQUATIONS WITH THE CORIOLIS FORCE∗
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Abstract. The unique local existence is established for the Cauchy problem of the incompressible
Navier-Stokes equations with the Coriolis force for a class of initial data nondecreasing at space
infinity. The Coriolis operator restricted to divergence free vector fields is a zero order pseudo-
differential operator with the skew-symmetric matrix symbol related to the Riesz operator. It leads
to the additional term in the Navier-Stokes equations which has real parameter being proportional
to the speed of rotation. For initial datum as Fourier preimage of finite Radon measures having
no-point mass at the origin we show that the length of existence time-interval of mild solution is
independent of the rotation speed.
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1. Introduction. In this paper we consider the Cauchy problem for the three
dimensional Navier-Stokes equations with the Coriolis force:

ut + (u · ∇)u + Ωe3 × u− ∆u = −∇p, ∇ · u = 0, u|t=0 = u0, (1.1)

where u = u(x, t) = (u1(x, t), u2(x, t), u3(x, t)) is the unknown velocity vector field
and p = p(x, t) is the unknown scalar pressure at the point x = (x1, x2, x3) ∈ R3 in
space and time t > 0, while u0 = u0(x) is the given initial velocity vector field. Here,
the real constant Ω represents the speed of rotation around the vertical unit vector
e3 = (0, 0, 1) and it is called the Coriolis parameter. By × we denote the exterior
product, hence, the Coriolis term is represented by e3×u ≡ Ju with the corresponding
skew-symmetric 3 × 3 matrix J.

For the equations (1.1) global existence and regularity results for large fixed Ω
were obtained in L2 setting for the periodic domains such as cylinder with infinite
length rotating axis or spatial lattices ([2], [7]). In this regard, for the Euler equations,
Nicolaenko, Bardos, Golse and the third author [8] proved uniform local existence and
long-time regularity for initial data in H4.

In the case of unbounded domains without periodicity nor decay at space infinity
Sawada [11] and Hieber and Sawada [6] proved unique local existence for initial data
in a homogeneous Besov space Ḃ0

∞,1 which is strictly smaller than BUC, the space
of all bounded uniformly continuous functions (see also [4] for recent improvement).
The precise definition of the space Ḃ0

∞,1 shall be given in Appendix. However, they
do not get uniform estimate for the existence time in the speed of rotation Ω ∈ R, the
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precondition to consider fast singular oscillating limits Ω → +∞ and proving global
existence for large fixed Ω.

In this paper we take initial data in a new space FM0 (Fourier preimage of the
space of all finite Radon measures with no point mass at the origin). The space FM0

is a closed subspace of FM equipped with the norm ||f ||FM = (2π)−
3

2 ||f̂ ||M . Here,

||f̂ ||M represents the total variation norm of the Fourier transform of f . The precise
definition of the spaces FM and FM0 is given in Section 2.

Although the space for initial data FM0 is strictly smaller than the space Ḃ0
∞,1,

it enables us to construct mild solution of (1.1) with the uniform existence time in the
rotation speed Ω ∈ R. Our key observation is a bound of exp(tRj) in the space FM0

uniform in time t (Lemma 2.3 in Section 2.2). Here, Rj represents a Riesz operator.
Now we state the main result of this paper.

Theorem 1.1. Assume that u0 ∈ FM0 with div u0 = 0. Then there exist
T0(≥ c/||u0||2FM ) > 0 independent of the Coriolis parameter Ω and a unique mild
solution u = u(t) ∈ C([0, T0];FM0) of (1.1), where c > 0 is a numerical constant
(given in Remark 3.1).

From the theorem above on a mild solution we also have the following theorem
on existence and uniqueness of the classical solution of (1.1). The proof is carried out
in the same manner as [4]. We denote by BMO the space of functions of bounded
mean oscillation.

Theorem 1.2. Assume that u0 ∈ FM0 with div u0 = 0.
(1) Let u = u(t) be the mild solution obtained in Theorem 1.1. If we set the pressure
p = p(x, t) as

∂ip(t) = ∂i

3∑

j,k=1

RjRku
juk(t) + ΩRi (R2u

1 −R1u
2)(t) (1.2)

for t > 0 and i = 1, 2, 3, then the pair (u,∇p) is a classical solution of (1.1).
(2) Let u ∈ L∞((0, T ) × R3) and p ∈ L1

loc((0, T );BMO) be a solution of (1.1) in the
distributional sense for some T > 0. Then the pair (u,∇p) is unique. Moreover, the
relation (1.2) holds.

Before concluding the introduction we remark that u(x, t) is almost periodic in
x if u0 is almost periodic. This can be proved along the line of [5, Section 3] if one
observes that FM -norm is invariant under translation in spatial variables x ∈ R3.

2. Key function spaces. In this section we introduce a function space on which
the semigroup generated by the Riesz operator is uniformly bounded; moreover, it
contains various almost periodic functions, not necessarily periodic. Furthermore,
operation of spatial averaging is defined for the elements of this space. The latter
property and uniform boundedness with respect to spatial translations and rotations
are essential in studies of statistical properties of turbulence (e.g. [9], [14]).
We now recall an important connection between the Coriolis rotation operator re-
stricted to divergence free vector fields and classical Riesz operators. For the sake
of clarity of notations, we present formulas for symbols of the corresponding pseudo-
differential operators in R3 which is the main case. Let P be the projection operator
on divergence free vector fields, represented by P = (Pij)ij = (δij + RiRj)1≤i,j≤3.
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Here, δij denotes the Kronecker delta. Applying P to (1.1), we note that the Cori-
olis term is represented by the Coriolis operator S = PJP (PJPu = PJu since u is
solenoidal).

Let ξ = (ξ1, ξ2, ξ3) ∈ R3. The operator S is a zero order pseudo-differential
operator with the 3 × 3 matrix symbol S(ξ) ([1], [4]):

σ(S) ≡ S(ξ) =
ξ3
|ξ|R(ξ), (2.1)

where R(ξ) is the skew-symmetric matrix such that R(ξ)v = 1
|ξ|ξ× v for every vector

v ∈ R3. The symbol of the operator exp(ΩSt) is given by

exp(ΩS(ξ)t) = cos(
ξ3
|ξ|Ωt)I + sin(

ξ3
|ξ|Ωt)R(ξ), (2.2)

where I is the 3 × 3 identity matrix. We remark that dependence on the parameter
Ω appears only in scalar terms cos( ξ3

|ξ|Ωt) and sin( ξ3

|ξ|Ωt), which are functions of the

classical scalar Riesz operator R3, σ(R3) = iξ3

|ξ| . Then our goal in this section is to

figure out function spaces for initial data in which Fourier operators with the symbols

e±i
ξ3

|ξ|
Ωt are uniformly bounded in Ω.

2.1. Spaces of measures. Let M = M(Rn) be the space of all complex-valued
finite Radon measures on Rn. This space is the (complex) Banach space equipped with
the total variation norm ‖ · ‖M . By the Riesz representation theorem M is identified
with the dual space of C∞(Rn), the space of all (complex-valued) continuous functions
that converge to zero at the space infinity (equipped with the supremum norm ‖ · ‖∞.)
More precisely, for µ ∈M

‖ µ ‖M= sup{|〈µ, ψ〉|;ψ ∈ C∞(Rn), ‖ ψ ‖∞≤ 1},

where 〈, 〉 denotes a canonical pairing. Since the (Schwartz) space S = S(Rn) of
all rapidly decreasing functions in R

n is dense in C∞(Rn), µ ∈ M is regarded as a
tempered distribution, i.e. µ ∈ S′ = S′(Rn). In other words, M ⊂ S′. Let |µ| denote
the total variation measure of µ. It is a nonnegative Radon measure defined by

|µ|(O) = sup{|〈µ, ψ〉|;ψ ∈ C0(O), ‖ ψ ‖∞≤ 1}

for an open set O, where C0(O) denotes the space of all (complex-valued) continuous
functions with compact support in O. Since C0(R

n) is densely subset of C∞(Rn),
we see that |µ|(Rn) =‖ µ ‖M . For C

d-valued (complex vector-valued) finite Radon
measure µ = (µ1, · · · , µd) we still denote its total variation measure |µ| by the above
duality by understanding that ||ψ||∞ = || |ψ| ||∞ for ψ = (ψ1, · · · , ψd), where | · |
denotes the Euclidean norm in Rd. The totality of Cd-valued finite Radon measures
on Rn is denoted by Md = (M(Rn))

d
. (We often write Md simply by M unless

confusion is caused.) There are several ways to define a norm in (M(Rn))d. The most
convenient one for our purpose is

||µ||Md = |µ|(Rn).

Another norm we use here is

||µ||′Md = (

d∑

i=1

||µi||2M )1/2.



384 Y. GIGA ET. AL.

In the case that µi is absolutely continuous with respect to the Lebesgue measure,

i.e. dµi = ρidξ, where ρi(x) := limr→0
µi(B(x,r))
|B(x,r)| (see e.g. [10]), then

||µ||Md =

∫

Rn

(

d∑

i=1

|ρi|2)1/2dξ , ||µ||′Md = (

d∑

i=1

(

∫

Rn

|ρi|dξ)2)1/2.

As we shall see later these norms are equivalent. For the definition of total variations
as well as several elementary properties of measures, the reader is referred to, for
example, a book [12] of L. Simon.

For a bounded Borel measurable function ψ and µ ∈M we associate a new Radon
measure µ⌊ψ ∈M defined by

(µ⌊ψ)(O) =

∫

O

ψ(ξ)µ(dξ).

If ψ is a characteristic function χB of a Borel set B, we simply write µ⌊χB by µ⌊B.
Note that ψ is allowed to be any |µ|-measurable functions. We here prove that above
two norms of Md are equivalent. More precisely,

||µ||′Md ≤ ||µ||Md ≤
√
d||µ||′Md , µ ∈Md.

Indeed, let hi be the Radon-Nikodym derivative of µi with respect to |µ| ; this is
|µ|-a.e. well-defined since µi is absolutely continuous with respect to |µ|. Then

||µ||′Md = {
d∑

i=1

(

∫

Rn

|hi||µ|(dξ))2}1/2.

Applying Minkowski’s inequality, we have

||µ||′Md ≤
∫

Rn

(

d∑

i=1

|hi|2)1/2|µ|(dξ) = |µ|(Rn) = ||µ||Md

since
∑d

i=1 |hi|2(ξ) = 1 for |µ|-a.e. ξ. It is easy to see that ||µ||Md ≤
∑d

i=1 ||µi||M , so

we have ||µ||Md ≤
√
d||µ||′Md by Schwarz’ inequality.

We next introduce an important subspace M0 of M(Rn) for our purpose defined by

M0 = {µ ∈M ; µ⌊{0} = 0}

(By Md
0 we mean (M0(R

n))d). In other words µ ∈ M belongs to M0 if and only if
there is no point mass at the origin. The condition µ⌊{0} = 0 is equivalent to say
that

lim
r↓0

|µ|
( ◦

Br (0)
)

= 0, (2.3)

where
◦

Br (0) is the open ball of radius r centered at the origin. Thus the space M0 is
a closed subspace of M . Indeed, if µm → µ in M and µm satisfies (2.3), then

|µ|
( ◦

Br (0)
)
≤ |µm − µ|

( ◦

Br (0)
)

+ |µm|
( ◦

Br (0)
)

≤‖ µm − µ ‖M +|µm|
( ◦

Br (0)
)
.
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Taking r to 0, we have

lim sup
r↓0

|µ|
( ◦

Br (0)
)
≤‖ µm − µ ‖M .

Since µm → µ in M , this implies that µ satisfies (2.3), i.e., µ ∈M0.

Lemma 2.1. Let σ ∈ C(Rn\{0}) be bounded on Rn\{0}. Assume that µ ∈ M0

and that {σm}∞m=1 ⊂ S(Rn) is an approximate sequence of σ in the sense that σm → σ
pointwise in Rn\{0} and ‖ σm ‖∞ is uniformly bounded. Then {µ⌊σm}∞m=1 ⊂M is a
convergent sequence in M0. Moreover, its limit equals

(
µ⌊(Rn\{0})

)
⌊σ ∈ M0 and is

independent of the choice of the approximate sequence {σm}∞m=1.

Remark 2.1. Let σ be any extension of σ ∈ C(Rn \ {0}) to the origin. Since
µ ∈ M0 so that µ = µ⌊(Rn\{0}), we see that

(
µ⌊(Rn\{0})

)
⌊σ = µ⌊σ. In particular,

the measure µ⌊σ is independent of the way of the extension of σ.

We shall denote
(
µ⌊(Rn\{0})

)
⌊σ simply by µ⌊σ ∈M0 for µ ∈M0. (The measure

µ⌊σ in general depends on the value σ⌊0 when µ ∈M .)
Proof. By the Lebesgue dominated convergence theorem we see that

lim
m→∞

∫

Rn\{0}

|σm − σ|µ(dξ) = 0.

Since µ ∈M0 so that µ⌊σm = (µ⌊σm)⌊(Rn\{0}), this implies

µ⌊σm →
(
µ⌊(Rn\{0})

)
⌊σ ∈M0.

2.2. Fourier images and Riesz operator. We shall consider Fourier
(pre)image of spaces M and M0 introduced above. For f ∈ S we define its Fourier
transform and its inverse Fourier transform by

F f(ξ) = f̂(ξ) =
1

(2π)n/2

∫

Rn

e−iξ·xf(x)dx,

F−1f(x) = f̌(x) =
1

(2π)n/2

∫

Rn

eix·ξf(ξ)dξ,

where ξ·x denotes the standard inner product in Rn and i =
√
−1. The operator F and

F−1 can be extended to an isomorphism of S′ as topological vector spaces. Let FM
be the image ofM by F . It is the preimage ofM by F−1. Since F−1f(x) = (Ff)(−x),
the space FM is also the preimage of M by F , i.e.,

FM = {f ∈ S′; f̂ ∈M}.

This space is a Banach space equipped with the norm

‖ f ‖FM= (2π)−n/2 ‖ f̂ ‖M .

Let FM0 be the closed subspace of FM of the form

FM0 = {f ∈ S′; f̂ ∈M0}.



386 Y. GIGA ET. AL.

The space FM is included in the space BUC, the space of all bounded uniformly
continuous functions. The space FM0 does not contain nonzero constant function. In
fact, FM has a topological direct sum decomposition of the form

FM = FM0 ⊕ C,

where C denotes the space of all (complex) constant functions. Moreover, as we shall
see in Appendix, FM0 is strictly included in the Besov space Ḃ0

∞,1. However, FM0

still includes various almost periodic functions not necessarily periodic. For example,

f(x) =

∞∑

j=1

αje
iλj ·x λj ∈ R

n\{0}, αj ∈ C

belongs to FM0 if
∑∞

j=1 |αj | <∞. Indeed,

f̂(ξ) = (2π)n/2
∞∑

j=1

αjδ(ξ − λj) ∈M0.

Its norm ‖ f ‖FM=
∑∞

j=1 |αj | if λj 6= λk for j 6= k.
We next study an operator whose symbol may not be continuous at the origin.

We shall prove that

(Σf)(x) = F−1
(
σ(ξ)((Ff)(ξ)

))
(x)

is a well-defined operator for f ∈ FM0 if the symbol σ ∈ C(Rn\{0}) is bounded. We
approximate σ by {σm} ⊂ S such that ‖ σm ‖∞ is bounded and σm → σ pointwise
in Rn\{0}. The quantity F−1(σmFf) is well-defined quantity in S′ if f ∈ S′. By
Lemma 2.1 F−1σmFf converges to F−1

(
(Ff)⌊σ

)
in FM0 if f ∈ FM0. So we shall

define Σf by

Σf = F−1
(
(Ff)⌊σ

)
. (2.4)

Lemma 2.2. Assume that σ ∈ C(Rn\{0}) is bounded in Rn\{0}. Then Σ in (2.4)
is a bounded linear operator in FM0 and

‖ Σf ‖FM≤‖ σ ‖∞‖ f ‖FM (2.5)

for f ∈ FM0. If, furthermore, σ is continuous at the origin, then Σ is a bounded
linear operator in FM and (2.5) holds for all f ∈ FM .

This is clear by definition of the norm. As a simple application we obtain the
boundedness on FM0 of the Riesz operator

(Rjf) = F−1
(
Ff⌊σ(Rj)

)
, σ(Rj) = iξj/|ξ|, j = 1, · · · , n

although the symbol σ(Rj) is not continuous at ξ = 0.

Lemma 2.3. The Riesz operator Rj is bounded in FM0 for j = 1, 2, · · · , n.
Moreover,

(i) ‖ Rjf ‖FM≤‖ f ‖FM , (ii) ‖ etRjf ‖FM≤‖ f ‖FM t ≥ 0

for all f ∈ FM0.
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2.3. Multiplication and heat operators. It is rather clear that FM is an
algebra whose unit element is a constant function 1. The space FM0 is not an algebra
since the multiplication of eiλ·x and e−iλ·x equals 1 /∈ FM0 for λ ∈ Rn\{0}.

Lemma 2.4. If f and g are in FM , so is fg. The norm of the constant function
1 equals 1.
Moreover,

‖ fg ‖FM≤‖ f ‖FM‖ g ‖FM .

Proof. Since f̂ g = (2π)−n/2f̂ ∗ ĝ, Fubini’s theorem implies that

‖ f̂ g ‖M≤ (2π)−n/2 ‖ f̂ ‖M‖ ĝ ‖M ,

which yields the desired estimate. Since 1̂ = (2π)n/2δ(x), by definition
‖ 1 ‖FM= 1.

We next study the heat semigroup on FM and FM0. For f ∈ FM we define

et∆f = F−1
(
e−t|ξ|2(Ff)

)
= F−1(f̂⌊e−t|ξ|2), t ≥ 0.

Similarly, we also define

∂xj
et∆f = F−1(iξje

−t|ξ|2(Ff)) = F−1(f̂⌊iξje−t|ξ|2), t ≥ 0,

which is of course consistent with ∂xj
(et∆f), where ∂xj

= ∂/∂xj.

Lemma 2.5.

(i) The family {et∆}t≥0 is a bounded C0-semigroup in FM and FM0. Moreover,
‖ et∆f ‖FM≤‖ f ‖FM for f ∈ FM, t ≥ 0.

(ii) Let A be a closed linear operator defined by

Af = ∆f

for f ∈ D(A) = {f ∈ FM ; ∂2

∂xi∂xj
f ∈ FM, (1 ≤ i, j ≤ n)}, Then A is the

infinitesimal generator of the semigroup {et∆}t≥0 in FM . The restriction A
on FM0 (denoted by A0) is the infinitesimal generator of {et∆}t≥0 in FM0.

(iii) The semigroup {et∆}t≥0 is an analytic semigroup in FM and FM0. More-
over,

‖ ∂xj
et∆f ‖FM≤ (2te)−1/2 ‖ f ‖FM , f ∈ FM, t > 0, i = 1, · · · , n

and ∂xj
et∆f ∈ FM0.

Proof. All properties are easy to prove if one works on the Fourier images of f
and et∆f . Necessary estimates are obtained by Lemma 2.2.
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2.4. Averaging. An element f ∈ FM always has a vertical averaging in the
sense that

lim
L→∞

1

2L

∫ L

−L

f(x1, · · · , xn−1, xn)dxn =: f(x′), x′ = (x1, · · · , xn−1)

exists at least for almost every x′ ∈ Rn−1. We call the function f the vertical average
of f . The function f − f is denoted by f⊥. Let χL be a function defined by

χL(xn) =
1

2L
χ(−L,L)(xn)

and χ(−L,L)(xn) is the characteristic function of (−L,L), i.e., χ(−L,L)(xn) = 1 for
xn ∈ (−L,L) and otherwise χL(x) = 0.

Lemma 2.6.

(i) Assume that f ∈ FM satisfies f̂⌊{ξn = 0} = 0. (In particular f ∈ FM0).
Then χL ∗ f → 0 in FM as L→ ∞.

(ii) Assume that f ∈ FM satisfies f̂⌊{ξn 6= 0} = 0. (This means f is independent
of xn.) Then χL ∗ f = f for all L > 0.

(iii) The space FM has a direct sum decomposition

FM = FMa ⊕ FMn

with FMa =
{
f ∈ FM ; f̂⌊{ξn 6= 0} = 0

}

FMn =
{
f ∈ FM ; f̂⌊{ξn = 0} = 0

}
.

Proof.

(i) Since χ̂L(ξn) = sin(Lξn)/Lξn, we see that χ̂L(ξn) → 0 as L → ∞ for ξn 6= 0
and |χ̂L(ξn)| ≤ 1. Since

‖ f ∗ χL ‖FM=‖ χ̂Lf̂ ‖M=‖ (f̂⌊χL)⌊{ξn 6= 0} ‖M ,

the Lebesgue dominated convergence theorem yields that χL ∗ f → 0 for
f ∈ FM if f̂⌊{ξn = 0} = 0.

(ii) This is trivial.
(iii) For f ∈ FM we define mappings

f 7→ F−1(f̂⌊{ξn 6= 0}), f 7→ F−1(f̂⌊{ξn = 0})

which give projections to FMa and FMn.

2.5. Divergence free spaces. We shall study the space of vector fields in Rn

whose components belong to FM . To simplify notation we sometimes do not distin-
guish the scalar- and vector-valued function spaces, if no confusion is likely to occur.
We shall apply such convention for other spaces like FM0, FMa, FMn.
Let P be defined by

(Pf)j =
n∑

k=1

F−1
(
f̂k⌊σjk(P)

)
for f = (f1, · · · , fn) ∈ FM0, j = 1, · · · , n
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with the symbol σjk(P)(ξ) = δjk − ξjξk/|ξ|2, ξ ∈ Rn. By Lemma 2.2 this operator is
bounded in FM0. Let PFM0 denote the P-image of FM0. We set Q = I − P and
observe that

(Qf)j =

n∑

k=1

F−1(f̂k⌊−ξjξk/|ξ|2) for f = (f1, · · · , fn) ∈ FM0.

Let QFM0 denote the Q-image of FM0. As usual, we have a Helmholtz decomposi-
tion of FM0.

Lemma 2.7. The space FM0 has a topological direct sum decomposition

FM0 = PFM0 ⊕QFM0.

The space PFM0 agrees with the space of all divergence free vector fields in FM0.

Proof. Since P2 = P so that PQ = QP = 0 and since P is bounded in FM0 the
first statement is clear. If f satisfies divf = 0 so that

∑n
k=1 f̂k⌊ξk = 0, then Qf = 0

so f ∈ PFM0. If f ∈ PFM0 so that f = Pf , then divf = divPf = 0 by a calculation
of symbols. We shall estimate norms of several operators acting in vector valued FM
spaces. For f ∈ FM = (FM)d we define

||f ||FM = (2π)−n/2||f̂ ||Md , ||f ||′FM = (2π)−n/2||f̂ ||′Md ,

where f̂ = (f̂1, · · · , f̂d) , f = (f1, · · · , fd). We shall state a vectorial version of Lemma
2.2. For d× d complex matrix valued function σ = (σjk)1≤j,k≤d we define

(Σf)j =
d∑

k=1

F−1(f̂k⌊σjk) (j = 1, · · · , d) (2.6)

instead of (2.4). For d × d matrix A let |A| be the operator norm from Cd to Cd

equipped with standard inner product for vectors in Cd.

Lemma 2.8. (i) Assume that σ = (σjk) ∈ C(Rn\{0}) is bounded in Rn\{0}.
Then Σ in (2.6) is a bounded linear operator in FM0 with an estimate

||Σf ||FMd ≤ || |σ| ||∞||f ||FMd (2.7)

for f ∈ FM0. Suppose, furthermore, σ is continuous at the origin, then σ is a
bounded linear operator in FM satisfying (2.7) for all f ∈ FM .

Proof. It suffices to estimate in the phase space. We notice that

d∑

k=1

f̂k⌊σjk = |f̂ |⌊
d∑

k=1

hkσjk,

where hk is the Radon-Nikodym derivative of f̂k with respect to |f̂ |. Since |h|(ξ) = 1

for |f̂ |-a.e.ξ, by definition of σ

|
d∑

k=1

hk(ξ)σjk(ξ)| ≤ |σ(ξ)| |h(ξ)| = |σ(ξ)|
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for h = (h1, · · · , hd). We now obtain (2.7) by using the supremum norm of |σ|.
Lemma 2.8 provides a stronger consequence for P or exp(St) than that follows from
Lemma 2.3.

Lemma 2.9. (i) Let P be defined in the beginning of §2.5. Then P is bounded
from FMn

0 to FMn
0 . Moreover,

||Pf ||FMn ≤ ||f ||FMn for all f ∈ FMn
0 .

(ii) Let S = PJP be as in (2.1). Then S is bounded from FM3
0 into itself and so is

exp(St). Moreover,

||exp (St)f ||FM3 ≤ ||f ||FM3 for all f ∈ FM3
0 , t ∈ R,

where exp (St) =
∑∞

k=0
1
k! (tS)k .

Proof. (i) Since σ(P ) = I− ξ⊗ ξ/|ξ|2, it is an orthogonal projection from C
n into

itself. Thus its operator norm is one so that || |σ| ||∞ = 1. From (2.7) it now follows
the estimate of (i). The property Pf ∈ FMn

0 for f ∈ FMn
0 is clear.

(ii) Since σ(S) is skew-symmetric ([1], [3]), exp(σ(S)t) is an unitary matrix so
|exp σ(S)t| = 1 as a matrix. Thus (2.7) yields the desired estimate for exp(St).
The boundedness of S follows from boundedness of its symbol with respect to ξ. It is
clear that its image is in FM3

0 .

3. Proof of Theorem 1.1. We work on the integral equation which is formally
equivalent to (1.1) of the form

u(t) = exp(t∆) exp(−ΩtS)u0 +N(u, u)(t) for t ≥ 0. (3.1)

Here exp(t∆) = et∆ is the heat semigroup and

N(u, u)(t) = −
∫ t

0

exp((t− s)∆) exp(−Ω(t− s)S)P ∇ · (u⊗ u)(s)ds,

where ∇·F :=
∑3

i=1 ∂xi
Fij for a tensor F = (Fij)1≤i,j≤3. There are two key estimates.

(i) estimate for linear term : By Lemma 2.5 and 2.9 (ii) we have

||exp(t∆) exp(−ΩtS)u0||FM3 ≤ ||u0||FM3 .

(ii) estimate for nonlinear term : Since we have by Lemma 2.5 (iii)

∇ · exp(t∆)F ∈ FM0 for any F = (Fij)1≤i,j≤3 ∈ FM3×3,

applying Lemma 2.9 together with Lemma 2.5 (iii) yields

||exp(t∆) exp(−ΩtS)P ∇ · F ||FM3

≤ ||exp(ΩtS)P∇ · exp(t∆)F ||FM3

≤ 1 · 1 · ||∇ · exp(t∆)F ||FM3

≤ (2te)−1/2
3∑

i=1

||Fi||FM3 , Fi = (Fi1, Fi2, Fi3)
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for all F ∈ FM3×3.
This estimate enables us to construct the solution of the integral equation (3.1) by a
successive approximation {uj}j=1,2,··· given by

u1(t) = exp(t∆) exp(−ΩtS)u0

uj+1(t) = u1(t) +N(uj, uj)(t) j = 1, 2, · · · .
We now define

Kj(T ) = sup
0≤s≤T

||uj(s)||FM , Lj(T ) = sup
0≤s≤T

||uj(s) − uj−1(s)||FM

for T > 0. Applying (i), (ii), we have

Kj+1 ≤ ||u0||FM3 + (2e)−1/2

∫ t

0

(t− s)−1/2
3∑

i=1

||Fi||FM3ds (j ≥ 1)

with Fi = uiuj . By Lemma 2.4 and the equivalence of norms we observe

||vu||FM3 ≤
√

3||vu||′FM3

≤
√

3||v||FM ||u||′FM3 ≤
√

3||v||FM ||u||FM3

for u ∈ FM3, v ∈ FM so

3∑

i=1

||Fi||FM3 ≤
√

3
3∑

i=1

||ui||FM ||u||FM3 ≤ 3||u||′FM3 ||u||FM3 ≤ 3||u||2FM3 .

We thus obtain

Kj+1 ≤ ||u0||FM3 + 3(2/e)−1/2T 1/2K2
j (j ≥ 1).

The remaining argument is now standard e.g. [3]. From this estimate one
easily sees the uniform boundedness supj≥1Kj(T ) ≤ 2||u0||FM if T < 1/{4 ·
3(2/e)−1/2||u0||FM3}2. Similar calculation for uj+1−uj and the uniform boundedness
give us

Lj+1 ≤ 2 · 3(2/e)−1/2(2||u0||FM3)T 1/2Lj for j ≥ 1,

that implies Lj+1/Lj < 1/2 if T ≤ 1/[2{2 · 3(2/e)−1/2(2||u0||FM3)}2]. Therefore, we
see there exists a unique limit u such that uj → u in C([0, T0];FM0) as j → ∞. It
is easy to see that the limit u solves the equation. Uniqueness comes from similar
calculation for the subtraction w = u− v. Theorem 1.1 has been proved.

Remark 3.1. From the proof above the existence time of the solution u, denoted
as T0 in Theorem 1.1, is estimated from below as follows:

T0 ≥ 1/[2{2 · 3(2/e)−1/2(2||u0||FM3)}2] = e/(576||u0||2FM3).

The main results of the present paper, Theorems 1.1 and 1.2, on uniform in Ω ∈ R

local solvability of the Navier-Stokes equations with the skew-symmetric Coriolis term
are needed in the analysis of fast singular oscillating limits (singular limit Ω → +∞)
for initial data nondecreasing in space infinity. For initial data on periodic lattices
and in bounded cylindrical domains in R3, global regularity of solutions of the 3D
Navier-Stokes equations for all sufficiently large parameters Ω ∈ R3 was proven in [2],
[3] and [7].



392 Y. GIGA ET. AL.

Acknowledgement. The work of the first author is partly supported by the
Grant-in-Aid for Scientific Research, No. 14204011, 17654037, the Japan Society of
the Promotion of Science (JSPS). The work of the second author was done when he was
a post-doctoral fellow at Keio University sponsored by COE ’Integrative Mathematical
Sciences: Progress in Mathematics Motivated by Natural and Social Phenomena’
(JSPS). Its hospitality is gratefully acknowledged. The work of the third author
is partly supported by the AFOSR Contract FG9620-02-1-0026 and the US CRDF
Contract RU-M1-2596-ST-04. The work of the last author is partly supported by the
Grant-in-Aid for Scientific Research, No. 17540201, JSPS. The authors are grateful
to the referee for careful reading of the manuscript and useful suggestions.

Appendix A. In this appendix we shall give the definition of the homogeneous
Besov space Ḃ0

∞,1 and prove that the space FM0 is strictly included in the space Ḃ0
∞,1.

Let {φj}∞j=−∞ be the Littlewood-Paley dyadic decomposition. Then the homogeneous

Besov space Ḃ0
∞,1 = Ḃ0

∞,1(R
n) is defined originally (see [13]) by the set

{
f ∈ Z ′; ||f ; Ḃ0

∞,1|| :=

∞∑

j=−∞

||φj ∗ f ||L∞ <∞
}
.

Here, by S and S′ we denote the class of rapidly decreasing functions and its dual
(the space of tempered distributions), respectively. By Z ′ we denote the topolog-

ical dual space of the space Z, which is defined by Z ≡
{
f ∈ S; Dαf̂(0) =

0 for all multi-indices α = (α1, . . . , αn)
}
. Dealing with the equations, the problem

on the definition above is that all polynomials vanish in the space, however, in this
paper we define

Ḃ0
∞,1 :=

{
f ∈ S′; ||f ; Ḃ0

∞,1|| <∞, f =

∞∑

j=−∞

φj ∗ f in S′
}

to exclude polynomials except 0. The readers can find more details in e.g. [6], [11], [4].

Theorem A.The space FM0 is continuously embedded in Ḃ0
∞,1. Moreover, the

inclusion FM0 →֒ Ḃ0
∞,1 is strict.

Proof. For f ∈ FM0 we get

||f ||Ḃ0
∞,1

=

∞∑

j=−∞

||φj ∗ f ||∞ =

∞∑

j=−∞

||F−1(φ̂j f̂)||∞

≤ C

∞∑

j=−∞

||φ̂j f̂ ||M = C

∞∑

j=−∞

||φ̂j f̂⌊Ej ||M ,

where Ej = {2j−1 ≤ |ξ| ≤ 2j+1}, since φ̂j is supported in Ej . Since

||φ̂j f̂⌊Ej ||M ≤ ||f̂⌊Ej ||M
and each point of (0,∞) is covered by at most three Ej ’s, we observe that

∞∑

j=−∞

||f̂⌊Ej ||M ≤ 3||f̂ ||M .
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We thus conclude that ||f ||Ḃ0
∞,1

≤ 3C||f ||FM . Hence the embedding is continuous.

The inclusion is strict. We shall prove it for n = 1. Consider f = h ∗ eixi sgn x ∈
L∞(R), where h is a smooth bounded function whose Fourier transform ĥ is supported
in {ξ ∈ R ; |ξ − 1| ≤ 1/2}. Here sgn(s) is the signature function with value 1 if

s > 0 and −1 otherwise. The Fourier transform f̂ equals a constant multiple of
ĥ p.v. 1/(ξ− 1), which is not in M ; here p.v. denotes the Cauchy principal value. So

f does not belong to FM . However, since the support of f̂ is in {|ξ−1| ≤ 1/2}, away
from the origin and infinity, the sum

∑
φj ∗ f in the Besov norm is finite. Since f ∈

L∞(R), this implies f ∈ Ḃ0
∞,1. For general n it suffices to consider F = f(x1) · · · f(xn)

to observe that F /∈ FM but F ∈ Ḃ0
∞,1.
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