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THE INFINITE SOURCE MODEL FOR INTERNET TRAFFIC:
STATISTICAL ANALYSIS AND LIMIT THEOREMS ∗

WALTER A. ROSENKRANTZ† AND J. HOROWITZ‡

1. Introduction. The discovery by Willinger et. al. that the input process
to an Ethernet cable exhibits, at least empirically, long range dependence (LRD)
and self-similarity has produced many models of this phenomenon, along with many,
sometimes ad-hoc, statistical methods to analyze them ([1],[5],[14],[17]). It has been
observed, for example, that detecting long range dependence (LRD) in internet traffic
by fitting a straight line to a variance time (VT) plot can give misleading results; in
particular, this method appears to be biased towards LRD even when the underlying
process is known to be short range dependent (SRD) ([7],[8],[15]). In this paper we
consider VT plots in the context of a readily-interpretable model for internet traffic
that avoids the use of Gaussian processes, such as fractional Brownian motion (fBm)
or fractional Gaussian noise (fGn), which take on negative values, to model a process
that does not (Riedi et al. [14]). This model, which has been studied (e.g., in Guerin
et al. [5]) under the rubric “infinite source Poisson data traffic model”, can capture
the essential features of LRD and asymptotic self-similarity, but is simple enough so
that closed-form expressions can be found for the variance-covariance function of the
process. For our model, we show that the variance of the cumulative input is a non-
linear function of time in log-log scale, which explains the curved appearance of VT
plots for simulated and empirical data (see Figure 3.1) . This suggests that nonlin-
ear regression might yield more accurate estimates of the model parameters. These
theoretical results are confirmed by simulations, real data, and the use of residual
plots, the details of which were first reported in a separate paper [15]. Following the
referee’s suggestion we have incorporated some of the numerical and graphical results
presented there into Section 4 and summarized in Tables ((4.1), (4.2)). Our results,
which apply to all SRD and LRD M/G/∞ processes, generalize those obtained by
Krunz and Matta ([8]) for an important special case. A more detailed analysis of this
model, given in Section 3, explains, simply and rigorously, why fitting a straight line
to a VT plot is always biased towards LRD, even when the process is known to be
SRD.

A separate, but closely related question, is obtaining a limit theorem for the cu-
mulative input traffic under “heavy traffic”that is consistent with empirical internet
traffic measurements, a topic that has attracted much attention in the current litera-
ture ([5],[10],[14],[16],[17]). In some of these papers the limit process is not unique; it
depends on how two parameters, the arrival rate (also called the connection rate) and
the time scale, go to infinity. In this paper, we derive a central limit type theorem for
the cumulative input process that differs significantly from those obtained by others.
We show that as the arrival rate of network users tends to infinity the cumulative
input process, when suitably normalized, tends (in the sense of weak convergence of
processes) to a Gaussian limit which is not fBm and with a covariance function that
depends on the service time distribution (Section 5). As a consequence of this result,
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when the intensity of user arrivals is large, the cumulative input process is approxi-
mately a deterministic increasing function of time plus a zero-mean Gaussian noise.
Although this is similar in spirit to some results in [10] and in [16], our results are
not comparable because their limit theorems concern the asymptotic behaviour of the
input process over large time scales, whereas we study its asymptotic behavior over a
fixed time interval.

2. The M/G/∞ input process. One of the simplest plausible models of net-
work traffic possibly exhibiting LRD is undoubtedly the M/G/∞ input process, where
customers arrive according to a homogeneous Poisson process with arrival rate λ (also
called the connection rate), service time distribution G(y) = P (S ≤ y), finite mean
µ = E(S), but infinite variance (Parulekar and Makowski ([11])). Instead of the
discrete time model considered by them, we consider a continuous time, M/G/∞
queueing system of the sort described in section 5.6(iii) of Cox and Isham ([4]), but
interpreted as follows: Network users enter the system according to a homogeneous
Poisson process of rate λ and remain in it for a random time S, having distribution G,
during which they generate packets at a constant unit rate. We denote by Zλ(t) the
number of users in the system at time t. In queueing parlance, Zλ(t) corresponds to
the number of busy servers, and the time that each user is in the system corresponds
to the service time. We then use a fluid approximation to the total number Xλ(t) of
packet arrivals during the time interval [0, t], which is given by

Xλ(t) =
∫ t

0

Zλ(s)ds (1)

In Sections (1− 4) we consider the situation in which Zλ(t) is stationary, which is the
case relevant for the analysis of VT plots; in Section (6) we indicate how the main
limit theorem can be extended to the nonstationary case.

It is shown below that Xλ(t) is LRD when the distribution of S is “heavy tailed”
in the sense of Pareto:

G(y) = P (S > y) ∼ Ky−θ, 1 < θ < 2, K > 0 (2)

We note that E(S) < ∞ if θ > 1 and E(S2) < ∞, if θ > 2.

Notation: Here, and elsewhere, we use the letters K, K1 etc., to denote constants
whose exact values are of no particular interest, and we use the usual notation for
asymptotic equivalence:

f(t) ∼ g(t) means lim
t→∞

f(t)
g(t)

= 1

The asymptotic behaviour of the variance of the sample mean v(t), where

v(t) := var(Xλ(t)/t), (3)

determines whether the process Xλ(t) is LRD or SRD. A process is LRD when v(t)
decreases to zero at a rate t−α, where 0 < α < 1; that is, the variance of the sample
mean decreases to zero at a rate slower than t−1([1], p.42). In particular, when the
distribution of S is heavy tailed in the sense of Pareto then Lemma 2.1 implies that
α = θ − 1, that is,

v(t) ∼ K1t
1−θ, 1 < θ < 2.



STATISTICS AND LIMIT THEOREMS FOR NETWORK TRAFFIC 447

These results follow from the following well known formulas for the mean, auto-
covariance and variance functions of the processes Zλ(t) and Xλ(t) (Cox and Isham
[4], p.138-139 and Parzen [12], Equation 3.13, p.80, modified here for the stationary
case).

E(Zλ(t)) = λµ; E(Xλ(t)) = λµt (4)

cov(Zλ(t), Zλ(t + u)) = Cλ(u) = λ

∫ ∞

|u|
P (S > y)dy (5)

var(Xλ(t)) = 2
∫ t

0

du

∫ u

0

Cλ(u − v)dv (6)

Formulas (5) and (6) for the auto-covariance and variance functions are most
conveniently expressed in terms of the function g(u), defined as follows:

g(u) =
∫ u

0

ds

∫ s

0

C(r)dr, C(u) =
∫ ∞

|u|
P (S > y)dy (7)

Notice that C(u) is the covariance function of Zλ(t) for λ = 1, and that C(0) = E(S).
Moreover,

cov(Zλ(t), Zλ(t + u)) = λC(u) (8)

v(t) = var

(
Xλ(t)

t

)
=

2λg(t)
t2

(9)

var(Xλ(t) − Xλ(s)) = 2λg(t − s) (10)
cov(Xλ(s),Xλ(t)) = λ(g(s) + g(t) − g(t − s)) (11)

It follows at once from Equation (5) that Zλ(t) is covariance stationary and
Cλ(u) < ∞ if and only if E(S) < ∞; so, throughout this paper, we assume the
service time distribution has a finite mean.

The properties of the function g(u), listed below, follow immediately from its
definition in Equation (7); they play a useful role in our statistical analysis of VT
plots.

g(0) = g′(0) = 0, g′′(u) = C(u) > 0, g′′′(u) = C ′(u) < 0 (12)
d

du

(
g(u)
u2

)
< 0 (13)

1 <
ug′(u)
g(u)

< 2, 0 < u < ∞ (14)

lim
u→0

g(u)/u2 = C(0)/2, lim
u→∞ g(u)/u2 = 0 (15)

It follows from Equation (7) that C(u) is absolutely continuous. Consequently, the
functions g, g′, g′′, always exist, are each continuous, and g′′ is absolutely continuous
with g′′′(y) = P (S > y), (a.e.). Equation (15) follows at once from a suitable applica-
tion of l’Hopital’s rule. Equation (14) follows from Equation (12) which implies that
g(u) is positive, convex, increasing and g(0) = 0; consequently, g(u)/u < g′(u), from
which the first inequality follows. The derivations of the other inequalities listed in
(13) and (14) are given in Section 6. We shall use the inequality given in Equation (14)
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Fig. 3.1. Graph of ln[v(eu)].

to prove that the widely used technique of estimating model parameters via simple
linear regression is always biased towards detecting LRD, even when the underlying
model is SRD (see Section 3).

Lemma 2.1. (i) Assume G(y) ∼ Ky−θ, 1 < θ < 2 ; then

g(t) ∼ K1t
3−θ, g′′(t) ∼ K2t

1−θ, 1 < θ < 2 (16)

(ii) Assume µ2 = E(S2) < ∞; then

g(t) ∼ µ2t (17)

Proof. To prove (16) and (17) apply l’Hopital’s rule to compute
limt→∞ g(t)/t3−θ, limt→∞ g′′(t)/t1−θ, and limt→∞ g(t)/(µ2t), respectively.

3. Variance-Time Plots. A Variance-Time (VT) plot is a graph, in log-log
scale, of v(t) = var(Xλ(t)/t) against t, i.e., it is a plot of the points

(u, ln[v(eu)]),−∞ < u < ∞ (18)

where u = ln t. We call the graph of Eq. (18) a theoretical VT plot. Figure (3.1) is
a theoretical VT plot for the case G(y) = (1 + y)−θ, θ = 1.5, and λ chosen so that
λ = (θ − 1)(2 − θ)(3 − θ)/2.

Figure (3.1) suggests that ln[v(eu)] is asymptotically linear in u. This is a conse-
quence of the fact that ln v(t) ∼ b0 + b1 ln t, which we prove below [cf. Lemma(3.4)].
More precisely, the graph of v(t) on a log-log scale is asymptotically linear in ln t, with
asymptotic slope b1 = −1 when the input process is SRD, and b1 > −1 otherwise.
Thus, detecting LRD is equivalent to showing that b1 > −1. It is natural to estimate
b1 via linear regression, that is by fitting a straight line to that portion of the curve



STATISTICS AND LIMIT THEOREMS FOR NETWORK TRAFFIC 449

which is nearly linear. Unfortunately, as we now show, this method is always posi-
tively biased, even when the input process is SRD. The proofs of Lemmas (3.1) and
(3.2) below are given in Section 6.

Lemma 3.1. Suppose we use the method of least squares to fit a straight line
to the data set (ui, yi), i = 0, 1, . . . , n, obtained by sampling a continuous function
f(u), a ≤ u ≤ b at the equally spaced points ui = a + i(b − a)/n, yi = f(ui). Denote
the slope of the fitted line by β1,n(f) and x = (a + b)/2. Then,

lim
n→∞β1,n(f) = β1(f) =

12
∫ b

a
(x − x)f(x)dx

(b − a)3
(19)

Lemma 3.2. If f is continuous, monotone increasing on [a, b], and
f(b) − f(a) > 0, then β1(f) > 0. In particular, if f ′(x) > c on [a, b], then β1(f) > c.

Lemma 3.3. β1(ln[v(eu)]) > −1

Proof. We first note that

d ln[v(eu)]
du

=
eug′(eu)
g(eu)

− 2 > 1 − 2 = −1; (20)

which is a consequence of the fact that tg′(t)/g(t) > 1 (see Equation (14)). The result
follows by applying Lemma 3.2 to the function f(u) = ln[v(eu)] = ln(2λ)+ ln[g(eu)]−
2u.

From Equation (20), Lemmas (3.1) and (3.2), we see that the slope of ln[v(eu)]
on any finite time interval is always strictly greater than −1, and that estimating b1

via simple linear regression is always biased towards LRD, even when the underlying
model is SRD. In other words, the estimate of b1 is biased even when we are sampling
from the exact model.

We now give a more explicit description of the asymptotic behavior of v(t).

Lemma 3.4. (i) Assume E(S2) = ∞ with heavy tailed Pareto service time dis-
tribution G(y) ∼ Ky−θ, 1 < θ < 2 ; then

lim
t→∞ ln(v(t)) − (b0 + b1 ln t) = 0 (21)

b0 = ln
(

2λK

(3 − θ)(2 − θ)(θ − 1)

)
, b1 = 1 − θ (22)

(ii) Assume µ2 = E(S2) < ∞; then

lim
t→∞ ln(v(t)) − (b0 + b1 ln t) = 0 (23)

b0 = ln(2λµ2), b1 = −1

(iii) When θ = 2 in Equation (2) then Equation (21) is modified as follows:

lim
t→∞ ln(v(t)) − b0 − ln t + ln(ln(t) − 1) = 0 (24)

b0 = ln(2λK)
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Proof. Equations (21) and (23) follow immediately from Eq.(16) and the fact that
v(t) = 2λg(t)/t2.

We next derive a closed form expression for ln(v(t)) when the tail of the service
time distribution is given by G(y) = (1 + y)−θ.

Lemma 3.5. Assume

G(y) = 1 − (1 + y)−θ, 0 < y < ∞,

then

var(Xλ(t)) = 2λa(θ)((1 + |t|)3−θ − (3 − θ)|t| − 1), (1 < θ < 2) (25)
var(Xλ(t)) = 2λ((1 + t) log(1 + t) − t), θ = 2 (26)
var(Xλ(t)) = λ(t − log(1 + t)), θ = 3 (27)

Proof. In this case the functions g(u) and C(u) can be explicitly computed by
substituting G(y) into Equation (7); thus,

C(u) =
1

θ − 1
(1 + |u|)−θ+1 (28)

g(u) =
∫ u

0

ds

∫ s

0

1
θ − 1

(1 + |r|)−θ+1
dr

= a(θ)((1 + |u|)3−θ − (3 − θ)|u| − 1) (29)

a(θ) =
1

(θ − 1)(2 − θ)(3 − θ)

Inserting these expressions for g(u) into Equation (9) yields the exact formulas for
var(Xλ(t)).

A nonlinear asymptotic expansion of ln(v(t)): Equation (25) suggests that
a nonlinear asymptotic expansion might be more appropriate. The following more
refined asymptotic expansion of Equation (25),

ln v(t) ≈ b0 + b1 ln(t) + b2t
−(b1+1), t → ∞ (30)

is obtained in the usual way by noting that

ln((1 + t)3−θ − (3 − θ)t − 1) = (3 − θ) ln(t) − (3 − θ)tθ−2 + o(tθ−2), t → ∞,

where we used the approximations

(1 + t−1)3−θ = 1 + (3 − θ)t−1 + o(t−1), t → ∞
ln(1 − (3 − θ)tθ−2) = −(3 − θ)tθ−2 + o(tθ−2), t → ∞

A graphical and numerical comparison of estimates of the model parameters based
on empirical VT plots using linear and non linear regression is presented in Section
(4).



STATISTICS AND LIMIT THEOREMS FOR NETWORK TRAFFIC 451

4. Empirical Variance-Time Plots . The Xλ(t) process, as previously noted,
is LRD when 1 < θ < 2, and SRD when θ > 2. It is, therefore, a question of no small
importance to be able to determine whether or not the process is LRD by estimating
from the empirical data the unknown parameter θ. This does not appear to be an easy
problem. Resnick ([13]), for example, has studied the tail behaviour of generalized
Pareto distributions using a variety of methods; unfortunateley, in 6 out of the 11
cases studied he obtained negative values for θ, which suggests the problem is still
open. The differences between LRD and SRD are revealed by studying the asymptotic
behavior of the variances of the discrete time series ZT (l), (l = 1, 2, . . .) obtained by
averaging the original time series over non overlapping blocks of size T , that is

ZT (l) =
1
T

∫ lT

(l−1)T

Zλ(u)du, (l = 1, 2, . . .) (31)

It is easy to verify that the sequence ZT (l) (l = 1, 2, . . .) is also covariance sta-
tionary, and asymptotically second order self similar− we omit the details.

Variance–time (VT) plots are a widely used method for estimating the Hurst pa-
rameter H = (3−θ)/2 that characterizes the tail behaviour of the service time distribu-
tion ([1], [7], [17]). A VT plot is an empirical sample of the graph (log(T ), log(v(T ))),
where T is the block size defined above (cf. Equation (31)) and v(T ) has been defined
in Equation (3). We estimate log v(T ) from the empirical data by computing the
sample variances obtained from the time series ZT (l), (l = 1, 2, . . .) (Equation(31)).

The variance-time plot is the scatterplot of the data set
(xi, yi) (i = 1, 2, . . . , n), where

xi = log Ti, i = 1, . . . , n (32)
yi = log s2(Ti), (33)

where s2(Ti) is the sample variance of ZTi(l), l = 1, . . . , mTi
.

The traditional implementation of the VT plot is to fit a straight line b0 + b1x to
the scatterplot, using simple linear regression, and then estimate H via the equation
Ĥ = (2+b1)/2, ([1], p.92). This is equivalent to replacing the nonlinear function v(T )
with its asymptotic linear approximation defined by Equation (21). However, Krunz
and Makowski have shown that this implementation of the VT plot can incorrectly
suggest LRD even in cases when the simulated data, generated using a discrete time
M/G/∞ model, is short range dependent ([7]). Their work suggests that the usual
VT plot is strongly biased towards LRD. This should not come as a surprise because,
as noted earlier, the function v(T ) is a nonlinear function of the block size T , which
suggests that one can obtain better estimates of the model parameters using nonlinear
regression analysis. The following example illustrates why using linear regression
yields a positively biased estimate for the Hurst parameter H.

Note: For the example considered in this paper we chose the time blocks Ti

according to the following scheme:

log Ti = log10(i × 0.2) − 2, i = k, . . . , 20, where

k is chosen large enough to avoid numerical singularities in the nonlinear curve fitting
algorithm.

Example: Figure 4.1 is the variance-time plot for a simulated trace of the
M/G/∞ input process with λ = 300, θ = 1.5, and H = 0.75. Here b0 =
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Fig. 4.1.

3.01142, b1 = −0.1483, so the estimate for the Hurst parameter in this case is
Ĥ = (2 − 0.1483)/2 = 0.9259 > 0.75, a very poor estimate, indeed. The reason
for the positive bias for the estimated value of H is clear from Figure (4.1): The
points of the scatter plot lie on a concave curve, which tends to make the slope of the
fitted line greater than the asymptotic slope, which equals 2H − 2. Consequently,

Ĥ =
b1 + 2

2
>

(2H − 2) + 2
2

= H

In Figure 4.1, V = log v(T ) and M = log T.
Looking at Figure 4.1 we see a small but non-negligible curvature in the scatter

plot suggesting that the linear model may not be appropriate. This is confirmed
by the studentized residual plot(cf. [9]) displayed in Figure 4.2. In our situation
the usual assumptions for simple linear regression definitely do not hold, but we use
the (studentized) residuals as an informal tool to assess the adequacy of the linear
fit. The residual plot in Figure 4.2 provides additional evidence for using nonlinear
regression to estimate the model parameters instead of the linear (in log T ) model of
Equation (21). In particular, we used Mathematica’s nonlinear regression program
to fit the exact, closed form, expression for log v(T ) obtained from Equation (18).
Similar results were obtained for the Bellcore pAugTL data set (source:[6]). These
examples confirm our theoretical conclusions that the linear regression estimate of
the Hurst parameter H is biased towards LRD and is greater than the non-linear
estimate (see Tables (4.1) and (4.2)). For example, the linear regression estimate for
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Fig. 4.2.

H from the simulated M/G/∞ data is 0.9259, which is about 23% larger than the
correct value H = 0.75; it is also 11% larger than 0.8357, the estimate obtained via
nonlinear regression. The discrepancy between the two estimates for the Bellcore data
is even more striking: The linear regression estimate is 0.7679 and the nonlinear one is
0.6030. In this case the linear regression estimate is approximately 27% greater than
the nonlinear one. This may explain why the variance-time plot sometimes incorrectly
indicates the presence of LRD.

Model slope θ̂ Ĥ λ̂
linear −0.1483 1.1483 0.9259 120.057
non-linear na 1.3286 0.8357 399.59

Table 4.1. Parameter estimates for simulated data.

Model slope θ̂ Ĥ λ̂
linear −0.4642 1.4642 0.7679 1.09 × 106

non-linear na 1.7940 0.6030 6.94 × 107

Table 4.2. Parameter estimates for Bellcore data.
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5. A limit theorem for the rescaled Xλ(t) process . The marginal distri-
butions of the Zλ(t) process (in the stationary case) are Poisson with mean λµ; this is
a standard result for the M/G/∞ queue (Parzen [12], Ex. 5E, p.147). Consequently,
as λ → ∞ the distribution of the normalized variable Z∗

λ(t) defined by

Z∗
λ(t) =

Zλ(t) − λµ√
λ

(34)

converges weakly, for each t, to a normal variable with mean 0 and variance µ. Indeed,
it can be shown that the finite dimensional distributions of the process Z∗

λ(t) converge
weakly to those of a Gaussian process denoted by Z∗(t). More precisely, we can prove
the following lemma.

Lemma 5.1. For 0 ≤ t1 < t2 < . . . < tk,

(Z∗
λ(t1), . . . , Z∗

λ(tk)) ⇒ (Z∗(t1), . . . , Z∗(tk)), λ → ∞,

where (Z∗(t1), . . . , Z∗(tk)) is a Gaussian random vector, with mean zero, and covari-
ance matrix

Γ(ti, tj) = E(Z∗(ti)Z∗(tj)) =
∫ ∞

|ti−tj |
(1 − G(y)) dy (35)

and ⇒ denotes weak convergence.

Proof. See Section (6).
This suggests, and we shall prove, that the finite dimensional distributions of the

normalized processes X∗
λ(t) defined by

X∗
λ(t) =

Xλ(t) − λµt√
λ

(36)

converge weakly, as λ → ∞, to a Gaussian process X∗(t).

Lemma 5.2. For 0 ≤ t1 < t2 < . . . < tk,

(X∗
λ(t1), . . . , X∗

λ(tk)) ⇒ (X∗(t1), . . . , X∗(tk)), λ → ∞,

where (X∗(t1), . . . , X∗(tk)) is a Gaussian random vector, with mean zero, and covari-
ance matrix K given by

K(s, t) = g(s) + g(t) − g(t − s) (37)

Proof. See Section (6).
It is to be observed that the covariance function of the limit Gaussian process

X∗(t) is not independent of the service time distribution G. This is a consequence of
the fact that g(t) is also a function of G. In the special case when G(y) = (1 + y)−θ,
discussed in Lemma 3.5, it follows from Equation (37) that

K(s, t) = a(θ)
(
(1 + |s|)2H + (1 + |t|)2H − (1 + |t − s|)2H − 2H(|s| + |t| − |t − s|) − 1

)
,
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where H = (3 − θ)/2 is the so-called Hurst parameter.

Proof. See Section (6).
It follows from Equation (37) that all weak limits have the same covariance func-

tion K(s, t). This, together with tightness of the family of processes {X∗
λ(t) : λ > 0},

which we shall prove momentarily, shows that the finite-dimensional convergence in
Lemma 4.2 can be strengthened to weak convergence of X∗

λ(t) to the Gaussian process
X∗(t) having mean zero and covariance K(s, t).

Theorem 5.1. The family {X∗
λ(t) : λ > 0} is relatively compact in the space

DR[0,∞).

Proof. The proof is a straightforward application of Theorerm 15.6, p.128 of
Billingsley ([2]). It suffices to show, for t1 < t < t2, that

E(|X∗
λ(t) − X∗

λ(t1)||X∗
λ(t2) − X∗

λ(t)|) ≤ µ

4
(t2 − t1)2 (38)

The inequality (38) implies that the hypotheses of Billingsley’s Theorem 15.6 are
satisfied with γ = 1, α = 1, and F (t) = (

√
µ/2)t. In detail:

E(|X∗
λ(t) − X∗

λ(t1)||X∗
λ(t2) − X∗

λ(t)|) =
1
λ

∫ t2

t

∫ t

t1

E((|Zλ(s) − λµ|)(|Zλ(v) − λµ|))ds dv

≤ 1
λ

∫ t2

t

∫ t

t1

λµ dsdv

= µ(t − t1)(t2 − t) ≤ µ
(t2 − t1)2

4

The inequality is a consequence of Schwarz’s inequality and the fact that the univariate
distributions of the Zλ(t) process are Poisson with parameter λµ.

We have thus proved the following theorem:

Theorem 5.2. The normalized processes X∗
λ(t) converge weakly to the Gaussian

process X∗(t) with covariance function given by Equation (37).

We observe that this result is valid for an arbitrary service-time distribution G.
As a consequence of Theorem 5.2, when the intensity λ of customer arrivals is large,
the equation for the cumulative input process

Xλ(t) = λµt +
√

λX∗
λ(t),

which follows from Equation (36), shows that Xλ(t) is an increasing linear determin-
istic function of t plus a term that is approximately Gaussian noise. In the more
general nonstationary case, considered in Section 6 , the deterministic term above
is replaced by λ

∫ t

0
µ(s) ds, where µ(t) is defined in section 6, Equation (54). It is

noteworthy that K(Ts, T t)/T 2H , the covariance functions of the normalized processes
XT (t) = X∗(Tt)/TH , has an asymptotic limit independent of the service time distri-
bution, that is,

lim
T→∞

K(Ts, T t)
T 2H

= K1

(|s|2H + |t|2H − |t − s|2H
)

(39)
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This expression is the covariance function of fractional Brownian motion (fBm). In
fact, it can be shown that XT converges weakly to fBm as T → ∞.

There are results in the same spirit due to Mikosch et al. [10] dealing with
the cumulative input during the time interval [0, T t], but with the customer arrival
intensity λ = λ(T ) being an increasing function of T . Depending on the tail behavior
of the service-time distribution, the limit process as T → ∞ can be either fBm or
a stable Lévy motion. These results differ from the case considered here, where the
time interval is fixed, and only the arrival rate goes to infinity. Finally, we note that,
contrary to a statement in [5], section 2.5, the result of our Theorem 5.2 was not
obtained by Taqqu et al, whose paper [16] deals only with the so-called ON/OFF
model.

6. Mathematical details and proofs. Derivation of inequalities (13) and
(14): We derive inequality (13) by noting that g′(u) is a concave, increasing function
for 0 < u < ∞; this, together with the fact that g′(0) = 0, implies that g′′(u) <
g′(u)/u; equivalently,

ug′′(u) − g′(u) < 0, 0 < u < ∞
It is easy to see that

d

du

(
g(u)
u2

)
=

ug′(u) − 2g(u)
u2

Consequently, it suffices to show that h(u) = ug′(u) − 2g(u) < 0, 0 < u < ∞. This
follows at once from the fact that
h(0) = 0 and h′(u) = ug′′(u)−g′(u) < 0. The inequality g′(u) < 2g(u)/u is equivalent
to the assertion 2g(u) − ug′(u) = −h′(u) > 0 that we just derived. This completes
the derivation of the second inequality of (14).

Proof of Lemma 3.1. The following equation for β1,n(f), the slope of the fitted
line, is well known.

β1,n(f) =
∑

(xi − x)f(xi)∑
(xi − x)2

(40)

xi = a + i(b − a)/n, x = (
∑

0≤i≤n

xi)/(n + 1) = (a + b)/2)

Dividing the numerator and denominator of the expression on the right hand side
by n and letting n → ∞ we see that the numerator and denominator are Riemann
sums whose limits are

∫ b

a
(x− x)f(x)dx and (b− a)3/12, respectively. This completes

the proof.

Proof of Lemma 3.2. It suffices to prove this for the case a = 0 and b = 1, in
which case we have

β1(f) = 12
∫ 1

0

(t − 1/2)f(t) dt

The change of variables s = t − 1/2 yields

β1(f) = 12
∫ 1

0

(t − 1/2)f(t) dt = 12
∫ 1/2

0

t[f(1/2 + t) − f(1/2 − t)] dt
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It is easy to see that f continous, monotone increasing, with f(1)− f(0) > 0 on [0, 1]
implies that f(1/2 + t) − f(1/2 − t) > 0 on an open subinterval of [0, 1/2]; therefore
β1(f) > 0. Finally, we note that f ′(x) > c implies f(x) − cx is monotone increasing;
therefore β1(f(x) − cx) = β1(f) − c > 0.

Proof of Theorem 5.2. We consider the stationary case first, and then indicate
the minor modifications required in order to extend the proof to the nonstationary
case. Our proof requires the computation of the joint moments for both the X∗

λ(t)
and X∗(t) processes, which are given by the following expressions.

E(X∗
λ(t1) · · ·X∗

λ(tk)) =
∫

[0,t1]

· · ·
∫

[0,tk]

E

(
k∏

i=1

Z∗
λ(ui)

)
du1 . . . duk (41)

Replacing X∗
λ(t) and Z∗

λ(t) by X∗(t) and Z∗(t), respectively, we obtain a similar
expression for the joint moments of the X∗(t) process:

E(X∗(t1) · · ·X∗(tk)) =
∫

[0,t1]

· · ·
∫

[0,tk]

E

(
k∏

i=1

Z∗(ui)

)
du1 . . . duk (42)

The proof is a consequence of lemmas (5.1), (5.2), and Theorem 5.1, the latter
having been already proved.

Proof of Lemma 5.1. Using the reproductive properties of the Poisson process
we can represent the Poisson arrival process Nλ(t) feeding the M/G/∞ queue as the
sum

[λ]∑
i=1

Mi(t) + Mδ(t),

where Mi(t), i = 1, . . . , [λ] are independent Poisson processes, with rate 1 and Mδ(t)
is a Poisson process with rate δ = λ − [λ], independent of Mi(t), i = 1, . . . , [λ].
Thus the input stream of users is the sum of [λ] + 1 independent Poisson input
streams. Let {Tim : m ≥ 1} denote the sequence of arrival times for the process
Mi(t), i = 1, . . . , [λ], and similarly for {Tδm : m ≥ 1}. Also let Sim be the time in the
system for the mth user from stream i, i = 1, . . . , [λ], and similarly for {Sδm : m ≥ 1}.
The families of random variables {Tim : m ≥ 1}, {Sim : m ≥ 1}, {Tδm : m ≥ 1},
{Sδm : m ≥ 1} are all mutually independent, and, moreover, the random variables
{Sim, Sδm : i = 1, . . . , [λ], m ≥ 1} are iid with service time distribution G.

Denote the number of users in the system at time t corresponding to the input
processes Mi(t) and Mδ(t) by Yi(t) and Yδ(t), respectively. Then

Yi(t) =
∞∑

m=1

I{Tim≤t<Tim+Sim
},

with a similar expression for Yδ(t). The processes Yi(t), i = 1, . . . , [λ], Yδ(t) are there-
fore independent, and Yi(t), i = 1, . . . , [λ] are iid.

Observe that the normalized process Y ∗
i (t) is identical in law to Z∗

1 (t). Conse-
quently, we have the following representation of the Z∗

λ(t) process:
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Z∗
λ(t) =

[λ]∑
i=1

Y ∗
i (t) + Y ∗

δ (t), (43)

Thus, the Y ∗
i (t), i = 1, . . . , [λ] are [λ] iid copies of the process Z∗

1 (t), Y ∗
δ (t) is inde-

pendent of the Y ∗
i (t) processes and has the same distribution as Z∗

λ−[λ](t). Applying
Chebychev’s inequality to Yδ(ti) yields the result that

lim
λ→∞

P (|Yδ(t) − δµ| > λ1/2ε) ≤ lim
λ→∞

δµ

λε2
= 0

Consequently,

(Y ∗
δ (t1), . . . , Y ∗

δ (tk))√
λ

→p 0 as λ → ∞,

where →p denotes convergence in probability.
The proof is completed by applying the multidimensional central limit theorem to

the iid sequence of random vectors (Yi(t1), . . . , Yi(tk)), i = 1, . . . , [λ] with covariance
function Γ(ti, tj) given in Equation (35).

Lemma 6.1. There exists λ0, 0 < λ0 < ∞, depending only on k, such that

|E
(

k∏
i=1

Z∗
λ(ui)

)
| ≤ E

(
k∏

i=1

|Z∗
λ(ui)|

)
≤ 2k! exp(µ/2)

for all u = (u1, . . . , uk), ui ≥ 0, and λ ≥ λ0

By letting some of the factors in the preceding expression coincide we can obtain
a similar bound for all joint moments of higher order, stated in the following corollary:

Lemma 6.2. For any set of non negative integers r = (r1, . . . , rk), the following
inequality holds:

E(|Z∗
λ(u1)|r1 · · · |Z∗

λ(uk)|rk)| ≤ 2r! exp(µ/2),

for all u = (u1, . . . , uk), ui ≥ 0, and λ ≥ λ0, where r =
∑

1≤i≤k ri.

Proof of Lemma 6.1. Using a generalized version of Hölder’s inequality we see
that

|E
(

k∏
i=1

Z∗
λ(ui)

)
| ≤ E

(
k∏

i=1

|Z∗
λ(ui)|

)
≤

k∏
i=1

(
E(|Z∗

λ(ui)|k)
)1/k

(44)

Since |z|k ≤ k! exp(|z|), it follows that

|E
(

k∏
i=1

Z∗
λ(ui)

)
| ≤

k∏
i=1

(k!)1/k (E exp(|Z∗
λ(ui)|)1/k

≤ k!
k∏

i=1

(E exp(Z∗
λ(ui) + E exp(−Z∗

λ(ui))
1/k (45)
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Using the specific form of the moment generating function of the Poisson distri-
bution, we have

lim
λ→∞

E exp(±Z∗
λ(ui)) = exp(µ/2)

Notice that in the stationary case, the distribution of Z∗
λ(u) does not depend on u ≥ 0.

Thus, for sufficiently large λ0 > 0,

|E(exp(Z∗
λ(ui)) + E(exp(−Z∗

λ(ui))| ≤ 2 exp(µ/2) (46)

for λ ≥ λ0. Inserting this into Equation (45) we get

|E
(

k∏
i=1

Z∗
λ(ui)

)
| ≤ k!

k∏
i=1

21/k exp(µ/2k) = 2k! exp(µ/2) (47)

Lemma 6.3. For any u and any set of non negative integers r = (r1, . . . , rk)

lim
λ→∞

E(Z∗
λ(u1)r1 · · ·Z∗

λ(uk)rk) = E(Z∗(u1)r1 · · ·Z∗(uk)rk)

Proof. This follows from Lemmas (5.1) and (6.2).

Proof of Lemma 5.2. We begin our proof by applying the Lebesgue dominated
convergence theorem to the integrand on the right hand side of Equation (41), which
is justified by lemmas (6.1) and (6.3). Consequently,

lim
λ→∞

E(X∗
λ(u1)r1 · · ·X∗

λ(uk)rk) = E(X∗(u1)r1 · · ·X∗(uk)rk)

The proof is completed by recalling the following standard results on weak con-
vergence of probability measures in Rk.

Lemma 6.4. Let νn, ν be probability measures on Rk such that ν is uniquely
determined by its joint moments mν(r), where

mν(r) =
∫
Rk

xr1
1 · · ·xrk

k ν(dx),

x = (x1, . . . , xk) and r = (r1, . . . , rk). Suppose for every r

lim
n→∞mνn

(r) = mν(r),

then νn ⇒ ν.

Proof. See Billingsley ([3], p.352, problem 30.5).

Lemma 6.5. A k dimensional normal distribution is determined by its joint
moments.

Proof. See Billingsley ([3], p.351, problem 30.3).
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It follows from lemmas 5.1, 6.2, 6.3 that the joint moments of X∗
λ(t) in Equation

(41) converge to those of a k dimensional normal distribution, hence that

(X∗
λ(t1), . . . , X∗

λ(tk)) ⇒ (X∗(t1), . . . , X∗(tk)), λ → ∞

Weak convergence in the nonstationary case: We begin with the observa-
tion that Zλ(t) is again Poisson, but now

E(Zλ(t)) = λ

∫ t

0

(1 − G(y)) dy = λµ(t) (48)

The normalized process Z∗
λ(t) of Equation (34) is defined as follows:

Z∗
λ(t) =

Zλ(t) − λµ(t)√
λ

(49)

The multidimensional central limit theorem given in Lemma 5.1, with minor
modifications, remains valid. More precisely, the same method of proof yields the
following extension of Lemma 5.1.

Lemma 6.6. For 0 ≤ t1 < t2 < . . . < tk

(Z∗
λ(t1), . . . , Z∗

λ(tk)) ⇒ (Z∗(t1), . . . , Z∗(tk)), λ → ∞

where (Z∗(t1), . . . , Z∗(tk)) is a Gaussian random vector, with mean zero, and covari-
ance matrix

Γ(ti, tj) = E(Z∗(ti)Z∗(tj)) =
∫ min(ti,tj)

0

(1 − G(|ti − tj | + y)) dy (50)

To extend Lemma (6.3) to the nonstationary case, it is only necessary to modify
inequality (46) as follows.

|E(exp(Z∗
λ(ui)) + E(exp(−Z∗

λ(ui))| ≤ 2 exp(µ(ui)/2) (51)

And this yields the following extension of Equation (47).
For max1≤i≤p µ(ui) ≤ B

|E
(

k∏
i=1

Z∗
λ(ui)

)
| ≤ p!

k∏
i=1

21/p exp(B/2p) = 2p! exp(B/2) (52)

The rest of the proof is unchanged.
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