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Jeremy Quastel,
†

Hanna Jankowski
†

and John Sheriff
†

Abstract. We consider additive functionals
∫ t
0 V (ηs)ds of symmetric zero-range processes,

where V is a mean zero local function. In dimensions 1 and 2 we obtain a central limit theorem
for a−1(t)

∫ t
0 V (ηs)ds with a(t) =

√
t log t in d = 2 and a(t) = t3/4 in d = 1 and an explicit form

for the asymptotic variance σ2. The transient case d ≥ 3 can be handled by standard arguments
[KV, SX,S]. We also obtain corresponding invariance principles. This generalizes results obtained by
Port (see [CG]) for noninteracting random walks and Kipnis [K] for the symmetric simple exclusion
process. Our main tools are the martingale method together with L2 decay estimates [JLQY] for the
process semigroup.

0. Introduction. In a system of interacting random walks on Z
d one may

consider a local function V and its time integral
∫ t

0
V (ηs)ds. The total number of

particles is a conserved quantity and correspondingly such a system will typically
have a one parameter family of invariant measures νρ parametrized by the average
particle density ρ. If particle number is the only conserved quantity the system is
ergodic and, if we start with density ρ then the time integral

∫ t

0
V (ηs)ds will converge

to the appropriate expectation Eνρ
[V ].

Next it is natural to ask about the fluctuations of
∫ t

0
(V (ηs) − Eνρ

[V ])ds. We
observe them under the stationary process Pρ obtained by starting the process with
the invariant measure νρ with density ρ. A computation (see [CG]) shows that for
independent symmetric nearest neighbour random walks, with each particle jumping
at rate 2d, and V = η(0), the number of particles at the origin,

1
a(t, d)

∫ t

0

(ηs(0) − ρ)ds

converges in law to a normal distribution with mean zero and variance σ2(d, ρ) where

d = 1 : a(t, d) = t3/4

d = 2 : a(t, d) =
√

t log t

d ≥ 3 : a(t, d) =
√

t.

(0.1)

and σ2(1, ρ) = 4ρ/3
√

π, σ2(2, ρ) = ρ/2π, and σ2(d, ρ) = 2ρ
∫∞
0

pt(0, 0)dt in d ≥ 3,
where pt(x, y) are the transition probabilities of the corresponding continuous time
random walk. The recurrence of the individual particles is responsible for the unusual
scaling in one and two dimensions.

Kipnis [K] showed that the analogous results hold for symmetric random walks
with simple exclusion, with a new variance given by σ2(1, ρ) = 4ρ(1 − ρ)/3

√
π,

σ2(2, ρ) = ρ(1 − ρ)/2π if d = 2, and σ2(d, ρ) = 2ρ(1 − ρ)
∫∞
0

pt(0, 0)dt in d ≥ 3.
However, these results are somewhat special as they rely on explicit calculations. In
particular, they rely heavily on the special self-duality of symmetric simple exlusions
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from which the equation (λ − L)Gλ(η) = η(0) − ρ is explicity solved by Gλ(η) =∑
x gλ(x)(η(x) − ρ) where gλ(x) =

∫∞
0

e−λtpt(0, x)dt solves (λ − ∆)gλ = δ(0) for the
lattice Laplacian ∆f(x) =

∑
y∼x(f(y) − f(x)). For more complicated V one can in

principle use duality to obtain analogous results. However, these are still very special
exact computations and one can ask whether something more general is available.
Here we are interested in the zero-range models; systems of continuous-time random
walks where each particle’s jump rate is affected by the total number of particles at its
site. No duality is available, and unless special assumptions are imposed, the models
are not attractive. However they do have an explicit family νρ of (product) invariant
measures.

In the transient case, d ≥ 3, one can appeal to general results of Kipnis and
Varadhan [KV] for additive functionals of reversible Markov processes which apply
whenever we have a bound E[(

∫ t

0
V (ηs)ds)2] ≤ Ct, V mean zero. More precisely,

they show that the central limit theorem holds for t−1/2
∫ t

0
V (ηs)ds whenever the

asymptotic variance, −2E[V L−1V ], is finite. In d ≥ 3 this holds for any bounded local
function. This still leaves open the cases d = 1, 2 where typically −2E[V L−1V ] = ∞.
For symmetric simple exclusion and zero-range models, it is known [SX] that under
mild conditions, −2E[V L−1V ] < ∞ if and only if V̄ (n)(ρ) = 0 for n = 0, 1, 2 in d = 1,
n = 0, 1 in d = 2 and n = 0 in d ≥ 3 where

V̄ (ρ) = Eνρ
[V ] (0.2)

and V̄ (n) denotes the nth derivative.
Recently it was shown [JQLY] that under mild assumptions, the L2 decay of a

mean zero function V to equilibrium is at rate t−d/2 for the symmetric zero-range
dynamics. More precisely,

Eνρ
[(PtV )2] = C(ρ, d)[V̄ ′(ρ)]2t−d/2 + o(t−d/2) (0.3)

with an explicit constant C(ρ, d). Pt here denotes the semigroup etL of the dynamics.
In other words, up to leading order, the only contribution of a local function V is
through its (formal) projection onto

∑
x(ηx − ρ), and all other details are lost.

From (0.3) one obtains immediately that the variance E[( 1
a(t,d)

∫ t

0
V (ηs)ds)2] →

C̃(ρ, d)[V̄ ′(ρ)]2 in d = 1 and 2 with a(t, d) as before; the unusual factors a(t) = t3/4

in d = 1 and a(t) =
√

t log t in d = 2 simply compensate for the non-integrability of
the correlations t−d/2. But also the fact that most of the details of V are lost means
that one can replace V by more or less any local function, and a central limit theorem
for one would imply the same for the other. Hence our strategy is to find a nice local
function f for which the martingale method used by Kipnis goes through, i.e. for
which we can solve (λ−L)Gλ = f more or less explicitly, and then use (0.3) to extend
it to a general local function V .

In Section 6 we consider the symmetric simple exclusion process. Because of the
special self-duality property, (0.3) can be obtained easily. In fact one can compute
the next order term. Hence for symmetric simple exclusion in one dimension we can
study the fluctuations of

∫ t

0
V (ηs)ds under Pρ when V (ρ) = V ′(ρ) = 0. The scaling

turns out to be a(t, 2) and the limit is normal with variance C[V ′′(ρ)]2 with an explicit
constant C. An interesting open problem is whether the corresponding result can be
obtained for the zero-range models.
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Although one expects a result analogous to (0.3) for a large class of systems,
at present it is only known for symmetric zero-range and simple exclusion processes
(where one can use duality to give a complete expansion). For the important case of
the Ising model with Kawasaki dynamics, even under strong mixing conditions, (0.3)
is open and the best that is available at this time is a bound of the form t−d/2(log t)α

for some α > 0 [LQY]. It would also be very interesting to obtain related results for
asymmetric systems. Only partial results are available [S].

Finally, we note that our methods give full invariance principles, i.e., process
limits of XN

t = 1
a(N,d)

∫ Nt

0
V (ηs)ds. Of course XN

t by itself is not a Markov process.
Using the martingale method we can obtain that the limit is Gaussian. Since

lim
N→∞

1
N log N

∫ Nt2

0

∫ Nt1

0

(1 + |s2 − s1|)−1ds1ds2 = 2min(t1, t2) (0.4)

and

lim
N→∞

1
N3/2

∫ Nt2

0

∫ Nt1

0

(1 + |s2 − s1|)−1/2ds1ds2 =
4
3
[t3/2

2 + t
3/2
1 − |t2 − t1|3/2], (0.5)

we see from (0.3) that the asymptotic covariance is 4C(ρ, d)[V̄ ′(ρ)]2 min(t1, t2) in d = 2
and 4

√
2

3 C(ρ, d)[V̄ ′(ρ)]2[t3/2
2 + t

3/2
1 − |t2 − t1|3/2] in d = 1. Hence in d = 2 (and d ≥ 3 )

the limit is Brownian motion, while in d = 1 the limit is a fractional Brownian motion
with exponent 3/2. In particular, the Markov property is recovered in the limit in
d ≥ 2 but not in d = 1.

1. Notation and Results.
Zero-range model. Particles are distributed on the lattice Z

d, with η(x) denot-
ing the number of particles at site x ∈ Z

d. Configurations will be called η and the state
space is the set N

Z
d

of such configurations. We also choose jump rates c: N → R+ such
that c(0) = 0 < c(k) for k ≥ 1. The dynamics of the process is described as follows.
If there are η(x) particles at site x then the rate at which a particle jumps from x
to nearest neighbour site y is c(η(x)). In other words, each particle at x jumps at
rate 2dc(η(x))/η(x). When it jumps it chooses at random from its 2d neighbours.
This takes place independently of all the other particles, and the new configuration
ηx,y obtained from η in this way is given by ηx,y(z) = η(z) + δ(z, y) − δ(x, z) where
δ(x, y) = 1 if x = y and 0 otherwise.

The dynamics we have described is a Markov process on the state space N
Z

d

whose generator acts on functions that depend only on a finite number of coordinates
as

Lf(η) =
∑
x∼y

c(η(x))[f(ηx,y) − f(η)] (1.1)

where x ∼ y denotes (ordered) nearest neighbours.
To ensure that the process is well defined and also to guarantee that the system

on a box of side length N has spectral gap of order N−2 (see [LSV]), we assume that
for some B < ∞ −B ≤ c(n + 1) − c(n) ≤ B for all n = 0, 1, . . . and that there exists
δ > 0 and k0 ≥ 1 such that c(m) − c(n) ≥ δ for all m − n ≥ k0. Note that it follows
from the assumptions that for some κ < ∞, for all n = 0, 1, . . . , κ−1n ≤ c(n) ≤ κn.

Denote by Z: R+ → R+ the partition function defined by Z(ϕ) =
∑

k≥0 ϕk/c(k)!
where c(k)! = c(1) · · · c(k). Note that from κ−1n ≤ c(n) the radius of convergence of
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Z is infinite. The dynamics we have described conserves the total number of particles
and the product measure ν on N

Z
d

with marginals

ν(ηx = j) = [Z(ϕ)]−1ϕj/c(j)! (1.2)

for j ∈ N, x ∈ Z
d, for 0 ≤ ϕ < ∞ represent a full set of extremal translation

invariant, invariant measures [A]. Let ρ(ϕ) = Eν̄ϕ
[η0] be the density of particles for

the measure ν̄ϕ. ρ: [0,∞) → [0,∞) is a smooth strictly increasing bijection. Since
ρ(ϕ) has a physical meaning as the density of particles, instead of parameterizing the
above family of measures by ϕ, we use the density ρ as parameter and we write νρ,
ρ ∈ [0,∞) for the corresponding product measures. Note ϕ is a smooth function
whose derivative is bounded above and below by a strictly positive constant on each
compact set of R+ (cf. [KL]). Note that ρ = Eνρ

[η(0)] = ϕZ ′(ϕ)/Z(ϕ) and

Eνρ
[c(ηx)] = ϕ(ρ). (1.3)

The process is reversible with respect to each νρ, i.e. the generator L is symmetric on
L2(νρ). Fix a density ρ > 0 and denote by Pρ the corresponding stationary process
with marginals νρ.

A function V : N
Z

d → R is called local if it only depends on η(x), x ∈ Λ where Λ
is a finite subset of Z

d.
We will say that a local function V , depending on ηx, |x| ≤ R, has a polynomial

bound if for some N,C1, C2 < ∞,

|V (η)| ≤ C1 + C2[
∑

|x|≤R

η(x)]N . (1.4)

In [JLQY] it is shown that (0.3) holds for bounded local functions with

C(d, ρ) = χ(ρ)(8πϕ′(ρ))−d/2. (1.5)

We will prove below it holds for any local function with polynomial bound. Note that
in our model

χ(ρ) = V arνρ
(η(0)) = ϕ(ρ)/ϕ′(ρ). (1.6)

Theorem 1.1 . Consider zero-range models satisfying the above conditions. Let
V be a mean zero local function with polynomial bound, and consider

XN
t =

1
a(N, d)

∫ Nt

0

V (ηs)ds, (1.7)

where a(t, d) is given by (0.1). Under Pρ, XN
t ⇒ Xt where Xt is

d = 1 : fractional Brownian motion,

cov.
2ϕ(ρ)

3
√

π |ϕ′(ρ)|3/2
[V̄ ′(ρ)]2[t3/2

2 + t
3/2
1 − |t2 − t1|3/2],

d = 2 : Brownian motion, covariance
ϕ(ρ)

2π|ϕ′(ρ)|2 [V̄ ′(ρ)]2 min(t1, t2),

d ≥ 3 : Brownian motion, covariance 2
〈
V (−L)−1V

〉
min(t1, t2).

The case d ≥ 3 follows from the general central limit theorem for additive func-
tionals of reversible Markov processes [KV] together with the fact [SX] that in d ≥ 3
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every mean zero local function with polynomial bound has
〈
V (−L)−1V

〉
< ∞ (which

also follows easily from the decay estimate). The d = 2 case will be proved in sections
2 and 3 and the d = 1 case will be proved in sections 2 and 4.

Symmetric simple exclusion. Particles are performing symmetric continuous
time random walks on the lattice Z

d with the exclusion rule that jumps to already
occupied sites are suppressed. If we start with at most one particle per site then it
remains so for all time. The state space is then {0, 1}Z

d

and the generator acts on
local functions as

Lf(η) =
∑
x∼y

(f(ηxy) − f(η)) (1.8)

where ηxy denotes the configuration obtained from η by switching the occupation
numbers at x and y. For simplicity we have considered the nearest neighbour case with
jump rate one to each nearest neighbour site: The results will all have straightforward
generalizations to any symmetric finite range jump law. The invariant measures of
the process are the product measures νρ with νρ(ηx = 1) = ρ, ρ ∈ [0, 1]. These are
also reversible. Let Pρ denote the stationary process with initial distribution νρ.

Theorem 1.2 . Consider the symmetric simple exclusion process described above.
i. Let V be a mean zero local function, and consider

XN
t =

1
a(N, d)

∫ Nt

0

V (ηs)ds (1.9)

where a(t, d) is given by (0.1). Under Pρ, XN
t ⇒ Xt where Xt is

d = 1 : fractional Brownian motion, cov.
2ρ(1 − ρ)

3
√

π
[V̄ ′(ρ)]2[t3/2

2 + t
3/2
1 − |t2 − t1|3/2],

d = 2 : Brownian motion, covariance
ρ(1 − ρ)

2π
[V̄ ′(ρ)]2 min(t1, t2),

d ≥ 3 : Brownian motion, covariance 2
〈
V (−L)−1V

〉
min(t1, t2).

ii. In d = 1, let V be a local function with V̄ (ρ) = V̄ ′(ρ) = 0. Let

XN
t =

1√
N log N

∫ Nt

0

V (ηs)ds. (1.10)

Under Pρ, XN
t ⇒ Brownian motion, covariance ρ2(1−ρ)2

8π |V̄ ′′(ρ)|2 min(t1, t2).
Part i was proved in [K] for V (η) = η0 − ρ (note that our process has been

sped up by a factor 2d relative to his). The case d ≥ 3 follows from [KV] and [SX]
as before. d ≤ 2 is proved in an analogous way to Theorem 1.1, using the analogous
decay estimate (0.3) which can be obtained easily for symmetric simple exclusion using
duality. Part ii is proved in Section 6 by using duality to obtain the next term in the
decay estimate.

2. L2 decay to equilibrium. The main tool used to prove Theorem 1.1 is the
following result adapted from [JLQY]. Let Pt denote the semigroup etL.

Theorem 2.1 . Let V be a local function with polynomial bound (1.4) and
Eνρ

[V ] = 0. Then there exists γ > 0 and R < infty and depending only on d
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and C1, C2, N appearing in (1.4) such that∣∣∣td/2Eνρ
[(PtV )2] − C(ρ, d)[V̄ ′(ρ)]2

∣∣∣ ≤ Rt−γ (2.1)

holds with C(ρ, d) given by (1.5).

Proof. As stated in [JLQY], (0.3) holds only for bounded V . Keeping careful
track through that proof of the dependence of the o(t−d/2) term on ‖V ‖∞ we obtain
the following statement: There exists an ε > 0 and a constant K(d, ρ) < ∞ such that
for any local function V , for all t ≥ 1,

|td/2Eνρ
[(PtV )2] − C(d, ρ)

[
V̄ ′(ρ)

]2 | ≤ K(d, ρ)
[‖V ‖2

∞
]
t−ε. (2.2)

For V satisfying (1.4) we write V = Wt + Xt where Wt = V ∧ tε/4 and Xt =
(V − V ∧ tε/4). By the contractivity in L2 of Pt, and |Xt| ≤ f1f>tε/4 where f =
C1 + C2[

∑
|x|≤R η(x)]N , and by the Schwarz inequality, we have Eνρ

[(PtXt)2] ≤
‖f‖1/2

L4 [P (f ≥ tε/4)]1/2 which is exponentially small in t. Also |W̄ ′
t (ρ) − V̄ ′(ρ)| ≤

Eνρ
[f1f>tε/4

∑
x(ηx − ρ)] ≤ ct−a for some c < ∞ and a > 0 depending only on C1, C2

and N . Applying (2.2) to Wt the result follows.

The proof of the following lemma can be found in [SV].

Lemma 2.2 . (Garsia, Rodemich, Rumsey) Let p and Ψ be continuous,
strictly increasing functions on [0,∞) such that p(0) = Ψ(0) = 0 and limt→∞ Ψ(t) =
∞. Given T > 0 and Xt ∈ C([0, T ], R), then for 0 ≤ τ ≤ T − δ,

|Xτ+δ − Xτ | ≤ 8
∫ δ

0

Ψ−1

(
4
u2

∫ T

0

∫ T

0

Ψ
( |Xt − Xs|

p(|t − s|)
)

dsdt

)
dp(u).

Corollary 2.3 . Let PN be probability measures on C([0, T ], R) satisfying

EPN
[(Xt − Xs)2] = C(N)|t − s|1+γ (2.3)

for t, s ∈ [0, T ] with C(N) ≤ C < ∞ and independent of t and s, and γ > 0. Then
PN are tight. If C(N) → 0 as N → ∞, then PN converge weakly to the trivial process
concentrated on Xt ≡ 0.

Proof. We apply the lemma of Garsia, Rodemich, and Rumsey with Ψ(x) = x2.
After an application of Schwarz’s inequality we obtain

EPN
[ sup
|t−s|≤δ

|Xt − Xs|] ≤ 16
∫ δ

0

dp(u)
u

(∫ T

0

∫ T

0

EPN

[|Xt − Xs|2
]

p(|t − s|)2 dsdt

)1/2

.

From (2.3) if we choose p(x) = xα with 1+ γ
2 > α > 1, the right hand side is bounded

by A
√

C(N)δα−1 for some A < ∞. This proves that PN are tight. If C(N) → 0 it is
clear that Xt ≡ 0 is the only possible limit.

Corollary 2.4 . Let d ≤ 2. Let V be a local function satisfying (1.4) with

V̄ ′(ρ) = V̄ (ρ) = 0.
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Let PN be the distribution of XN
t = 1

a(N,d)

∫ Nt

0
V (ηs)ds, t ∈ [0, T ] under Pρ. Then PN

converge weakly to the trivial process concentrated on Xt ≡ 0..

Proof. By Fubini’s theorem,

E

[(∫ t

0

V (ηs)ds

)2
]

= 2
∫ t

0

∫ s2

0

Eνρ
[V Ps2−s1V ]ds1ds2.

By the reversibility of the process this is equal to

2
∫ t

0

∫ s2

0

Eνρ
[(P s2−s1

2
V )2]ds1ds2.

By the decay estimate this becomes, in d = 1 or 2,

a2(d, t)C1

[
V̄ ′(ρ)

]2
χ(ρ)(8πϕ′(ρ))−d/2 + C2t

2− d
2−γ ,

for C1, C2 < ∞ depending only on ρ and d. Since V̄ ′(ρ) = 0 the result follows from
the previous corollary.

In the sections 4 and 5 we will prove the following result.

Lemma 2.5 . Let

XN
t =

1
a(N, d)

∫ Nt

0

(c(ηs) − ϕ(ρ))ds. (2.4)

Let PN be the distribution of XN
t under Pρ. Then PN are tight and has unique

weak limit: In d = 1 fractional Brownian motion of parameter 3/2 with covariance
2ϕ(ρ)

√
ϕ′(ρ)

3
√

π
[t3/2

2 + t
3/2
1 − |t2 − t1|3/2]; In d = 2, Brownian motion with covariance

ϕ(ρ)
2π min(t1, t2).

Proof of theorem 1.1. We can write∫ t

0

V (ηs)ds =
∫ t

0

(
V (ηs) − V̄ ′(ρ)

ϕ′(ρ)
[c(ηs(0)) − ϕ(ρ)]

)
ds+

V̄ ′(ρ)
ϕ′(ρ)

∫ t

0

[c(ηs(0)) − ϕ(ρ)] ds.

By Corollary 2.3 the first term, suitably rescaled, is tight and converges to the trivial
process Xt ≡ 0. By the previous lemma, the second term is tight and converges to
the limit in theorem 1.1.

3. Some coefficients from potential theory. We now compute some explicit
constants which play a role in the limiting variance. Let pt(x, y) be the solution of

∂p

∂t
= ∆p, p0(x, y) = δ(x − y),

where ∆fx =
∑

y∼x fy − fx is the lattice Laplacian and δ(x) takes the value 1 at

x ∈ Z
d and 0 otherwise. Note that pt(x, y) = e−2dt

∑∞
n=0

(2dt)n

n! pn(x, y) where pn(x, y)
are the transition probabilities of a symmetric simple random walk on Z

d. We have,
as t → ∞,

pt(0, 0) ∼ (4π(1 + t))−d/2. (3.1)

For each λ > 0, let

gλ(x) =
∫ ∞

0

e−λtpt(0, x)dt,
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x ∈ Z
d, so that

(λ − ∆)gλ = δ(0). (3.2)

Lemma 3.1 . i. In d = 2, limλ→0
1

− log λ

∑
x∼y(gλ(y) − gλ(x))2 = 1/2π,

ii. In d ≤ 2, ‖gλ‖2
�2(Zd) = 1

2

∫∞
0

te−λtpt(0, 0)dt ∼ λ
d
2−2.

Proof.
ii follows from (3.1). Multiplying (3.2) by gλ and summing gives λ

∑
x[gλ(x)]2 +

1
2

∑
x∼y(gλ(y) − gλ(x))2 = gλ(0). By ii, limλ→0

1
− log λ

∑
x∼y(gλ(y) − gλ(x))2 =

2 limλ→0
1

− log λgλ(0). Now use (3.1) again.

Let

vt(x) =
∫ t

0

ps(0, x)ds

so that
∂v

∂t
= ∆v + δ(0), v0(x) = 0. (3.3)

Lemma 3.2 . In d = 1, i. limt→∞ t−3/2
∑

x[vt(x)]2 = 4
3
√

π
(
√

2 − 1),

ii. limt→∞ t−3/2
∫ t

0

∑
x∼y[vs(y) − vs(x)]2ds = 4

3
√

π
(2 −√

2).

Proof.
i.
∑

x[vt(x)]2 =
∑

x

∫ t

0

∫ t

0
ps1(0, x)ps2(0, x)ds1ds2 = 2

∫ t

0

∫ s2

0
ps1+s2(0, 0)ds1ds2.

Using (3.1) we obtain i. To obtain ii, multiply (3.3) by v and integrate to obtain∫ t

0

∑
x∼y[vs(y) − vs(x)]2ds = 2

∫ t

0
vs(0)ds −∑x[vt(x)]2 and use (3.1) again.

4. Martingale method (d=2). In this section we prove Lemma 2.5 in dimen-
sion d = 2 using the martingale method. Let

Gλ(η) =
∑
x∈Zd

gλ(x)(η(x) − ρ), Ĝλ(η) =
∑
x∈Zd

gλ(x)(c(η(x)) − ϕ(ρ)).

A summation by parts yields

LGλ(η) = c(η(0)) − ϕ(ρ) − λĜλ(η).

Hence we can write

1√
N log N

∫ Nt

0

(c(ηs(0)) − ϕ(ρ))ds = −MN
t + RN

t

where

MN
t =

1√
N log N

[G1/N (ηNt) − G1/N (η0) −
∫ Nt

0

LG1/N (ηs)ds] (4.1)

is a martingale and

RN
t =

1√
N log N

[G1/N (ηNt) − G1/N (η0) +
1
N

∫ Nt

0

Ĝ1/N (ηs)ds]. (4.2)

We compute
‖Gλ‖2

L2(νρ) = V arνρ
(η(0))‖gλ‖2

�2(Zd) and ‖Ĝλ‖2
L2(νρ) = V arνρ

(c(η(0)))‖gλ‖2
�2(Zd). From

lemma 3.1 it follows that EPρ

[(
RN

t

)2] ≤ Ct/ log N . Hence, once we show RN
t is tight,
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it will converge to the trivial process Xt ≡ 0. This is done at the end of this section
in Lemma 4.2.

For MN
t we use the central limit theorem for martingales [R] in the following

form.

Lemma 4.1 . If MN
t are martingales satisfying i.

〈
MN

〉
(t) → σ2t in probability,

t ∈ [0, T ]; ii. σε(MN )(t) =
∑

0≤τi≤t |∆MN (τi)|21(|∆MN (τi)| ≥ ε) → 0 in probability,
for each ε > 0. Then MN

t conveges to a Brownian motion with variance σ2. Here
〈M〉 (t) is the variance process of a martingale M(t), defined by M2(t) − 〈M〉 (t) is a
martingale, and τi are the jump times, and ∆M(τi) the jumps of the process.

Note that if Mt = G(t, ηt) − G(0, η0) −
∫ t

0
{∂u + L}G(u, ηu)du then E[(Mt −

Ms)2|Fs] = E[
∫ t

s

∑
x∼y c(ηx)(∇xyG)2du|Fs] where ∇xyG(η) = G(ηxy)−G(η). In our

situation, ∇xyGλ(η) = gλ(y) − gλ(x). Hence we can compute by Lemma 3.1.i.,〈
MN

〉
(t) =

ϕ(ρ)t
log N

∑
x∼y

(g1/N (y) − g1/N (x))2 → ϕ(ρ)t
2π

,

which gives i of Lemma 4.1. To check ii, note that

σε(MN )(t) =
1

log N

∑
x∼y

N−1PN
xy(t)(g1/N (y)−g1/N (x))21(g1/N (y)−g1/N (x) ≥

√
N log Nε)

where PN
xy are independent Poisson processes running at rate Nη(x)(1 − η(y). This

converges to 0 as N → ∞ by the law of large numbers and another application of
Lemma 3.1.i.

The following lemma completes the proof of Theorem 1 in d = 2.

Lemma 4.2 . The family of processes RN
t defined in (4.2) is tight.

Proof. Note first that 1√
N log N

[G1/N (ηNt)− G1/N (η0)] = JN
t + MN

t where JN
t =

1√
N log N

∫ Nt

0
LG1/N (ηs)ds and MN

t is tight. From the Feynman-Kac formula and the
variational formula for the principal eigenvalue of L + V ,

1
2t

log E
[
exp

{
α

∫ t

0

LG1/N (ηs)ds
}]

≤ sup
Eν [f ]=1, f≥0

{
αEν [LG1/N (η)f(η)] + Eν [

√
fL
√

f ]
}

.

Now Eν [LG1/Nf ] = 1
2

∑
x∼y Eν [c(η(x))(f(ηxy)−f(η))(g1/N (y)−g1/N (x))] and Eν [fLf ] =

1
2

∑
x∼y Eν [c(η(x))(f(ηxy) − f(η))2]. By Schwarz’s inequality and f(ηxy) − f(η) =

(
√

f(ηxy)+
√

f(η))(
√

f(ηxy)−√
f(η)) the supremum is bounded by Cα2

∑
x∼y(g1/N (y)−

g1/N (x))2. By stationarity and Lemma 3.1 we obtain,

E
[
exp

{
α(JN

t − JN
s )
}]

≤ exp{C(N)α2|t − s|}. (4.3)

In fact C(N) = O(N−1), but for compactness we only need that C is bounded.
Applying Lemma 2.2 with Ψ(x) = ex − 1 and p(x) =

√
x after some computation one

obtains from (4.3) that for some C(T ) < ∞,

E[ sup
0≤s<t≤T
|t−s|≤δ

|JN
t − JN

s |] ≤ C
√

δ(1 + log δ),

which gives the compactness of JN
t .
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Now we can write RN
t = AN

t +BN
t +CN

t where AN
t = 1

ϕ′N
√

N log N

∫ Nt

0
[G1/N (ηNt)−

G1/N (ηs)]ds, BN
t = − 1

N
√

N log N

∫ Nt

0
[Ĝ1/N (ηs)− 1

ϕ′ G1/N (ηs)]ds and CN
t = 1√

N log N
[(1−

t
ϕ′ )G1/N (ηNt) − G1/N (η0)]. AN

t and CN
t are tight by the previous argument. BN

t is
tight by Corollaries 2.3 and 2.4.

5. Martingale method (d=1). In this section we prove Lemma 2.5 for zero-
range models on the one dimensional integer lattice. Using the decay estimate Theo-
rem 2.1, and a variance computation (such as in the proof of Corollary 2.4), we can see
that (2.3) is satisfied for XN

t = 1
a(N,1)

∫ Nt

0
(c(ηs) − ϕ(ρ))ds for some C(N) = C < ∞.

Hence XN
t are tight. Furthermore the asymptotic covariance can be computed by

(0.5). Therefore it only remains to show that the limiting process is Gaussian.
Note that ut(x) =

∫ ϕ′(ρ)t

0
ps(0, x)ds is the solution of

∂tu = ϕ′(ρ) [∆u + δ0] , u(x, 0) ≡ 0.

Let
UT

t (η) =
∑

x

uT−t(x)(η(x) − ρ).

Then MT
t = UT

t (ηt) − UT
0 (η0) −

∫ t

0
(∂s + L)UT

s (ηs)ds is a martingale in t up to time
T , and by explicit computation of (∂s + L)UT

s we have∫ T

0

(c(ηt(0)) − ϕ(ρ))dt = MT
T + UT

0 (η0) + RT

where

RT =
∫ T

0

∑
x

qT−t(x)a(ηt(x))ds,

where a(n) = c(n) − ϕ(ρ) − ϕ′(ρ)(n − ρ), and qt(x) = pϕ′(ρ)t(0, x). In particular,

1
N3/4

∫ NT

0

(c(ηs(0)) − ϕ(ρ))ds =
1

N3/4
MNT

NT +
1

N3/4
UNT

NT (η0) +
1

N3/4
RNT .

We first show that the error term N−3/4RNT is negligible. We write the expec-
tation of its square as

1
N3/2

∫ NT

0

∫ NT

0

∑
x1,x2

qNT−s1(x1)qNT−s2(x2)E[a(ηs1(x1))a(ηs2(x2))]ds1ds2.

Since we have a stationary Markov process the expectation can be written as
Eµρ

[ax1P|s2−s1|ax2 ] where we use ax to denote the function η �→ a(η(x)). By the
Markov property, and reversibility of the process this can be rewritten as
Eµρ

[(P |s2−s1|
2

ax1)(P |s2−s1|
2

ax2)]. By Schwarz’s inequality, the L2 decay estimate, The-
orem 2.1, and the fact that ā′ = ∂qEµq

[a]|ρ = 0, we have, uniformly in x1 and x2,
E[a(ηs1(x1))a(ηs2(x2))] = o(|s2 − s1|−1/2−γ) for some γ > 0. The summations over
xi of q·(xi) are each 1, and hence, performing the two time integrals, after a simple
change of variables we obtain for some α > 0.

E

[(
N−3/4RNT

)2
]

= O(N−α).
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Now note that UT
0 (η0) ∈ F0 and MT

T are independent. By the central limit
theorem, N−3/4UNT

0 (η0) converges to a Gaussian process. Note that

MT
t =

∑
x∼y

∫ t

0

∇xyUT
s dPs(x, y)

where P xy
t are independent, compensated Poisson martingales jumping at rate c(ηs(x)).

Since ∇xyUT
s = uT−s(y) − uT−s(x) we have

1
N3/4

MNT
NT =

1
N3/4

∑
x∼y

∫ NT

0

[uNT−s(y) − uNT−s(x)]dPs(x, y)

=
1√
N

∑
x∈Z/

√
N

e=±1

∫ T

0

vN,e
T−s(x)dQN,e

s (x).

where
vN,e

t (x) = [uNt(
√

Nx + e) − uNt(
√

Nx)],

QN,e
t (x) = N−1/4PNt(

√
Nx,

√
Nx + e).

Now
∑

x∈Z/
√

N QN,e
t (x)δx converges to a space-time white noise

√
ϕ(ρ)Ẇ (t, x) (with

variance ϕ(ρ)). We can identify vN,e
t (x) with a function on R by, say, polygonaliz-

ing between values of Z/
√

N . Then by local central limit theorem [L], vN,e
t (x) →

sgn(e)vt(x) strongly, where vt(x) =
∫ t

0
xe−x2/4ss−3/2 ds

4
√

π
. Therefore 1

N3/4 MNT
NT con-

verges to the Gaussian process given by the sum of two independent copies (for e = ±1)
of √

ϕ(ρ)
∫

R

∫ T

0

vt(x)Ẇ (dt, dx).

This completes the proof of Theorem 1 in d = 1.

6. Symmetric simple exclusion. Symmetric simple exclusion possesses a very
special self-dual property, which can be expressed in several different ways. For our
purposes we use the following description. Fix ρ ∈ (0, 1) and for each finite subset A
of Z

d let

η̃A =
∏
x∈A

ηx − ρ√
χ(ρ)

where in this model
χ(ρ) = ρ(1 − ρ).

The collection η̃A, A a finite subset of Z
d, is an orthonormal basis of L2(πρ). Let En

denote the span of η̃A, |A| = n. Then L2(πρ) is the direct sum of the En. The special
self-dual property of symmetric simple exclusion is that L : En → En. In particular,

Lη̃A =
∑
B∼A

(η̃B − η̃A)

where B ∼ A means that B can be obtained from A by deleting a site from A and
appending its nearest neighbour. If f ∈ L2(πρ) then we have f =

∑∞
n=0

∑
|A|=n f̃Aη̃A
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and Lf =
∑∞

n=0

∑
|A|=n L̃nf̃Aη̃A where

L̃nf̃A =
∑
B∼A

(f̃B − f̃A).

In other words, on each En, the process can be identified with a continuous time
random walk At on the subsets of Z

d of cardinality n, where jumps to all nearest
neighbour sets take place at rate one. Let us denote the corresponding semigroup
P

(n)
t f̃A = EA[f̃At

].
The duality allows one to make rather explicit computations. In particular, we

can compute the next order term in (0.3).

Theorem 6.1 . Let PtV (η) = Eη[V (ηt)] be the semigroup of symmetric simple
exclusion with generator (1.8). For any local function with Eνρ

[V ] = 0,

d = 1 : Eνρ
[(PtV )2] =χ(ρ)(8π)−1/2[V̄ ′(ρ)]2t−1/2 +

χ(ρ)2

32π
|V̄ ′′(ρ)|2t−1 + O(t−3/2)

d = 2 : Eνρ
[(PtV )2] =χ(ρ)(8π)−1[V̄ ′(ρ)]2t−1 + a2(ρ, V )t−2 + O(t−3)

d ≥ 3 : Eνρ
[(PtV )2] =χ(ρ)(8π)−d/2[V̄ ′(ρ)]2t−d/2 + ad(ρ, V )t−(d+2)/2 + O(t−d),

where

a2(ρ, V ) =
χ(ρ)2

128π2
|V̄ ′′(ρ)|2 +

1
128π

|V̄ ′(ρ)|2 − 1
16π

[
2∑

j=1

∑
x

|xj |2Ṽx + (
∑

x

xj Ṽx)2]

ad(ρ, V ) = − 1
(8π)d/2

[
1
2

d∑
j=1

∑
x

|xj |2Ṽx +
1
2
(
∑

x

xj Ṽx)2 + 2−5(d2 − 3d)|V̄ ′(ρ)|2], d ≥ 3

Remark. The next term in the expansion seems to have no meaning except in d = 1.

Proof. From the Parseval relation and the duality described above

Eνρ
[(PtV )2] =

∞∑
n=1

∑
|A|=n

[P (n)
t ṼA]2.

Since P
(n)
t corresponds to random walk on an orthant of (Zd)n where no two of the

n coordinates in Z
d coincide, with reflecting boundary conditions, it is not hard to

see we have expansions
∑

|A|=n[P (n)
t ṼA]2 = t−nd/2(cn

1 + cn
2 t−1 + cn

3 t−2 + · · · ). The
coefficients cn

j are not easy to compute except for n = 1 or j = 1. On the other hand,
for the theorem we only need c1

1, c
2
1 in d = 1, c1

1, c
1
2, c

2
1 in d = 2, and c1

1, c
1
2 in d ≥ 3.

The n = 1 case is straightforward since P
(1)
t corresponds to a random walk on Z

d.
Let’s call fx = Ṽx and let f̂(ξ) =

∑
x∈Zd fxeiξ·x. Parseval’s identity reads

∑
x |fx|2 =

(2π)−d
∫
[−π,π)d |f̂(ξ)|2dξ. If ∆fx =

∑
y∼x(fy − fx) then ∆̂f(ξ) = −q(ξ)f̂(ξ) where

q(ξ) = −∑y∼0(e
iξ·y − 1). Hence

∑
x |et∆fx|2 = (2π)−d

∫
[−π,π)d e−2tq(ξ)|f̂(ξ)|2dξ. Let

q̃(z) = q(z) − |z|2. After change of variables we have

td/2
∑

x

|et∆fx|2 = (2π)−d

∫
[−√

tπ,
√

tπ)d

e−2|z|2e−2tq̃(z/
√

t)|f̂(
z√
t
)|2dz.
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Expand |f̂( z√
t
)|2 = |f̂(0)|2 + t−1/2D1|f̂ |2(0) · z + t−1D2|f̂ |2(0)z · z + D3|f̂ |2(0)z ⊗ z ⊗

z + O(t−2) and e
−2tq̃( z√

t
) = 1 − t−1

(
1
2

∑
i
=j z2

i z2
j − 1

12

∑
i z4

i

)
+ O(t−2). We have

td/2
∑

x

|et∆fx|2 = (8π)−d/2|f̂ |2(0)+t−1(8π)−d/2[
1
4
∆|f̂ |2(0)−2−5(d2−3d)|f̂ |2(0)]+O(t−2).

Here ∆ is the continuum Laplace operator. Now note that

V̄ ′(ρ) =
∑

x

Eνρ

[
V (η)

( ηx − ρ

ρ(1 − ρ)

)]
= χ(ρ)−1/2

∑
x

Ṽx.

Since
∑

x Vx = f̂(0) this gives

c1
1 =

χ(ρ)
(8π)d/2

|V̄ ′(ρ)|2.

Now ∆|f̂ |2(0) = −2[
∑d

j=1

∑
x |xj |2fx + (

∑
x xjfx)2]. This gives

c1
2 = − 1

(8π)d/2
[
1
2

d∑
j=1

∑
x

|xj |2Ṽx +
1
2
(
∑

x

xj Ṽx)2 + 2−5(d2 − 3d)|V̄ ′(ρ)|2].

The case n = 2 can be mapped 1 → 2 to a random walk xt on {x1, x2 ∈ Z
d :

x1 �= x2}. Since xN2t/N converges to Brownian motion on R
2d with generator the

continuum Laplacian ∆, it is not hard to check using the local limit theorem that

td
∑
|A|=2

|P (2)
t ṼA|2 =

1
(8π)d

|
∑
|A|=2

ṼA|2 + O(t−1).

Now
V̄ ′′(ρ) = 2χ(ρ)−1

∑
|A|=2

ṼA.

This gives

c2
1 =

χ(ρ)2

4(8π)d
|V̄ ′′(ρ)|2.

Proof of Theorem 1.2. The proof follows closely the proof for zero-range in sections
2,3 and 4, so we only give a sketch. As in Corollary 2.4, the decay estimate allows
us to reduce the problem to solving for some particular choice of V . In d = 1, 2
for V̄ (ρ) = 0, that choice can be V (η) = η(0) − ρ, and the central limit theorem is
proved in [K]. The only remaining case is d = 1, V̄ (ρ) = V̄ ′(ρ) = 0. We choose as our
candidate V (η) = η̃{0,1}. Let Ẽ2 denote the subsets of Z of cardinality 2. For A, B in
Ẽ2, let p̃2

t (A,B) be the solution of

∂p̃2

∂t
= L̃2p̃, p̃2

0(A,B) = δ(A,B),

where δ(A,B) = 1 if A = B and 0 otherwise. Then g̃2
λ(A) =

∫∞
0

e−λtp̃2
t ({0, 1}, A)dt is

the solution of
(λ − L̃2)g̃2

λ(A) = δ(A, {0, 1}).
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Define
Gλ(η) =

∑
|A|=2

g̃2
λ(A)η̃A.

Then
(λ − L)Gλ = η̃{0,1}.

Hence
1√

N log N

∫ Nt

0

η̃{0,1}ds = MN
t + RN

t

where MN
t and RN

t are as in (4.1) and (4.2). We have ‖Gλ‖2
L2(νρ) = V arνρ

(η(0))‖g̃2
λ‖2

�2(Zd)

and ‖Ĝλ‖2
L2(νρ) = V arνρ

(η(0))‖g̃2
λ‖2

�2(Zd) and the same estimate as before, ‖g̃2
λ‖2

�2(Ẽ2)
∼

λ−1, gives EPρ
[(RN

t )2] ≤ C/ log N and then Corollary 2.3 implies that RN
t converges

to the trivial process Xt ≡ 0. As in section 4, Lemma 4.1 implies that MN
t converge

to Brownian motion. The explicit covariance is obtained from Theorem 6.1.
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