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ORTHOGONAL POLYNOMIALS ASSOCIATED WITH SOME
MODIFICATIONS OF A LINEAR FORM*

M. SGHAIERT AND J. ALAYA?

Abstract. We show that if v is a regular Laguerre-Hahn (resp. semiclassical) linear form, then
the linear form u defined by the relation A(z — a)u = (z — ¢)v is also regular and a Laguerre-Hahn
(resp. semiclassical) linear form for every complex A except for a discrete set of numbers depending
on v, a, and c. We give explicitly the coefficients of the three-term recurrence relation, the structure
relation of the orthogonal sequence associated with u, and the class of the linear form u knowing
that of v. Finally, we apply the above results to some examples.
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Introduction. Let v be a regular linear form. We define a new linear form u
by the relation D(x)u = A(x)v where A(z) and D(x) are non-zero polynomials. In
terms of the Stieltjes function, u is obtained from v by a linear spectral transform
(see [20-21]). The linear form u has been studied by several authors from different
points of view. When D(xz) = 1, v is a positive definite linear form and A(x) is
a positive polynomial Christoffel [8] has proved that u is also positive definite linear
form. This result has been generalized in [9]. When A(z) = A # 0 and D(z) = x—c, 2
(resp. D(x) = 23 ) Maroni [19], [16] (resp. Maroni-Nicolau [14]) found necessary and
sufficient conditions for u to be regular. Also, an explicit expression for the orthogonal
polynomials (O.P.)with respect to u is given. Finally, it was proved that, if v is a
semiclassical linear form (see [2], [5], [18]), then w is also a semiclassical linear form.
When A(z) = D(z), u is obtained from v by adding finitely many mass points and
their derivatives (see [11]). See also [1] and [13] for some special cases. In particular,
in these papers, it was proved that, if v is Laguerre-Hahn (resp. semiclassical ) linear
form, then u is a Laguerre-Hahn (resp. semiclassical) linear form. When A(z) and
D(z) have no non-trivial common factor, J. H. Lee and K. H. Kwon [12] found a
necessary and sufficient condition for u to be regular and gave its corresponding O.P.
in terms of the O.P. relative to v.

In this paper for a sake of simplicity, we consider the situation when A(x) and
D(xz) are of degree equal to one. From the point of view of Maroni, we study the
linear form wu, fulfilling A(z —a)u = (z —c)v, A#0,a #c.

The first section is devoted to the preliminary results and notations used in the
sequel. In the second section, an explicit necessary and sufficient condition for the
regularity of the new linear form is given. We obtain the coeflicients of the three-term
recurrence relation satisfied by the new family of O.P. We also get a characterization
of the sequence of O.P. studied by Maroni in [17] (Proposition 2.9). In the third
section, we compute the exact class of the Laguerre-Hahn (resp. semiclassical ) linear
form obtained by the above modification and we give the structure relation of the
O.P. sequence relatively to the linear form u. Finally, in the fourth section we apply
our results to some examples.
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1. Preliminaries and notations. Let P be the vector space of polynomials
with coefficients in C and let P’ be its topological dual. We denote by (u, f) the
action of u € P’ on f € P. In particular, we denote by (u), := (u,z™), n > 0, the
moments of . For any linear form u, any polynomial h, let Du = v/, hu, d., and
(r — ¢)"lu be the linear forms defined by:

<u,f>=—<u, f > <hu,f>=<u,hf > <6, f>= f(c),
and < (z—c)tu, f >=<wu,0.f > where (0.f)(z)= W
It is straightforward to prove that
(x —c)(x —c) 'u=u, (1.1)
(x —c) Mz —c)u=u— (u)od.. (1.2)

We also define the right-multiplication of a linear form by a polynomial with

(@) = (u, =Dy 3 (

xT

aj(u)j_m)xm, h(x) = i ajz’.
=0

m=0 j=m
Next, it is possible to define the product of two linear forms through
(uo, f) == (u,vf), fEP.

For f,g € P and u € P’ we have the following results [18]

(ubof)(x) = (Bo(uf))(x), (1.3)
u(fg)(x) = ((fu)g)(x) +zg(x) (ubof) (), (1.4)
(fu) = fu' + fu. (1.5)

DEFINITION 1.1. A linear form v is called regular (see [6]) if we can asso-
ciate with it a sequence of monic orthogonal polynomials (MOPS) {By}n>0, i.e.:
(i) The leading coefficient of By(x) is equal to 1,
(i1) (v, BnBm) = "mbnm, 7t #0, n>0.

In this case {Bp}n>0 is said to be orthogonal with respect to v. It is a very
well known fact that the sequence {By,},>0 satisfies the recurrence relation (see, for
instance, the monograph by Chihara [6])

Bn+2($) = (I - 6n+1)Bn+1($) - "YnJran(x)v n >0,

Bi(x) =2 —fo,  Bo(z) =1 (1.6)

with (B, Yn+1) € C x C—{0},n > 0. By convention we set 7o = (v)o = 1.
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DEFINITION 1.2. [6] The sequence {B,Sl)}nzo defined by

Bpnyi(z) — Bn+1(§)> n>0
x—¢ ’

is said to be the sequence of associated polynomials of first kind for the sequence
{Bn}n>0- They can also be described by the shifted recurrence relation

BW(z) := (000 Bpg1) (x) = <’U,

B (2) = (2 — 3, LB >0,
n1~§2(x)_ x(f 61,6 +2) 1«51 ’7 +2 ( ) n (17)

DEFINITION 1.3. [7] The sequence {By(., ) }n>0 defined by

Bria(z, 1) = (33 - 6n+1)Bn+1(337,u) = Yn+1Bn(z, 1), n >0, (1.8)
BI(I;,U) :x_ﬂo_U7 Bo(xvlu) :17

is called the co-recursive polynomials for the sequence { By }n>o0.

The polynomials of the sequence {By,(., i) }n>0 satisfy the relation [6]

B (@, 1) = Buya(z) — pBM (2), n>0. (1.9)

2. Algebraic properties. Let v be a regular, normalized linear form (i.e. (v)o =
1) and {Bj,}n>0 be the corresponding MOPS. For fixed a, ¢ € C and A € C — {0}, we
can define a new normalized linear form u € P’ by the relation

Az —a)u = (z — c)v. (2.1)
Equivalently, from (1.1) and (1.2) we have
M= (z—a) (z—cw+ Ny =v+ (a—c)(x—a) v+ (\—1)d,. (2.2)
The case a = ¢ is treated in [1] and [13], so henceforth, we assume a # c.

When u is regular, let {Bn}nZO be its corresponding MOPS. It satisfies

B;nJrZ(x) = (IN_ BnJrl) Bpi1(x) — (33)7 n =0,
Bi(x) =x—f,  Bo(x)=1. (23)

LEMMA 2.1. [15] Let {P,}n>0 be orthogonal with respect to uw and {Qn}n>0 be
orthogonal with respect to v. If there exist a number A # 0 and two monic polynomials
® and B, respectively, with degrees t and s such that

AP (z)u = B(x)v,

then we have

n+t
Z )\"xVPV(‘T)v )‘n,n—s 7é O, n > S,

v=n-—s

B(I)Pm(.I) = Z S\m,va(I)a Xm,fn—t # O, m Z t.
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From (2.1) and Lemma 2.1, the sequence {B,,},>0, when it exists, satisfies the
following finite-type relation [15]

(z — C){}n-‘rl () = Bn2(2) + bns1Bny1(2) + anBn(z), n =0, (2.4)
(x — ¢)Bo(z) = B1(z) + boBo(z), '

with (an,bn) € (C—{0}) x C.

In this condition , the sequence {Bn}nZO is orthogonal with respect to u if and
only if

(U, Bpy1) =0, (u,B%)#0, n>0.
Substituting by ¢ in (2.4), we get

an By (¢) + bpt1Bri1(c) = —Bpya(c), (2.5)

bo = Bo — c. (2.6)
Subtracting (2.5) from (2.4), we obtain after dividing by (z — ¢)
Bn—i—l () = (HCBn+2) () + bpt1 (HCBnH) () + an (HCBn) (). (2.7)
From (2.2), we have

Mu, (0cBr) () = ((z — a) " (z — c)v + Nda, (0:Br) (z))
=B (a) + (A=1)(0.B,)(a), n>0.

From (2.7) the condition (u, B,t1) = 0,n > 0, implies that

{BU4@)+ (0= 1)(8Ba)(0) } an + (2.8)
+{(BP(@) + (A= 1) (0aBas1) () } busa
= -BM (a) = (A = 1) (0uBri2) (c).

The determinant of the system defined by first (2.5) and (2.8) is

dn = Bn(C)BT(ll)(a) - Bn+l(C)Bn1—1(a) + (2.9)
L= 1) Bn+1(c)Bn(a2 : fnJrl(a)Bn(c) ,
A1 =gy + { (0= B (@) + (0= 1)Boia (@)} B (o) (2.10)

When d,, # 0,n > 0, by solving of the above system, we obtain

dn+1

ap=——, n>0 (a1 =dop=N) (2.11)



SOME MODIFICATIONS OF A LINEAR FORM 271

(1= N)Buyi(a) + (¢ — a)BY(a)

7 By (c),n > 0. (2.12)

anrl - 6n+1 —c+

Consequently, using Theorem3.4 in [12], we easily deduce the following result:
PROPOSITION 2.2. The linear form w is reqular if and only if d, # 0, n > 0.

PROPOSITION 2.3. We may write (Compare with [4] )

Ynp1 = —p, m >0, (2.13)
an—1
Bn = ﬁn—i-l +by —bpy1, n2>0, (214)

ﬁn-ﬁ-l = TYn+2 + bn-i-l{ﬁn-i—l - 6n+2 + bn+2 - bn+1} +an — an+1, N > 07 (215)

bnﬁ/n-i-l - bn+1’7n+1 + an{ﬁn - ﬁn+2 + bn+2 - bn-i—l}u n Z 0. (216)

Proof. After multiplication of (2.3) by (x — ¢), we substitute (z — ¢)Bgy1 by
Byto+bi+1Byy1+ax By, with k =n+1,n,n—1 and we apply the recurrence relation
(1.6), the comparison of the coefficients of By, +1, By, and Bj,,—1 (resp. Byy2), yields
(2.13), and (2.15)-(2.16) (resp. (2.14) forn > 1 ).

From (2.4) with n = 0, we easily obtain 8y = 1 4 b1 — bo. O

PROPOSITION 2.4. For n > 0, we have

(¢ —a)Bu(x) = - Bua () +

Ap—1 n—1
i (2.17)
(2 — @) By (z) = (am) i

an—1

where  pp =apn-1—Yn and on(x) =z — Fp + by.

Proof. We take ®(z) = (z — a) and B(x) = (z — ¢) in Lemma 2.1, we obtain

(.’L’—G)Bn+1($) = )\n+1,n+2Bn+2($)+)\n+1,n+1-én+l(x)+)\n+1,an($)u n 2 07 (218)

(.I - CL)B()(.I) = AOJBl (I) + Aoyoéo(fb),
by (2.4) and the second formula (2.16) of [15, p.301], we have

b
)\n,n-i-l = 17 )\n n = nﬂyn7 /\n—i-l,n = FYTLJrlFYn, n > 0.

’ Gp—1 Gp—1

This yields

(x —a)Bpyi(z) = —a% 1B (@) + (2.19)

n—1

bn, ~
+ <Un+2(33) — Pnt1 a+1> Byi1(z),n > 0.
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Next, from (2.4) and (1.6), we have

(a"—nl(w — Bn) + bn> Bu(z) + (1 — =B, 1 (z) = (z — ¢)B,(x)

g Tn ~ (2.20)
(an — Vnt+1)Bn(2) + (2 = Bpg1 + bpt1) Buti(z) = (¥ — ¢)Brya (2),
which by inversion gives
Hy(2)By(z) = (T— - 1) (@ — ) Brs1 (2)+
@ = v Fb)@ ) Baf@)n 20,0
Ho(@) By (@) = (222 (@ = Ba) +ba ) (¢ = ¢) Buia (@)
—(an —Yn+1)(@ — ¢)Bp(2),n >0
Comparing with (2.19), we obtain
Ho(z) = 2Lz —a)(z —c), n >0, (2.22)
In
and
bn n
Ong2(®) = prs1—L = o, () — (1 - ) bp,n > 0. (2.23)
an an—1
Hence (2.17) follows. O
REMARK. (2.23) leads to
bz + 12Lb, 4 = z_:)bl + b2+ Bnt2 — B2+ Bny1 — P1, n=0. (2.24)

Particular case: v is symmetric and ¢ = 0. A linear form v is called sym-
metric if (v)2p,41 = 0, n > 0. In (1.6), we have 5, = 0,n > 0 [6]. In the sequel,
the linear form v will be supposed regular and symmetric, and ¢ = 0, then we have
necessarily a # 0.

PROPOSITION 2.5. When the linear form v is symmetric and ¢ =0 # a , then u
(defined by (2.1)) is regular if and only if

Ny = Bél)(a) +

n

(A ; 1)BQnH(a) #0, n>0. (2.25)

Proof. Taking into account (1.6), with 3, = 0, we get By 42(0) = —7,+1B,(0).
Consequently,

Bon41(0) =0, Bany2(0) = (—1)"™ [] r2v1 #0, n>0. (2.26)
v=0
Replacing n by 2n in (2.9)-(2.10), we obtain
1 _
{ dop, = Bgn(O)(Bén) (a) + %anﬂ(a)) . n>0. (2.27)
dan+1 = Yan+1dan -

Using Proposition 2.2, we obtain the desired result. O
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In such a condition, from (2.11)-(2.14), and (2.6) we get

AnJrl
)

a_1 =X, G2n = Yont1, O2nt1 = — A n >0, (2.28)
b2n+1 = —a, an = O, n Z O, (229)
B = (=1)"a, Aanp1 = N s = a20t1, n >0, (2.30)

a2n—1

REMARKS. 1. If v is symmetric, on account of (2.30) the linear form w is not
symmetric. 2. From (2.15) where n — 2n , we obtain

Font1 + Vont2 = Y2nt1 + Yont2 — a’. (2.31)

3. Proposition 2.2 and the Proposition 2.5. give necessary and sufficient conditions
so that the sequence {ay}n>0 satisfies a, # 0, n > 0. For the applications, we must
give a simple sufficient conditions (see below).

Let us recall some general features. Consider the quadratic decomposition of
{Bu}nzo and {B1} 20 [17]

Boy,(z) = Pn(xz) , Bapti(z) = an(xz), n >0, (2.32)
By (x) = Ra(a®,—m), Bl (@) = 2PV (@?), n>0, (2.33)

The sequences { P, }n>0 and { Ry, },>0 are respectively orthogonal with respect to
ov and xov where ov is the even part of v defined by

(o, ) = (v, (0 f) (@) = (v, f(z?)).

Moreover, { R, },>0 satisfies the recurrence relation

{ g?(?)(x:) . _(xgé,ﬁf*éﬁﬁ’ﬁi(i) =i fn(@) 0 20, (2.34)

with B = yoni1 4+ Y2nt2, Vi1 = Yent2Y2nss, 1> 0.

From (2.32), (2.33), and (1.9) we obtain

1

B + 21

Boni1(a) = ARn (a2, —%) . n>0. (2.35)
REMARK. As an immediate consequence of (2.35), we have: when v is sym-
metric and positive definite, A € R—{0}, then u is regular for every a such that a? ¢ R.

PROPOSITION 2.6. When the linear form v is symmetric, c = 0 # a and vyon4+1 +
Yonio = a2, then the linear form u is reqular for every A # 0.
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Proof. We have B2 = 5,41 + Yan+2 = a2, by virtue of formula (2.34) we obtain
Rpy2(a?) = —vE 1R, (a?), n > 0. Thus, we get successively

R2n+l(a2) =0, R2n+2(a2) = (_1)n+1 H 7£/+1 7& 0, n >0,
v=0

1 1 n
RS0 (a®) =0, R4 (a2 = (-1 [0 #0, n>0.
v=0

Using (1.9), we obtain R, (a®,—3) # 0, n > 0. Then, from (2.25) and (2.35),
the linear form wu is regular for any A # 0. O

Under the condition of Proposition 2.6, we can precise the relations (2.28) and
(2.30). From (2.28) and (2.30)-(2.31), we obtain

Y2nV2n+1
a_1 =X\ , app1=———7—, n=>0,

a2n—1

Putting a9,—1 = §n_+1, &, #0,m >0 in the above equation, we deduce

&n
n—1
Aant1 = _n H HyisMvid , n2>0, (2.36)
A o YAr+37Y4v+2
A n—1 5 5
4 442
(4n+3 = Van43Vdn+2 H 2 >0 (2.37)
M Yav+sVav+4
—1
with H = 1. So (2.30) becomes for n >0
v=0
Bn = (_1)na, Yan+2 = —Van+1 = Qdn+1, Vdn+d = —Ydn+3 = Gdn+3- (2.38)

PROPOSITION 2.7. Under the conditions of Proposition 2.5, the MOPS { By, }n>0
can be decomposed in the following way

BQH(I) = Pn(xQ)v B2n+1(x) = (I - a)én(x2), n > 07 where

Po(z) = Rn(2) + agn_1Rn_1(x), Rn(z) = Ru(z),n > 0. (2.39)

—~

and R_i(x) :=0. The sequences {P,}n>0 and {R,}n>0 are respectively orthogonal
with respect to A~ (z — a®) "1 (xov) + J,2 and xov.

Proof. From (1.6), (2.4), (2.28), (2.29), and (2.32) we have

{ SCan+1(£C) = Bont2(x) + b2nt1Bont1(x) + aznBon(z) = x(z — a)Ra(2?)
szn(l’) = Bont1(2) + b2nBan () + a2n—1Ban—1(x) = l"(Rn (z?) + ll2n71Rn71(132)).
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Then, Bon(z) = P,(?), BgnJrl(:zz)~ = (z — a)Rn(2?), n >0, _with P, (z)
and R, (x) are given by (2.39). But, R,(x) = R,(z) implies that R,(x) is or-
thogonal with respect to xov. Moreover, it was shown in [19] that the linear form
Az —a?) Y (wov) + 0,2 is regular if and only if 2 # 0 and R, (a?, —%) # 0 which
are fulfilled according to (2.25) and (2.35).

In such conditions, the corresponding MOPS {Rn (., -1, a2) }n>0 is given by

But, from (2.11),(2.27), and (2.35), we have ag,—1 = —
Therefore P,(z) = R, (z, -3, a?).
Hence, { P, }n>0 is orthogonal with respect to A~ (z — a?) = (xov) + d,2. O

REMARK. The sequence {P,},>0 satisfies the recurrence relation (2.34) with

P 71 2 p Y2n+272n+3 2 P Y2n+172n02n+1
ﬁ0:7+a7 ntl = T G2p41 a7, ’Yn+1:—an20-
A2n+1 a2n—1

PROPOSITION 2.8. Under the conditions of Proposition 2.5, if Yan+2 # Yont2,
then the MOPS {Bp}n>0 and {B,}n>0 satisfy the following relation

B, (z) + spBp—1(x) = Bp(z) + tn Bp-1(x), n>1, (2.40)
with

(s1,t1) € C? | s1ty # 0,81 # t1, Sont2 = tont2 = @~ (Font2 — Vont2)s
avyan+2 tonys = _a’Yz—nJrz, n>0.

Sop43 = —7T—————————— —
V2n+2 — V2n42 Y2n+2 — V2n+2

Proof. From (1.6), (2.3) where n — 2n + 2 and Proposition 2.7, we have

Boni2(x) = Roy1(2?) + ’~)’2n+2Rn($C2)7 Bonio () = Rut1(2?) + A2nt2Rn (2?),
Bont1(z) = 2Ra(2?), Bant1(z) = (z — a)Ra(2?), n>0.

Then, B,(z) # Bn(z), n > 1. From [4, Theorem 2.4], there exist complex
sequences {Sp }n>1, {tn}n>1 With s1 # t1 and spt, # 0 for n > 1, such that {By}n>0
and {B,}n>0 are related to (2.40). By (2.3), (2.18), n — 2n + 1 and taking into
account (1.6), (2.4), (2.19), and (2.28)-(2.30), we obtain

{ Bony3(x) + aBany2(x) + FanioBany1 (z) = Bonys + :Y2n+2Bi2n+1(I);
Bon+3(x) — aBant2(x) + Yant2Bon+t1(2) = Bants + Yont2Bont1(x),n > 0.

This leads to (for n > 0)

aBani2(x) + (F2nt2 — Yant2)Bant1(2) = aBanta(2) + (Fant2 — Yonta)Bont1(2).
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Consequently s2,12 = topt2 = a1 (J2ni2 — Y2ni2), since for n > 2 s, and t,, are
unique. Next, by formulas (2.7)-(2.8) of [4] , we have

aYan4-2 aY2n+2
Yont and t2n+3 = — Vont |

Y2n+2 — V2n+2 Yon+2 — V2n+2

It is possible to characterize the sequence {B,,},>0, studied by Maroni in [17], in
the particular case where it satisfies (2.3) with 3,, and 4,41 given by (2.30) or (2.38).

PROPOSITION 2.9. Let u be a normalized and regular linear form and {Bn}nzo

be its corresponding MOPS and a € C — {0}, a® # (u)2. The following statements are
equivalent

a) There exists a normalized , regular and symmetric linear form v such that

)

(u)2 —a*

b) The sequence { By, }n>0 satisfies (2.3) with B, and Fny1 given by (2.30).

Mz — a)u = zv,

Proof. a) = b). On account of (2.30) and Proposition 2.5.
_ b) = a). Suppose b). It was shown in ( [17] , p.21 , p.43 ) that the sequence
{Bn}n>0 has the following quadratic decomposition

Bon(z) = Py(2?), Bani1(z) = (# —a)Ru(2?), n>0.

In addition, sequences {Pn}nzo and {Rn}nZO respectively are orthogonal with
respect to ou and w; , where yyw; = (z — a?)ou.

Let a € C — {0} such that R,(0,—a) # 0, n > 0, then wy = oz w; + &y is
regular on the basis of [19]. From [17, p.42, Proposition 2.3.], we have o ((z —a)u) =0
and ywy = o (z(x —a)u). Hence (z —a)u = A where A is an antisymmetric form and
then Jyw; = o(x.A). But w1 = a~'zov where v = w(wy) is the symmetrized form of
way [see 17, p.28, p.35].

Consequently o(A~*2%v — 2.A) = 0, which implies A™'2%v — 24 = 0 , since this
form is both symmetric and antisymmetric. Whence

A=X"1zto, (AW =a1F).

It is clear that (v)y = «, and the condition (u, By) = 0 gives 71 = (u)y — a?. O

3. The Laguerre-Hahn case.

DEFINITION 3.1. [2] The regular linear form v is called Laguerre-Hahn if its
formal Stieltjes function satisfies the Riccati equation

®(2)8" (v)(2) = B(2)S?(v)(2) + Co(2)S (v) (2) + Do(z), (3.1)

where ® monic , B , Cy, and Dy are polynomials and S(v) () =— Z
It was shown in [10] that equation (3.1) is equivalent to

(@(m)v)l + Vo + B(z™'v?) =0, (3.2)
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with

We also have the following relation

Dy(z) = —(v@ofb)l(:t) — (v00¥)(z) — (v?63B)(z).

PROPOSITION 3.2.[2] We define d = max (deg(®), deg(B)) and p = deg(¥). The
Laguerre-Hahn linear form v satisfying (3.2) is of class s = max (d — 2,p — 1) if and
only if

[1{10) + 9@)| + [BO)| + (0,630 + 0,0 + 0008, B)] } #0,
bezZ

where Z denotes the set of zeros of ®.

COROLLARY 3.3. The Laguerre-Hahn linear form v satisfying (3.2) is of class
s =max (d—2,p— 1) if and only if

[T{ICow)I + 1B®)I+Do(v)] } # 0. (3.4)

bez

REMARK. (3.4) is equivalent to the fact that the polynomial coefficients in (3.1)
are coprime.

DEFINITION 3.4.(see [5],[18]) A linear form v is semiclassical if it is reqular and
there exist two polynomials ® (monic), ¥, deg(¥) > 1 such that

((I)’U)/ + Pv =0.
The class of v is s = max(deg ¥ — 1,deg ® — 2) if and only if
[T 12 (®) + ()| + | (u, 0¥ + 67®) | £ 0.
bez

REMARK.[18] When B =0 in (3.1) or (3.2), the linear form v is semiclassical.

PROPOSITION 3.5. If v is a Laguerre-Hahn linear form and satisfies (3.1), then
for every a,c € C,a # ¢ and every A € C — {0} such that d,, # 0,n > 0, the linear
form u defined by (2.1) is regular and Laguerre-Hahn. It satisfies

D(2)5" (u)(2) = B(2)S?(u)(2) + Co(2)S (u)(2) + Do(z), (3.5)
where

B(z) = (2= (= — )8(2), B(z) = A= - a)*B(2),
Colz) = (e = a)@(2) + ( = a) (= = €)Co(2) = 2(1 = N B(2) ), (3.6)
ADo(2) = (2 = )2 Do2) + (A = 1) ((z = )Co(2) + @(2) ) + (A = 1)*B(2),
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and u is of class § such that 5 < s+ 2.

Proof. We have [10]
(z —)S(v)(2) = 5((€ = c)v)(2) — (v0o(€ — ©))(2) = S((€ — c)v)(2) — 1.
Using (2.1), we get
(z—)S()(2) = AS((§ —a)u)(2) =1 = A(z —a)S(u)(z) + A — 1. (3.7)

Multiplying (3.1) by
From (3.3), and (3.5)-(3

(x —¢)? and taking into account (3.7) , we obtain (3.5)-(3.6).
.6), the linear form u satisfies the distributional equation

(i)(:b)u) + Yu 4 Bz~ %) =0, (3.8)

where ® and B are the polynomials defined in (3.6) and

U(x) = —9'(z) — Co(x) = (z — a) ((x —o)U(x) — 2®(x) +2(1 — /\)B(:c)) , (3.9
then deg(®) < s + 4, deg(B) < s+ 4 and deg(¥) = p < s+ 3.
Thus g:max(deg( ),deg(B )) < s+4 and §=max(c2—2,]5— 1) <s+2.0O

PROPOSITION 3.6. Let u be a Laguerre-Hahn linear form satisfying (3.8). For
every zero of ® different from a and ¢, the equation (3.5) is irreducible.

Proof. Since v is a Laguerre-Hahn linear form of class s, S(v)(z) satisfies (3.1),
where the polynomials ®, B, Cy, and Dy are coprime. Let &), E, C’o, and Dy as in the
Proposition 3.4. Let b be a zero of @ different from a and ¢, this implies that ®(b) = 0.
We know that |B(b)| + |Co(b)| + |Do(b)| # 0,

i) if B(b) # 0, then B(b) # 0,

i) if B(b) = 0 and Cy(b) # 0, then Co(b) # 0,

iii)if B(b) = Co(b) = 0, then Dy(b) # 0, whence |B(b)| 4 |Co(b)| 4 |Do(b)| # 0. O

Concerning the class of u, we have the following result (see Proposition 3.8). But
first, let us recall this technical lemma.

LEMMA 3.7. We have the following properties
Ry. The equation (3.5) — (3.6) is irreducible in a if and only if

|®(a)| + |(a — ¢)?Do(a) + (A — 1)(a — ¢)Cy(a) + (A — 1)*>B(a)| # 0.

Ry. The equation (3.5) — (3.6) is divisible by (x — a) but not by (xz — a)? if and
only if

[@(a)| + |(a = ¢)*Do(a) + (A = 1)(a = c)Co(a) + (A = 1)*B(a)| = 0,
(@ —)?D(a) + (A = 1)(a — )Cj(a) + (A = 1)*B'(a)|+
+|(a = ¢)(®'(a) — Co(a)) +2(1 = N)B(a)| # 0.

Rs. The equation (3.5) — (3.6) is irreducible in ¢ if and only if

(<I>(c), B(c)) #(0,0).
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Ry. The equation (3.5) — (3.6) is divisible by (z — c) but not by (x — c)? if and
only if
((I)(C),B(C)) =(0,0) and (\Il(c),B’(c)) #(0,0).
Proof. From (3.6), we have B(a) = 0 and Cy(a) = (¢ — a)®(a). If ®(a) # 0, then

a
Co(a) # 0.Tf ®(a) = 0, then ADg(a) = (a—c)?Dy(a)+(A—=1)(a—c)Co(a)+(A—1)?B(a).
So, by virtue of (3.4), we obtain R;.

Now, if ®(a) = 0 and
(a —¢)*Do(a) + (A = 1)(a — ¢)Co(a) + (A — 1)?B(a) = 0, (3.10)

the equation (3.5)-(3.6) is divisible by (z—a) according to (3.4). Thus S(u)(z) satisfies
(3.5) with

®(2) = (2 — 0)®(2), B(z) = A(z—a)B(2),

Colz) = (¢~ @) (0uD)(2) + (=~ )20 -5,
ADy(z) = (2 + a — 2¢)Do(2) + (a — ¢)? (0 Do) (2) (3.11)
+(0 = 1)(Co(2) + (a = ) (6 Co)(z) (6 )<>) (A= 12(6.B)(2).

Then, Co(a) = (¢ — a)®'(a) + (a — ¢)Co(a) — 2(1 — \)B(a). If (¢ — a)®'(a) + (a —
¢)Co(a) —2(1 — N)B(a) # 0, then the equation (3.5)-(3.11) is irreducible in a. If

(c—a)®(a) + (a —c)Co(a) —2(1 — N\)B(a) = 0, (3.12)
we have to evaluate Do(a). From (3.11), we obtain
ADo(a) = 2(a — ¢)Do(2) + (a — ¢)?D)(a) + (3.13)
+(A—1) (Co(a) +(a—c)Ch(a) + @'(a)) +(A—1)2B'(a).

Multiplying respectively (3.10) and (3.12) by 2 and A — 1, we get after making
the difference between the equations formulated

2(a — ¢)?Do(a) + (A — 1)(a — ¢)Coy(a) + (A — 1)(a — ¢)®'(a) = 0.
Thus,
2(a — ¢)Do(a) + (A — 1)Cp(a) + (A = 1)®'(a) = 0. (3.14)
From (3.13) and (3.14), we obtain
ADg(a) = (a — ¢)2Dh(a) + (A —1)(a — ¢)C4(a) + (A —1)2B'(a).
Then, we deduce Rs.

From (3.6), we get

Co(c) = (c—a)®(c) +2(c—a)(1 — N)B(c),

{ B(z) = A(c — a)*B(c),
ADo(c) = (A = 1)®(c) + (A — 1)?B(c).
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We can deduce that |B(c)| + |Co(c)| + |Do(c)| # 0 if and only if (®(c), B(c)) #
(0,0). Thus Rj3 is proved.

If (®(c), B(c)) = (0,0), then the equation (3.5)-(3.6) can be divided by (z — c)
according to (3.4). In this case, S(u)(z) satisfies (3.5) with

() = (2~ a)0(2), B(2) = Az~ )’ (0:B)(2),
Co(2) = (e = @) (8:2) (2) + (= — ) (Co(2) — 21 = M) (6 B) (=) ), (3.15)
ADo(2) = (2 = )Do(2) + (A = 1) (Co(2) + (0:9) ()) + (A = 1) (0. B) (2).

Substituting z by ¢ in (3.15) and using (3.3), we obtain

(
3(c) = Ac —a)*B'(c),
0(2) = —=(c = a)¥(c) = 2(1 = \)B'(¢),
0(2) = =(A=1)¥(c) + (A = 1)*B'(c).

Then (3.5)-(3.15) is irreducible in c if and only if (¥(c), B'(c)) # (0,0). Hence
Ry. 0O

!

>

PRrROPOSITION 3.8. Under the conditions of Proposition 3.5, for the class of u,
we have the two different cases:

1) |®(a)| + |(a — ¢)*Do(a) + (A = 1)(a — ¢ # 0.
i) §=s+2 if (®(c),B(c)) #(0,0).
i) §=s5+1 if (®(c), B(c)) = # (0
|®(a)| + |(a — ¢)?Do(a) + (A — 1)(a — ¢)Co(a) + (A 1 B | o
2) 4 |(@—¢)’Dyla) + (A =1)(a - c)Cyla) + (A = 1)*B'(a)|+
+|(a—¢)(®'(a) — Co(a)) +2(1 — A\)B(a)| # 0.
i) s=s+1 if (®(c),B(c)) #(0,0).
i) s=s if (®(c),B(c)) =(0,0) and (¥(c),B'(c)) # (0,0).

Proof. From Proposition 3.6, the class of u depends only on the zeros ¢ and a.
For the zero a we consider the following situations:

A) |®(a)| +|(a —¢)?Do(a) + (A = 1)(a—c)Co(a) + (A — 1)2B(a)| # 0. In this case the
equation (3.5)-(3.6) is irreducible in a according to R;. But what about the zero ¢?
We will analyze the following cases:
i) (®(c), B(c)) # (0,0), the equation (3.5)-(3.6) is irreducible in ¢ according to
R3. Then (3.5)-(3.6) is irreducible and § = s + 2 . Thus we proved 1) i)
ii) (®(c),B(c)) = (0,0) and (¥(c),B'(c)) # (0,0).
From Ry., (3.5)-(3.6) is divisible by (x — ¢) but not by (z — ¢)? and thus the
order of the class of u decreases in one unit. In fact, S (u) (z) satisfies the
irreducible equation (3.5)-(3.15) and then § = s + 1. Thus we proved 1) ii).
B)
[®(a)| + [(a = ¢)*Do(a) + (A = 1)(a — c)Co(a) + (A = 1)*B(a)| = 0
(@ —¢)*Dy(a) + (A = 1)(a — ¢)Co(a) + (A — 1)2B'(a) |+
+l(a—¢)(®'(a) — Cola)) + 2(1 — A\)B(a)| # 0.
In this condition, (3.5)-(3.6) is divisible by (x — a) but not by (z — a)? according
to Ry. But what about the zero ¢? We have the two following cases:
i) (@(c),B(c)) # (0,0), the equation (3.5)-(3.6) is irreducible in ¢ according
to R3. Then, S(u)(z) satisfies the irreducible equation (3.5)-(3.11) and then
§=s+ 1. Thus 2) i) is proved.
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ii) (®(c),B(c)) = (0,0) and (¥(c),
ible by (z — ¢) but not by (x —c¢)
equation (3.5) with

B'(¢)) # (0,0). From Ry, (3.5)-(3.6) is divis-
2. Therefore, S(u)(z) satisfies the irreducible

¥ Co(z) —2(1 — N (6.B)(2)),
ADg(z) = Do(2) + (a — ¢)(8.Do) (2) + (A — )( (6.Co)(z)+  (316)
+(00.9) (z)) + (A= 1)2(0a0.8) (2).

Then § = s and 2) ii) is also proved. O

COROLLARY 3.9. Let v be a semi-classical linear form of class s, satisfying (3.1)
with B = 0. For every a,c € C,a # ¢, and every X\ € C* such that d,, # 0,n > 0, the
linear form u defined by (2.1) is reqular and semi-classical of class § < s+ 2. In fact,
we have the two different cases:

1) [@(a)| + [(a = ¢)* Do(a) + (A = 1)(a — ¢)Co(a)| # O,
Di=s+2 if ®(c)#£0.
ii)s=s+1 if P(c)=0and ¥(c)#0.
|®(a)| + |(a — ¢)?>Do(a) + (A — 1)(a — ¢)Co(a)| = 0 and
|(a = ¢)*D(a) + (A = 1)((a = )Ci(a) + @'(a))| + [(a — ) (@' (a) — Co(a))| # 0,
Ds=s+1 if ®(c)#£0.
ii)§=s if P(c)=0and ¥(c)#0.

Proof. Tt follows from Proposition 3.7, with B = 0. O

2)

The structure relation. Note that the MOPS relatively to a Laguerre-Hahn
linear form satisfies a structure relation [2]. Then, if we consider that the linear form
v is Laguerre-Hahn, its MOPS {B,, },>0 fulfils the following structure relation

()B4 (2) - B(@)BY (x) = (3.17)
2 (Coa(@) — Co()) Bua(@) — 31 D (1) Bala) , m >0,
with
Cuiale) = ~Cola) + 2z = 3) Do)
Yn+1Dnt1 (@ ) —®(z) + Y Dp_1(x)— ,n >0, (3.18)

—(@ = Bn)Cn(z) + (x = Bn)*Dn(2)
where Cy(z) and Dy(x) are given by (3.1) and yoD_1(z) = B(x).

Replacing n by n — 1 in (3.20) and using (1.6), we obtain

®(z)B.(z) — B(z)B", (z) = (3.19)
Do(@)Brsa(a) + (3(C0(0) ~ Colo) — (& = BIDa(0) ) Balo).

REMARKS. 1. When B = 0 in (3.17)-(3.18), we meet the structure relation in the
semiclassical case (i.e. v is semiclassical linear form) (see [18]).
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2. In the Laguerre-Hahn (resp. semiclassical ) case, the polynomials C,, and D,
of (3.17) enable to obtain the coefficients of the fourth-order (resp. second—order)
differential equation satisfied by each B,, , n > 0. See, for instance [10, p.90] ( resp.
19, p.236] ).

_ From Proposition 3.5, the linear form u is also Laguerre-Hahn and its MOPS
{Bn}n>0 satisfies a structure relation. In general, { B, } >0 fulfils
(@) By () — B(x) B (@) = (3.20)

n

%(CnJrl(I) - CO(I))BnJrl(I) - :YnJranJrl(fE)Bn(I)a n >0,

with

where Co(z) , Do(z) are given by (3.6) and %Djl(x) = ~B(:z:)
We are going to establish the expression of C),, and D,, , n > 0 in terms of those
of the sequence {B,,},>0.

PRrROPOSITION 3.10. We have for n >0

pri1BY, (@) + 001 (@)BO (@) = Mz — a)BY (1) + (L= NBusa(2), (321

n—1

L (G () — Cola)) = (anm:)—pn b )Un@c)— Pr_y ()

an—1 an—1

—(z—a)(®(z) + (A —1)B(z)), (3.22)
prtUn(@) + =011 (@) Vi (),

n—1 n—1

In

ﬁn+ll)n+1:: 0

{ ‘[in(ff) - lé(cnﬂ(i?) = Co(2))0n+1(2) + pot1Dn(x) + (), (3.23)
w(2) = 5 (Co(@) + Co(2)) prt1 + Tn+100+1(2) Doy (2),
where Cy(z) and Dy(z) are given by (3.6).
Proof. From (2.4), we can write
(@ = ¢)But1(2) = pu1 Ba(@) + 01 (2) Buga (2),n 2 0. (3.24)

On the one hand using (1.3), and (1.4) we obtain
(uo (€ — C)Bnﬂ(f)))(gﬁ) =< Bpy1(§u, 1> +(z —¢) (U90En+1)($)'

From Definition 1.2 and the fact that {B,},>0 is orthogonal with respect to u,
we get

(u@o((§ - c)§n+1(§)))(x) = (x— c)Eél)(x),n > 0. (3.25)
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On the other hand, from (3.24) we obtain

(ubo((§ = €)Bn11(€))) (%) = pns1(uboBy)(x) + (3.26)
+ont1(x) (u903n+1)($)+ < Bni1(&u,1 > .

The functional equation (2.1), leads to

AwtoBa) ) = (€~ 0) €~ o+ 2, = Bal2))

_ (e - ey, 0= O(Bul&) = Bal@)) + (= —8)(Bula) = Bu(6))
’ (€-a)(a—a)(€-0)

Then
MuboBy)(z) = (3.27)

1 <(c —2)BWY (2) + (a — c)B,ﬁ”l(a)) + (A= 1)(6B,) (2).

a—x

From (2.2), we have
< M, By (z) >= (a — ¢)BW (a) + (A = 1)Bpy1(a). (3.28)

By substituting (3.27)-(3.28) in (3.26), we obtain

A(u00((€ = ) By (6)) () = (0 — B (@) + (A= 1) Busa(a) + (329)
tounlo) (2 (= DB + = OBY @) + (= DO Bn) () +
tpuin (2 (le- 2B, @)+ @ - 9B @) + 0= D(0B,) @)

Substituting « by ¢ in (3.24), we get
Pn+1Bn () + ony1(c)Bryi(c) =0,n > 0. (3.30)

Now, substituting « by ¢ in (3.29) and using (3.25), and (3.30), we obtain
Pt ((a —)B (@) + (A — 1)Bn(a)) + (3.31)
+0on+1(a) ((a —¢)BP(a) + (A — l)BnH(a)) =0.

From (3.24), (3.29), and (3.31), we get

A(ubo ((€ = ) B (€))) (2) = (3.32)

cC—Xx

(ot B @) + @B @) = (1= NBaia(0)). n 2 0.

a —

Then the relation (3.21) is a consequence of (3.25) and (3.32).
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Now, we are going to prove (3.22). After derivation, we multiply (3.24) by (z —
a)®(x), we obtain

(2 — &)@ — )B(2) B, (2) + (@ — 0)() Bus1 (2) = posa (@ — a)B(2) B (2) +
+0011(2)(@ — @) B(2) Bl () + (& — @) () Bus (). (3.33)

Multiplying (3.21) by (z — a) B(x), subtracting from (3.33) the equation we have
found and taking into account (3.17)-(3.19), and (2.17), we get

(¢ = a)(z — €)(2) By 41 (2) = Az — a)* B(x) B (z) =

(e = ) Ualo) = L000) = (o = (@) + (= D) ) Basale) -

Gn—1 an—1

—(a”" puiaUn(z) + 22 on+1<x>vn<x>)én<w>-

n—1 Gn—1

where U, (x) and V,,(z) are defined by (3.23).
Comparing with (3.20), we get (3.22). O
4. Examples.
4.1. We study the problem (2.1), with v = GG where GG is the Generalized

Gegenbauer linear form. In this case, the linear form v is symmetric semiclassical of
class s = 1. Thus, we have [2,6]

n+08+1)(n+a+p8+1)
m+a+f+1)2n+a+5+2)

72n+1=( , n=>0,

(n+1)(n+a+1)
m+a+p+2)2n+a+5+3)

Yon42 = ( , n 2 0. (41)
The regularity conditions are a# —n,B# -n,a+08#—-(n+1),n>1.
We also have

P(x)=x(2®—-1) , V()= -2a+p8+2)2>+2(B+1). (4.2)

Cn(z) = (2n+ 20+ 26+ 1)z + (-1)" 126+ 1)

Dyp(z) =2(n+a+ B+ 1)z , n>0. (4.3)

In addition, the MOPS {B, },>0 satisfies (see [6]).
Bon(2) = Po(2?), Banyi(z) = 2R, (2?), n >0,

with P,(z) = 5P>P(2z — 1) and R,(z) = P> (22 — 1), n > 0, where
PP (z) denotes the classical Jacobi’s polynomials which are orthogonal with respect

to J(a, ).

For greater convenience we take ¢ =0, a = 1, and « # 0.

Using (2.26), we obtain

2JLTn+8+DI(n+a+5+1)

1. _
Ban(0) = — PP (=1) = (-1) r+1r2n+a+p+1) °

AL

n > 0. (4.4)
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We have [18]

Baua(1) = P+ (1) = S ey

n- an

since P2A(x) = (—1)"P%*(—x). So, if we replace (a, ) by (3+ 1,a) in the previous

equation, then we get

Fn+a+1)I'(n+a+6+2)
Mo+ 1)I'2n+a+3+2)

Taking into account (2.33) and (1.7), with 3, = 0, we have

1 n
BY(0) = - Po (=1, -271) = (-1)" [[ 720, 2> 0.
v=0

n-

Therefore, using (4.1) we get for n > 0

1 e, 28+, LTla+8+2)T(n+ 1) (n+a+1)
g f 1’a+6+2)_( 2 C(a+1)2n+a+ [ +2) (4.6)
Using (2.33) and (1.9), we obtain
1 1(-1)" )
B0 = 1+ Ep ) - L E gt 220y a0
From (2.25), (4.5) and (4.6), we get
_ Dle+B+2)I(n+1)I'(n+5+2)
B = T T GBTOTEnta 1) (4.7)
Ot 6+1)r(n+1+a)r(n+a+ﬁ+2)

a FNa+1DI'Cn+a+5+2)
Then, the linear form wu is regular for every A such that

ﬁ—l—l) y Ta)(a+ B+ 2)I'(n+ 1)I(n+ 8+ 2)
a rB+1)(n+1+a)l(n+a+5+2)"

A+

Since v is semiclassical, then according to Proposition 3.5 ( with B(x) =0) the
linear form w is also semiclassical. It satisfies (3.5) and (3.8) with

d(z) =2(x —1)%(x+1),B(z) =0
() = (z — 1)(—(2a+ 28 +5)z% + 2ﬁ+3),

=0

Co(x) = (z —1) ((m +28+1)2% -z — 2B+ 1)),
ADo(z) = 2X(a + B+ 1)a? — 2(A — 1)(B + 1).

According to Corollary 3.9, we have the following results:
1
* If X # —6;, then the class of u is § = 2.
«

*If A= —M, then the class of u is § = 1.
o
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Now, we give the coefficients of the recurrence relation satisfied by {Bn}nzo- For
this, first we calculate the coefficients a,, and by, n > 0, given by (2.28)-(2.29).

n+B8+1(n+a+3+1) JAVISY

y Qg1 =——, n=>0
Cnt+a+pB+1)2n+a+p+2) A

a_1 = A\ G2n =

)

bgn = O, b2n+1 = —1, n Z O
Using the above results and (2.30), we obtain

B+1

Ma+5+2) A >0
- D ~ _ 2n+272n+3Ln
Ten42 = —=x > V243 = T~

" An-l—l

Bn = (_1)117 =

Then according to Proposition 3.10, we give the elements of the structure relation
of the sequence {B;},>0 (for n > 0)

Ot (z) — Co(x) — (o - 1)x
2(agn—1 —van)(n+ B+ (n+a+F+1)
azm—1(2n+a+ 0 +1)

=(z—1)x

<(2n + 1)z +x— +2(8+ 1)) )
Cant2(x) — Co(x)
2
<2(n +1)x® 4 2(aznt1 — Y2nt2)(2n + a + B+ 2)) ;
_ 2pn(nt B+ 1D)(nt+at+B+1)
_ azn-12n+a+ B +1)
Fant2Dant2(r) = 2a2n41(2n + 2a + 26 + 3)z°+

+2(a2n+1 — Y2n+2) ((a2n+1 —Yont2)2n+a+B+2) -5 — 1) .

Yant1Dant1 () (x—1)%

The linear form v has the following integral representation [6 p.156], for Ra >
-1, R >-1,feP,
IMa+6+2)
a+1I(B+1)

)= 5 [ B = e pee (4.10)

From (2.2), we obtain

O £y = (= 1)+ a2 [ el = o (o) +

I(a+p+2) b 2em ava f(@) = f(1)
r(a+1)r(ﬁ+1)/1|x|ﬁ+(1_‘r) -1 ¢

But, when Ra > 0 we have

Z.

INa+ 3+ 2) 1 - o1 ot B4 1
Tla+ DB +1) /71|x| (1 -a?) mdx__T'
Therefore for 88 > —1,Ra >0, f € P,
1
)= (1+ 5 ) - )

Ia+6+2) ! o~ . -
@+ DE(G+ 1) /,1"”"’”' P2 (1 - a)* f (@) de.
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.. . . B+1 .
It is interesting to give, When A = ———— the elements of the sequence { By, },,>0.
o >

In this case, the linear form u is non-symmetric semiclassical of class s = 1, we have

Bn = (_1)11

N _ (n+a)(n+a+p+1)

T T T onta+ B+ 1)2ntat B+2) (4.12)
(n+1)(n+B+2)

v n - - ) 20
Tt T ot a+ A+ 2)2nta+B+3)
From Proposition 2.8, we have
B, (z) + spBp_1(z) = f?n(:v)l—i— tnBn_1(z), n>1,
n+
ni2 =toppp = ——————————
Son+2 = tany2 mtat it (4.13)
PR e S L e S
2n+1 — 27’L+Oé+ﬁ+1, 2n+1_2n+a+ﬁ+17 = Y.

The linear form u satisfies (3.5) , (3.8), and (3.20) with

d(z) =x(z® - 1), U(z) = —(2a +26+2)z> + 2 + 23 + 3,

— 2n+1)(* - 1),

Cn+a+B+2)(x—-1),
@Cn+a+p8+3)(x+1), n>0.

The linear form u has the following integral representation for 6 > —1, Ra >
0,feP,

_Tl+p+2) [ o o
(u, f) = m/_lxwﬁﬂ(ux) (1— 2)° f(2)da. (4.14)

REMARKS. 1. (4.13) is an example which illustrates the results of Theorem 2.4
in [4] , when (z — ¢)v is not regular linear form.
2. The integral representation (4.14) doesn’t exist in the list given in [5].

4.2. We study the problem (2.1), with v = L(«) where L(«a) is the Laguerre
linear form. In this case, the linear form v is not symmetric. This linear form is
classical (semiclassical of class s = 0 [18]).

We have [19]
Bon=2n+a+1l, Ypy1=Mm+1)(n+a+l), n=>0,
the regularity condition is oo £ —n, n > 1

Ox)=2, VY(z)=zxz—a-—1,

Cpn()=—2+ (2n+a), Dy(z)=-1, n>0.
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To simplify, we take a =0, ¢ = —1 and « # 0.

We have [19][6]
B (0) = ( )"%, n >0, (4.15)
I I'n+a+1
Bu(=1) = (=1)"n! }_ g ki D+ L o =0 (@16)

Using the three-term recurrence relation satisfied by {B }n>0, we deduce by
induction

—1)ntt n+ «
BW(0) = % <r(n+ 2) — F(F(Ziﬁ) . >0 (4.17)

Taking into account (2.9) and the above results, we get

dp = dp(N\) = (4.18)
B n _ _ L(n+a+2)
F(—1)™ B (—1) {aln! f(A—at - 1)%} n>0.

In particular, we have
n+1

'(n+ D)IT( 1
If a > 0 then, d,(a™' +1) fa—lz” (n+ (n+a+1)

>
h—Ftr)WETath ” on=0
Then, from (2.9)-(2.12), and (2 6) we obtain for every A such that d,(\) #0

an = (=" B (-1)d; {a  n+ D+ (A - a7t - ) Epted
i+ 1) +at1),

b1 =2n+ o+ 3+ (—1)"By(—1)d; " {a—l(n+ D+ (1+at- )\)%} :

b = a+ 2,

A=A a D(a+3) = (W a+2)%, Fure = (0 D0+t 1)

Bn:2n+a+3—|—bn—bn+1, n > 0.

Since v is semiclassical, then according to Proposition 3.5 (when B(x) = 0), the
linear form w is also semiclassical. It satisfies (3.5) and (3.8) with

d(z) = (x+1)2?, U(z) = —22° — (a +2)2° — ax ,
Co(z) = -2+ ax® + ax , ADo(x) = A2’ + (Aa—a—2)z+ (A —1a—1.
According to Corollary 3.9, we have the following results:

* If A # a~! + 1, then the class of u is § = 2.
*If A=a"' + 1, then the class of u is § = 1.
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From Proposition 3.10, we give the elements of the structure relation of the
sequence { By }n>o0.

Cry1(z) — Co(a)
2

=(n+1a*+ {—a+ 1-(n+1)(5n+3a+7—bpt1)+
Tn

Gp—1

Tn

_|_

((n + 2)by + 29041 — an) }x + "
n—1

{—(n +1D(n+2—-bpr1)(n+1+a+

+b,) + (n+ 1+ a)(an — 29n41) — bnan} +(n+1)((Bn+2a+2)(n+2— b))+
+2(n+ a+1)?) + nay,

Ant1 Dy () = a% (29n41 — an)z® + ”y_n{(4n +2a+ 6 — bpya)an — (8n+

n—1 Gp—1

+4a 412 — 3bn+1)~yn+1}z + al (Vg1 — an) (N +1)(n + 2 — bpg1) — an)+
n—1

Tn
an—1

+

(bn+1 —2n —a— 3) ((n +a+1)a,— Bn+2a+4— bn+1)7n+1),n > 0.

The linear form v has the following integral representation[18]

+oo
(v, f) = ! ) / e f(x)dz, R(a)> -1, feP. (4.19)
0

MNa+1

From (2.2), we have

1 e o, —x

L @ =)
+r<a+1>/0 2% L+ (- 1)5(0)

1 Hoo 1
But, when Ra > 0 we have 7/ % —dr = a L.
Fla+1) Jy x
Therefore for A such that d,, # 0, Ra >0, f € P,

1 +oo
<A, f >= / (z+ Dz te ™ f(x)dr + (A — o™t — 1)dp. (4.20)
) Jo

MNa+1

4.3. Let v = 7MW (a, B) be the associated linear form of the first kind of Jacobi.

So By (z) = Prgl)(x), n > 0 where P,(z) denotes the classical Jacobi polynomials.
We have [17 , 10]

62__a2
611: 777’205
2n+a+B+2)2n+a+B+4)
A+ 2)nta+B+2)(n+a+2)(n+B+2) n>0
T T GntatB+5)2ntatBrA2@ntatfrd)’ T

The regularity conditions are o # —n, 8 # —n, a+  # —n, n > 2.

a2_52
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CAla+ B+ (a+1)(B+1)
Y ) [ )
2 _ 32
Cn(x):(2n+a+ﬁ+2)x+maa—_|_ﬁﬁ_|_2, Dp(z)=2n+a+8+3, n>0.

We assume (o + S+ 1)(a+1)(8+ 1) # 0, then v is a Laguerre-Hahn linear form
of class s = 0. To simplify, we take c=1, a = —1, and «of # 0.

Using the three-term recurrence relation satisfied by {P,gl) = By }n>0, we deduce
by induction

am(—1 n+1 1

x(F(a+5+1)F(n+2)F(n+a+2) F(n+5+2)F(n+a+ﬂ+2)>

(4.21)

T(a+1) rB+1)

and  PMY(1) = (=1)"PY(=1,8,a), n > 0.

From [10, p.80 Theorem 2.2] , we have for n > 0

B, (x) = P, ()
B 2(a+1) B (@)

(a+B+2)%(a+B+3)
da+1)(B+1)

7l+1(x)a

(where {Py)}nzo denotes the sequence of associated polynomials of first kind for the

sequence {P,gl)}nzo.)
From (2.9), (4.4), and the above results, we obtain

(_1)n+122n+1(a+ﬁ+ 1)

dn:dn()‘): aF(2n+a+ﬂ+3)F(2n+O&+ﬂ+4)

(4.22)

Ao (@ D=0 = (@4 4D+ 5+43) (X + Vil ) +

Ya(B,a) + 2,) + QEAE It 127

2(a+1)(B+1)

(Yo (B, a) + Zn)}

where
X — 2 (a4B4+ 1) (n4+2)T(n+3) T (n+a+2)I(n+542)
n = T(a+1D)I(B+1) )
Y, (Ot, 6) _ F(a+ﬁ+1)F(n+2)F(n-il:‘zz)za%zg‘)(n+a+3)r‘(n+a+ﬁ+2), (423)
7 — I'(n+B+2)I(n+a+2)I'(n+a+B+2)I(n+a+B+3)
n = T(a+1)T(B+1) :

(a+08+3)(a+p+2)

In particular, if « > 0 and 8 > 0 , we have for \; =1 — 1
!

(a+3+3)(a+8+2)
(a+B+1)(B+1)

_ _(=1)"12%" (a4 B+1) (a+B+2)%(a+B+3)
dn (A1) = a(at+D) (B+DI(2ntat+B+3)T (2ntatB+d) (Ya(B.@) + Z) # 0,0 > 0,

and o =1 —
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_ _ (=1)"2°"(a+B+1)(a+B+2)*(a+B+3)
dn(A2) = a(at 1) (B+D)T(2ntotB+3)T 2ntatBtd) (X + Ya(a, 8)) #0,n > 0.

Then, from (2.9), (2.12), we obtain for every A such that d,,(\) # 0 (n > 0)
an = dn+1d;17

d—l -1 n+122n+1 +68+1
by = Bnt1 — 1+ n (=1 (tB+1)

aBT2n+a+B+3l2ntatf+5)

{(062:75_—;1)[(0‘""1)(1_)‘)_(a+ﬁ+2)(a+ﬂ+3)}[(n+a+2)Xn+

+(n+2)Y, (0, O] + B+ DB+ Dla+B+1)(1-N) -

—(a+B+2)(a+8+2)] [(n+a+ﬁ+2)Yn(ﬁ,a)+(n+ﬁ+2)Zn]}.

Taking into account that the linear form v is Laguerre-Hahn , and by virtue of
Proposition 3.5, the linear form w is also Laguerre-Hahn. It satisfies (3.5) and (3.8)
with

Bo) = (- 1P Blo) = OO oy,

b(z) = (I+1){—(w—1)((a+ﬁ+4)x+ (0‘+2>2—52+2ﬁ)+

a+p+2
+8(1—/\)(a+6+1)(a+1)(5+1)
(@ +B+3)(a+B+2)? )
. g
CO@=<w+1>{<w—1>(<a+ﬁ+z>x+( +j>+652+2ﬁ)_
81 =N+ B+)(a+1)(B+1)
(a+ B +3)(a+ 5 +2)2 ,

2 2
)\ﬁo(:c):(:v—l)((2a+2ﬁ+5)x+;+7ﬂf_2—(a+ﬁ+2) +

4N=D(a+p+D(a+1)(B+1)
(a+3+3)(a+5+2)2

According to Proposition 3.8, we have the following results:
* If A # Ay and X # Mg, then the class of u is § = 2.
* A= A1 or A = Ao, then the class of u is § = 1.

Finally, from Proposition 3.10, we give the elements of the structure relation of
the sequence {Bj}n>0 for n > 0

Un(z) = (n+2)2% + (n+1) ((af"% + bn+1> x+
2 2 _
(T(Loj——l—l?éi 2)(62Yn)$7;+—1|— ﬂinl)l) +@n+a+B+3)(an —m) —1
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Vale) = = (04 a4 54 3)an + (04 2y ) +

(n+a+B+43)(0® = B%)(an — mi1)
(a+08+2)2n+a+F+4)
+@2n+a+ B+5)(bnt1 — Bat1)ynt1-

+

Cria(w) = Colz) _ (w _ g, 4 Jnbn )Un@ B (1 _ a% V. (z)—

o a0 = Dla+ A5 D+ D@+
_(x+1)(:c —1+(A-1) (a+ 3+ 3) a+6+2) >7

Ant1Dnyr(z) = a% ((an = Yt 1)Un(2) + (7 = Bug1 + bny1)V,

n—1

\_/

REMARK. Unfortunately, we are not able to give an integral representation of u

in this case, especially because we still don’t know an integral representation of v.
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