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COMPANION LINEAR FUNCTIONALS AND SOBOLEV INNER

PRODUCTS: A CASE STUDY∗

ANTONIA M. DELGADO† AND FRANCISCO MARCELLÁN‡

Abstract. The present paper deals with the solution of an inverse problem in the theory of
orthogonal polynomials. It was motivated by a characterization result concerning sequences of poly-
nomials orthogonal with respect to a Sobolev inner product when they can be recursively generated
in terms of orthogonal polynomial sequences associated with the measure involved in the standard
component. More precisely, we obtain the set of pairs of quasi–definite linear functionals such that
their corresponding sequences of monic orthogonal polynomials {Pn} and {Rn} are related by a
differential expression

R′
n+1(x)

n + 1
+ bn

R′
n
(x)

n
= Pn(x) + anPn−1(x),

where bn 6= 0 for every n ∈ N.
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1. Introduction. Consider a linear functional U in the linear space P of polyno-
mials with real coefficients. Pn denotes the linear subspace of polynomials of degree
at most n.

We introduce the sequence {un} of moments associated with the linear functional
U , where un = 〈U , xn〉, n ∈ N. The linear functional U is said to be quasi–definite [5]
if the principal submatrices of the Hankel matrix H = (ui+j)

∞
i,j=0 are nonsingular. In

such a situation there exists a sequence {Rn} of monic polynomials such that
(i) degRn = n,
(ii) 〈U , RnRm〉 = knδn,m, n,m ∈ N,

with kn 6= 0. {Rn} is said to be the sequence of monic polynomials orthogonal
(SMOP) with respect to the linear functional U . If the principal submatrices of H
are positive definite, then the linear functional U is said to be positive definite. In
such a case, there exists a positive Borel measure µ supported in the real line such
that 〈U , p〉 =

∫

R
pdµ, p ∈ P.

It is very well known (see [5]) that {Rn} is a SMOP with respect to a quasi–
definite linear functional U if and only if there exist sequences of real numbers {βn}
and {γn} with γn 6= 0 for every n ∈ N such that

xRn(x) = Rn+1(x) + βnRn(x) + γnRn−1(x).(1.1)

This is the so–called three–term recurrence relation that plays a key role in the analysis
of sequences of orthogonal polynomials.

In the last years an increasing attention was paid to inner products like

〈p, q〉 =

∫

R

pq dµ0 + λ

∫

R

p′q′ dµ1,(1.2)
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where µ0, µ1 are positive Borel measures supported in the real line, λ ∈ R+, and
p, q ∈ P.

In such conditions, we can define a sequence of monic polynomials {Qn(x;λ)}
orthogonal with respect to (1.2) such that

(i) degQn(x;λ) = n,

(ii) 〈Qn(x;λ), Qm(x;λ)〉 = knδn,m and kn 6= 0.

In [6] the concept of coherent pairs of measures is introduced as follows.

Taking into account that the coefficients of Qn(x;λ) are rational functions of λ
with numerator of degree less than or equal than the degree of the denominator, there
exists a monic polynomial Wn+1 of degree n+ 1 such that

Wn+1(x) = lim
λ→∞

Qn+1(x;λ).

It is straightforward to prove from (1.2) that

∫

R

W ′
n+1(x)q

′(x)dµ1 = 0

for every q ∈ Pn. This means that W ′
n+1(x) = (n + 1)Pn(x), where {Pn} denotes

the sequence of monic polynomials orthogonal with respect to µ1, i.e.
∫

R
PnPmdµ1 =

δn,mkn with kn 6= 0. Furthermore

∫

R

Wn+1(x)dµ0 = 0, n ≥ 0.(1.3)

On the other hand, from the expansion

Pn(x) =

n+1
∑

k=1

bn,k
R′

k(x)

k
, n ≥ 0,(1.4)

where {Rn} is the SMOP with respect to µ0, we get

W ′
n+1(x)

n+ 1
=

n+1
∑

k=1

bn,k
R′

k(x)

k
, n ≥ 0,

i.e.,

Wn+1(x)

n+ 1
=

n+1
∑

k=1

bn,k
Rk(x)

k
, n ≥ 0,(1.5)

taking into account the constant of integration vanishes according to (1.3).

If in (1.4) bn,k = 0 for 1 ≤ k ≤ n−1 and bn = bn,n 6= 0, then the pair of measures
(µ0, µ1) is said to be coherent [6].

On the other hand, from the Fourier expansion of the polynomial Wn+1 in terms
of the polynomial sequence Qn(x;λ) we get

Wn+1(x) = Qn+1(x;λ) +

n
∑

j=0

βn+1,j(λ)Qj(x;λ), n ≥ 0.



LINEAR FUNCTIONALS AND SOBOLEV INNER PRODUCTS 239

Assuming that (µ0, µ1) is a coherent pair of measures we get for 0 ≤ j ≤ n− 1

βn+1,j(λ) =
〈Wn+1(x), Qj(x;λ)〉

〈Qj(x;λ), Qj(x;λ)〉

=

∫

R
Wn+1(x)Qj(x;λ)dµ0 + λ

∫

R
W ′

n+1(x)Q
′
j(x;λ)dµ1,

〈Qj(x;λ), Qj(x;λ)〉

= 0

taking into account (1.5). Thus Wn+1(x) = Qn+1(x;λ)+ cn(λ)Qn(x;λ), and together
with (1.5) we get

Qn+1(x;λ) + cn(λ)Qn(x;λ) = Rn+1(x) +
n+ 1

n
bnRn(x), n ≥ 1,(1.6)

where cn(λ) 6= 0.
The relation (1.6) has been used as a basic tool for analysis of asymptotic prop-

erties of the polynomials {Qn(x;λ)} (see for instance [8, 12, 13, 15]).
In [14] the description of all coherent pairs of measures is done. As a conclusion,

if (µ0, µ1) is a pair of coherent measures, i.e., the corresponding sequences {Rn} and
{Pn} of monic orthogonal polynomials are related by

Pn(x) =
R′

n+1(x)

n+ 1
+ bn

R′
n(x)

n
, n ≥ 1,

then (1.6) holds. That the converse result is not true in general was proved in [7].
Indeed, if (1.6) holds, then

∫

R

(R′
n+1(x)

n+ 1
+ bn

R′
n(x)

n

)

p′(x)dµ1 = 0, n ≥ 1,(1.7)

for every p ∈ Pn−1. This means that

R′
n+1(x)

n+ 1
+ bn

R′
n(x)

n
= Pn(x) + anPn−1(x), n ≥ 1,(1.8)

with bn 6= 0. Notice that we recover the coherent case if an = 0 for every n ∈ N.
Conversely, if (1.8) holds, then we have (1.7) for p ∈ Pn−1. But, on the other

hand, it is straightforward to prove

∫

R

(Rn+1(x)

n+ 1
+ bn

Rn(x)

n

)

p(x)dµ0 = 0, n ≥ 1.

Then, Rn+1(x)
n+1 + bn

Rn(x)
n is a monic polynomial orthogonal to Pn−1 with respect to

the Sobolev inner product. As a consequence, (1.6) follows.
Our work is focused in the analysis of the pair of linear functionals (V ,U) such

that the corresponding sequences of monic orthogonal polynomials {Rn} and {Pn},
respectively, are related by (1.8).

If we write Tn(x) =
R′

n+1(x)

n+1 , then relation (1.8) becomes

Tn(x) + bnTn−1(x) = Pn(x) + anPn−1(x), n ≥ 0.(1.9)

Notice that if V is a classical linear functional (Hermite, Laguerre, Jacobi and Bessel),
then {Tn} is again a sequence of classical orthogonal polynomials. This problem has
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been solved in [1] in the context of inverse problems for orthogonal polynomials. In
[3] and [4] some particular examples of (1.6) when V is a polynomial perturbation of
degree 1 of the Laguerre or Jacobi linear functional are studied. These remarkable
examples prove that (1.6) holds despite the fact that (µ0, µ1) is not a coherent pair.
Some partial extensions of the above questions have been considered in [9], [10] as
well as [11].

Applying the linear functional U to equation (1.9), we can compute 〈U , Tn〉 in
terms of 〈U , Tn−1〉,

〈U , Tn〉 = −bn〈U , Tn−1〉, n ≥ 2.

On the other hand, if we assume that the linear functional U is normalized by 〈U , 1〉 =
1, then we easily get 〈U , T1〉 = a1 − b1. For technical reasons, we will assume a1 6= b1.

The structure of the paper is as follows. In Section 3 we characterize the pairs of
linear functionals (V ,U) such that (1.8) holds. We prove that, under this assumption,
one of them must be a semiclassical linear functional of class at most 1. In Section 4
we analyze the companion of V if we assume that V is semiclassical of class at most
1. We describe all of their companions taking into account that V is either classical
or semiclassical of class 1. In particular, we obtain coherent pairs which appear when
an = 0 for any n ∈ N. In Section 5 we study the companion of U if we assume U
semiclassical of class at most 1. We describe all their companions when U is either
classical or semiclassical of class 1. We obtain coherent pairs when an = 0 for every
n ∈ N.

As a conclusion, we deduce all the pairs of linear functionals such that (1.8) holds.
The study of the sequences {Qn(x;λ)}, when they exist, will be the main aim of a
future work.

2. Background. In the linear space P′ of linear functionals we can introduce
some algebraic operations as follows [9].

Definition 2.1. Given U ∈ P′ and p ∈ P, the linear functional pU is defined by

〈pU , q〉 = 〈U , pq〉, q ∈ P.

This linear functional is said to be the left multiplication of a linear functional by a
polynomial.

Notice that if p(x) =
m

∑

k=0

akx
k, then the sequence of moments for the functional

pU is given by

ũn = 〈pU , xn〉 =

m
∑

k=0

akuk+n.

Definition 2.2. Given U ∈ P′ and p ∈ P, the linear functional p−1U is defined
by

〈p−1U , q〉 = 〈U ,
q(x) − L(x; q)

p(x)
〉, q ∈ P,

where L(x; q) denotes the interpolatory polynomial of q in the zeros of p taking into
account the multiplicity.
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For instance, if p(x) = x− a, then

〈(x− a)−1U , q〉 = 〈U ,
q(x) − q(a)

x− a
〉, q ∈ P.

If p(x) = (x− a)2, then

〈(x − a)−2U , q〉 = 〈U ,
q(x) − q(a) − q′(a)(x − a)

(x− a)2
〉, q ∈ P.

Definition 2.3. Given a linear functional U we can introduce a new linear
functional Ũ such that

〈Ũ , p(x)〉 = 〈U , p(ax+ b)〉, p ∈ P.

This means that the moments of Ũ are ũn = 〈U , (ax+ b)n〉, n ∈ N.

Notice that if U is a quasi–definite linear functional and denote by {Rn} the corre-
sponding sequence of monic orthogonal polynomials, then Ũ is a quasi–definite linear
functional and the corresponding sequence {R̃n} of monic orthogonal polynomials is
given by R̃n(x) = anRn(x−b

a ). Indeed

〈Ũ , R̃n(x)R̃m(x)〉 = 〈U , R̃n(ax + b)R̃m(ax+ b)〉

= 〈U , anRn(x)amRm(x)〉

= an+m〈U , Rn(x)Rm(x)〉

= an+mknδn,m.

Definition 2.4. Given a ∈ C, the Delta Dirac linear functional at a is defined as

〈δ(x− a), p(x)〉 = p(a)

for every p ∈ P.

Notice that the moments of this linear functional are un = an. As a straightfor-
ward consequence, the linear functional δ(x− a) is not quasi–definite.

Definition 2.5. Given U ∈ P′, the derivative of this linear functional is a new
linear functional DU such that

〈DU , p(x)〉 = −〈U , p′(x)〉, p ∈ P.

Notice that the moments of DU are ũn = −nun−1, n ∈ N. As in the previous
case, DU is not a quasi–definite linear functional taking into account ũ0 = 0.

Definition 2.6. Let {Rn} be a sequence of monic polynomials with degRn = n
for any n ∈ N. A sequence of linear functionals {αn} is said to be the dual basis of
{Rn} if 〈αn, Rm〉 = δn,m, for n, m ∈ N.

In particular, if {Rn} is a sequence of monic polynomials orthogonal with respect
to a quasi–definite linear functional V , then
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Proposition 2.7. The linear functional αn can be explicitly expressed by

αn =
Rn V

〈V , R2
n〉
.(2.1)

That is, 〈αn, p〉 = 〈V , R2
n〉

−1 〈V , Rn p〉 for any polynomial p ∈ P.

Lemma 2.8. Let {Rn} be a sequence of monic polynomials orthogonal with respect
to a linear functional V, and denote by Tn the monic derivative of Rn+1, (n+1)Tn =
R′

n+1 for n ≥ 0. Then

Dα′
n = −(n+ 1)αn+1, n ≥ 0,

where {α′
n} is the dual basis of the sequence of polynomials {Tn}.

Definition 2.9. A linear functional U is said to be classical if there exist two
polynomials φ and ψ, with deg φ ≤ 2 and degψ = 1, such that the following differential
relation holds

D(φU) = ψU .(2.2)

This relation is called a distributional Pearson equation.

Taking into account the constraint about the degree of the polynomial φ, if ψ(x) =
ax+ b then we can consider three situations.

1. degφ = 0. In such a case (2.2) becomes DU = ψU and thus the sequence of
the moments {un} satisfies aun+1 + bun + nun−1 = 0, n ≥ 0 (Hermite case).

2. deg φ = 1. In such a case we can use a change of variables such that φ(x) =
x. Thus (2.2) becomes D(xU) = ψU and the sequence of moments {un} satisfies
aun+1 + (b+ n)un = 0, n ≥ 0 (Laguerre case).

3. deg φ = 2. In such a case three situations appear.
3.1. φ has a double zero. In such a case we can use a change of variables such

that φ(x) = x2. Thus (2.2) becomes D(x2U) = ψU , and the sequence of moments
{un} satisfies (n+ a)un+1 + bun = 0, n ≥ 0 (Bessel case).

3.2. φ has two simple and real zeros. In such a case we can consider a change of
variable such that φ(x) = x2 − 1. Thus (2.2) becomes D((x2 − 1)U) = ψU , and the
sequence of moments {un} satisfies (n + a)un+1 + bun − nun−1 = 0, n ≥ 0 (Jacobi
case).

3.3. φ has two conjugate complex zeros. In such a case we can consider a change
of variable such that φ(x) = x2 + 1. Thus (2.2) becomes D((x2 + 1)U) = ψU , and the
sequence of moments {un} satisfies (n+a)un+1+bun+nun−1 = 0, n ≥ 0 (Romanovski
case). The Romanovski case will not be considered taking into account a complex
linear change of variables reduces it to the Jacobi case.

On the other hand, the sequence {un} is well–defined in cases 1 and 2 if a 6= 0
and in case 3 if −a /∈ N. This is the so–called admissibility condition in [9].

In order to the above linear functionals be quasi–definite we get
1. U = H, ψ(x) = −2x.

2. U = L(α), ψ(x) = −x+ α+ 1, −α /∈ N.
3.1. U = B(α), ψ(x) = (α+ 2)x+ 2, −α /∈ N.

3.2. U = J (α,β), ψ(x) = (α+ β + 2)x− β + α,
−α /∈ N, −β /∈ N, −(α+ β) /∈ N\{1}.
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Definition 2.10. A linear functional is said to be positive definite when the
principal submatrices of the Hankel matrix associated with its moments are positive
definite.

In such a case, parameters γn > 0 in the three–term recurrence relation (1.1),
and we get an integral representation for such a linear functional

〈U , p(x)〉 =

∫

R

p(x)dµ(x),

with µ a positive Borel measure supported in R. In particular, in the classical cases:

1. 〈H, p(x)〉 =

∫

R

p(x)e−x2

dx.

2. If α > −1, then 〈L(α), p(x)〉 =

∫ +∞

0

p(x)xαe−xdx.

3.2. If α > −1, β > −1, then 〈J (α,β), p(x)〉 =

∫ 1

−1

p(x)(1 − x)α(1 + x)βdx.

Notice that the Bessel linear functional is an example of quasi–definite but not positive
definite linear functional.

The sequences of monic polynomials orthogonal with respect to a quasi–definite
classical linear functional can be characterized in several ways.

Theorem 2.11 ([5, 9]). The following statements are equivalent,
(i) {Rn} is a SMOP associated with a classical linear functional.

(ii) {
R′

n+1

n+1 } is a SMOP.
(iii) There exists a polynomial φ of degree at most two such that

φ(x)R′
n+1(x) = rnRn+2(x) + snRn+1(x) + tnRn(x),

with tn 6= 0.

As a natural extension, if in (2.2) we assume the only constraint degψ ≥ 1 and φ
a polynomial, then the linear functional U is said to be semiclassical. A deep study
of semiclassical linear functionals has been done in [9].

Notice that for a semiclassical linear functional there exists an infinite family of
pairs of polynomials (φ, ψ) such that (2.2) holds.

Definition 2.12. A semiclassical linear functional U is said of class s when

s = min
U

{max(deg φ− 2, degψ − 1)},

where U denotes the set of pairs of polynomials (φ, ψ) such that (2.2) holds.

In particular, classical orthogonal polynomials are semiclassical with class s = 0.

Theorem 2.13 ([9]). The following statements are equivalent,
(i) {Rn} is a SMOP associated with a semiclassical linear functional of class s.

(ii) There exists a polynomial φ such that {
R′

n+1

n+1 } is a quasi–orthogonal family of
monic polynomials of order s with respect to the linear functional φU , i.e.,

〈φU ,
R′

n+1

n+ 1
p〉 = 0

for every p ∈ Pn−s−1.
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(iii) There exists a polynomial φ such that

φ(x)R′
n+1(x) =

n+t
∑

j=n−s

an,jRj(x)

with an,n−s 6= 0. Here t = deg φ.

A classification of semiclassical linear functionals of class s = 1 is done in [2]. It
will be very useful for our work.

3. Classification of the pairs (U , V). In this section we asume V , U be two
quasi–definite linear functionals such that the corresponding sequences of monic or-
thogonal polynomials, which we will denote by {Rn} and {Pn} respectively, satisfy
the relation

R′
n+1(x)

n+ 1
+ bn

R′
n(x)

n
= Pn(x) + anPn−1(x),(3.1)

with bn 6= 0 for any n ≥ 1. As in the previous section, we will denote by Tn the monic
derivatives of the polynomials {Rn}.

From now on we assume that a1 6= b1 and we study different relations between
the linear functionals U and V .

Lemma 3.1. Let n ∈ N. Then there exists a monic polynomial rn of degree n
such that 〈rn U , Tm〉 = 0 for any m ≥ n+ 1.

Proof. Let rn be a monic polynomial of degree n. Then, from relation (1.9) we
get 〈rnU , Tm〉 = −bm〈rnU , Tm−1〉 for every m ≥ n+ 2. If we write

rn = Pn +

n−1
∑

k=0

An,kPk,

and using again (1.9), then we can consider the expansion of the polynomial Tn+1

with respect to {Pn},

Tn+1 = Pn+1 + (an+1 − bn+1)Pn + . . .+ (−1)nbn+1bn · . . . · b2(a1 − b1)P0.

Thus we compute the action of the linear functional rnU over the polynomial Tn+1,

〈rnU , Tn+1〉 = (an+1 − bn+1)〈U , P
2
n〉 − bn−1(an − bn)An,n−1〈U , P

2
n−1〉

+ . . .+ (−1)nbn+1bn · . . . · b2(a1 − b1)An,0〈U , P
2
0 〉,

Finally, because of a1 6= b1, we can choose real numbers An,n−1, . . . , An,0 such that
〈rnU , Tn+1〉 = 0, and then the result follows.

We observe that, a priori, we will eventually have some free parameters. In
particular, we can choose An,n−1 = . . . = An,1 = 0,

An,0 =
(−1)n+1(an+1 − bn+1)〈U , P

2
n〉

bn+1bn · . . . · b2(a1 − b1)
,

and then we have rn = Pn +An,0.
As a consequence of the previous lemma, we prove the next result.
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Lemma 3.2. For any n ∈ N, the linear functionals U and V are related by

D[rnU ] = −ϕn+1V ,(3.2)

with rn a monic polynomial of degree n and ϕn+1 a polynomial of degree at most n+1.

Proof. Let rn be the monic polynomial of degree n introduced in Lemma 3.1. We
consider the expansion of the linear functional rnU in terms of the dual basis for the
polynomials {Tn},

rnU =
∑

k≥0

λn,kα
′
k,

where λn,k = 〈rnU , Tk〉. From Lemma 3.1 these coefficients vanish for k ≥ n+ 1, i.e.

rnU =

n
∑

k=0

λn,kα
′
k.

Taking derivatives in the previous relation, Lemma 2.8 yields

D[rnU ] = −

n
∑

k=0

λn,k(k + 1)αk+1.

Finally, using the expression (2.1) for the linear functionals αk+1 we get the announced
statement (3.2), with

ϕn+1 =
n

∑

k=0

λn,k(k + 1)

〈U , R2
k+1〉

Rk+1,

which is a polynomial of degree at most n+ 1.
For a sake of simplicity we will introduce the notation 〈U , R2

n〉 = ‖Rn‖
2.

The previous results will be particularly useful for n = 1, 2 as well as the explicit
expressions for the polynomials r1, r2, ϕ2, and ϕ3. More precisely, for n = 1 we have
r1 = P1 +A with

A =
(a2 − b2)‖P1‖

2

b2(a1 − b1)
,

and,

ϕ2 =
2 a2 ‖P1‖

2

b2 ‖R2‖2
R2 +

(a2 − b2) ‖P1‖
2

b2 (a1 − b1) ‖R1‖2
R1.(3.3)

For n = 2, r2 = P2 +BP1 + CP0 with B and C verifying

(a3 − b3)‖P2‖
2 − b3(a2 − b2)‖P1‖

2B + b2b3(a1 − b1)C = 0,

and,

ϕ3 =
3 a3 ‖P2‖

2

b3 ‖R3‖2
R3 +

2(B‖P1‖
2 + C(a1 − b1))

‖R2‖2
R2 +

C

‖R1‖2
R1.

As a consequence of these lemmas, we get
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Corollary 3.3. In the previous conditions, there exist polynomials ψ, β, and
α, with degψ = 2, deg β ≤ 4, and degα ≤ 3 such that

ψ(x)U = β(x)V ,(3.4)

α(x)U = β(x)DU ,(3.5)

ψ(x)DU = α(x)V ,(3.6)

where

ψ = r1r
′
2 − r2,(3.7)

β = r2ϕ2 − r1ϕ3,

α = ϕ3 − r′2ϕ2.

Proof. From Lemma 3.2 with n = 1 and n = 2 we get

U + r1DU = −ϕ2V ,(3.8)

r′2U + r2DU = −ϕ3V .(3.9)

Then, by elimination of DU we obtain (3.4), by elimination of V we get (3.5), and,
finally, by elimination of U we deduce (3.6).

4. V is semiclassical of class at most 1. Since ψ is a polynomial of degree
2, we will give a classification for the linear functionals U , V considering the different
cases for the zeros of ψ. First, we deal with the case when ψ has a double zero ξ.

4.1. Characterization of the pairs (U ,V). In this section we study the case
when the polynomial ψ in Corollary 3.3 has a double zero. In fact, we prove that if
(1.8) holds and ψ has a double zero, then the linear functional V must be semiclassical
of class at most 1. Furthermore, we will characterize the linear functional U as a
rational transformation of V .

Theorem 4.1. In the previous conditions, if the polynomial ψ in (3.4) or (3.6)
has a double zero ξ ∈ R, then V is a semiclassical linear functional of class at most
1, i.e. there exists β̃ ∈ P of degree at most 3, and ϕ2 of degree al most 2, such that

D[β̃V ] = −ϕ2V .(4.1)

Moreover,

r1U = β̃V .(4.2)

Proof. If we take derivatives in (3.7) then ψ′ = 2r1. Since ξ is a double zero of
ψ, we deduce that ξ is also a zero of r1, that is, r1(x) = x− ξ.

Then, from (3.7) we get r2(ξ) = 0. Thus we can write r2 = r1s1, with s1 a monic
polynomial of degree 1.

On the other hand, since β(ξ) = r2(ξ)ϕ2(ξ) − r1(ξ)ϕ3(ξ) = 0, then β = r1β̃,
where β̃ = s1ϕ2 − ϕ3 is a polynomial of degree at most 3.

In such a situation, (3.8) and (3.9) become

s1U + r2DU = −s1ϕ2V ,

(r1 + s1)U + r2DU = −ϕ3V ,
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from where we obtain in a direct way (4.2).
In order to prove (4.1), we take derivatives in (4.2) and use (3.2) with n = 1,

D[β̃V ] = D[r1U ] = −ϕ2V .

Finally, since deg β̃ ≤ 3 and degϕ2 ≤ 2, then V is a semiclassical linear functional of
class at most 1.

The previous theorem allows us to give a complete classification of the pairs of
linear functionals in this situation. To do that, we will discuss the cases where the
relation (4.1) can be reduced to a classical condition.

From (4.1), we get

β̃DV = −(ϕ2 + β̃′)V .(4.3)

Then, we must study the cases where the polynomials β̃ and ϕ2 + β̃′ have at least one
common zero as well as we assume that (4.3) can be simplified without the addition
of Dirac masses in the resulting relations.

First, we will see how a linear change of variable affects a relation of Pearson–type
for a linear functional.

Lemma 4.2. Let U be a linear functional satisfying the Pearson equation

D[φ(x)U ] = ψ(x)U .

Consider the linear functional Û defined from U by a linear change of variable as
follows

〈Û , p(x)〉 = 〈U , p
(x− b

a

)

〉, p ∈ P.

Then, the linear functional Û satisfies

D[
1

at
φ(ax + b)Û ] =

1

at−1
ψ(ax+ b)Û ,

where t = deg φ.

Next, we introduce some notation. We recall the expressions for the polynomials
ϕ2 and β̃,

ϕ2 =
2 a2 ‖P1‖

2

b2 ‖R2‖2
R2 +

(a2 − b2) ‖P1‖
2

b2 (a1 − b1) ‖R1‖2
R1,

β̃ = s1ϕ2 − ϕ3,

where s1(x) = x − c is a monic polynomial of degree 1. If we make a linear change
of variable y ≡ a x+ b, for convenient values of a and b in each particular case, then
we will denote by ϕ̂2(x) = A−1a1−tϕ2(a x + b), and β̂(x) = A−1a−tβ̃(a x + b)/a the
corresponding transformed functions, where t = deg β̃ and A is the leading coefficient
of β̃. We write

ϕ̂2(x) = η2x
2 + η1x+ η0,

with |η2| + |η1| 6= 0. Taking into account Lemma 4.2, up to this change of variable,

relation (4.1) becomes D[β̂V ] = −ϕ̂2V .
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Keeping in mind this notation, we will analyze the possible classical cases in terms
of the zeros of the polynomial β̃.

Jacobi and Bessel cases: deg β̃ = 3.
With the help of Lemma 4.2 all the possible cases for β̃ can be reduced, by a

suitable linear change of variables, to the following three canonical situations:

β̃(x) = x3,

β̃(x) = x2(x− 1),

β̃(x) = x(x− 1)(x− λ).

Then, we may assume that β̃ has this expression without loss of generality.

Theorem 4.3. If β̃(x) = x3, thus V is a classical linear functional if and only if
η0 = 0 and (η2 + 1)βV

0 + η1 = 0, where βV
0 = −R1(0). Then, V is the classical Bessel

linear functional B(α) satisfying

D[x2V ] = −[(η2 + 1)x+ η1]V ,

under the admissibility conditions η1 = −2 and η2 + 3 /∈ N. Moreover, the linear
functional U is given by

U = (x− ξ0)
−1 B(α+3) +Mδ(x− ξ0).

Proof. [ϕ̂2 + β̂′](0) = 0 if and only if ϕ̂2(0) = η0 = 0. This gives us the first

condition. Then ϕ̂2 + β̂′ = xφ1(x), where

φ1(x) = (η2 + 3)x+ η1.

Thus, we can simplify in (4.3) and obtain x2DV = −φ1(x)V + Mδ(x). In such
conditions, the linear functional V is classical if and only ifM = 0. Previous expression
applied to 1 yields M = 0 if and only if

〈x2DV , 1〉 + 〈φ1(x)V , 1〉 = 0,

that is, 〈V , φ1(x) −2x〉 = 0. Finally, we get the second condition, (η2 +1)βV
0 +η1 = 0.

The last statement is a direct consequence of (4.2).

Theorem 4.4. If β̃(x) = x2(x− 1) then, V is a classical linear functional if and
only if one of the following situations appears.

i) η0 = 0 and (η2 + 1)βV
0 + η1 − 1 = 0. In this case, V is the translate of the

classical Jacobi linear functional to the interval [0, 1], satisfying

D[x(x− 1)V ] = −[(η2 + 1)x+ η1 − 1]V ,

under the admissibility conditions −η1 − η2 + 1 /∈ N, η1 /∈ N, and −η2 + 1 /∈ N.
Moreover, if the linear functional V = J (α,β) is the Jacobi linear functional associated
with the measure dµ0 = (1 − x)α(1 + x)βdx, then the linear functional U satisfies

U = (x− ξ)−1 J (α+1,β+2) +Mδ(x− ξ),

with |ξ| ≥ 1.
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ii) η2 + η1 + η0 + 1 = 0 and (η2 + 1)βV
0 − η0 = 0. In this case, V = B(α) is the

classical Bessel linear functional, satisfying

D[x2V ] = −[(η2 + 1)x− η0]V ,

under the admissibility conditions η0 = 2 and η2 − 3 /∈ N. Thus, the linear functional
U is

U = (x− ξ)−1 (x− 1)B(α+2) +Mδ(x− ξ).

Proof. In a similar way than in the previous theorem, we get condition i) from

the case [ϕ̂2 + β̂′](0) = 0 and condition ii) from [ϕ̂2 + β̂′](1) = 0.

Theorem 4.5. If β̂(x) = x(x − 1)(x− λ), then V is a classical linear functional
if and only if one of the following situations holds.

i) η0 + λ = 0 and (η2 + 1)βV
0 + η1 − λ − 1 = 0. Then, V is the classical Jacobi

linear functional translated to the interval [λ, 1] or on [1, λ], satisfying

D[(x − 1)(x− λ)V ] = −[(η2 + 1)x+ η1 − λ− 1]V ,

under the admissibility conditions (η1−λ(1−η2))/(1−λ) /∈ N, (1−η1−η2)/(1−λ) /∈ N,
and 1 − η2 /∈ N.

ii) η2 + η1 + η0 −λ+1 = 0 and (η2 +1)βV
0 − η0 = 0. Then, V is the Jacobi linear

functional supported either on the interval [0, λ] or [λ, 0] and satisfying

D[x(x− λ)V ] = −[(η2 + 1)x− η0]V ,

under the admissibility conditions η0/λ− η2 /∈ N, 1 − η0/λ /∈ N, and 1 − η2 /∈ N.
iii) (η2 + 1)λ+ (η1 − 1)λ+ η0 = 0 and (η2 + 1)βV

0 − η0/λ = 0. In such a case, V
is the Jacobi linear functional on the interval [0, 1] satisfying

D[x(x − 1)V ] = [−(η2 + 1)x+
η0
λ

]V ,

under the admissibility conditions η0/λ− η2 /∈ N, 1 − η0/λ /∈ N, and 1 − η2 /∈ N.
Moreover, in any of the three previous situations, if V = J (α,β) is the Jacobi

linear functional associated with the measure dµ0 = (1 − x)α(1 + x)βdx, then the
linear functional U is given by

U = (x− ξ1)
−1 (x− ξ0)J

(α+1,β+1) +Mδ(x− ξ1),

with either |ξ0|, |ξ1| ≥ 1, or ξ0 = ξ1 and |ξ0| ≥ 1.

Proof. In a similar way than in the previous theorem, we get condition i) from

the case [ϕ̂2 + β̂′](0) = 0, condition ii) from [ϕ̂2 + β̂′](1) = 0, and condition iii) from

[ϕ̂2 + β̂′](λ) = 0.
Notice that in every case with deg β̃ = 3, the admissibility conditions yield η2 6= 0.

This means that the degree of the polynomial ϕ2 in relation (4.1) must be 2.
Proceeding in the same way as above, we analyze the cases when deg β̃ = 2 and

deg β̃ = 1.

Laguerre cases: deg β̃ = 2.
If β̃ is of degree 2 then, by a linear change of variables we can make
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β̃(x) = x2,

β̃(x) = x(x− 1).

Hence, we may assume that β̃ has this expression without loss of generality.

Theorem 4.6. If β̃(x) = x2, then (4.1) reduces to

D[xV ] = −[η2x+ η1 + 1]V

if and only if η0 = 0 and η2 β
V
0 +η1 = 0. As a consequence, V is the classical Laguerre

functional under the admissibility conditions η2 = 1 and η1 +2 /∈ N. Moreover, if V =
L(α) is the Laguerre linear functional associated with the measure dµ0 = xαe−xdx,
then the linear functional U satisfies

U = (x− ξ0)
−1 L(α+2) +Mδ(x− ξ0),

with ξ0 ≤ 0.

Theorem 4.7. If β̃(x) = x(x − 1), thus V is a classical linear functional if and
only if one of the following situations holds.

i) η0 = 1 and η2 β
V
0 + η1 + 1 = 0. In this case, V is the translated of the classical

Laguerre functional satisfying the Pearson equation

D[(x− 1)V ] = −(η2x+ η1 + 1)V ,

under the admissibility conditions η2 = 1 and η1 + 3 /∈ N.
ii) η2 + η1 + η0 + 1 = 0 and η2 β

V
0 − η0 = 0. Then, V is the classical Laguerre

functional verifying the Pearson equation

D[xV ] = −(η2x− η0)V ,

under the admissibility conditions η2 = 1 and 1 − η0 /∈ N.
Moreover, if V = L(α) is the Laguerre linear functional associated with the mea-

sure dµ0 = xαe−xdx, then the linear functional U satisfies

U = (x− ξ1)
−1 (x− ξ0)L

(α+1) +Mδ(x− ξ1),

with either ξ0, ξ1 ≤ 0 or ξ0 = ξ1 > 0.

Hermite case: deg β̃ = 1.

Theorem 4.8. If deg β̃ = 1 then, with an appropriate linear change of variable,
we have β̂(x) = x. In that situation, V is a classical linear functional if and only if
η0 + 1 = 0 and η2 β

V
0 + η1 = 0. Thus, V is the translated of the classical Hermite

linear functional verifying the Pearson equation

D[V ] = −(η2x+ η1)V ,

under the admissibility conditions η2 = 2 and η1 = 1. Moreover, if V = H is the
Hermite linear functional associated with the measure dµ0 = e−x2

dx, then the linear
functional U satisfies

U = H +Mδ(x).
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Notice that in this case, both linear functionals U and V are symmetric, and then
for n = 1 relation (1.8) becomes,

P1 + a1 =
R′

2

2
+ b1.

This relation means a1 = b1, a contradiction with our hypothesis. Then, the case
stated in Theorem 4.8 is not possible.

4.2. Classification. Taking into account the results obtained in Section 4.1 we
give a description of the linear functional U according to the different possibilities for
V to be a classical or a semiclassical linear functional of class 1.

From Theorem 4.1, we have the following pairs of linear functionals when the
polynomial ψ in Corollary 3.3 has a double zero.

1. If deg β̃ ≤ 2 and degϕ2 = 1, then the linear functional V associated with the
measure dµ0 is a classical one, and we have the following possibilities for the measure
dµ1 associated with U ,

(J1,1)

dµ0 = (1 − x)α(1 + x)βdx,

dµ1 =
1

x− ξ
(1 − x)α+1(1 + x)β+1dx+Mδ(x− ξ),

with α, β > −1 and |ξ| ≥ 1.

(L1,1) dµ0 = xαe−xdx, dµ1 =
1

x− ξ
xα+1e−xdx+Mδ(x− ξ),

with α > −1 and ξ ≤ 0.
These cases correspond to the positive–definite coherent pairs described in [14].

They satisfy relation (1.8) with an = 0 for any n ∈ N.
If V = B(α) is the Bessel linear functional, then we have

(B1,1) U = (x− ξ)−1 B(α+2) +Mδ(x− ξ).

In the same way we have discussed before, we can see that in this situation the
Hermite case is not possible with a1 6= b1.

2. When deg β̃ = 3 and degϕ2 ≤ 2, under the conditions described in Theorems
4.3–4.7, V is a classical linear functional. If we assume V = J (α,β) is associated with
the Jacobi measure, then we have the pairs

(J1,2)

dµ0 = (1 − x)α(1 + x)βdx,

dµ1 =
x− ξ0
x− ξ1

(1 − x)α+1(1 + x)β+1dx+Mδ(x− ξ1),

with α, β > −1 and |ξ0|, |ξ1| ≥ 1, as well as

(J1,3) dµ0 = (1 − x)α(1 + x)βdx, dµ1 = (1 − x)α+1(1 + x)β+1dx+Mδ(x− ξ),

with α, β > −1 and |ξ| < 1.
If we assume V = L(α) is associated with the Laguerre measure, then

(L1,2) dµ0 = xαe−xdx, dµ1 =
x− ξ0
x− ξ1

xα+1e−xdx+Mδ(x− ξ1),

with α > −1 and ξ0, ξ1 ≤ 0, and

(L1,3) dµ0 = xαe−xdx, dµ1 = xα+1e−xdx+Mδ(x− ξ),

with α > −1 and ξ > 0.
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In the above cases, the linear functional V satisfies the conditions described in
[1]. For example, in (J1,2) we have (x − ξ1)U = (x − ξ0)J

(α+1,β+1). Then, the
results shown in [1] give us a 2 − 2 relation between the polynomials Pn and the

Jacobi polynomials P
(α+1,β+1)
n . Taking into account that Rn = P

(α,β)
n as well as the

differentiation formula for the Jacobi polynomials, R′
n = nP

(α+1,β+1)
n−1 , then it is easy

to prove that the pair (J1,2) satisfies a relation of the type (1.8). In a similar way,
we can check this relation for (J1,3),(L1,2), and (L1,3). Furthermore, cases (J1,2) and
(L1,2) appear in the examples given by Sri Ranga et al. in [3].

Finally, if V = B(α) is the Bessel linear functional, then we have

(B1,2) U = (x− ξ1)
−1 (x− ξ0)B

(α+2) +Mδ(x− ξ1).

We conclude this section with the cases when the linear functional V is semiclas-
sical of class 1, and we will describe the different pairs according to the classification
given by S. Belmehdi in [2].

3. If β̃(x) = (x2 − 1)(x − λ), then for the measures µ0 and µ1 associated with V
and U , respectively, we have

(S1,1)

dµ0 = (1 − x)α(1 + x)β |x− λ|γdx,

dµ1 =
1

x− ξ
(1 − x)α+1(1 + x)β+1|x− λ|γ+1dx+Mδ(x− ξ),

with α, β, γ > −1, |α| + |β| + |γ| 6= 0, and |ξ| ≥ 1. The support of these measures is
the interval [−1, 1].

4. If β̃(x) = x2(x − 1), then we have the pair of linear functionals supported on
the interval [0, 1] associated with the measures

(S1,2)
dµ0 = (1 − x)αxβe

−γ
x dx,

dµ1 =
1

x− ξ
(1 − x)α+1xβ+2e

−γ
x dx +Mδ(x− ξ),

with α, β > −1, γ > 0, and ξ /∈ (0, 1).

5. If β̃(x) = x3, then we have the pair

(S1,3) dµ0 = xαe
β
x
− 2

x2 dx, dµ1 =
1

x− ξ
xα+3e

β
x
− 2

x2 dx+Mδ(x− ξ).

This is the analog of Bessel linear functional in the classical case, and the support of
the measures is not on the real line.

6. If β̃(x) = x2 − 1, we have

(S1,4)

dµ0 = (1 − x)α(1 + x)βe−λxdx,

dµ1 =
1

x− ξ
(1 − x)α+1(1 + x)β+1e−λxdx+Mδ(x− ξ),

with α, β > −1, |ξ| ≥ 1, and supported on the interval [−1, 1].

7. When β̃(x) = x2, the measures are supported on the half line [0,+∞),

(S1,5) dµ0 = xαe−x+ β
x dx, dµ1 =

1

x− ξ
xα+2e−x+ β

x dx +Mδ(x− ξ),

with α > −1, β < 0, and ξ ≤ 0.

8. For β̃(x) = x we have

(S1,6) dµ0 = x2µe−x2−λxdx, dµ1 =
1

x− ξ
x2µ+1e−x2−λxdx+Mδ(x− ξ),
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supported on [0,+∞) with µ > −1/2 and ξ ≤ 0.
9. Finally, if β̃(x) = 1, then we have the pair of complex measures

(S1,7)
dµ0 = e

ix3

3
−x2+i(α−1)xdx,

dµ1 =
1

x− ξ0
e

ix3

3
−x2+i(α−1)xdx+Mδ(x− ξ0).

supported on the whole real line R, with ξ0 /∈ R.
In order to check that all these pairs of linear functionals satisfy (1.8), we just

have to take into account that the linear functional V is semiclassical of class 1. The
key property is shown in the next lemma.

Lemma 4.9. Let V be a semiclassical quasi-definite linear functional of class 1,
satisfying D[φV ] = ψV, with deg φ ≤ 3 and degψ ≤ 2, and let {Rn} be the corre-
sponding sequence of monic orthogonal polynomials. Assume that the linear functional
V1 = φV is quasi–definite, and denote by {Sn} the corresponding sequence of monic
orthogonal polynomials. Then, R′

n+1 is quasi-orthogonal of order 1 with respect to V1,
and

R′
n+1

n+ 1
= Sn + µnSn−1,

with µn 6= 0.

Proof. Taking into account that V is semiclassical of class 1, it is well known
[9] that we can represent the polynomial φR′

n+1 as a linear combination of Rk for
n− 1 ≤ k ≤ n+ 3, that is

φR′
n+1 = cn,n+3Rn+3 + cn,n+2Rn+2 + cn,n+1Rn+1 + cn,nRn + cn,n−1Rn−1.

If we write R′
n+1 = (n + 1)Sn +

∑n−1
k=0 dn,kSk, then it is easy to prove that dn,k = 0

for k ≤ n− 2, and then we deduce the result.
In our cases, the linear functional V satisfies D[β̃V ] = −ϕ2V , and the deriva-

tives R′
n+1 constitute a sequence of polynomials quasi–orthogonal with respect to the

linear functional V1 = β̃V . Moreover, in all these cases V1 is again a quasi–definite
semiclassical linear functional of class 1. If we denote by Sn the sequence of monic
polynomials orthogonal with respect to V1, then we have

R′
n+1

n+ 1
= Sn + µnSn−1,

with µn 6= 0. Moreover, we can compute the coefficients µn, taking into account
V1 = β̃V . Indeed

‖Sn−1‖
2 µn = 〈V1,

R′
n+1

n+ 1
Sn−1〉 = −〈D[β̃V ],

Rn+1

n+ 1
Sn−1〉 − 〈β̃V ,

Rn+1

n+ 1
S′

n−1〉

= 〈V ,
Rn+1

n+ 1
[ϕ2Sn−1 − β̃S′

n−1]〉.

Finally, from (3.3) as well as β̃ = (x − c)ϕ2 − ϕ3, we obtain

µn =
[3(n− 1)

n+ 1

a3‖P2‖
2

b3‖R3‖2
−

2(n− 2)

n+ 1

a2‖P1‖
2

b2‖R2‖2

]‖Rn+1‖
2

‖Sn−1‖2
.
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On the other hand, the linear functional V1 is related to U by (x − ξ)U = V1.
Thus (see [9])

Pn = Sn + λnSn−1,

with λn 6= 0. More precisely, this coefficient is

λn =
〈V1, PnSn−1〉

‖Sn−1‖2
=

〈U , (x− ξ)PnSn−1〉

‖Sn−1‖2
=

‖Pn‖
2

‖Sn−1‖2
,

taking into account V1 = (x− ξ)U .
Since (n+ 1)Pn 6= R′

n+1, then λn 6= µn for every n ∈ N. Thus there exist an and
bn such that (1.8) holds. In fact,

an =
(λn − µn)µn−1

λn−1 − µn−1
, bn =

(λn − µn)λn−1

λn−1 − µn−1
.

Finally, next table shows a list of all the possible cases of pairs of linear functionals
satisfying (3.1), when V is a semiclassical linear functional of class at most 1,

(J1,1)

dµ0 = (1 − x)α(1 + x)βdx

dµ1 =
1

x− ξ
(1 − x)α+1(1 + x)β+1dx+Mδ(x− ξ)

α, β > −1
|ξ| ≥ 1

[−1, 1]

(J1,2)

dµ0 = (1 − x)α(1 + x)βdx

dµ1 =
x− ξ0
x− ξ1

(1 − x)α+1(1 + x)β+1dx+Mδ(x− ξ1)

α, β > −1
|ξ0|, |ξ1| ≥ 1

[−1, 1]

(J1,3)

dµ0 = (1 − x)α(1 + x)βdx

dµ1 = (1 − x)α+1(1 + x)β+1dx+Mδ(x− ξ)

α, β > −1
|ξ| < 1

[−1, 1]

(L1,1)

dµ0 = xαe−xdx,

dµ1 =
1

x− ξ
xα+1e−xdx+Mδ(x− ξ)

α > −1
ξ ≤ 0

[0,+∞)

(L1,2)

dµ0 = xαe−xdx,

dµ1 =
x− ξ0
x− ξ1

xα+1e−xdx+Mδ(x− ξ1)

α > −1
ξ0, ξ1 ≤ 0

[0,+∞)

(L1,3)

dµ0 = xαe−xdx,

dµ1 = xα+1e−xdx+Mδ(x− ξ)

α > −1
ξ > 0

[0,+∞)

(S1,1)

dµ0 = (1 − x)α(1 + x)β |x− λ|γdx

dµ1 =
1

x− ξ
(1 − x)α+1(1 + x)β+1|x− λ|γ+1dx

+Mδ(x− ξ)

|ξ| ≥ 1
α, β, γ > −1
|α|+|β|+|γ| 6=0

[−1, 1]

(S1,2)

dµ0 = (1 − x)αxβe
−γ
x dx

dµ1 =
1

x− ξ
(1 − x)α+1xβ+2e

−γ
x dx+Mδ(x− ξ)

α, β > −1
γ > 0
ξ /∈ (0, 1)

[0, 1]
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(S1,3)

dµ0 = xαe
β
x
− 2

x2 dx

dµ1 =
1

x− ξ
xα+3e

β
x
− 2

x2 dx+Mδ(x− ξ)

(S1,4)

dµ0 = (1 − x)α(1 + x)βe−λxdx

dµ1 =
1

x− ξ
(1 − x)α+1(1 + x)β+1e−λxdx

+Mδ(x− ξ)

α, β > −1
|ξ| ≥ 1

[−1, 1]

(S1,5)

dµ0 = xαe−x+ β
x dx

dµ1 =
1

x− ξ
xα+2e−x+ β

x dx+Mδ(x− ξ)

α > −1
β < 0
ξ ≤ 0

[0,+∞)

(S1,6)

dµ0 = x2µe−x2−λxdx

dµ1 =
1

x− ξ
x2µ+1e−x2−λxdx +Mδ(x− ξ)

µ > −1/2
ξ ≤ 0

[0,+∞)

(S1,7)

dµ0 = e
ix3

3
−x2+i(α−1)xdx

dµ1 =
1

x− ξ0
e

ix3

3
−x2+i(α−1)xdx+Mδ(x− ξ0)

ξ0 /∈ R R

5. U is semiclassical of class at most 1.

5.1. Characterization of the pairs (U ,V). In this section we analyze the case
when the polynomial ψ in Corollary 3.3 has two simple zeros. As in Section 4, we
will see that with this assumption, if (1.8) holds, then the linear functional U must
be semiclassical of class at most 1, and moreover, the linear functional V can be
represented as a rational modification of U .

Theorem 5.1. If the polynomial ψ in (3.4) or (3.6) has two simple zeros, ξ1 6= ξ2,
then U is a semiclassical linear functional of class at most 1, that is, there exist
polynomials β̃, ϕ ∈ P, with deg β̃ ≤ 3 and degϕ ≤ 2, such that

D[β̃U ] = ϕU .(5.1)

Moreover, the linear functional V is determined by

β̃V = (x− ξ)U ,

where ξ ∈ {ξ1, ξ2}.

To prove this theorem, we need several previous results.

Lemma 5.2. If ξ is a simple zero of ψ such that β(ξ) = 0, then α(ξ) = 0 and
r1(ξ) 6= 0.

Proof. First, since ξ is a simple zero of ψ, if we derive in (3.7) then we obtain
ψ′(ξ) = r′2(ξ) + 2r1(ξ) − r′2(ξ) = 2r1(ξ) 6= 0, thus r1(ξ) 6= 0.

On the other hand, multiplying by β in (3.8), from (3.4) and (3.5) we get r1α =
−β − ϕ2ψ. Then, we evaluate in ξ and obtain r1(ξ)α(ξ) = 0. Since r1(ξ) 6= 0, finally
we deduce α(ξ) = 0.
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Lemma 5.3. If ξ is such that ψ(ξ) = 0 and β(ξ) 6= 0, then there exists a non–zero
constant C which is independent on n such that

rn(ξ) + Cr′n(ξ) = 0,

for all n ∈ N.

Proof. Multiplying by β in (3.2) and using (3.4) and (3.5) we get

αrn + βr′n = −ϕn+1ψ, n ≥ 1.(5.2)

Then, evaluation in ξ yields α(ξ)rn(ξ) + β(ξ)r′n(ξ) = 0. In particular, for n = 1 we
have α(ξ)r1(ξ) + β(ξ) = 0. Since β(ξ) 6= 0, it must be α(ξ) 6= 0. Thus the result
follows taking C = β(ξ)/α(ξ).

Lemma 5.4. If there exist ξ1, ξ2, C1, and C2 such that

rn(ξi) + Cir
′
n(ξi) = 0, n ≥ 1,(5.3)

for i = 1, 2, then ξ1 = ξ2 and C1 = C2.

Proof. We remember that rn can be expressed in terms of the polynomials {Pn},

rn = Pn +
n−1
∑

k=0

An,kPk,

where the coefficients An,k were given by condition 〈rnU , Tn+1〉 = 0, that is,

(an+1 − bn+1)〈U , P
2
n〉 − bn−1(an − bn)An,n−1〈U , P

2
n−1〉

+ . . .+ (−1)nbn+1bn · . . . · b2(a1 − b1)An,0 = 0.

As we noticed after the proof of Lemma 3.1, we can choose the coefficients
An,n−1 = . . . = An,1 = 0, and

An = An,0 =
(−1)n+1(an+1 − bn+1)〈U , P

2
n〉

bn+1bn · . . . · b2(a1 − b1)
,

so that we have rn = Pn +An. Thus, (5.3) yields

Pn(ξi) + CiP
′
n(ξi) = −An, n ≥ 1,

for i = 1, 2. Or, equivalently,

Pn(ξ1) + C1P
′
n(ξ1) = Pn(ξ2) + C2P

′
n(ξ2), n ≥ 1,

and the relation holds in a trivial way for n = 0. Then, every polynomial p ∈ P

satisfies

p(ξ1) + C1p
′(ξ1) = p(ξ2) + C2p

′(ξ2).

In particular, for the polynomials p(x) = (x − ξ2)
n we get

(ξ1 − ξ2)
n + C1n(ξ1 − ξ2)

n−1 = 0, n ≥ 2,

from where we deduce ξ1 = ξ2 and, finally, C1 = C2.
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Now we are ready to prove the Theorem.

Proof of Theorem 5.1. Let ξ1 6= ξ2 be simple zeros of ψ. Then, from Lemma
5.3 and Lemma 5.4, one of them must be a zero of β. We can assume that ψ(ξ1) =
β(ξ1) = 0. Then ψ(x) = (x− ξ1)ψ̃(x), with ψ̃(x) = (x− ξ2) and β(x) = (x− ξ1)β̃(x),
with deg β̃ ≤ 3. Moreover, from Lemma 5.2, ξ1 must be a zero of α. Then, α(x) =
(x− ξ1)α̃(x), with deg α̃ ≤ 2.

In such a situation, relations (3.4), (3.5), and (3.6) become

ψ̃(x)U = β̃(x)V +Mδ(x− ξ1),(5.4)

α̃(x)U = β̃(x)DU +Nδ(x− ξ1),(5.5)

ψ̃(x)DU = α̃(x)V +Kδ(x− ξ1),(5.6)

and (5.2) becomes

α̃rn + β̃r′n = −ϕn+1ψ̃, n ≥ 1.(5.7)

Then, using (3.2) and the previous relations we get

(α̃rn + β̃r′n)V = −ϕn+1ψ̃D[rnU ] = ψ̃(r′nU + rnDU).

Thus we deduce rn(α̃V − ψ̃DU) = r′n(ψ̃U − β̃V). Taking into account (5.4) and (5.6),
we obtain

Krn(ξ1) = −Mr′n(ξ1), n ≥ 1.(5.8)

Moreover, from Lemma 5.2 for n = 1 we have r1(ξ1) 6= 0, as well as r′1(ξ1) 6= 0. Then

K = 0 ⇔M = 0.

Now, for ξ2 we have either β̃(ξ2) 6= 0 or β̃(ξ2) = 0. First, we assume that
β̃(ξ2) 6= 0. From Lemma 5.3 there exists C 6= 0 such that rn(ξ2) + Cr′n(ξ2) = 0 for
n ≥ 1. Thus, since ξ1 6= ξ2, by Lemma 5.4 we deduce K = M = 0 in (5.8). On the
other hand, if β̃(ξ2) = 0 then, in the same way that we have done the analysis for ξ1,
we get

K̃rn(ξ2) = −M̃r′n(ξ2), n ≥ 1,(5.9)

with r1(ξ2) 6= 0 and r′1(ξ2) 6= 0. Thus, in this case we also obtain the condition

K̃ = 0 ⇔ M̃ = 0.

As a consequence, Lemma 5.4 means that either (5.8) or (5.9) must be a trivial
condition.

Then, we can assume that K = M = 0 in (5.4) and (5.6). This proves the second
assertion β̃(x)V = (x− ξ2)U .

Furthermore, from (3.8) and (5.7) we deduce for n = 1

−ϕ2β̃V = β̃U + r1β̃DU = −(ϕ2ψ̃ + r1α̃)U + r1β̃DU ,

and taking into account (5.5) we get Nr1(ξ1) = 0. Finally, from Lemma 5.2, r1(ξ1) 6=
0, thus N = 0 in (5.5), and, as a consequence, the first statement follows with ϕ =
α̃+ β̃′.
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In a similar way than in the case where the polynomial ψ has a double zero, we
need to describe the cases when relation (5.1) can be reduced to a classical one. That
is, the polynomials β̃ and α̃ have at least one common zero and moreover this zero can
be simplified without addition of Dirac masses in the distributional Pearson equation.

We remember that the linear functional U satisfies β̃DU = α̃U , and a priori the
non–classical cases are those with either deg β̃ = 3 and deg α̃ ≤ 2, or deg β̃ ≤ 2
and deg α̃ = 2. If β̃(x) = Axt + l.d.t., then we define β̂(x) = A−1a−tβ̃(ax + b) and
α̂(x) = A−1a1−tα̃(ax+b). As a consequence, from Lemma 4.2, up to the linear change
of variable y ≡ ax+ b, the linear functional U satisfies

β̂DU = α̂U .

Moreover, we denote α̂(x) = α2x
2 + α1x+ α0.

We classify the different cases according to the degree of the polynomial β̃.

Jacobi and Bessel cases: deg β̃ = 3.
As in Section 4.1, taking into account Lemma 4.2, all the possible cases for β̃ can

be reduced, up to a linear change of variables, to the canonical situations,

β̃(x) = x3,

β̃(x) = x2(x− 1),

β̃(x) = x(x− 1)(x− λ).

Hence, without loss of generality, we may assume that β̃ has this expression.

Theorem 5.5. If β̃(x) = x3, then U = B(α) is the Bessel linear functional
verifying the equation

D[x2U ] = [(α2 + 2)x+ α1]U

if and only if α0 = 0, (α2 + 2)βU
0 + α1 = 0 and the admissibility conditions α1 = 2

and −α2 /∈ N hold. Moreover, the linear functional V is given by

V = x−3 (x− ξ)B(α) +M0δ(x) +M1δ
′(x) +M2δ

′′(x).

Theorem 5.6. If β̃ has a double zero, then β̂(x) = x2(x− 1). The following two
cases can appear.

i) U is the classical Jacobi linear functional satisfying

D[x(x − 1)U ] = [(α2 + 2)x+ α1 − 1]U

if and only if α0 = 0, (α2 + 2)βU
0 + α1 − 1 = 0, and the admissibility conditions

α2 +α1 +2 /∈ N, 2−α1 /∈ N, and α2 +4 /∈ N hold. Moreover, if U = J (α+1,β+2) is the
Jacobi linear functional associated with the measure dµ1 = (1 − x)α+1(1 + x)β+2dx,
then the linear functional V verifies

V = (x− ξ)J (α,β).

ii) U = B(α) is the classical Bessel linear functional satisfying

D[x2U ] = [(α2 + 2)x− α0]U
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if and only if α2 +α1 +α0 = 0, (α2 + 2)βU
0 −α0 = 0, and the admissibility conditions

α0 = −2, and −α2 /∈ N hold. Moreover, the linear functional V is given by

V = x−2 (x − 1)−1 (x− ξ)B(α) +M0δ(x) +M1δ
′(x) +Nδ(x− 1).

Theorem 5.7. If β̃(x) = x(x − 1)(x − λ), then the following three cases can
appear.

i) U is the classical Jacobi linear functional satisfying

D[(x− 1)(x− λ)U ] = [(α2 + 2)x+ α1 − λ− 1]U

if and only if α0 = 0, (α2 + 2)βU
0 + α1 − λ − 1 = 0, and the admissibility conditions

(α1 + α2λ+ 2(λ− 3))/(λ− 1) /∈ N, (2(λ+ 1)− α1 − α2)/(λ− 1) /∈ N and α2 + 4 /∈ N

hold.
ii) U is the classical Jacobi linear functional satisfying

D[x(x − λ)U ] = [(α2 + 2)x− α0 − λ]U

if and only if α2 + α1 + α0 = 0, (α2 + 2)βU
0 − α0 − λ = 0, and the admissibility

conditions 2 − α0/λ+ α2 /∈ N, α0/λ+ 2 /∈ N and α2 + 4 /∈ N hold.
iii) U is the classical Jacobi linear functional satisfying

D[x(x − 1)U ] = [(α2 + 2)x− α0/λ− 1]U

if and only if α2λ
2 + α1λ+ α0 = 0, (α2 + 2)βU

0 − α0/λ− 1 = 0, and the admissibility
conditions α2 − α0/λ+ 2 /∈ N, α0/λ+ 2 /∈ N, and α2 + 4 /∈ N hold.

Moreover, if U = J (α+1,β+1) is the Jacobi linear functional associated with the
measure dµ1 = (1 − x)α+1(1 + x)β+1dx, then the linear functional V satisfies

V = (x− ξ1)
−1 (x− ξ0)J

(α,β) +Mδ(x− ξ1),

with |ξ0|, |ξ1| ≥ 1 or ξ0 = ξ1 and |ξ0| < 1.

Laguerre cases: deg β̃ = 2.
In this case, by a linear change of variables we can make

β̃(x) = x2,

β̃(x) = x(x− 1).

Then, we may assume that β̃ has this expression without loss of generality.

Theorem 5.8. If β̃(x) = x2, then U is the classical Laguerre linear functional
satisfying

D[xU ] = [α2x+ α1 + 1]U

if and only if α0 = 0, α2β
U
0 + α1 + 1, and the admissibility conditions α2 = −1 and

−α1 /∈ N hold. Moreover, if U = L(α+2) is the Laguerre lineal functional associated
with the measure dµ1 = xα+2e−xdx, then the linear functional V satisfies

V = (x− ξ)L(α) +Mδ(x).
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Theorem 5.9. If β̃(x) = x(x − 1) thus, the following two situations can appear:
i) U is the translated of the classical Laguerre linear functional satisfying

D[(x − 1)U ] = [α2x+ α1 + 1]U

if and only if α0 = 0, α2β
U
0 + α1 + 1 = 0, and the admissibility conditions α2 = −1

and 1 − α1 /∈ N hold.
ii) U is the classical Laguerre linear functional satisfying

D[xU ] = [α2x− α0 + 1]U

if and only if α2 + α1 + α0 = 0, α2β
U
0 − α0 + 1, and the admissibility conditions

α2 = −1 and α0 /∈ N hold.
Moreover, if U = L(α+1) is the Laguerre lineal functional associated with the

measure dµ1 = xα+1e−xdx, then

V = (x − ξ1)
−1 (x − ξ0)L

(α) +Mδ(x− ξ1),

with ξ0, ξ1 ≤ 0 or ξ0 = ξ1 > 0.

Hermite cases: deg β̃ = 1.

Theorem 5.10. If β̃(x) = x then U is the classical Hermite linear functional
satisfying

D[U ] = [α2x+ α1]U

if and only if α0 = 0, α2β
U
0 + α1 = 0, and the admissibility conditions α2 = −2 and

α1 = 0 hold.

Notice that, as in the previous case, the Hermite case can not happen. In fact, if
U = H is the Hermite linear functional associated with the measure dµ1 = e−x2

dx,
from (4.2) we have an analog situation for the linear functional V to that in Theorem
4.8, which is not possible.

5.2. Classification. We finish our study with the description of the linear func-
tional V when U is semiclassical of class at most 1.

From Theorem 5.1, we have the following classification for the pair of linear
functionals U and V associated with the measures dµ1 and dµ0, respectively.

10. When deg β̃ ≤ 2 and degϕ = 1, by (5.1) U is a classical linear functional.
In the Jacobi case, U = J (α+1,β+1), Theorem 4.1 gives the pairs

(J2,1) dµ0 = (x− ξ)(1 − x)α(1 + x)βdx, dµ1 = (1 − x)α+1(1 + x)β+1dx,

with α, β > −1, |ξ| ≥ 1 and

(J2,2) dµ0 = (1 + x)βdx+Mδ(x− 1), dµ1 = (1 + x)β+1dx,

with β > −1.
In the Laguerre case, U = L(α+1), we obtain the pairs

(L2,1) dµ0 = (x − ξ)xαe−xdx, dµ1 = xα+1e−xdx,

with α > −1, ξ ≤ 0, as well as

(L2,2) dµ0 = e−xdx+Mδ(x), dµ1 = e−xdx.

All the previous cases are positive–definite coherent pairs described in [14], and
satisfy (1.8) with an = 0.
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Finally, when U = B(α) is the Bessel linear functional, then V is defined by

(B2,1) V = x−2(x− ξ0)B
(α) +M0δ(x) +M1δ

′(x) +Nδ(x− ξ1).

11. On the other hand, when either deg β̃ ≤ 2 and degϕ = 2, or deg β̃ = 3 and
degϕ ≤ 2 and U is a classical linear functional under the assumptions from Theorem
5.5 to Theorem 5.9, the classification of the pairs U and V is as follows.

If U = J (α+1,β+1) is the Jacobi linear functional, then we get the pairs

(J2,3)
dµ0 =

x− ξ0
x− ξ1

(1 − x)α(1 + x)βdx+Mδ(x− ξ1),

dµ1 = (1 − x)α+1(1 + x)β+1dx,

with α, β > −1 and either |ξ0|, |ξ1| ≥ 1 or ξ0 = ξ1 if |ξ1| < 1, and finally

(J2,4) dµ0 =
1

x− ξ
(1 + x)βdx+Mδ(x− ξ) +Nδ(x− 1), dµ1 = (1 + x)β+1dx,

with β > −1 and |ξ| ≥ 1.
In case (J2,3), the linear functional V satisfies the conditions described in [1], that

is, (x − ξ1)V = (x − ξ0)J
(α,β). Then, as the authors show in [1], we have a 2 − 2

relation for Rn and the Jacobi polynomials P
(α,β)
n , from where we obtain directly that

this pair verifies (1.8).
To conclude with the Jacobi cases, we will analyze the pair (J2,4). We have that

(x−1)(x− ξ)V = J (1,β). Thus, (see [9]) we can express Rn as a linear combination of

Jacobi polynomials P
(1,β)
n , P

(1,β)
n−1 , and P

(1,β)
n−2 , and as a consequence, the derivatives

R′
n+1 can be given as a linear combination of P

(2,β+1)
n , P

(2,β+1)
n−1 , and P

(2,β+1)
n−2 ,

R′
n+1

n+ 1
= P (2,β+1)

n + cnP
(2,β+1)
n−1 + ĉnP

(2,β+1)
n−2 , n ≥ 2,

with ĉn 6= 0. On the other hand we have that the linear functional U verifies (x −
1)2U = J (2,β+1). Then (see [9]) Pn can also be represented as a linear combination
of the Jacobi polynomials

Pn = P (2,β+1)
n + dnP

(2,β+1)
n−1 + d̂nP

(2,β+1)
n−2 , n ≥ 2,

with d̂n 6= 0. Then, it is easy to deduce that there exist an and bn 6= 0 such that
(1.8) holds if and only if the coefficients verify the relations cn + bn = dn + an,

ĉn + bncn−1 = d̂n + andn−1, and bnĉn−1 = and̂n−1. Then, taking into account ĉn =

[(n+1)(n−1)]−1‖Rn+1‖
2‖P

(1,β)
n−1 ‖−2 and d̂n = ‖Pn‖

2‖P
(2,β+1)
n−1 ‖−2, two compatibility

conditions are needed,

‖Pn‖
2

‖P
(2,β+1)
n−1 ‖2

6=
1

(n+ 1)(n− 1)

‖Rn+1‖
2

‖P
(1,β)
n−1 ‖2

, n ≥ 2,(5.10)

(dn − cn)(d̂n−1cn−1 − ĉn−1dn−1) = (d̂n − ĉn)(d̂n−1 − ĉn−1), n ≥ 2.(5.11)

In such a case, the coefficients an and bn are given in terms of cn and dn by

(

n(n− 2)
‖Pn−1‖

2

‖Rn‖2
− 1

)

bn = dn − cn, an = n(n− 2)
‖Pn−1‖

2

‖Rn‖2
bn.(5.12)

In the Laguerre case, U = L(α+1), we have the pairs
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(L2,3) dµ0 =
x− ξ0
x− ξ1

xαe−xdx+Mδ(x− ξ1), dµ1 = xα+1e−xdx,

with α > −1 and either ξ0, ξ1 ≤ 0 or ξ0 = ξ1 > 0, as well as

(L2,4) dµ0 =
1

x− ξ
e−xdx+Mδ(x− ξ) +Nδ(x), dµ1 = e−xdx,

with ξ < 0.
Condition (1.8) for the pair (L2,3) follows in a similar way that in case (J2,3),

because the linear functional V satisfies the conditions studied in [1].
The case (L2,4) can be analyzed in a similar way to (J2,4). Here, U and V are

related with the Laguerre linear functional by x(x−ξ)V = L(1) and x2U = L(2). Then,

taking into account that L
(1)′

n+1 = (n + 1)L
(2)
n as well as the results in [9], we deduce

that both R′
n+1 and Pn can be expressed as a linear combination of the Laguerre

polynomials L
(2)
n , L

(2)
n−1, and L

(2)
n−2,

R′
n+1

n+ 1
= L(2)

n + cnL
(2)
n−1 + ĉnL

(2)
n−2, n ≥ 2,

with ĉn 6= 0, and

Pn = L(2)
n + dnL

(2)
n−1 + d̂nL

(2)
n−2, n ≥ 2,

with d̂n 6= 0. Then, as in case (J2,4), (1.8) holds if and only if the compatibility
conditions (5.10) and (5.11) hold. Moreover, coefficients an and bn are determined
from cn and dn by (5.12).

The last classical case, when U = B(α) is the Bessel linear functional, gives us the
pair

(B2,2) V = x−2(x− ξ1)
−1(x− ξ0)B

(α) +M0δ(x) +M1δ
′(x) +Nδ(x− ξ1).

Finally, when U is a semiclassical linear functional of class 1, we describe the pairs
of linear functionals using the classification in [2].

12. If β̃ has three simple zeros, we deduce the pair of linear functionals associated
with the following measures supported on the interval [−1, 1],

(S2,1)
dµ0 = (x− ξ)(1 − x)α(1 + x)β(x− c)γdx,

dµ1 = (1 − x)α+1(1 + x)β+1(x − c)γ+1dx,

with α, β, γ > −1, |α| + |β| + |γ| 6= 0, and |c| > 1. Notice that, in case that γ = 0
(and the analogous α = 0 or β = 0), we recover the example studied by Sri Ranga et
al. in [3].

13. If β̃ = x2(x−1), we have three different pairs supported on the interval [0, 1],

(S2,2) dµ0 = (x− ξ)(1 − x)αxβe−γ/xdx, dµ1 = (1 − x)α+1xβ+2e−γ/xdx,

with α, β > −1, |α| + |β| 6= 0, and γ > 0, as well as

(S2,3) dµ0 = xβe−γ/xdx+Mδ(x− 1), dµ1 = xβ+2e−γ/xdx,

with β > −1, β 6= 0, and γ > 0, and

(S2,4) dµ0 = (1 − x)αe−γ/xdx+Mδ(x), dµ1 = (1 − x)α+1xe−γ/xdx,

with α > −1, α 6= 0, and γ > 0.
14. If β̃ has a zero of multiplicity 3, then

(S2,5) dµ0 = (x− ξ)xαe
β
x
− 2

x2 dx, dµ1 = xα+3e
β
x
− 2

x2 dx.
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This is the analogous of Bessel in the classical case, and its support is not on the real
line.

15. If β̃ = x2 − 1, then we deduce the pairs of linear functionals associated with
the following measures supported on the half line [1,+∞),

(S2,6)
dµ0 = (x− ξ)(1 − x)α(1 + x)βe−λxdx,

dµ1 = (1 − x)α+1(1 + x)β+1e−λxdx,

with α > −1, |α| + |β| 6= 0, λ > 0, and ξ ≤ 1. Notice that for β = 0, we recover
the example given by Sri Ranga et al. in [3], up to a linear transformation of the
variable x.

(S2,7) dµ0 =
x− ξ0
x− ξ1

(1 − x)αe−λxdx+Mδ(x− ξ1), dµ1 = (1 − x)α+1e−λxdx.

with α > −1, α 6= 0, λ > 0, and ξ0, ξ1 ≤ 1, and

(S2,8) dµ0 = (1 + x)βe−λxdx+Mδ(x− 1), dµ1 = (1 + x)β+1e−λxdx,

with β 6= 0 and λ > 0.

16. If β̃ has a double zero, then the linear functionals are associated with measures
supported on [0,+∞), and we deduce the pairs

(S2,9) dµ0 = (x− ξ)xαe−x+ β
x dx, dµ1 = xα+2e−x+ β

x dx,

with β < 0 and α > −1 and ξ ≤ 0, and

(S2,10) dµ0 = e−x+ β
x dx+Mδ(x), dµ1 = xe−x+ β

x dx,

with β < 0.

17. If β̃ is a polynomial of degree 1, then we have the pair of linear functionals
associated with measures supported on the half line [0,+∞),

(S2,11) dµ0 = (x− ξ)x2µe−x2−λxdx, dµ1 = x2µ+1e−x2−λxdx,

with µ > −1/2 and ξ ≤ 0, and

(S2,12) dµ0 = e−x2−λxdx +Mδ(x), dµ1 = e−x2−λxdx.

18. Finally, when deg β̃ = 1, we have two complex measures

(S2,13) dµ0 = (x− ξ)ei x3

3
−x2+i(α−1)xdx, dµ1 = ei x3

3
−x2+i(α−1)xdx,

supported on the whole real line R.

Notice that all the previous cases, but (S2,3) and (S2,4), (S2,7) and (S2,8), (S2,10),
and (S2,12), respond to the same pattern. We will study the first case, (S2,1), to check
that (1.8) holds.

We have that the linear functional U is semiclassical of class 1 verifying D[β̃U ] =
ϕU . If we consider the linear functional U1, associated with the measure

dµ̂1 = (1 − x)α(1 + x)β(x− c)γdx,

then we have β̃U1 = U . Moreover, U1 is semiclassical of class 1 verifyingD[β̃U1] = τU1.
If we denote by {Sn} the polynomials orthogonal with respect to U1 then, by Lemma
4.9, the derivatives S′

n+1 are quasi–orthogonal with respect to the linear functional
U . This means,

S′
n+1

n+ 1
= Pn + cnPn−1,
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with cn 6= 0. On the other hand, the linear functional V is related with U1 by
V = (x − ξ)U1. Thus (see [9]),

Sn = Rn + dnRn−1.

Finally, both previous relations yield (1.8).
In the remaining cases, (S2,3) and (S2,4), (S2,7), and (S2,8), (S2,10), and (S2,12),

relation (1.8) follows in the same way, similar to the case (J2,4). We will analyze here
the case (S2,3). Let denote by S(α,β) the semiclassical linear functional associated
with the measure dµ̂ = (1 − x)αxβe−γ/xdx, that verifies the Pearson differential

equation D[x2(x − 1)S(α,β)] = τS(α,β), and {S
(α,β)
n } the corresponding sequence of

monic orthogonal polynomials. Then, the linear functional V is related with S(1,β) by
(x − 1)V = S(1,β). Then (see [9]), Rn can be represented as a linear combination of

S
(1,β)
n and S

(1,β)
n−1 . Then, from Lemma 4.9 we have the derivatives R′

n+1 in terms of

S
(2,β+2)
n , S

(2,β+2)
n−1 , and S

(2,β+2)
n−2 . On the other hand, the linear functional U verifies

(x − 1)2U = S(2,β+2). Thus, Pn can also be expressed as a linear combination of

S
(2,β+2)
n , S

(2,β+2)
n−1 , and S

(2,β+2)
n−2 . Then, proceeding in a similar way than in case (J2,4)

we obtain necessary and sufficient conditions so that (1.8) holds.
Finally, next table shows a list of all the possible cases of pairs of linear functionals

satisfying (3.1), when U is a semiclassical linear functional of class at most 1.

(J2,1)

dµ0 = (x− ξ)(1 − x)α(1 + x)βdx

dµ1 = (1 − x)α+1(1 + x)β+1dx

α, β > −1
|ξ| ≥ 1

[−1, 1]

(J2,2)

dµ0 = (1 + x)βdx+Mδ(x− 1)

dµ1 = (1 + x)β+1dx

β > −1 [−1, 1]

(J2,3)

dµ0 =
x− ξ0
x− ξ1

(1 − x)α(1 + x)βdx+Mδ(x− ξ1)

dµ1 = (1 − x)α+1(1 + x)β+1dx

α, β > −1
|ξ0|, |ξ1| ≥ 1
ξ0 =ξ1 if |ξ1|<1

[−1, 1]

(J2,4)

dµ0 =
1

x− ξ
(1 + x)βdx+Mδ(x− ξ) +Nδ(x− 1)

dµ1 = (1 + x)β+1dx

β > −1
|ξ| ≥ 1

[−1, 1]

(L2,1)

dµ0 = (x− ξ)xαe−xdx

dµ1 = xα+1e−xdx

α > −1
ξ ≤ 0

[0,+∞)

(L2,2)

dµ0 = e−xdx+Mδ(x)

dµ1 = e−xdx

[0,+∞)

(L2,3)

dµ0 =
x− ξ0
x− ξ1

xαe−xdx+Mδ(x− ξ1)

dµ1 = xα+1e−xdx

α > −1
ξ0, ξ1 ≤ 0
ξ0 = ξ1 > 0

[0,+∞)
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(L2,4)

dµ0 =
1

x− ξ
e−xdx+Mδ(x− ξ) +Nδ(x)

dµ1 = e−xdx

ξ < 0 [0,+∞)

(S2,1)

dµ0 = (x− ξ)(1 − x)α(1 + x)β(x− c)γdx

dµ1 = (1 − x)α+1(1 + x)β+1(x − c)γ+1dx

α, β, γ > −1
|α|+|β|+|γ| 6=0
|c| > 1

[−1, 1]

(S2,2)

dµ0 = (x− ξ)(1 − x)αxβe−γ/xdx

dµ1 = (1 − x)α+1xβ+2e−γ/xdx

α, β > −1
|α| + |β| 6= 0
γ > 0

[0, 1]

(S2,3)

dµ0 = xβe−γ/xdx+Mδ(x− 1)

dµ1 = xβ+2e−γ/xdx

β > −1
β 6= 0
γ > 0

[0, 1]

(S2,4)

dµ0 = (1 − x)αe−γ/xdx+Mδ(x)

dµ1 = (1 − x)α+1xe−γ/xdx

α > −1
α 6= 0
γ > 0

[0, 1]

(S2,5)

dµ0 = (x− ξ)xαe
β
x
− 2

x2 dx

dµ1 = xα+3e
β
x
− 2

x2 dx

(S2,6)

dµ0 = (x− ξ)(1 − x)α(1 + x)βe−λxdx

dµ1 = (1 − x)α+1(1 + x)β+1e−λxdx

α > −1
|α| + |β| 6= 0
λ > 0
ξ ≤ 1

[1,+∞)

(S2,7)

dµ0 =
x− ξ0
x− ξ1

(1 − x)αe−λxdx+Mδ(x− ξ1)

dµ1 = (1 − x)α+1e−λxdx

α > −1, α 6= 0
λ > 0
ξ0, ξ1 ≤ 1

[1,+∞)

(S2,8)

dµ0 = (1 + x)βe−λxdx+Mδ(x− 1)

dµ1 = (1 + x)β+1e−λxdx

β 6= 0
λ > 0

[1,+∞)

(S2,9)

dµ0 = (x− ξ)xαe−x+ β
x dx

dµ1 = xα+2e−x+ β
x dx

β < 0, α > −1
ξ ≤ 0

[0,+∞)

(S2,10)

dµ0 = e−x+ β
x dx +Mδ(x)

dµ1 = xe−x+ β
x dx

β < 0 [0,+∞)

(S2,11)

dµ0 = (x− ξ)x2µe−x2−λxdx

dµ1 = x2µ+1e−x2−λxdx

µ > −1/2
ξ ≤ 0

[0,+∞)

(S2,12)

dµ0 = e−x2−λxdx+Mδ(x)

dµ1 = e−x2−λxdx

[0,+∞)
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(S2,13)

dµ0 = (x− ξ)ei x3

3
−x2+i(α−1)xdx

dµ1 = ei x3

3
−x2+i(α−1)xdx

R
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