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APPROXIMATING INVERSES OF TOEPLITZ MATRICES
BY CIRCULANT MATRICES*

A. BOTTCHERT, S. M. GRUDSKY?#, AND E. RAMIREZ DE ARELLANOS$

Abstract. With every continuous function a on the complex unit circle one can associate a

sequence {Tn(a)}>2, of Toeplitz matrices and a sequence {Cp(a)}52; of circulant matrices. By

employing some advanced results on the finite sections of Toeplitz operators, we prove asymptotic
estimates for the central columns of the matrices Ty, ' (a) — Cry ! (a) as n — co. Our results generalize
and sharpen recent results by T. Strohmer and by F.-W. Sun, Y. Jiang, and J. S. Baras, who also
discussed the relevancy of the problem in signal processing.

Key words. Toeplitz matrix, circulant matrix, finite-term strong convergence, signal processing
AMS subject classifications. Primary 47B35, Secondary 15A60, 94A12
1. Introduction. Let a be a continuous complex-valued function on the com-

plex unit circle, a € C(T), and denote by {an,}3__ the sequence of the Fourier
coeflicients,

1 27

G, a(e®®)e=m04g.

The n x n Toeplitz matrix generated by a is the matrix
To(a) = (aj—k)j k=1-

An n x n circulant matrix Cy(a) can be associated with a as follows. Let w, =
exp(2mi/n), define the unitary matrix U, by

1 1 1 1
1 w, w2 wn=t
U, — L 1 wi wi wi("‘”
1 w"'_l wi(#_l) . w,&"_ll)("_l)
and put
Cn(a) = U diag(a(l), a(wn), . .. ,a(wg—l)) Un. (1)

It is readily verified that C,(a) is a circulant matrix (see also Theorem 3.2.3 of [4]).
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Now suppose a has no zeros on the unit circle T. Then C),(a) is obviously in-

vertible for all n and the inverse matrix C,;*(a) := (C,(a))™! is again a circulant
matrix:
1 1 1
CY(a) = U* dia, , U,. 2
n ( ) n g (a(l) a(wn) a(wgl)) ( )

Invertibility of Toeplitz matrices is a more delicate issue. However, if in addition the
winding number of a about the origin is zero, then T, (a) is known to be invertible for
all sufficiently large n (see, e.g., [3, Theorem 2.11] or [5, Theorem I11.2.1]). In several
contexts (see [7] for an example from signal processing) it is desirable to replace the
inverse T, *(a) := (T,,(a))™t of the Toeplitz matrix T},(a) by the circulant matrix
C, 1(a). This leads to the problem of estimating the difference T, '(a) — C;;*(a) in
some sense.

We think of an n X n matrix as an operator on C" in the natural fashion. We
equip C™ with the £2 norm. The operator norm associated with this vector norm is the
spectral norm. We use || - || for both the £2 norm on C" and the spectral norm. One
cannot expect that ||T,*(a) — C;; 1(a)|| — 0 as n — oo. The next question therefore
is whether ||7;;(a)2z(™ — C;1(a)z™)|| goes to 0 as n — oo for certain specific unit
vectors (™ € C™. For instance, if 2™ = (1,0,...,0), we arrive at the question
whether the first column of C,;(a) is a good approximation to the first column of
T, '(a) as n — oo. There are examples which show that this need not to be the
case. Interestingly, F.-W. Sun, Y. Jiang, and J. S. Baras [7] recently observed that
if the support of (™) is concentrated around the midst of {1,2,...,n} (for example,
if (™ = (0,...,0,1,0,...,0) with about n/2 zeros before and after the unit), then

1T (a)z™ — O (a)z™) || goes indeed to zero in important cases.

A slight modification of the notion of convergence introduced in [7] is as follows.
For every natural number K, let C’% be the set of all nonzero vectors in C" of the
form

T = (0, ey 0, x[n/Q],K, N 7x[n/2]+K, 0, ceey 0),
where [ -] denotes the integral part. In other terms, € C% if and only if z € C™\ {0}
and z; = 0 for j < [n/2] — K and j > [n/2] + K. Now let {A4,}°%, and {B,}7%, be
two sequences of n x n matrices A, and B,,. We say that {B,,} approximates {4,}
in the sense of finite-term strong convergence if

max —————— — 0 as n — o0 (3)

for each K. (The authors of [7] say that “A,, converges to By, in the finite-term strong
sense” if (3) holds for each K.)

For p > 0, let W* be the set of all a € C(T) that satisfy

o0

lallwe = Z (In| + D)*|an| < oo.

n=—oo

Furthermore, let P denote the collection of all Laurent polynomials, that is, the
collection of all @ € C(T) with only finitely many nonzero Fourier coefficients. Paper
[7] concerns positive functions, that is, functions a : T — (0, 00), and hence positively
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definite Hermitian matrices T}, (a) and Cp(a). The main results of [7] say that if a is
positive and in W1, then
|17, (a)z — Crl(a)z]| _ Mka

max L < (4)

e ] = "n

with some constant Mg , depending only on K and a, and that if a is positive and
in P, then

-1 -1
o I @2 = O @)l M .
zeCn, Il n

with some constant Mg , that depends only on K and a. Notice that the positivity
of a guarantees that T}, (a) and C),(a) are invertible for all n > 1. The approach of [7]

is based on more or less straightforward estimation of || T,; ! (a)z — C,; *(a)z||.

Earlier Strohmer [6] showed that if a is a positive Laurent polynomial of degree
s and K < s, then one can replace the right-hand side of (5) by M, , e~ 7" with some
v > 0.

We here invoke some advanced results on Toeplitz operators in order to generalize
and to sharpen (4) and (5). First, we replace the positivity of a by the requirement
that a has no zeros on T and that the winding number of a about the origin is zero.
Secondly, we show that if @ is in W# with p > 0, then (4) holds with the right-hand
side replaced by M, .n */? and we also prove the right-hand side of (5) can in
fact be replaced by Mg ,..e” 7", where v is a positive constant. Notice that we do
not need the constraint K < s appearing in [6]. Thus, the middle columns of the
inverses of banded Toeplitz matrices are approximated by the corresponding columns
of appropriate circulant matrices exponentially good. We finally establish that the
left-hand sides of (4) and (5) go to zero for arbitrary continuous functions a with no
zeros on T and with winding number zero.

2. Finite sections of Toeplitz operators. In this section we collect some
known results that will be employed in the proofs of our main theorems.

We will consider two kinds of norms on C™; one is generated by an exponential
weight and the other one by a power weight. Accordingly, we put

n

n
Ba =D Val? lallpa =) 5%yl
]
j=1

j=1

The corresponding matrix norms will be denoted by || - ||g,a,e and || - ||p,a,a

| Az|| 5,0
zeCcm\{0} ||zl E.a

Az p.o
zeC\{0} [|z]pa

1Al 00 = o NAllPae =

For o = 0, both vector norms become the usual 2 norm || - || on C™ and both matrix
norms are just the spectral norm || - ||.

Let first b € P. The values b(z) make sense for every z € C\{0}. If b has no zeros
on T, we may choose a number R > 1 such that b(z) # 0 for all complex numbers z
satisfying 1/R < |z| < R. Put

B =log R. (6)
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THEOREM 1. [1, Theorem 2.4] Let b € P have no zeros on T and winding number
zero about the origin. Define 8 by (6). Then there is an ny, > 1 and a constant
Ny, g < 00 such that

HTJl(b)HEﬁ)ﬁ < Ny for all n > ny.

For generating functions in W* we have the following estimate, which was origi-
nally established by Verbitsky and Krupnik [8].

THEOREM 2. [8] or [2, Theorem 7.25] Let b € W# (u > 0) and suppose b has no
zeros on T and winding number zero about the origin. Then there exist an ny > 1
and a constant Ny, < oo such that

T (0) | Py < Noyu for all n > .

Finally, under the sole assumption that b be continuous, a classical result by
Gohberg and Feldman is as follows.

THEOREM 3. [5, Theorem II1.2.1] If b € C(T) has no zeros on T and winding

number zero about the origin, then there are ny > 1 and Ny < oo such that

T2 (B)]| < Ny for all n > ny,.

3. Laurent polynomials. In the case where a is a Laurent polynomial, a € P,
the Toeplitz matrix T}, (a) is banded and the circulant matrix C),(a) results from Ty, (a)
simply by “periodization”: for example, if

6

a(t) = a_ot 24+ a1t ' 4+ ag + art + ast® + ast®, t=e€",
then
ap a—1 a_—»2 0 0 0 0 0
al an a_1 a_—»2 0 0 0 0
as a1 ag a_1 a_o 0 0 0
as a9 aq ao a_1 a_—» 0 0
TS(CL) = 0 0
as a9 aq ao a_1 a_—»
0 0 as a9 aq ap a_1 a_—»
0 0 0 as ag aj ap a_1
0 0 0 0 as as al ap
and
ag a_1 a_—» 0 0 as as aq
aq ap a_1 a_—»o 0 0 as as
a2 aj ap a_1 a_2 0 0 as
Ci(a) = as as aq apg a_1 a_o 0 0
0 as as aj ap a_1 a—-»2 0
0 0 as as aq ag a_1 a_—»2
a_9o 0 0 as as aq ap a_1
a_1 Q_o 0 0 as as a1 ag
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To see this, let circ(bg, b1, - . ., bn—1) denote the circulant matrix whose first column is
(bg by ... by_1)T,

bo  bp—1 ... b1
b1 bp ... bo
CirC(bo,bl,...,bn_l) = . . . .
bp—1 bn—2 bo
A straightforward computation shows that
ckc@m,bh..qbn_l)::Uj(hag(bU)JﬂwnL...JKwﬁ‘U)(L“ (7)
where
b(t) = by + b1t + ...+ by_1t" (8)

(which is a well known result of the theory of circulant matrices; see, e.g., [4, Theorem
3.2.2]). Now suppose we are given a Laurent polynomial

a(t) = Z a;t?. 9)
Jj=—s
What we claim is that
Cp(a) = circ(ag,a1,...,as,0,...,0,a_g,...,a_2,a_1)

for n > 2s + 1. But this is immediate from (1) and (7) since in the case at hand the
polynomial (8) equals

b(t)=ao+ait+...+ag’+a_ "+ .. +a ot" P4a_t"!
and hence, because w]; =1,
b(wl)=ag+aw! +...+aw? +a_sw, ¥ +.. . Faow, ¥ +a_w,?
~ aw})
for all j.
Thus, for n > 2s+ 1 we have Cp,(a) — Ty (a) = Gy (s) + H,(s) where

or=(3 %) mio=( 4 8)

with fixed s X s matrices G4 and H, and with zero matrices 0 of appropriate sizes.

THEOREM 4. Let a € P have no zeros on T and winding number zero about the
origin. Choose an R > 1 so that a(z) # 0 for 1/R < |z| < R and put 3 = logR.
Then there are an ng > 1 and constants My g, < 0o such that Ty, (a) is invertible for
n > n, and

|17, H(a)z — C M a)a]|

max ~ < Mg pae P2 for all n > n,.
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Proof. The existence of n, is guaranteed by Theorem 3. Clearly, it suffices to
prove that for each fixed integer k there is a constant Dy, g o < 0o such that

1T (@211 — C H(@)epny2)kll < Digrae” 72 (10)

for all n > n,, where e; € C" is the vector whose jth component is 1 and the
remaining components of which are zero. With A,, : C™ — C™ defined by

n
A, g zie; | = Tmem,
i=1

inequality (10) is equivalent to the estimate

I (@) Aotk — C @)D guypssll < D2, (11)
We have

T4 (a) = C; M a) = C; (@) (Cula) = Tula) ) T, (a).
From (2) we infer that ||C;(a)| < [la™ /e, Where || - ||oo is the maximum norm in

C(T). We are therefore left with estimating

(Cn(a) = Tu(a)) Ty (@) Aoy sk
= H(Gn(s) + Hn(s))Tn_l(a)A[n/Q]JrkH . (12)

Define P, : C* — C" and @, : C* — C" by
Pm ijej = Z,Tjej, Qm ijej = Z Tj€j.
j=1 j=1 j=1 j=m+1
Obviously,

(Gn(s) + Ha(s)) T, (@) Aok
= Pan(S)ansijl(Q)A[n/2]+k + ansHn(S)PSTJI(a)A[nﬂ]-‘rk

and hence (12) does not exceed

1PsG(8)Qn—s Ty (@) Ay ill + | Qu—s Hin () P T (@) Ayl
NGl 1@n—sTy (@) Apyopc | + I Hs I 1 PT (0) Ay (13)

The operators Ay, 914k, Ps, Qn—s are selfadjoint, while Ty (a) = T, (@) with
at):=a(t)y= > at?, t=c".
Jj=—s
Consequently,

HPsTn_l(G)A[n/QHk” = ||A[n/2]+an_l(a)PsH- (14)
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We define a by
afty= > ajt7, t=e".
Jj=-—s

It is readily verified that T,,(a) = W,,T(a)W,,, where W,, : C* — C" acts by the rule

n n
Wn E ZTj€j = E Tp—j4+1€5
j=1 Jj=1

(reversal of coordinates). Since
Qn—sWn = WnPsu WnA[n/2]+kWn = AnJrlf[n/2]fk = A[77,/2]716*7
it follows that

ansTnil(CL)A[n/m_;’_k = QH,SWnTgl(E)WnA[n/2]+kWan
= WnPsTgl(a)A[n/ﬂfk* Wn

and hence

1Qn—sT (@) Apy2yell = W Py (@) Ap 21— W
= 1P @) A2 | = 1Az T @ P (15)
We now estimate the right-hand sides of (14) and (15) with the help of Theorem 1.
Let b =@ and ¢ = k in the case of (14), and put b =@ and ¢ = k* in the case of (15).
For every x € C™ we obtain from Theorem 1 that
|82 T, (0) Pz]|®
= e 2AEOB A o TN (D) Pozl|
< e~ 2[n/21+0)8 sz,ﬁ ||psx||%ﬁ

< e~2[n/2%08 Nfﬁe%ﬁ ||£C||2=

which gives
| A 21T )Py < B e 72 (16)

with some constant Fy 5, < co. Estimating (14) and (15) by (16) and inserting the
result in (13) we arrive at (11). O

4. Smooth generating functions. The following result is a generalization of
estimate (4).

THEOREM 5. Let a € W# (u > 0) and suppose a has no zeros on T and winding
number zero about the origin. Then there are an n, > 1 and constants Mg . < 00
such that

1T @z — C '@l _ Micpa

for all n > n,.
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Proof. By Theorem 3, T},(a) is invertible for all sufficiently large n. We define
fn €P by

(V] ‘
)= > at
j=—[vn]

For every x € C", we have
|17, @)z — O Ha)zl| < 1Ty H(a)z — T, (fa)z|
HIC (a)z = C (fu)a
HITT (fa)z = O (fa)zll. (17)
By (2), the second term on the right of (17) is
IC @)z — C (fa)all < lla™ = fi Moo [l
< lla™ oo 1 Hlsc lla = falloo llz]l-

Since [|f; oo — lla™"[|oc and

1 o
la— falloo < Z |aj|§m Z laj| (7] + 1)

l71>[vn] l71>[vn]
1
< m llallwe, (18)
we see that
pWm
G, Ha)e — Ct (fa )| < n#—”/g |z (19)

with some constant D&l,)l < o00o. For the first term on the right of (17) we have

|17 @) = T, (fn)ell < 1T @) HIT (F) 1T (a = fu)l [l
<N @I (fadll la = fallso [l2].

The norm ||a — fn|/so can be estimated by (18). Furthermore, ||T,;!(a)|| < N, for all
sufficiently large n due to Theorem 3. Write f, = a + §,,. Then

T () = (14 T @)T6,)) T () (20)

and since || T, (a)|| < Ny and ||T5,(6,)]] < [|0nllee = 0(1), it follows that || T, 1(f,)]l
also remains bounded as n — oco. Thus,

(2)

_ _ Dy
1T, @)z =T, (fa)all < =55 ] (21)

with some constant fo()l < oo for all sufficiently large n.

To tackle the third term on the right of (17), we proceed as in the proof of
Theorem 4. We first note that

(T (fn) = Co (Fu) A 24kl

< Moo 1Gm ll 1Ap 211+ T (F) Py
0 oo 1H A2 46T (F o) Py (22)
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where G| 51 and Hj ) are [y/n] x [y/n] matrices whose norms are bounded by
| frllwo < llallwo < |lallws. As already noticed, ||f; oo — [[a™]|oo as n — co. To
estimate the remaining terms on the right of (22) we use Theorem 2. Let b, = f

{=korb,=f,, {=Fk* Then for every z € C",

1A /20T (bn) Py
1 —
= G =z MmO Bympele,,

1 —1 2 2
< W ||Tn (bn)”P,u,u ”P[\/ﬁ]x"P,u

1 . I3
< Gy z oz 1T Gl (VAT el 3)

We have b, = f, =@+ 6, or b, = f, = @ + 0, with [|0,|/w» — 0. Theorem 2 tells
us that || T, 1(@)| p,u,, and |7, ' (@)| p,u,. remain bounded as n — oco. Since

1T ()l Ppae < NlOn [ = o(1),

we infer from identity (20) (with a replaced by @ or @) that || ;7 (b) || £, is bounded
for all sufficiently large n. Thus, (23) yields

n’

DY
A2y (0n) Py yl| < n#—jlz [l

for n sufficiently large. The last estimate together with (22) implies that

DY
1T (fa) = O (F))zll < — 5% [l (24)
n

for all z € C% and all sufficiently large n. Inserting (19), (21), (24) in (17) we get
the assertion. O

5. Continuous generating functions. The following result concerns arbitrary
continuous generating functions. Clearly, as no additional smoothness is required, we
cannot expect estimates for the speed of the finite-term strong convergence.

THEOREM 6. Let a € C(T) and suppose a has no zeros on T and winding number
zero about the origin. Then
|17 (a)z — C ()|

max — 0 as n — oo.
2eCy (Bl

Proof. Let {fm}>_; be a sequence of Laurent polynomials such that fy,, is of
degree m and |ja — fm|loc — 0 as m — oco. For x € C, we have

|17, @)z — Cy ' (a)z]| < T (@)e — T (fin )2
+HCr Ha)z — C ()2l
HIT (fm)a = O (fm)2.
Arguing as in the proof of Theorem 5 we first get
1T (@)e = T ()l < T @D () la = Finlloc N1zl
IC @)z = O ()| < lla™ oo i lloo la = fmlloo I,
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and then the existence of numbers ng and mg such that

_ _ 9
T @)z — Ty (fmo )2 < 3 ll=ll;

_ _ 9
1€ @)z = O (fmo )2l < 5 12l

for all n > ng. We may without loss of generality assume that f,,, has no zeros on T
and that the winding number of f,,, about the origin is zero. Theorem 4 implies that

17 (o) = 5 (Fmo)all < < ]

for all z € C} if only n is large enough. This gives the assertion. O
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