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APPROXIMATING INVERSES OF TOEPLITZ MATRICES

BY CIRCULANT MATRICES∗

A. BÖTTCHER† , S. M. GRUDSKY‡ , AND E. RAMÍREZ DE ARELLANO§

Abstract. With every continuous function a on the complex unit circle one can associate a
sequence {Tn(a)}∞

n=1 of Toeplitz matrices and a sequence {Cn(a)}∞
n=1 of circulant matrices. By

employing some advanced results on the finite sections of Toeplitz operators, we prove asymptotic
estimates for the central columns of the matrices T

−1
n (a)−C

−1
n (a) as n → ∞. Our results generalize

and sharpen recent results by T. Strohmer and by F.-W. Sun, Y. Jiang, and J. S. Baras, who also
discussed the relevancy of the problem in signal processing.
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1. Introduction. Let a be a continuous complex-valued function on the com-
plex unit circle, a ∈ C(T), and denote by {am}∞m=−∞ the sequence of the Fourier
coefficients,

am =
1

2π

∫ 2π

0

a(eiθ)e−imθdθ.

The n × n Toeplitz matrix generated by a is the matrix

Tn(a) = (aj−k)n
j,k=1.

An n × n circulant matrix Cn(a) can be associated with a as follows. Let ωn =
exp(2πi/n), define the unitary matrix Un by

Un =
1√
n




1 1 1 . . . 1
1 ωn ω2

n . . . ωn−1
n

1 ω2
n ω4

n . . . ω
2(n−1)
n

...
...

...
...

1 ωn−1
n ω

2(n−1)
n . . . ω

(n−1)(n−1)
n




,

and put

Cn(a) = U∗
n diag

(
a(1), a(ωn), . . . , a(ωn−1

n )
)

Un. (1)

It is readily verified that Cn(a) is a circulant matrix (see also Theorem 3.2.3 of [4]).
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Now suppose a has no zeros on the unit circle T. Then Cn(a) is obviously in-
vertible for all n and the inverse matrix C−1

n (a) := (Cn(a))−1 is again a circulant
matrix:

C−1
n (a) = U∗

n diag

(
1

a(1)
,

1

a(ωn)
, . . . ,

1

a(ωn−1
n )

)
Un. (2)

Invertibility of Toeplitz matrices is a more delicate issue. However, if in addition the
winding number of a about the origin is zero, then Tn(a) is known to be invertible for
all sufficiently large n (see, e.g., [3, Theorem 2.11] or [5, Theorem III.2.1]). In several
contexts (see [7] for an example from signal processing) it is desirable to replace the
inverse T−1

n (a) := (Tn(a))−1 of the Toeplitz matrix Tn(a) by the circulant matrix
C−1

n (a). This leads to the problem of estimating the difference T−1
n (a) − C−1

n (a) in
some sense.

We think of an n × n matrix as an operator on Cn in the natural fashion. We
equip Cn with the ℓ2 norm. The operator norm associated with this vector norm is the
spectral norm. We use ‖ · ‖ for both the ℓ2 norm on Cn and the spectral norm. One
cannot expect that ‖T−1

n (a) − C−1
n (a)‖ → 0 as n → ∞. The next question therefore

is whether ‖T−1
n (a)x(n) − C−1

n (a)x(n)‖ goes to 0 as n → ∞ for certain specific unit
vectors x(n) ∈ Cn. For instance, if x(n) = (1, 0, . . . , 0), we arrive at the question
whether the first column of C−1

n (a) is a good approximation to the first column of
T−1

n (a) as n → ∞. There are examples which show that this need not to be the
case. Interestingly, F.-W. Sun, Y. Jiang, and J. S. Baras [7] recently observed that
if the support of x(n) is concentrated around the midst of {1, 2, . . . , n} (for example,
if x(n) = (0, . . . , 0, 1, 0, . . . , 0) with about n/2 zeros before and after the unit), then
‖T−1

n (a)x(n) − C−1
n (a)x(n)‖ goes indeed to zero in important cases.

A slight modification of the notion of convergence introduced in [7] is as follows.
For every natural number K, let Cn

K be the set of all nonzero vectors in Cn of the
form

x = (0, . . . , 0, x[n/2]−K , . . . , x[n/2]+K , 0, . . . , 0),

where [ · ] denotes the integral part. In other terms, x ∈ Cn
K if and only if x ∈ Cn\{0}

and xj = 0 for j < [n/2] − K and j > [n/2] + K. Now let {An}∞n=1 and {Bn}∞n=1 be
two sequences of n × n matrices An and Bn. We say that {Bn} approximates {An}
in the sense of finite-term strong convergence if

max
x∈Cn

K

‖Anx − Bnx‖
‖x‖ → 0 as n → ∞ (3)

for each K. (The authors of [7] say that “An converges to Bn in the finite-term strong
sense” if (3) holds for each K.)

For µ ≥ 0, let Wµ be the set of all a ∈ C(T) that satisfy

‖a‖W µ :=

∞∑

n=−∞
(|n| + 1)µ|an| < ∞.

Furthermore, let P denote the collection of all Laurent polynomials, that is, the
collection of all a ∈ C(T) with only finitely many nonzero Fourier coefficients. Paper
[7] concerns positive functions, that is, functions a : T → (0,∞), and hence positively
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definite Hermitian matrices Tn(a) and Cn(a). The main results of [7] say that if a is
positive and in W 1, then

max
x∈Cn

K

‖T−1
n (a)x − C−1

n (a)x‖
‖x‖ ≤ MK,a√

n
(4)

with some constant MK,a depending only on K and a, and that if a is positive and
in P , then

max
x∈Cn

K

‖T−1
n (a)x − C−1

n (a)x‖
‖x‖ ≤ MK,a

n
(5)

with some constant MK,a that depends only on K and a. Notice that the positivity
of a guarantees that Tn(a) and Cn(a) are invertible for all n ≥ 1. The approach of [7]
is based on more or less straightforward estimation of ‖T−1

n (a)x − C−1
n (a)x‖.

Earlier Strohmer [6] showed that if a is a positive Laurent polynomial of degree
s and K ≤ s, then one can replace the right-hand side of (5) by Mγ,a e−γn with some
γ > 0.

We here invoke some advanced results on Toeplitz operators in order to generalize
and to sharpen (4) and (5). First, we replace the positivity of a by the requirement
that a has no zeros on T and that the winding number of a about the origin is zero.
Secondly, we show that if a is in Wµ with µ > 0, then (4) holds with the right-hand
side replaced by MK,µ,a n−µ/2 and we also prove the right-hand side of (5) can in
fact be replaced by MK,γ,a e−γn, where γ is a positive constant. Notice that we do
not need the constraint K ≤ s appearing in [6]. Thus, the middle columns of the
inverses of banded Toeplitz matrices are approximated by the corresponding columns
of appropriate circulant matrices exponentially good. We finally establish that the
left-hand sides of (4) and (5) go to zero for arbitrary continuous functions a with no
zeros on T and with winding number zero.

2. Finite sections of Toeplitz operators. In this section we collect some
known results that will be employed in the proofs of our main theorems.

We will consider two kinds of norms on Cn; one is generated by an exponential
weight and the other one by a power weight. Accordingly, we put

‖x‖2
E,α :=

n∑

j=1

e2αj|xj |2, ‖x‖2
P,α :=

n∑

j=1

j2α|xj |2.

The corresponding matrix norms will be denoted by ‖ · ‖E,α,α and ‖ · ‖P,α,α:

‖A‖E,α,α := max
x∈Cn\{0}

‖Ax‖E,α

‖x‖E,α
, ‖A‖P,α,α := max

x∈Cn\{0}

‖Ax‖P,α

‖x‖P,α
.

For α = 0, both vector norms become the usual ℓ2 norm ‖ · ‖ on Cn and both matrix
norms are just the spectral norm ‖ · ‖.

Let first b ∈ P . The values b(z) make sense for every z ∈ C\{0}. If b has no zeros
on T, we may choose a number R > 1 such that b(z) 6= 0 for all complex numbers z
satisfying 1/R ≤ |z| ≤ R. Put

β = log R. (6)
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Theorem 1. [1, Theorem 2.4] Let b ∈ P have no zeros on T and winding number

zero about the origin. Define β by (6). Then there is an nb ≥ 1 and a constant

Nb,β < ∞ such that

‖T−1
n (b)‖E,β,β ≤ Nb,β for all n ≥ nb.

For generating functions in Wµ we have the following estimate, which was origi-
nally established by Verbitsky and Krupnik [8].

Theorem 2. [8] or [2, Theorem 7.25] Let b ∈ Wµ (µ > 0) and suppose b has no

zeros on T and winding number zero about the origin. Then there exist an nb ≥ 1
and a constant Nb,µ < ∞ such that

‖T−1
n (b)‖P,µ,µ ≤ Nb,µ for all n ≥ nb.

Finally, under the sole assumption that b be continuous, a classical result by
Gohberg and Feldman is as follows.

Theorem 3. [5, Theorem III.2.1] If b ∈ C(T) has no zeros on T and winding

number zero about the origin, then there are nb ≥ 1 and Nb < ∞ such that

‖T−1
n (b)‖ ≤ Nb for all n ≥ nb.

3. Laurent polynomials. In the case where a is a Laurent polynomial, a ∈ P ,
the Toeplitz matrix Tn(a) is banded and the circulant matrix Cn(a) results from Tn(a)
simply by “periodization”: for example, if

a(t) = a−2t
−2 + a−1t

−1 + a0 + a1t + a2t
2 + a3t

3, t = eiθ,

then

T8(a) =




a0 a−1 a−2 0 0 0 0 0
a1 a0 a−1 a−2 0 0 0 0
a2 a1 a0 a−1 a−2 0 0 0
a3 a2 a1 a0 a−1 a−2 0 0
0 a3 a2 a1 a0 a−1 a−2 0
0 0 a3 a2 a1 a0 a−1 a−2

0 0 0 a3 a2 a1 a0 a−1

0 0 0 0 a3 a2 a1 a0




and

C8(a) =




a0 a−1 a−2 0 0 a3 a2 a1

a1 a0 a−1 a−2 0 0 a3 a2

a2 a1 a0 a−1 a−2 0 0 a3

a3 a2 a1 a0 a−1 a−2 0 0
0 a3 a2 a1 a0 a−1 a−2 0
0 0 a3 a2 a1 a0 a−1 a−2

a−2 0 0 a3 a2 a1 a0 a−1

a−1 a−2 0 0 a3 a2 a1 a0




.
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To see this, let circ(b0, b1, . . . , bn−1) denote the circulant matrix whose first column is
(b0 b1 . . . bn−1)

⊤,

circ(b0, b1, . . . , bn−1) =




b0 bn−1 . . . b1

b1 b0 . . . b2

...
...

. . .
...

bn−1 bn−2 . . . b0


 .

A straightforward computation shows that

circ(b0, b1, . . . , bn−1) = U∗
n diag

(
b(1), b(ωn), . . . , b(ωn−1

n )
)

Un, (7)

where

b(t) = b0 + b1t + . . . + bn−1t
n−1 (8)

(which is a well known result of the theory of circulant matrices; see, e.g., [4, Theorem
3.2.2]). Now suppose we are given a Laurent polynomial

a(t) =

s∑

j=−s

ajt
j . (9)

What we claim is that

Cn(a) = circ(a0, a1, . . . , as, 0, . . . , 0, a−s, . . . , a−2, a−1)

for n ≥ 2s + 1. But this is immediate from (1) and (7) since in the case at hand the
polynomial (8) equals

b(t) = a0 + a1t + . . . + ast
s + a−st

n−s + . . . + a−2t
n−2 + a−1t

n−1

and hence, because ωn
n = 1,

b(ωj
n) = a0 + a1ω

j
n + . . . + asω

sj
n + a−sω

−sj
n + . . . + a−2ω

−2j
n + a−1ω

−j
n

= a(ωj
n)

for all j.

Thus, for n ≥ 2s + 1 we have Cn(a) − Tn(a) = Gn(s) + Hn(s) where

Gn(s) =

(
0 Gs

0 0

)
, Hn(s) =

(
0 0

Hs 0

)

with fixed s × s matrices Gs and Hs and with zero matrices 0 of appropriate sizes.

Theorem 4. Let a ∈ P have no zeros on T and winding number zero about the

origin. Choose an R > 1 so that a(z) 6= 0 for 1/R ≤ |z| ≤ R and put β = log R.

Then there are an na ≥ 1 and constants MK,β,a < ∞ such that Tn(a) is invertible for

n ≥ na and

max
x∈Cn

K

‖T−1
n (a)x − C−1

n (a)x‖
‖x‖ ≤ MK,β,a e−βn/2 for all n ≥ na.
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Proof. The existence of na is guaranteed by Theorem 3. Clearly, it suffices to
prove that for each fixed integer k there is a constant Dk,β,a < ∞ such that

‖T−1
n (a)e[n/2]+k − C−1

n (a)e[n/2]+k‖ ≤ Dk,β,a e−βn/2 (10)

for all n ≥ na, where ej ∈ Cn is the vector whose jth component is 1 and the
remaining components of which are zero. With ∆m : Cn → Cn defined by

∆m




n∑

j=1

xjej



 = xmem,

inequality (10) is equivalent to the estimate

‖T−1
n (a)∆[n/2]+k − C−1

n (a)∆[n/2]+k‖ ≤ Dk,β,a e−βn/2. (11)

We have

T−1
n (a) − C−1

n (a) = C−1
n (a)

(
Cn(a) − Tn(a)

)
T−1

n (a).

From (2) we infer that ‖C−1
n (a)‖ ≤ ‖a−1‖∞, where ‖ · ‖∞ is the maximum norm in

C(T). We are therefore left with estimating

‖(Cn(a) − Tn(a))T−1
n (a)∆[n/2]+k‖

=
∥∥(Gn(s) + Hn(s))T−1

n (a)∆[n/2]+k

∥∥ . (12)

Define Pm : Cn → Cn and Qm : Cn → Cn by

Pm




n∑

j=1

xjej


 =

m∑

j=1

xjej, Qm




n∑

j=1

xjej


 =

n∑

j=m+1

xjej.

Obviously,

(Gn(s) + Hn(s))T−1
n (a)∆[n/2]+k

= PsGn(s)Qn−sT
−1
n (a)∆[n/2]+k + Qn−sHn(s)PsT

−1
n (a)∆[n/2]+k

and hence (12) does not exceed

‖PsGn(s)Qn−sT
−1
n (a)∆[n/2]+k‖ + ‖Qn−sHn(s)PsT

−1
n (a)∆[n/2]+k‖

≤ ‖Gs‖ ‖Qn−sT
−1
n (a)∆[n/2]+k‖ + ‖Hs‖ ‖PsT

−1
n (a)∆[n/2]+k‖. (13)

The operators ∆[n/2]+k, Ps, Qn−s are selfadjoint, while T ∗
n(a) = Tn(a) with

a(t) := a(t) =
s∑

j=−s

ajt
−j , t = eiθ.

Consequently,

‖PsT
−1
n (a)∆[n/2]+k‖ = ‖∆[n/2]+kT−1

n (a)Ps‖. (14)
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We define ã by

ã(t) =

s∑

j=−s

ajt
−j , t = eiθ.

It is readily verified that Tn(ã) = WnT (a)Wn, where Wn : Cn → Cn acts by the rule

Wn




n∑

j=1

xjej



 =

n∑

j=1

xn−j+1ej

(reversal of coordinates). Since

Qn−sWn = WnPs, Wn∆[n/2]+kWn = ∆n+1−[n/2]−k =: ∆[n/2]−k∗ ,

it follows that

Qn−sT
−1
n (a)∆[n/2]+k = Qn−sWnT−1

n (ã)Wn∆[n/2]+kWnWn

= WnPsT
−1
n (ã)∆[n/2]−k∗Wn

and hence

‖Qn−sT
−1
n (a)∆[n/2]+k‖ = ‖WnPsT

−1
n (ã)∆[n/2]−k∗Wn‖

= ‖PsT
−1
n (ã)∆[n/2]−k∗‖ = ‖∆[n/2]−k∗T−1

n (ã)Ps‖. (15)

We now estimate the right-hand sides of (14) and (15) with the help of Theorem 1.
Let b = a and ℓ = k in the case of (14), and put b = ã and ℓ = k∗ in the case of (15).
For every x ∈ Cn we obtain from Theorem 1 that

‖∆[n/2]±ℓT
−1
n (b)Psx‖2

= e−2([n/2]±ℓ)β ‖∆[n/2]±ℓT
−1
n (b)Psx‖2

E,β

≤ e−2([n/2]±ℓ)β N2
b,β ‖Psx‖2

E,β

≤ e−2([n/2]±ℓ)β N2
b,β e2sβ ‖x‖2,

which gives

‖∆[n/2]±ℓT
−1
n (b)Ps‖ ≤ Fk,β,b e−βn/2 (16)

with some constant Fk,β,b < ∞. Estimating (14) and (15) by (16) and inserting the
result in (13) we arrive at (11).

4. Smooth generating functions. The following result is a generalization of
estimate (4).

Theorem 5. Let a ∈ Wµ (µ > 0) and suppose a has no zeros on T and winding

number zero about the origin. Then there are an na ≥ 1 and constants MK,µ,a < ∞
such that

max
x∈Cn

K

‖T−1
n (a)x − C−1

n (a)x‖
‖x‖ ≤ MK,µ,a

nµ/2
for all n ≥ na.
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Proof. By Theorem 3, Tn(a) is invertible for all sufficiently large n. We define
fn ∈ P by

fn(t) =

[
√

n ]∑

j=−[
√

n ]

ajt
j .

For every x ∈ Cn, we have

‖T−1
n (a)x − C−1

n (a)x‖ ≤ ‖T−1
n (a)x − T−1

n (fn)x‖
+‖C−1

n (a)x − C−1
n (fn)x‖

+‖T−1
n (fn)x − C−1

n (fn)x‖. (17)

By (2), the second term on the right of (17) is

‖C−1
n (a)x − C−1

n (fn)x‖ ≤ ‖a−1 − f−1
n ‖∞ ‖x‖

≤ ‖a−1‖∞ ‖f−1
n ‖∞ ‖a − fn‖∞ ‖x‖.

Since ‖f−1
n ‖∞ → ‖a−1‖∞ and

‖a − fn‖∞ ≤
∑

|j|>[
√

n ]

|aj | ≤
1

([
√

n ] + 1)µ

∑

|j|>[
√

n ]

|aj |(|j| + 1)µ

≤ 1

([
√

n ] + 1)µ
‖a‖W µ , (18)

we see that

‖C−1
n (a)x − C−1

n (fn)x‖ ≤ D
(1)
µ,a

nµ/2
‖x‖ (19)

with some constant D
(1)
µ,a < ∞. For the first term on the right of (17) we have

‖T−1
n (a)x − T−1

n (fn)x‖ ≤ ‖T−1
n (a)‖ ‖T−1

n (fn)‖ ‖Tn(a − fn)‖ ‖x‖
≤ ‖T−1

n (a)‖ ‖T−1
n (fn)‖ ‖a− fn‖∞ ‖x‖.

The norm ‖a − fn‖∞ can be estimated by (18). Furthermore, ‖T−1
n (a)‖ ≤ Na for all

sufficiently large n due to Theorem 3. Write fn = a + δn. Then

T−1
n (fn) =

(
I + T−1

n (a)Tn(δn)
)−1

T−1
n (a), (20)

and since ‖T−1
n (a)‖ ≤ Na and ‖Tn(δn)‖ ≤ ‖δn‖∞ = o(1), it follows that ‖T−1

n (fn)‖
also remains bounded as n → ∞. Thus,

‖T−1
n (a)x − T−1

n (fn)x‖ ≤ D
(2)
µ,a

nµ/2
‖x‖ (21)

with some constant D
(2)
µ,a < ∞ for all sufficiently large n.

To tackle the third term on the right of (17), we proceed as in the proof of
Theorem 4. We first note that

‖(T−1
n (fn) − C−1

n (fn))∆[n/2]+k‖

≤ ‖f−1
n ‖∞ ‖G[

√
n ]‖ ‖∆[n/2]−k∗T−1

n (f̃n)P[
√

n ]‖
+‖f−1

n ‖∞ ‖H[
√

n ]‖ ‖∆[n/2]+kT−1
n (fn)P[

√
n ]‖, (22)
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where G[
√

n ] and H[
√

n ] are [
√

n ] × [
√

n ] matrices whose norms are bounded by

‖fn‖W 0 ≤ ‖a‖W 0 ≤ ‖a‖W µ . As already noticed, ‖f−1
n ‖∞ → ‖a−1‖∞ as n → ∞. To

estimate the remaining terms on the right of (22) we use Theorem 2. Let bn = fn,

ℓ = k or bn = f̃n, ℓ = k∗. Then for every x ∈ Cn,

‖∆[n/2]±ℓT
−1
n (bn)P[

√
n ]x‖2

=
1

([n/2] ± ℓ)2µ
‖∆[n/2]±ℓT

−1
n (bn)P[

√
n ]x‖2

P,µ

≤ 1

([n/2] ± ℓ)2µ
‖T−1

n (bn)‖2
P,µ,µ ‖P[

√
n ]x‖2

P,µ

≤ 1

([n/2] ± ℓ)2µ
‖T−1

n (bn)‖2
P,µ,µ [

√
n ]2µ ‖x‖2. (23)

We have bn = fn = a + δn or bn = f̃n = ã + δn with ‖δn‖W µ → 0. Theorem 2 tells
us that ‖T−1

n (a)‖P,µ,µ and ‖T−1
n (ã)‖P,µ,µ remain bounded as n → ∞. Since

‖Tn(δn)‖P,µ,µ ≤ ‖δn‖W µ = o(1),

we infer from identity (20) (with a replaced by a or ã) that ‖T−1
n (bn)‖P,µ,µ is bounded

for all sufficiently large n. Thus, (23) yields

‖∆[n/2]±ℓT
−1
n (bn)P[

√
n ]x‖ ≤

D
(3)
k,µ,a

nµ/2
‖x‖

for n sufficiently large. The last estimate together with (22) implies that

‖(T−1
n (fn) − C−1

n (fn))x‖ ≤
D

(4)
K,µ,a

nµ/2
‖x‖ (24)

for all x ∈ Cn
K and all sufficiently large n. Inserting (19), (21), (24) in (17) we get

the assertion.

5. Continuous generating functions. The following result concerns arbitrary
continuous generating functions. Clearly, as no additional smoothness is required, we
cannot expect estimates for the speed of the finite-term strong convergence.

Theorem 6. Let a ∈ C(T) and suppose a has no zeros on T and winding number

zero about the origin. Then

max
x∈Cn

K

‖T−1
n (a)x − C−1

n (a)x‖
‖x‖ → 0 as n → ∞.

Proof. Let {fm}∞m=1 be a sequence of Laurent polynomials such that fm is of
degree m and ‖a− fm‖∞ → 0 as m → ∞. For x ∈ Cn

K , we have

‖T−1
n (a)x − C−1

n (a)x‖ ≤ ‖T−1
n (a)x − T−1

n (fm)x‖
+‖C−1

n (a)x − C−1
n (fm)x‖

+‖T−1
n (fm)x − C−1

n (fm)x‖.

Arguing as in the proof of Theorem 5 we first get

‖T−1
n (a)x − T−1

n (fm)x‖ ≤ ‖T−1
n (a)‖ ‖T−1

n (fm)‖ ‖a − fm‖∞ ‖x‖,
‖C−1

n (a)x − C−1
n (fm)x‖ ≤ ‖a−1‖∞ ‖f−1

m ‖∞ ‖a − fm‖∞ ‖x‖,
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and then the existence of numbers n0 and m0 such that

‖T−1
n (a)x − T−1

n (fm0
)x‖ <

ε

3
‖x‖,

‖C−1
n (a)x − C−1

n (fm0
)x‖ <

ε

3
‖x‖

for all n ≥ n0. We may without loss of generality assume that fm0
has no zeros on T

and that the winding number of fm0
about the origin is zero. Theorem 4 implies that

‖T−1
n (fm0

)x − C−1
n (fm0

)x‖ <
ε

3
‖x‖

for all x ∈ Cn
K if only n is large enough. This gives the assertion.
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