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MISCELLANEOUS DYNAMIC EQUATIONS ∗

ELVAN AKIN–BOHNER† AND MARTIN BOHNER†

Abstract. We consider several dynamic equations and present methods on how to solve these
equations. Among them are linear equations of higher order, Euler–Cauchy equations of higher
order, logistic equations (or Verhulst equations), Bernoulli equations, Riccati equations, and Clairaut
equations. In order to solve Bernoulli dynamic equations, we define an important product on the set
of positively regressive functions and give a power rule in terms of this product.

1. Introduction. The calculus on time scales has been introduced in order to
unify the theories of differential equations and of difference equations and in order to
extend those theories to a more general class of so-called dynamic equations. For an
introduction into the calculus of time scales we refer to [3, 4, 5]. Here we just would
like to mention that any nonempty, closed subset T of R is called a time scale, and
that the forward jump operator σ : T → T is defined by σ(t) = inf{s ∈ T : s ≥ t}.
Similarly, a backward jump operator ρ is defined, and the graininess µ of T is given
by µ(t) = σ(t) − t. In this paper we consider certain classes of simple dynamic
equations and present methods on how to solve them. Discrete versions of some of
those equations are studied in [1, Chapter 3].

First, in Section 2, we consider higher order linear dynamic equations with con-
stant coefficients, i.e., equations of the form

(1.1)
n∑

k=0

αky∆k

= 0.

For a reader not familiar with the time scales calculus, it is helpful (before studying
[3]) to think of the operator ∆ as the usual derivative if T = R and the usual forward
difference operator if T = Z. Of course, as in the theory of ordinary differential
equations, the so-called characteristic polynomial plays a central rôle, and in particular
the case of multiple roots of the characteristic polynomial will yield some interesting
results. Using a similar method, in Section 3 we carry the study of Euler–Cauchy
equations from the second order case as presented in [3, Section 3.7] to the higher
order case. However, in the higher order case we are forced – due to the fact that
forward jump operators are not necessarily differentiable – to factor those Euler–
Cauchy equations appropriately, namely as

(1.2)
n∑

k=0

αkMky = 0,

where the operators Mk are defined recursively by

(1.3) M0y = y and Mk+1y = t(Mky)∆ for k ∈ N0.

As in the higher order linear case, an associated characteristic polynomial is impor-
tant, and as for linear equations, the case of multiple roots of this characteristic
polynomial turns out to be of particular interest.

∗Received November 16, 2002; accepted for publication May 19, 2003.
†University of Missouri–Rolla, Department of Mathematics and Statistics, Rolla, MO 65401, USA

(akine@umr.edu, bohner@umr.edu).

11



12 E. AKIN–BOHNER AND M. BOHNER

Motivated by the fact that (for ordinary differential equations) the reciprocal of
a solution of a linear equation is a solution of a logistic equation, we introduce our
two versions – two, as there are two versions of linear equations (denote vσ = v ◦ σ)

(1.4) u∆ = p(t)u + f(t) and v∆ = −p(t)vσ + f(t)

– of logistic equations. These logistic equations will appear in the forms

(1.5) y∆ = [�(p(t) + f(t)y)] y and x∆ = [p(t) � (f(t)x)] x,

where � is defined as follows: The set R of all complex-valued, regressive (i.e., 1 +
µ(t)p(t) �= 0 for all t ∈ T), and rd-continuous (i.e., functions in Crd, i.e., continuous
at points t with σ(t) = t and left-sided limits exist and are finite at points t with
ρ(t) = t) functions is an Abelian group (the so-called regressive group) under the
addition ⊕ defined by p ⊕ q = p + q + µpq, and �p is the additive inverse of p ∈ R,
i.e., �p = −p/(1 + µp) (see [3, Exercise 2.26]). Now, knowledge of solutions of the
linear equations (1.4) then enables us to exhibit solutions of the logistic equations
(1.5). Next, we are aiming to introduce Bernoulli equations in such a way that their
solutions raised to the αth power are solutions of logistic equations (1.5). However,
in order to do so, we first need to use the chain rule [3, Theorem 1.90] for finding
a simple form of the derivative of yα. This leads to the introduction of a circle dot
multiplication � defined by

(1.6) (α � p)(t) := αp(t)
∫ 1

0

(1 + µ(t)p(t)h)α−1dh,

which then may be used to study Bernoulli equations of the form

(1.7) x∆ =
[
p(t) �

(
1
α
� (f(t)xα)

)]
x,

and solutions of Bernoulli equations (see Section 6) then have our above described
desired property, so that they can readily be found as we know solutions of the logistic
equations (1.5). Furthermore, the circle dot product � turns out to be interesting in
itself, and we devote Section 5 of this paper to the study of this product. Interesting
properties of this product are the formulas

(1.8)
(xα)∆

xα
= α � x∆

x
, 1 + µ(α � p) = (1 + µp)α, and eα�p = eα

p .

Note that for p ∈ R, the unique solution of y∆ = p(t)y satisfying y(t0) = 1 (see
[3, Theorem 2.33]) is denoted as ep(·, t0), and the third formula in (1.8) nicely
supplements the known relations (see [3, Theorem 2.36], and this is essentially
a consequence of the product rule (pq)∆ = p∆q + pσq∆ and the quotient rule
(p/q)∆ = (p∆q − pq∆)/(qqσ))

(1.9) epeq = ep⊕q and
ep

eq
= ep�q.

Moreover, the set of real-valued, positively regressive functions R+, i.e., the set of all
rd-continuous functions p that satisfy 1 + µ(t)p(t) > 0 for all t ∈ T (see [3, Definition
2.45]), together with addition ⊕ and (real) scalar multiplication �, turns out to be a
vector space, which we call the regressive vector space.
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In Section 7 we also consider Riccati equations of the form

(1.10) z∆ + q(t) + r(t)zσ + p(t)
(

z

p(t)

)©2
= 0,

where the circle square of x ∈ R is defined to be x©2 = (−x)(�x). Properties of the
circle square are given in [3, Theorem 2.19], and we use them to relate solutions of the
Riccati equation to solutions of the logistic equations (1.5), provided one particular
solution of the Riccati equation is known. Finally, in Section 8 we study Clairaut
equations appearing as

(1.11) y = ty∆ + f(y∆),

where f : R → R may be any continuously differentiable function.
Note that dynamic equations on time scales (also on time scales different from

R or Z) have many applications (see [3, Section 1.3]). A recent paper of F. M. Atıcı
and M. Atıcı [2] discusses some applications to complexity of algorithms, where many
equations like T (n) = 3T (n/2)+n log n, T (n) = 5T (n/5) = n/ log n, T (n) = 3T (n/3+
5)+n/2, T (n) = T (n−1)+1/n, and T (n) =

√
nT (

√
n)+n arise. All these equations

can be rewritten as dynamic equations on particular time scales and can be treated
with the methods presented in this paper.

2. Linear Equations. We consider homogeneous linear dynamic equations of
higher order with constant coefficients (1.1), where y∆k

are defined recursively by

y∆0
= y and y∆k+1

=
(
y∆k

)∆

for k ∈ N0

and αk ∈ C for all 0 ≤ k ≤ n with αn �= 0. We call

(2.1) ϕ(λ) =
n∑

k=0

αkλk

the associated characteristic polynomial.

Theorem 2.1. If λ ∈ R is a zero of (2.1), then eλ(·, t0) solves (1.1).

Proof. According to our assumptions, λ ∈ R, and hence y(t) = eλ(t, t0) is well
defined. We find y∆k

= λky for all k ∈ N0, and therefore

n∑
k=0

αky∆k

=
n∑

k=0

αkλky = ϕ(λ)y.

Hence, if ϕ(λ) = 0, then y solves (1.1).

Definition 2.2. Equation (1.1) is called regressive if λ ∈ R for all zeros λ of ϕ.

Theorem 2.3. Equation (1.1) is regressive if and only if

(2.2)
n∑

k=0

αk(−µ(t))n−k �= 0 for all t ∈ T.
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Proof. To show this, let λ1, λ2, . . . , λn be the zeros of ϕ counting multiplicities.
Then

ϕ(λ) =
n∑

k=0

αkλk = αn

n∏
ν=1

(λ − λν).

The condition λν ∈ R for all 1 ≤ ν ≤ n is equivalent to
∏n

ν=1(1 + µ(t)λν) �= 0. If
µ(t) = 0, then αn

∏n
ν=1(1 + µ(t)λν) = αn =

∑n
k=0 αk(−µ(t))n−k. If µ(t) �= 0, then

αn

n∏
ν=1

(1 + µ(t)λν) = αn(−µ(t))n
n∏

ν=1

[(
− 1

µ(t)

)
− λν

]

= (−µ(t))nϕ

(
− 1

µ(t)

)

= (−µ(t))n
n∑

k=0

αk

(
− 1

µ(t)

)k

=
n∑

k=0

αk(−µ(t))n−k.

This proves our result.

Remark 2.4. Let λ1, λ2, . . . , λn be the zeros of the characteristic polynomial
(2.1). Then it is easy to see that (1.1) is regressive iff

n⊕
i=1

λi ∈ R, where
n⊕

i=1

λi := λ1 ⊕ λ2 ⊕ . . . ⊕ λn.

Example 2.5. Suppose T = 2N0 and consider the equation

(2.3) y∆∆ − 3y∆ + 2y = 0.

The characteristic polynomial for (2.3) is λ2 − 3λ + 2 and hence has zeros 1 and 2.
The regressivity condition (2.2) for (2.3) reads 2µ2(t) + 3µ(t) + 1 �= 0 for all t ∈ T,
and it is clearly satisfied. Hence two solutions (compare [3, Example 2.55]) of (2.3)
are

y1(t) = e1(t, 1) =
log2 t−1∏

k=0

(1 + 2k) and y2(t) = e2(t, 1) =
log2 t∏
k=1

(1 + 2k),

where the empty product is understood to be 1.

Now we consider linear equations in the multiple root case. The following lemma
collects some identities, that are useful when trying to solve this problem by the
variation of parameters method.

Lemma 2.6. Suppose λ ∈ R, let p be differentiable, and assume that there exists
a sequence {pk}k∈N0 satisfying

(2.4) p0 = p and p∆
k =

pk+1

1 + λµ(t)
for k ∈ N0.
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Let y(t) = p(t)eλ(t, t0). Then we have

(2.5) y∆k

=

{
k∑

ν=0

(
k

ν

)
pνλk−ν

}
eλ

for all k ∈ N0 and

(2.6)
n∑

k=0

αky∆k

=

{
n∑

ν=0

pν
ϕ(ν)(λ)

ν!

}
eλ.

Proof. We show (2.5) by induction. First y∆0
= y = peλ = p0eλ, and so (2.5)

holds for k = 0. If (2.5) holds for some k ∈ N0, then (use the product rule)

y∆k+1
=

({
k∑

ν=0

(
k

ν

)
pνλk−ν

}
eλ

)∆

=
k∑

ν=0

(
k

ν

)
λk−ν

{
pνe∆

λ + p∆
ν eσ

λ

}

=
k∑

ν=0

(
k

ν

)
λk−ν

{
pνλeλ + p∆

ν (1 + µλ) eλ

}

=

{
k∑

ν=0

(
k

ν

)
pνλk+1−ν +

k∑
ν=0

(
k

ν

)
pν+1λ

k−ν

}
eλ

=

{
p0λ

k+1 +
k∑

ν=1

[(
k

ν

)
+
(

k

ν − 1

)]
pνλk+1−ν + pk+1

}
eλ

=

{
k+1∑
ν=0

(
k + 1

ν

)
pνλk+1−ν

}
eλ

so that (2.5) holds for k + 1. This proves that (2.5) holds for all k ∈ N0. Now

n∑
k=0

αky∆k

=
n∑

k=0

αk

{
k∑

ν=0

(
k

ν

)
pνλk−ν

}
eλ

=

{
n∑

ν=0

n∑
k=ν

αk

(
k

ν

)
pνλk−ν

}
eλ

=

{
n∑

ν=0

pν

ν!

n∑
k=ν

αk
k!

(k − ν)!
λk−ν

}
eλ

=

{
n∑

ν=0

pν

ν!
ϕ(ν)(λ)

}
eλ,

and this proves (2.6).

Theorem 2.7. Suppose λ ∈ R, and assume that λ is a zero of (2.1) with
multiplicity at least m ∈ N. Put pm−1 = 1, pk = 0 for all k ≥ m, and recursively

pk(t) =
∫ t

t0

pk+1(τ)
1 + λµ(τ)

∆t for m − 2 ≥ k ≥ 0.
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Then y(t) = p(t)eλ(t, t0) is a solution of (1.1), where p = p0.

Proof. Note that the sequence {pk}k∈N0 defined as above is well defined (only
rd-continuous functions are integrated) and clearly satisfies (2.4). Since ϕ(ν)(λ) = 0
for all 0 ≤ ν < m, (2.6) implies that y(t) = p(t)eλ(t, t0) solves (1.1).

Example 2.8. If λ ∈ R is a triple zero of ϕ, then

eλ(t, t0), eλ(t, t0)
∫ t

t0

∆τ

1 + λµ(τ)
, and eλ(t, t0)

∫ t

t0

∫ τ

t0
∆s

1+λµ(s)

1 + λµ(τ)
∆τ.

are three solutions of (1.1). Note that for T = R we have
∫ t

t0

∆τ

1 + λµ(τ)
=
∫ t

t0

dτ = t − t0.

Remark 2.9. The assumption λ ∈ R in this section and throughout is mainly a
matter of convenience. It is possible to extend the presented results to the non-
regressive case in the following way: If λ ∈ C is a zero of (2.1) and if we put
t∗ := inf {t ∈ T : 1 + µ(t)λ = 0} (where inf ∅ = ∞), then y defined by y(t) = eλ(t, t0)
for t ≤ t∗ and y(t) = 0 for t > t∗ is a solution of (1.1).

3. Euler Equations. Throughout this section we assume that T is a time scale
with T ⊂ (0,∞). Motivated by the fact that solutions of Euler differential equations
(i.e., for T = R) are of the form y(t) = tλ with y′(t) = λ

t y(t), we want to look for
solutions of the form

y(t) = eλ
t
(t, t0)

also in the case of an Euler dynamic equation on an arbitrary time scale. Note that
for such y we have

y∆(t) =
λ

t
y(t) and y∆∆(t) =

λ(λ − 1)
tσ(t)

y(t),

and unfortunately y∆∆ may not be differentiable (see [3, Example 1.56]) again for a
general time scale. But note that

ty∆(t) = λy(t), (ty∆(t))∆ =
λ2

t
y(t),

t(ty∆(t))∆ = λ2y(t), (t(ty∆(t))∆)∆ =
λ3

t
y(t), · · · ,

and hence we wish to consider equations of the form (1.2), where the operators Mk

are defined recursively by (1.3). We call (1.2) an Euler equation of nth order, and as
before (2.1) is called the associated characteristic polynomial. Theorems 3.1 and 3.3
below may be shown in a way completely analogous to the proofs of Theorems 2.1
and 2.3, and hence we omit their proofs.

Theorem 3.1. If λ/t ∈ R and λ is a zero of (2.1), then eλ
t
(·, t0) solves (1.2).
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Definition 3.2. Equation (1.2) is called regressive if λ
t ∈ R for all zeros λ of ϕ.

Theorem 3.3. Equation (1.2) is regressive if and only if

(3.1)
n∑

k=0

αktk(−µ(t))n−k �= 0 for all t ∈ T.

Example 3.4. If n = 2, then (1.2) can be rewritten as

α2t(ty∆)∆ + α1ty
∆ + α0y = α2

[
tσ(t)y∆∆ +

(
α1

α2
+ 1

)
ty∆ +

α0

α2
y

]
.

Hence (1.2) is equivalent to

(3.2) tσ(t)y∆∆ + aty∆ + by = 0 with a =
α1

α2
+ 1, b =

α0

α2
.

The characteristic polynomial of (3.2) has the same zeros as λ2 + (a − 1)λ + b. The
regressivity condition (3.1) for (3.2) is equivalent to

tσ(t) − atµ(t) + b(µ(t))2 �= 0 for all t ∈ T.

Example 3.5. If n ≥ 3, then (1.2) can be “expanded” as in Example 3.4 if T is
a time scale with differentiable forward jump σ. E.g., if T = R, then

(3.3) α3t(t(ty∆)∆)∆ + α2t(ty∆)∆ + α1ty
∆ + α0y = 0,

which is equivalent to

(3.4) t3y′′′ + at2y′′ + bty′ + cy = 0 with a = 3 +
α2

α3
, b = 1 +

α1

α3
+

α2

α3
, c =

α0

α3
.

Note that the characteristic equation for (3.4) reads

λ3 + (a − 3)λ2 + (b − a + 2)λ + c = 0

while the characteristic equation for (3.3) reads — in a sense “more natural” and
“suggestive” — simply

α3λ
3 + α2λ

2 + α1λ + α0 = 0.

This remark applies to Euler equations of any order and on any time scale: Charac-
teristic equations for Euler equations in factored form are “easier to remember” than
those for the equations in expanded form.

Example 3.6. If ϕ(0) = 0 or ϕ(1) = 0, then we have (on any time scale)

e0(t, t0) = 1 and e 1
t
(t, t0) =

t

t0
.
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Example 3.7. It is easy to verify that

eλ
t
(t, t0) =

(
t

t0

)λ

if T = R,

eλ
t
(t, t0) =

Γ(t + λ)
Γ(t)

Γ(t0)
Γ(t0 + λ)

if T = Z,

where Γ is the gamma function, and

eλ
t
(t, 1) = tlogq [1+(q−1)λ] if T = qN0 with q > 1.

Now we consider Euler equations in the multiple root case. The following lemma
collects some identities that are useful when trying to solve this problem by the
variation of parameters method. Its proof is completely analogous to the proof of
Lemma 2.6, and therefore we omit it.

Lemma 3.8. Suppose λ
t ∈ R, let p be differentiable, and assume that there exists

a sequence {pk}k∈N0 satisfying

(3.5) p0 = p and p∆
k =

pk+1

t + λµ(t)
for k ∈ N0.

Let y(t) = p(t)eλ
t
(t, t0). Then we have

(3.6) Mky =

{
k∑

ν=0

(
k

ν

)
pνλk−ν

}
eλ

t

for all k ∈ N0 and

(3.7)
n∑

k=0

αkMky =

{
n∑

ν=0

pν
ϕ(ν)(λ)

ν!

}
eλ

t
.

As in Theorem 2.7, we now may use Lemma 3.8 to obtain the following result.

Theorem 3.9. Suppose λ
t ∈ R, and assume that λ is a zero of (2.1) with

multiplicity at least m ∈ N. Put pm−1 = 1, pk = 0 for all k ≥ m, and recursively

pk(t) =
∫ t

t0

pk+1(τ)
τ + λµ(τ)

∆t for m − 2 ≥ k ≥ 0.

Then y(t) = p(t)eλ
t
(t, t0) is a solution of (1.2), where p = p0.

Example 3.10. If λ is a triple zero of ϕ with λ/t ∈ R, then

eλ
t
(t, t0), eλ

t
(t, t0)

∫ t

t0

∆τ

τ + λµ(τ)
, and eλ

t
(t, t0)

∫ t

t0

∫ τ

t0
∆s

s+λµ(s)

τ + λµ(τ)
∆τ

are three solutions of (1.2). Note that for T = R we have∫ t

t0

∆τ

τ + λµ(τ)
=
∫ t

t0

dτ

τ
= log

t

t0
.
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Example 3.11. Suppose λ is a double zero of a characteristic polynomial (2.1)
for T = qN0 (where q > 1) with λ/t ∈ R, and let t0 = 1. Then two solutions of
the corresponding Euler q-difference equation (1.2) are given by y1(t) = tlogq [1+(q−1)λ]

(see Example 3.7) and

y2(t) = [1 + (q − 1)λ] y1(t)
∫ t

1

∆τ

τ + λµ(τ)
= y1(t)

∫ t

1

∆τ

τ
.

Note that∫ qm

1

∆τ

τ
=

m−1∑
k=0

∫ σ(qk)

qk

∆τ

τ
=

m−1∑
k=0

µ(qk)
qk

=
m−1∑
k=0

(q − 1)qk

qk
= m(q − 1),

and so y2(t) = (q − 1)tlogq[1+(q−1)λ] logq t. In particular, if q = 2, then

y1(t) = tlog2(1+λ) and y2(t) = tlog2(1+λ) log2 t.

Example 3.12. Let T = N
2 and consider the equation

t(1 +
√

t)2y∆∆ − ty∆ + y = 0.

Here, σ(t) = (1+
√

t)2 and µ(t) = 1+2
√

t. The characteristic polynomial is λ2−2λ+1.
Hence two solutions are given by (see Example 3.6)

y1(t) = e 1
t
(t, 1) = t and y2(t) = y1(t)

∫ t

1

∆τ

τ + µ(τ)
= t

∫ t

1

∆τ

σ(τ)
.

Note that∫ m2

1

∆τ

σ(τ)
=

m−1∑
k=1

∫ σ(k2)

k2

∆τ

σ(τ)
=

m−1∑
k=1

µ(k2)
σ(k2)

= m − 1 −
m−1∑
k=1

(
k

k + 1

)2

,

and hence

y2(t) = t

⎡
⎣√t − 1 −

√
t−1∑

k=1

(
k

k + 1

)2
⎤
⎦ .

4. Logistic Equations. Let us first recall the following results from [3, Theo-
rems 2.77 and 2.74].

Theorem 4.1 (Variation of Constants). Suppose p ∈ R and f ∈ Crd. Let t0 ∈ T.
(i) Let u0 ∈ R. The unique solution u satisfying the left equation in (1.4) and

u(t0) = u0 is given by

u(t) = ep(t, t0)u0 +
∫ t

t0

ep(t, σ(τ))f(τ)∆τ.
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(ii) Let v0 ∈ R. The unique solution v satisfying the right equation in (1.4) and
v(t0) = v0 is given by

v(t) = e�p(t, t0)v0 +
∫ t

t0

e�p(t, τ)f(τ)∆τ.

Motivated by the fact that (for differential equations) u = 1/y solves a linear
equation if y is a solution of the logistic equation, we assume that u is a solution of
the first linear equation in (1.4), and then y = 1/u satisfies

y∆ =
(

1
u

)∆

= − u∆

uuσ
= −pu + f

uuσ
= −(p + fy)yσ = [�(p + fy)] y.

Therefore we call the first equation in (1.5) (with p + fy ∈ R) a logistic dynamic
equation (or Verhulst equation). Similarly, we could start with a solution v of the
second linear equation in (1.4) and find that x = 1/v satisfies

x∆ =
(

1
v

)∆

= − v∆

vvσ
=

pvσ − f

vvσ
= (p − fxσ)x = [p � fx] x.

We also call the second equation in (1.5) (with fx ∈ R) a logistic dynamic equation.
Throughout we assume p ∈ R and f ∈ Crd. Note that if u(t) �= 0 for all t ∈ T, then
y = 1/u solves the first equation in (1.5) and automatically satisfies p + fy ∈ R, as
can be seen from the calculation

1 + µ(p + fy) =
u + µ(pu + f)

u
=

u + µu∆

u
=

uσ

u
�= 0.

Similarly, if v(t) �= 0 for all t ∈ T, then x = 1/v solves the second equation in (1.5)
and satisfies

1 + µfx =
v + µf

v
=

vσ + µ(f − v∆)
v

=
vσ + µpvσ

v
=

vσ(1 + µp)
v

�= 0

so that fx ∈ R follows.
Using Theorem 4.1, it is now easy to solve logistic equations as follows.

Theorem 4.2. Suppose p ∈ R and f ∈ Crd.
(i) Let y0 �= 0. If

u(t) =
ep(t, t0)

y0
+
∫ t

t0

ep(t, σ(τ))f(τ)∆τ �= 0 for all t ∈ T,

then

y(t) =
1

u(t)
=

e�p(t, t0)
1
y0

+
∫ t

t0
e�p(σ(τ), t0)f(τ)∆τ

solves the first equation in (1.5) and satisfies y(t0) = y0.
(ii) Let x0 �= 0. If

v(t) =
e�p(t, t0)

x0
+
∫ t

t0

e�p(t, τ)f(τ)∆τ �= 0 for all t ∈ T,
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then

x(t) =
1

v(t)
=

ep(t, t0)
1
x0

+
∫ t

t0
ep(τ, t0)f(τ)∆τ

solves the second equation in (1.5) and satisfies x(t0) = x0.

In applications (e.g., population dynamics) one often assumes that there exists a
constant N �= 0 such that

(4.1) p(t) = Nf(t) for all t ∈ T.

For the remainder of this section we assume (4.1). Then we can evaluate the integral
in the denominator of the solution given in Theorem 4.2 (ii) explicitly as∫ t

t0

ep(τ, t0)f(τ)∆τ =
∫ t

t0

ep(τ, t0)
p(τ)
N

∆τ =
1
N

[ep(t, t0) − 1] .

Hence we obtain the following corollary from Theorem 4.2 (ii).

Corollary 4.3. Suppose p ∈ R and let N �= 0 be a constant. Let x0 �= 0. If

1
x0

− 1
N

+
ep(t, t0)

N
�= 0 for all t ∈ T,

then

(4.2) x(t) =
ep(t, t0)

1
x0

− 1
N + ep(t,t0)

N

=
1

1
N +

(
1
x0

− 1
N

)
e�p(t, t0)

satisfies x(t0) = x0 and solves

(4.3) x∆ =
px
(
1 − x

N

)
1 + µp

N x
with

px

N
∈ R.

Remark 4.4. As is common in population dynamics, we call the function p from
Corollary 4.3 the intrinsic growth function, while we refer to N as the saturation
level or environmental carrying capacity. Note also that the functions x1(t) ≡ 0
and x2(t) ≡ N are solutions of (4.3), the so-called equilibrium solutions (or critical
solutions). If the starting value of x is between these two solutions, i.e., x0 ∈ (0, N),
then 1/x0 − 1/N > 0 and hence

1
x0

− 1
N

+
ep(t, t0)

N
>

ep(t, t0)
N

so that

0 < x(t) <
ep(t, t0)
1
N ep(t, t0)

= N, provided p ∈ R+.

Note that p ∈ R+ ensures that ep(t, t0) is positive (see [3, Theorem 2.48]). If x0 > N ,
then 1/x0 − 1/N < 0 and hence

x(t) > N, provided p ∈ R+.
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Assume now that p(t) > 0 for all t ∈ T. Then p ∈ R+. If x0 ∈ (0, N), then
0 < x(t) < N and

x∆ =
px
(
1 − x

N

)
1 + µp

N x
> 0

so that x is strictly increasing. Similarly, if x0 > N , then x is strictly decreasing. In
any case, if x0 �= 0 and if T is unbounded above, then

lim
t→∞x(t) = N, provided lim

t→∞ e�p(t, t0) = 0.

Example 4.5. Let T = R, let α be a constant, and consider the (continuous)
logistic equation

(4.4) x∆ = [α � (αx)] x, i.e., x′ = αx(1 − x).

Everything in Remark 4.4 applies to (4.4) (here p(t) ≡ α and N = 1), and by Corollary
4.3 the solution of (4.4) with x(s) = z (where s ∈ R and z ∈ R \ {0}) is

x(t) =
eα(t−s)

1
z − 1 + eα(t−s)

=
1

1 +
(

1
z − 1

)
eα(s−t)

.

Example 4.6. Let T = Z and consider the (discrete) logistic equation

(4.5) x∆ = [t � (tx)] x, i.e., ∆x =
tx(1 − x)

1 + tx
.

Everything in Remark 4.4 applies to (4.5) (here p(t) = t and N = 1), and by Corollary
4.3 the solution of (4.5) with x(s) = z (where s ∈ Z and z ∈ R \ {0}) is

x(t) =
t!
s!

1
z + t!

s! − 1
=

1
1 +

(
1
z − 1

)
s!
t!

.

Remark 4.7. One often finds an equation of the form

(4.6) yn+1 = αyn

(
1 − yn

N

)
referred to as a “logistic difference equation”. Observe that this equation and our
logistic difference equation introduced in this section are not the same. Our equation
has the advantage that it is easily accessible with the methods used to study the “nor-
mal” logistic differential equation. Even though (4.6) appears as a natural analogue
of the logistic differential equation, the results given in this section indicate that our
equation “deserves” the name logistic equation rather than (4.6) (which is of course
also worthy of study for its richness in dynamics).
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5. The Regressive Vector Space. For α ∈ R, we want to define the Bernoulli
equation in such a way, that the substitution x̃ = xα transforms a solution x of the
Bernoulli equation into a solution x̃ of the logistic equation. To do so, we now find a
formula for the derivative of xα. This task leads us in this section to the introduction
of a circle dot multiplication �, which turns out to make (R+,⊕,�) into a vector
space, the so-called regressive vector space. To begin with, we use the chain rule [3,
Theorem 1.90] to calculate

x̃∆(t) = (xα)∆(t) = x∆(t)
∫ 1

0

α
(
x(t) + µ(t)x∆(t)h

)α−1
dh.

If x(t) �= 0, then

(5.1) x̃∆(t) = x̃(t)
x∆(t)
x(t)

∫ 1

0

α

(
1 + µ(t)

x∆(t)
x(t)

h

)α−1

dh.

In order to have everything well defined, we want to assume that, if α ∈ R \ N,

(5.2) 1 + µ(t)
x∆(t)
x(t)

h > 0 for all t ∈ T and all h ∈ [0, 1].

It is easy to see that x∆/x ∈ R+ is sufficient for (5.2). Let us introduce the notation

R(α) :=

{
R if α ∈ N

R+ if α ∈ R \ N.

Note that p ∈ R+ implies that

1 + µ(t)p(t)h > 0 for all t ∈ T and all h ∈ [0, 1].

Definition 5.1. For α ∈ R and p ∈ R(α) we define α � p by (1.6).

Remark 5.2. Note that α � p = αp provided T = R.

Theorem 5.3. Let α ∈ R. If α ∈ N, suppose that x(t) �= 0 for all t ∈ T. If
α �∈ N, suppose that x(t)xσ(t) > 0 for all t ∈ T. Then the first formula in (1.8) holds.

Proof. First note that 1 + µx∆/x = xσ/x implies x∆/x ∈ R(α). Then the
statement follows from (5.1).

Example 5.4. It is easy to see that

2 � p = p ⊕ p,
1
2
� p =

p

1 +
√

1 + µp
, and 2 �

(
1
2
� p

)
= p.

Remark 5.5. The three formulas

(xy)∆

xy
=

x∆

x
⊕ y∆

y
,

(x/y)∆

x/y
=

x∆

x
� y∆

y
,

(xα)∆

xα
= α � x∆

x
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could be used to define a logarithm as

logf (t, t0) =
∫ t

t0

f∆(τ)
f(τ)

∆τ,

but then the usual logarithm rules would not hold as we had formulas involving an
additional integral, e.g.,

logxy(t, t0) = logx(t, t0) + logy(t, t0) +
∫ t

t0

µ(τ)x∆(τ)y∆(τ)
x(τ)y(τ)

∆τ.

It is still an open problem to define a logarithm that satisfies somehow “smoother”
logarithm rules.

Theorem 5.6. Let α ∈ R. If p ∈ R(α), then α � p ∈ R. More precisely, the
second formula in (1.8) holds.

Proof. Let α ∈ R and p ∈ R(α). Then

1 + µ(α � p) = 1 + µαp

∫ 1

0

(1 + µph)α−1dh = 1 +
∫ 1+µp

1

αsα−1ds = (1 + µp)α,

where we used the substitution s = 1 + µph. Therefore, α � p ∈ R.
The following result emphasizes again the importance of our circle dot multipli-

cation introduced in Definition 5.1.

Theorem 5.7. If α ∈ R and p ∈ R(α), then the third formula in (1.8) holds.

Proof. First note that p ∈ R(α) implies α � p ∈ R by Theorem 5.6. Now we let
t0 ∈ T and put y = eα

p (·, t0). Then y(t0) = 1 and by Theorem 5.3 (we skip the second
argument t0)

y∆ = (eα
p )∆ =

(
α � e∆

p

ep

)
eα
p = (α � p)y.

Hence y solves the initial value problem

y∆ = (α � p)(t)y, y(t0) = 1.

But this initial value problem has exactly one solution, namely eα�p(·, t0).
We will use Theorem 5.7 to show that (R+,⊕,�) satisfies the axioms of a vector

space. To do so, the following easy auxiliary result is helpful.

Lemma 5.8. Suppose p, q ∈ R. If ep = eq, then p = q.

Proof. Differentiate both sides of ep = eq to obtain this result.
Now we are ready to prove the main result of this section.

Theorem 5.9. (R+,⊕,�) is a real vector space.

Proof. As is known (see e.g., [3, Lemma 2.47]), (R+,⊕) is an Abelian group. We
now prove the remaining four vector space properties

(5.3) α � (β � p) = (αβ) � p for all α, β ∈ R, p ∈ R+;
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(5.4) 1 � p = p for all p ∈ R+;

(5.5) α � (p ⊕ q) = (α � p) ⊕ (α � q) for all p, q ∈ R+, α ∈ R;

(5.6) (α + β) � p = (α � p) ⊕ (β � p) for all α, β ∈ R, p ∈ R+.

Clearly, (5.4) follows directly from Definition 5.1. For (5.3), (5.5), and (5.6) we
use Theorem 5.7, Lemma 5.8, the rules (1.9) for the exponential function, and the
“normal” rules of exponents as follows:

eα�(β�p) = eα
β�p = (eα

p )β = eαβ
p = e(αβ)�p

implies (5.3),

eα�(p⊕q) = eα
p⊕q = (epeq)α = eα

p eα
q = eα�peα�q = e(α�p)⊕(α�q)

implies (5.5), and

e(α+β)�p = eα+β
p = eα

p eβ
p = eα�peβ�p = e(α�p)⊕(β�p)

implies (5.6).

Remark 5.10. Note that (5.4) of course holds for each p ∈ R. Furthermore, if
α, β ∈ N, then (5.3), (5.5), and (5.6) also hold for p, q ∈ R.

Remark 5.11. A referee pointed out that the circle dot product allows the
representation (α � p)(t) = limh→µ(t)

(1+hp(t))α−1
h , but we are not using this formula

here.

6. Bernoulli Equations. Now we let α ∈ R \ {0} and consider the Bernoulli
equation (1.7). Note that (1.7) is in the form of the second equation in (1.5) if α = 1.
Introducing x̃ = xα, we find if x never vanishes and solves (1.7), then

x̃∆

x̃
=

(xα)∆

xα
= α � x∆

x
= α �

[
p �

(
1
α
� fxα

)]
= (α � p) � fx̃,

where we used Theorem 5.3 and the vector space properties (5.3) and (5.5). Hence x̃
solves the logistic equation

(6.1) x̃∆ = [(α � p) � (fx̃)] x̃.

Equation (6.1) is of the form (1.5), so that we may apply Theorem 4.2 (ii) (use also
Theorem 5.7) to find x̃ as

x̃(t) =
eα
p (t, t0)

1
x̃0

+
∫ t

t0
eα
p (τ, t0)f(τ)∆τ

.

It is hence easy to show the following result.

Theorem 6.1. Suppose α ∈ R \ {0}, p ∈ R(α), and f ∈ Crd. Let x0 �= 0. If

1
xα

0

+
∫ t

t0

eα
p (τ, t0)f(τ)∆τ > 0 for all t ∈ T,
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then

x(t) =
ep(t, t0)[

1
xα
0

+
∫ t

t0
eα
p (τ, t0)f(τ)∆τ

]1/α

solves the Bernoulli equation (1.7).

Example 6.2. Consider the initial value problem

(6.2) x′ = −x + tx4, x(0) = 1.

Note that the differential equation in (6.2) can be rewritten as a dynamic (with T = R)
Bernoulli equation

x∆ =
[
p �

(
1
α
� fxα

)]
x with p(t) ≡ −1, f(t) = −3t, α = 3.

According to Theorem 6.1 (with t0 = 0 and x0 = 1), the solution of (6.2) is

x(t) =
ep(t, t0)[

1
xα
0

+
∫ t

t0
eα
p (τ, t0)f(τ)∆τ

]1/α
=

e−t[
2
3 +

(
t + 1

3

)
e−3t

]1/3
.

(We point out that x is not a solution of (6.2) on the whole time scale.)

Example 6.3. Consider the initial value problem

(6.3) ∆x =
5x − x3 + 5x

√
1 + x2

1 + x2 +
√

1 + x2
, x(0) = 1.

Note that

5 − x2 + 5
√

1 + x2

1 + x2 +
√

1 + x2
= 5 � x2

1 +
√

1 + x2
= 5 �

(
1
2
� x2

)

implies that the difference equation in (6.3) can be rewritten as a dynamic (with
T = Z) Bernoulli equation

x∆ =
[
p �

(
1
α
� fxα

)]
x with p(t) ≡ 5, f(t) ≡ 1, α = 2.

According to Theorem 6.1 (with t0 = 0 and x0 = 1), the solution of (6.3) is

x(t) =
ep(t, t0)[

1
xα
0

+
∫ t

t0
eα
p (τ, t0)f(τ)∆τ

]1/α
=

6t
√

35√
34 + 36t

.
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7. Riccati Equations. In this section we consider the Riccati equation

(7.1) z∆ + q(t) + r(t)zσ +
z2

p(t) + µ(t)z
= 0,

where p, q ∈ Crd, r ∈ R, and p(t) �= 0 for all t ∈ T. Note that (7.1) can be written in
the form (1.10). We now assume that z1 is a known solution of (1.10). We pick any
other solution z of (1.10) and consider the difference y = z − z1. It follows that

y∆ = −q − rzσ − p

(
z

p

)©2
+ q + rzσ

1 + p

(
z1

p

)©2

= −ryσ + p

[(
z1

p

)©2
−
(

z

p

)©2 ]
.

To continue this calculation, the following lemma is useful and can be proved by a
direct computation.

Lemma 7.1. For p, q ∈ R we have p©2 − q©2 = [�(p ⊕ q)] (q − p).

We may use Lemma 7.1 to continue our calculation from above as follows:

y∆ = −ryσ + p

[(
z1

p

)©2
−
(

z

p

)©2 ]

= −ryσ + p

[
�
(

z1

p
⊕ z

p

)](
z

p
− z1

p

)

= −ryσ + y

[
�
(

z1

p
⊕ z

p

)]
.

Denoting s = �
(

z1
p ⊕ z

p

)
, we continue to find

y∆ = −ryσ + ys = −ry − rµy∆ + ys = y(s − r) − rµy∆

and therefore (solve this last equation for y∆)

(7.2) y∆ = y
s − r

1 + µr
= y(s � r).

Now, apply the formula

a ⊕ (b + c) = a + b + c + µab + µac = (a ⊕ b) + c(1 + µa)

to find

�(s � r) =
z1

p
⊕ z

p
⊕ r =

z1

p
⊕ r ⊕

(
z1

p
+

y

p

)

=
[(

2 � z1

p

)
⊕ r

]
+

y

p

[
1 + µ

(
z1

p
⊕ r

)]
= g + fy,

where

(7.3) f =
1 + µ

(
r ⊕ z1

p

)
p

and g = r ⊕
(

2 � z1

p

)
.
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Hence, using (7.2), we find that y satisfies the equation

(7.4) y∆ = [�(g(t) + f(t)y)] y.

Equation (7.4) is a logistic equation as in (1.5). Hence the following result holds.

Theorem 7.2. Suppose z1 is a solution of the Riccati equation (1.10). Define f
and g by (7.3) and let y be a solution of the logistic equation (7.4). Then z = z1 + y
is also a solution of the Riccati equation (1.10).

Corollary 7.3. Suppose z1 is a solution of the Riccati equation (1.10). Define
f and g by (7.3). Then a solution z of (1.10) satisfying z(t0) = z0 is given by

z(t) = z1(t) +
eg(t0, t)

1
z0−z1(t0)

+
∫ t

t0
eg(t0, σ(τ))f(τ)∆τ

,

provided none of the denominators is zero.

Proof. This follows from Theorem 4.2, where solutions of (1.5) are given.

Example 7.4. We consider the equation

(7.5) z∆ + [�(−t)] zσ +
z2

µ(t)z − 1
t

= 0.

Equation (7.5) is a Riccati equation of the form (7.1) with coefficients p(t) = −1
t ,

q(t) = 0, and r(t) = �(−t). By examination, z1(t) ≡ 1 solves (7.5). We have

z1(t)
p(t)

= −t and
(

r ⊕ z1

p

)
(t) = [�(−t)] ⊕ (−t) = 0

so that f and g from (7.3) are given by f(t) = g(t) = −t. Hence, by Corollary 7.3,
we find that another solution of (7.5) is given by

z(t) =
1

1 −
(
1 − 1

z0

)
e�(−t)(t, t0)

,

provided none of the demoninators is zero. This solution z satisfies z(t0) = z0.

8. Clairaut Equations. The Clairaut dynamic equation appears as in (1.11),
where f : R → R is some continuously differentiable function. We proceed to treat
(1.11) as its continuous analogue y = ty′+f(y′) and perform the substitution v = y∆.
Then

(8.1) y(t) = tv(t) + f(v(t)).

Differentiating (8.1) and using [3, Theorem 1.90], we conclude

v(t) = y∆(t) = σ(t)v∆(t) + v(t) + v∆(t)
∫ 1

0

f ′ (v(t) + hµ(t)v∆(t)
)
dh

so that

0 = v∆(t)
{

σ(t) +
∫ 1

0

f ′ (v(t) + hµ(t)v∆(t)
)
dh

}
.
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(Note that differentiating both sides of (8.1) can introduce extraneous solutions.)
Hence we obtain the following result.

Theorem 8.1. For any constant c ∈ R,

(8.2) y(t) = ct + f(c)

is a solution of (1.11). Further solutions of (1.11) may be obtained by solving

(8.3)
∫ 1

0

f ′ (v(t) + hµ(t)v∆(t)
)
dh = −σ(t), y∆ = v.

Example 8.2. Consider the equation

(8.4) y = ty∆ +
(
y∆
)2

,

which is of the form (1.11) with f(x) = x2. By (8.2) of Theorem 8.1, we find that
y(t) = ct + c2 is a solution of (8.4), where c ∈ R is an arbitrary constant. With
v = y∆, the left hand side of (8.3) becomes∫ 1

0

f ′ (v(t) + hµ(t)v∆(t)
)
dh = 2

∫ 1

0

(
v(t) + hµ(t)v∆(t)

)
dh = 2v(t) + µ(t)v∆(t).

Hence we must solve

(8.5) 2v + µ(t)v∆ = −σ(t), i.e., v + vσ = −σ(t).

If T = R, then (8.5) becomes 2v(t) = −t, and therefore y(t) = − t2

4 is also a solution
of (8.4). Now we assume that

(8.6) T = {tk : k ∈ N0} with t0 < t1 < t2 < . . . .

Then we may divide (8.5) by µ(t) to arrive at

v∆ =
2

µ(t)
vσ +

σ(t)
µ(t)

,

which is an equation as in (1.4) with p = −2/µ and f = σ/µ. By Theorem 4.1, a
solution is given by (note that �(−2/µ) = −2/µ)

v(t) = e−2/µ(t, t0)v0 +
∫ t

t0

e−2/µ(t, τ)
σ(τ)
µ(τ)

∆τ.

We find

v(tm) = (−1)mv0 +
m−1∑
k=0

(−1)m−ktk+1 = (−1)mc − (−1)m

[
α +

m∑
k=1

(−1)ktk

]
,

where we replaced v0 by c−α. The value of the above sum depends on the time scale,
and we will do the calculation for a few time scales that satisfy (8.6). First,

T = N0 implies
m∑

k=1

(−1)ktk = (−1)m

(
m

2
− 1

4

)
− 1

4
.
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Now we check for which values of α we do have indeed a solution (as extraneous
solutions could have been introduced) and find α = 1/4 and conclude that

y(t) =
(−1)t

2
c − t(t − 1)

4
− t

4
+
(

1
16

+ c2

)
=
(

c(−1)t − 1
4

)2

− t2

4

is also a solution of (8.4) for any c ∈ R (see also [1, Example 3.1.1]). Next,

T = qN0 implies
m∑

k=1

(−1)ktk = (−1)m qm+1

q + 1
− q

q + 1
,

so we choose α = q/(q + 1) and derive that

y(t) =
1 − q

1 + q
ct(−1)logq t − qt2

(q + 1)2
+ c2 =

(
c(−1)logq t − (q − 1)t

2(q + 1)

)2

− t2

4

is also a solution of (8.4) for any c ∈ R. Finally, we note that

T = N
2
0 implies

m∑
k=1

(−1)ktk = (−1)m m(m + 1)
2

,

and hence we choose α = 0 and find that

y(t) = −c
√

t(−1)
√

t − t2

4
+

t

4
+ c2 =

(
c(−1)

√
t −

√
t

2

)2

− t2

4

is also a solution of (8.4) for any c ∈ R.
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