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FINITE DIMENSIONAL REDUCTION FOR THE POSITIVITY OF

SOME SECOND SHAPE DERIVATIVES ∗

ANTOINE HENROT† , MICHEL PIERRE‡ , AND MOUNIR RIHANI§

Abstract. We study the positivity of the second shape derivative around an equilibrium for a
functional defined on exterior domains in the plane and which involves the perimeter of the domains
and their Dirichlet energy under volume constraint. We prove that small analytic perturbations
of circles may be stable or not, depending on the positivity of a simple and explicit two-variable
quadratic form. The approach is general and involves a numerical criterion of independent interest
for the positivity of a quadratic form on a given hyperplane.

1. Introduction. Our goal is to develop general methods to study the stability
of equilibrium shapes for some functionals like those arising in the 2-dimensional
modeling of the so-called ”exterior shaping problem”. ”Exterior” means here that
the considered variable shapes are ”exterior domains”, that is, the complement of
compact sets in R

2.
By equilibrium shape, we mean a regular exterior open subset Ω∗ of R

2 where the
first shape derivative vanishes. By stability, we mean that the second derivative with
respect to the shape is strictly positive at Ω∗. It is classical that, for regular shapes,
the first and second derivatives are respectively linear and quadratic forms on a space
of functions from the boundary Γ∗ of Ω∗ into R.

We are mainly interested in the case where the measure of the complement of
the shapes is prescribed. Therefore, the question concerns the positivity of the sec-
ond derivative of the full lagrangian (the initial functional together with a Lagrange
multiplier term) on the hyperplane tangent to the constraint of prescribed measure.
Part of our contribution here is to develop some general tools to do it. In this direc-
tion, we provide a useful numerical criterion for checking the positivity of quadratic
forms having exactly one negative eigenvalue. Besides its application to our specific
functionals, it is illustrated by other examples.

As a good illustration of the functional we consider here, we may think to the
shape of a liquid metal confined in an electromagnetic field. The domain occupied
by the liquid is a compact set whose complement is an ”exterior” open set Ω. The
Lebesgue measure of the complement cΩ of Ω is prescribed, since it is exactly the
domain occupied by the liquid. For a good stability, the equilibrium configuration of
the liquid should be a local minimum for the total energy.

According to a natural magnetostatic model, the electromagnetic part of the
energy of the system is given by the Dirichlet energy

J(Ω) =
1

2

∫

Ω

|∇uΩ|
2 −

∫

Ω

f uΩ,

where f is the density of the imposed alternative currents and where uΩ denotes the
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electromagnetic potential and is the solution of the Dirichlet problem

−∆uΩ = f in Ω, uΩ = 0 on ∂Ω, |∇uΩ| → 0 at ∞. (1.1)

Note that

J(Ω) = −
1

2

∫

Ω

|∇uΩ|
2 = −

1

2

∫

Ω

f uΩ.

The total energy of the system is the functional

Ω → −
1

2

∫

Ω

|∇uΩ|
2 + τP (Ω),

where τ > 0 and P (Ω) denotes the perimeter of Ω (or equivalently the perimeter of
cΩ). Here the second term τP (Ω) represents the surface tension energy.

We are interested in exterior shapes Ω∗ for which the total energy reaches a
minimum under the volume constraint

S(cΩ) = S(cΩ∗) = S0,

where S(·) denotes the Lebesgue measure in R
2 and S0 is prescribed. A necessary

condition is that Ω∗ be a critical shape for the functional

Ω → E(Ω) = −
1

2

∫

Ω

|∇uΩ|
2 + τP (Ω) − ΛS(cΩ), (1.2)

where Λ is a Lagrange multiplier. This writes (see Section 2)

1

2
|∇uΩ∗ |2 + τC − Λ = 0 on ∂Ω∗, (1.3)

where C is the curvature of ∂Ω∗ seen from the exterior of Ω∗ (so that it be positive if
∂Ω∗ is a circle).

To decide whether such an equilibrium shape Ω∗ is a minimum, we need to look at
the positivity of the second derivative of the functional E(·) on an adequate functional
subspace ”tangent to the constraint”. The study of this positivity is the main purpose
of this paper.

A similar study has already been done in [17], but for the so-called ”interior
shaping” where the variable shape is a regular bounded open set. The expression of
the second derivative is a very similar quadratic form except for a few signs, but which
makes the question of positivity quite different. For instance, it is proved in [17] that
any convex Γ∗ is stable. Here, we will consider only small analytic perturbations of a
circle (therefore convex) and show that some are stable and some are not. The point
is that we provide a complete numerical criterion to decide whether or not stability
holds: it simply reduces to the elementary study of the positivity of a quadratic form
in R

2.
Note that a first analysis had been made in [9],[8],[16] in the particular case of

zero surface tension, where instability mainly occurs for the exterior problem. We
prove here that instability still occurs for small surface tension, but, more interesting,
may even occur for large surface tension. We also refer to [1],[10],[11] for the study of
second order conditions in shape optimization.

As a last comment, we refer to [5],[4] where the relationship between positivity
and ”true” stability of the equilibrium is discussed. Since we are in infinite dimension,
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strict positivity means coercivity with respect to a certain norm. But, as usually in
shape optimization, the coercivity of the second derivative does not occur for the
stronger norm where Taylor formula applies. Therefore, a local minimum may a
priori not exist, even in a neighborhood for the strong norm. However, it is proved
in [5],[4] that a local minimum does indeed exist, for this kind of functionals, at least
for the stronger norm, that is to say, for regular perturbations of the equilibrium. On
the other hand, examples are provided in [17] showing that ”irregular” perturbations
may decrease the energy while coercivity occurs.

2. Second derivative of exterior shaping functional. We consider the func-
tional E(·) given by (1.2) where we assume that f is regular (say C1) and compactly
supported. Let Ω∗ be a regular open subset (say of class C5 at least) such that cΩ∗

is compact. As proved in several places (see e.g. [8],[9],[23],[20]), the functional E(·)
is twice ”differentiable” at Ω∗. For the definition of these derivatives, we will adopt
the point of view of [21] where Fréchet derivatives are considered in the space Θ3 of
functions θ ∈ C3(R2, R2) whose derivatives up to the third order are bounded. This
space is equipped with a natural norm. Then the mapping

E : θ ∈ Θ3 → E
(
(I + θ)(Ω)

)
, (2.1)

is twice differentiable at θ = 0 (here I denotes the identity in Θ3).
It is important to recall the structure of these derivatives. It is well-known for first

derivatives from the pioneering paper by Hadamard [13]. It may also be found for the
second derivative under different forms in several papers (see [20],[22],[7],[2],[23],[21]).
Here, we use the notations and results of [21], Theorem 2.1 and Corollaries 2.4,2.9.
We state it for our functional E(·), but it is the same for any regular functional. We
denote by ν the inward normal unit vector to Γ∗ = ∂Ω∗ (directed towards Ω∗). The
Fréchet-derivatives of E(·) at θ = 0 will be described by their action on arbitrary
regular displacements ξ, η ∈ Θ3.

Lemma 2.1. There exists a continuous linear map l1 from C3(Γ∗) into R such
that, for all ξ ∈ Θ3,

E ′(0)(ξ) = l1(ξ · ν).

There exists a continuous bilinear symmetric map l2 from C3(Γ∗) × C3(Γ∗) into R

such that for all ξ, η ∈ Θ3,

E ′′(0)(ξ, η) = l2(ξ · ν, η · ν) − l1(ξ
τ · Dτν ητ + ν · Dτξ ητ + ν · Dτη ξτ ),

where ξτ = ξ− (ξ ·ν)ν denotes the tangential component of ξ and where Dτξ = D(ξτ )
denotes the matrix of the derivatives of ξτ .

As a consequence of this structure theorem, to obtain full information on deriva-
tives, it is sufficient to identify l1, l2. This may be done by using specific variations
of the form t → E(Ωt) where t tends to 0 and where the Ωt’s are well-chosen pertur-
bations of Ω∗ (chosen to allow as simple computations as possible). To simplify the
computation of the second derivative, it is interesting to choose normal displacements
to Γ∗, so that only l2 is involved.

Let us choose Ωt = Tt(Ω
∗) where Tt : R

2 → R
2 is defined as follows. For any

regular function h : Γ∗ → R, we denote by h̃ a regular extension of h to R
2 and by ν̃

a regular unitary extension of ν to R
2 (see e.g. [12] for details). Now set

∀x ∈ R
2, ∀t ≥ 0 : Ttx = x + t h̃(x)ν̃(x),

Ωt = Tt(Ω), e(t) = E(Tt(Ω)) = E(Ωt).

}
(2.2)
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Then, since e(t) = E(t h̃ν̃), by the chain rule and Lemma 2.1, we obtain

e′(0) = l1(h), e′′(0) = l2(h, h). (2.3)

Now, we can explicitly describe e′(0), e′′(0) in our case. We use the following
notations:

u = uΩ∗ , β = ∇u · ν = ∂u/∂ν (interior normal derivative to Γ∗).

We denote by h′ the derivative with respect to the length parameter on Γ∗ and by
D the exterior capacity operator on Γ∗ which, to each regular function h : Γ∗ → R,
associates the trace on Γ∗ of −∂H/∂ν = −(∇H)|Γ∗ · ν where

∆H = 0 in Ω∗, H = h on Γ∗ and |∇H(x)| → 0 as |x| → ∞.

(This operator is also called in the literature Dirichlet-to-Neumann or Stekloff-
Poincaré operator. We refer for instance to [6] for its properties). In particular,
we have

∫

Γ∗

hDh =

∫

Ω∗

|∇H|2. (2.4)

Recall that C denotes the curvature of Γ∗ seen from outside Ω∗.

Proposition 2.2. With the above notations, the derivatives of E(·) are given as
follows.

e′(0) = l1(h) =

∫

Γ∗

(
1

2
β2 + τC − Λ)h. (2.5)

If l1 ≡ 0, then

e′′(0) = l2(h, h) =

∫

Γ∗

βhD(βh) − (2Λ − τC)Ch2 − fβh2 + τh′2. (2.6)

Remark 2.3. As explained in the introduction, ”l1 ≡ 0” means that Ω∗ is a
critical shape for Ω → J(Ω) + τP (Ω) (see 1.2) under the constraint S(cΩ) = S0, and
Λ is the Lagrange multiplier. In this case, we have

β2 = 2(Λ − τC) on Γ∗. (2.7)

Remark 2.4. Indications for the proof of Proposition 2.2 may be found in the
appendix. The computation is very similar to the one made for the so-called ”interior
shaping problem” (see [17]). The only difference here is that Ω∗ is an exterior domain
whose complement has a prescribed measure, while in [17], Ω∗ is a bounded domain
with prescribed measure. This leads to slight differences in the expression of the
derivatives (but to important differences for the question of positivity).

Remark 2.5. A necessary second order condition: Let us assume that
J(·) + τP (·) has a local minimum at Ω∗ among the regular domains Ω satisfying
the measure constraint S(cΩ) = S0. Then θ ∈ Θ3 → (J + τP )((I + θ)(Ω∗)) has a
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minimum at θ = 0 on the manifold of θ’s such that S
(
(I + θ)(cΩ∗)

)
= S(cΩ∗). As a

consequence, the second derivative of the full Lagrangian

θ → (J + τP − ΛS)
(
(I + θ)(Ω∗)

)

is nonnegative on the hyperplane of linearized constraints, that is on {ξ ∈ Θ3;
∫
Γ∗ ξ ·

ν = 0}. This means that, for all h ∈ C3(Γ∗) such that
∫
Γ∗ h = 0, the quadratic form

Q(h) =

∫

Γ∗

βhD(βh) − (2Λ − τC)Ch2 − f βh2 + τh′2, (2.8)

is nonnegative.

Remark 2.6. From now on, we will mainly assume that f vanishes on Γ∗. As
explained in [14],[17],[3], it is actually natural to assume that f is even compactly
supported in Ω∗. Moreover, once we have studied the case f = 0 on Γ∗, we may
separately study the influence of adding the term in f in the expression of l2(h, h)
above. A simple analysis shows that it essentially brings more instability. If for
instance f ≥ 0, then u ≥ 0 on Ω∗ and β = ∂u/∂ν ≥ 0 on Γ∗. Therefore, the extra
term −fβh2 in Q(h) is negative.

Note that, if f = 0 on Γ∗, the quadratic form Q depends only on the geometry
of Γ∗ and on τ,Λ.

3. Positivity of second derivatives. Following the above discussion, our goal
is to study, in some particular situations, the positivity of the quadratic form

h → Q(h) =

∫

Γ∗

βhD(βh) − (2Λ − τC)Ch2 + τh′2, (3.1)

for functions h satisfying
∫
Γ∗ h = 0. Obviously, Q is continuous for the H1(Γ∗)-

topology so that the natural question is to decide whether Q is coercive on the space

Z1
0 (Γ∗) = {h ∈ H1(Γ∗) :

∫

Γ∗

h = 0}

that is whether

∃η0 > 0, such that ∀h ∈ Z1
0 (Γ∗), Q(h) ≥ η0‖h‖

2
H1(Γ∗). (3.2)

We will restrict our study to the case where Γ∗ is a small analytic perturbation
of the unit circle Γ0 of the form

Γ∗ = {φǫ(e
iθ), θ ∈ [0, 2π]}, φǫ(z) = z + ǫR(z) + ǫ2Tǫ(z)}, (3.3)

with ǫ > 0 small, R, Tǫ are complex valued holomorphic functions in a neighborhood
of the unit circle and Tǫ is uniformly bounded as well as its derivatives in a
neighborhood of the unit circle. In particular, Γ∗ is a Jordan curve.

Two families of situations: It turns out that there are two rather different families
of situations: indeed, the equilibrium condition (2.7) writes

β2 = 2(Λ − τC) onΓ∗, (3.4)
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so that, if CM := maxΓ∗ C, then Λ ≥ τCM .
But the situation will be different depending on whether this inequality is strict

or not.
If there exists a point of Γ∗ at which ∇u = 0, then necessarily τ CM = Λ. This

is necessarily the case if, for instance,
∫
Ω∗ f = 0 and Γ∗ is a Jordan curve. Indeed, if

∇u did not vanish on Γ∗, then, we would have
∫

Γ∗

|∇u| = |

∫

Γ∗

∇u · ν| = |

∫

Ω∗

∆u| = |

∫

Ω∗

f | = 0,

which would be a contradiction with ∇u 6= 0 on Γ∗. In some applications, like the
shaping of liquid metals by electromagnetic devices, this case τCm = Λ turns out to
be more ”physical” since, in two-dimensional models, it is natural to assume that the
distribution of currents f satisfies

∫
Ω∗ f = 0 (see [9],[8],[14]).

We will see that small perturbations of the disk may be stable or not and this will
depend only on three quantities a, b, c that we introduce now. Assuming ℜ(·) denotes
the real part of a complex number, set

g1(θ) = ℜ(
(
R′(eiθ)

)
, g2(θ) = ℜ

(
eiθR′′(eiθ) − R′(eiθ)

)
, (3.5)

g∞2 = sup{g2(θ), θ ∈ [0, 2π]}, η = sign(β), ℓ(θ) = η
√

g∞2 − g2(θ). (3.6)

Next, we set (D0 denotes the exterior capacity operator D on the unit circle Γ0):





a =

∫ 2π

0

[
2ℓ(θ) cos θ D0(ℓ(θ) cos θ) − g∞2 − g1(θ)

]
dθ,

b =

∫ 2π

0

[
2ℓ(θ) sin θ D0(ℓ(θ) sin θ) − g∞2 − g1(θ)

]
dθ,

c =

∫ 2π

0

[2ℓ(θ) cos θ D0(ℓ(θ) sin θ)] dθ.

(3.7)

Theorem 3.1. Assume Λ = τCM . Then, if

a > 0 , b > 0 , c2 − ab < 0, (3.8)

there exists ǫ0 > 0 such that for all ǫ ∈]0, ǫ0[, Q satifies the H1-coercivity property
(3.2). On the other hand, if

a < 0 or b < 0 or c2 − ab > 0, (3.9)

then, for ǫ small enough, there exists h ∈ Z1
0 (Γ∗) such that Q(h) < 0.

Remark 3.2. Above theorem says that the positivity or the nonpositivity of Q
depends only of the positivity of the 2-dimensional quadratic form

(x, y) ∈ R
2 → ax2 + 2cxy + by2.

Therefore, the positivity of Q may be decided from quite elementary computations.
As one easily checks, both (3.8) and (3.9) can happen. As a consequence, some

small analytic perturbations of circles are stable, somes others are unstable. The next
corollary describes a ”good” situation:
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Corollary 3.3. Assume R(z) = z−(2 k+1), k ≥ 1. Then, for ǫ small enough,
the coercivity property (3.2) holds.

Remark 3.4. As proved in [14], any analytic Jordan curve Γ∗ for which the
curvature reaches its maximum at an even number of points is ”shapable” with τCM =
Λ, in the sense that there exists a distribution f compactly supported in Ω∗ whose
equilibrium shape is exactly Γ∗ and for which τCM = Λ. Obviously, the curves
considered in the above corollary have this geometric property (so that it makes sense
to consider them in the scope of Theorem 3.1).

Corollary 3.5. Assume Γ∗ is an equilibrium curve corresponding to a distri-
bution f of four Dirac masses at the vertices (α, β), (−α, β), (−α,−β), (α,−β) of a
rectangle and with alternate sign. Assume τ is large. Then, there exist values of (α, β)
(with |α| 6= |β|) for which instability holds.

Remark 3.6. It may be surprising to consider the case where f is a sum of
Dirac masses since we have assumed that f is at least a C1 function. Indeed, due
the presence of Dirac masses, the Dirichlet energy is even infinite! However, f is zero
around Γ∗ and the corresponding quadratic form does exist and is well defined on a
curve which is close to a circle for τ large. Therefore, it makes sense to analyze the
positivity of this form. Now, a little work is needed to interpret the result and to
redefine the notion of minimum and stability after extracting the singularities. We
will not provide the details here, but just look at the positivity of Q. We refer to [15]
for more information on the case of Dirac masses. Note that it is also significant of
the situation where f is regular and close to a sum of Dirac masses.

Finally, we consider the case Λ > τCM . As one expects, we obtain quite less
stability in that situation. For instance, we have

Theorem 3.7. Assume Ω∗ is the exterior of a regular Jordan curve Γ∗ different
from a circle and Λ > τCM . Then, there exist h ∈ Z1

0 (Γ∗) and τ0 > 0 such that
Q(h) < 0 for all τ ∈ (0, τ0).

Remark 3.8. This is an easy consequence of the instability result proved in [9]
for τ = 0. It is interesting to notice that instability is not only due to the absence of
surface tension but remains for small surface tension.

Remark 3.9. As in Remark 3.4, to understand the above theorem, we must
recall that (see [14]), given any analytic Jordan curve Γ∗ and given any τ,Λ with
Λ > τCM , there exists a distribution f compactly supported in Ω∗ whose equilibrium
shape is Γ∗. The theorem says that, for this set of data, instability occurs since the
corresponding second derivative is negative in some direction.

Let us now consider the case where Γ∗ is a perturbation of the unit circle as in
(3.3). Like for Theorem 3.1, we introduce convenient quantities:





â =

∫ 2π

0

[−Λ(g1 + g2) + τg1] cos 2θ,

ĉ =

∫ 2π

0

[−Λ(g1 + g2) + τg1] sin 2θ.

(3.10)
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Theorem 3.10. Assume Γ∗ is a perturbation of the unit circle as in (3.3) and
Λ > τCM . If

â 6= 0 or ĉ 6= 0, (3.11)

then, for ǫ small enough, there exists h ∈ Z1
0 (Γ∗) such that Q(h) < 0.

Remark 3.11. This theorem says that, ”in general”, small perturbations of
circle are unstable when Λ > τCm. When â = ĉ = 0, it is necessary to pursue further
the expansion with respect to the small parameter ǫ to decide about stability. But,
since the dependence of â, ĉ in g1, g2 is linear, this happens only for a subspace of
codimension 2. It turns out that it is precisely the case for the perturbations of the
kind considered in Corollary 3.3, except for k = 1 (the case of the ellipse). Actually,
we have:

Corollary 3.12. Assume Λ > τCM and the perturbation is of the form R(z) =∑
n≥1 σnz−n with σn ∈ R. Then, if σ1 6= 0, instability holds for ǫ small enough.

Remark 3.13. The proof of the results are given in Section 5. They requires
some abstract tools of independent interest about the positivity of the restriction of
quadratic forms on hyperplanes in real Hilbert spaces. They are discussed in the next
section.

4. A general criterion for constrained stability. Let H be a real separable
Hilbert space with scalar product and norm denoted by (·, ·), ‖ · ‖, let H′ its dual
with H′ ×H duality product < ·, · > and R the Riesz isomorphism from H onto H′.
Let φ : H×H → R be a symmetric continuous bilinear form on H, Q the associated
quadratic form Q(h) = φ(h, h) for all h ∈ H and A the linear continuous symmetric
operator from H into H′ such that ∀h ∈ H, < Ah, h >= Q(h).

We are interested in the positivity of the restriction of Q to hyperplanes of H.
Note that, if Q writes in a Hilbert basis (ei)i≥1

Q(h) =
∑

i≥1

λih
2
i , for h =

∑

i≥1

hiei, (4.1)

then the above question has a trivial answer in the two following situations: if ∀ i ≥
1, λi > 0, then Q is positive everywhere; if λ1 ≤ λ2 < 0, the restriction of Q to any
hyperplane has at least one direction in which it is negative. Thus, the interesting
case is when only one eigenvalue is negative. For this, we define:

Definition 4.1. We will say that Q is of type (−1,+∞) if the two following
conditions hold:

There exists h ∈ H such that Q(h) < 0. (4.2)

One cannot find linearly independent h1, h2 ∈ H such that

φ(h1, h2) = 0 , Q(h1) ≤ 0 , Q(h2) ≤ 0. (4.3)

Remark 4.2. If Q is given by (4.1), it is easy to see that it is of type (−1,+∞)
if and only if, up to a reordering

λ1 < 0, ∀i ≥ 2, λi > 0. (4.4)
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More generally, we have the following lemma.

Lemma 4.3. The quadratic form Q is of type (−1,+∞) if and only if there exists
a closed subspace V of H and h0 ∈ H \ {0} such that

H = V ⊕ {h0}, Q(h0) < 0,

and the restriction of Q to V \ {0} is positive. If, moreover,

∃ α > 0 ,∀v ∈ V , Q(v) ≥ α||v||2, (4.5)

then A is invertible.

We now come to the main statement of this section.

Theorem 4.4. Assume Q is of type (−1,+∞) and A is invertible. Let w ∈ H\{0}
and let w⊥ be the hyperplane orthogonal to w. Then

The restriction of Q to w⊥ \ {0} is positive, (4.6)

if and only if

Q
(
A−1 ◦ R(w)

)
< 0. (4.7)

If moreover, (4.5) is satisfied on some hyperplane V, then so it is on w⊥.

Remark 4.5. The interest of the above theorem is that it provides a numerical
criterion for constrained stability. This will turn out to be quite useful when looking
at quadratic forms depending on a (small) parameter. We refer to [18],[19] for a
systematic study of other criteria and for the case of more constraints.

We will strongly use this criterion to prove the results of Section 3, but, just to
make it more explicit, let us describe now two independent illustrations.

Corollary 4.6. Assume that Q is given as in (4.1) and satisfies (4.4) and that
A is invertible. Then, its restriction to w⊥ \ {0}, where w =

∑
i≥1 wiei is positive if

and only if

∑

i≥1

w2
i

λi
< 0.

Corollary 4.7. Let H = H1/2(Γ) where Γ is a regular Jordan curve with
exterior Ω. Assume the following quadratic form on H is of type (−1,+∞)

∀h ∈ H, Q(h) =

∫

Γ

hDh − σh2,

where σ : Γ → R is regular. Assume A is invertible. Let z ∈ H \ {0} and Hz = {h ∈
H;

∫
Γ

z h = 0}. Then, the restriction of Q to Hz \ {0} is positive if and only if

∫

Γ

u0z < 0, (4.8)
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where u0 is the solution of

∆u0 = 0 in Ω, ∇u0 → 0 at ∞, −
∂u0

∂ν
− σu0 = z on Γ.

Remark 4.8. Conditions of type (4.8) have been used in [9],[16] to study the
positivity of this Q on the space {h ∈ H1/2(Γ);

∫
Γ

h = 0}. This form Q appears for
our problem in the limit case τ = 0. For instance, as proved in [9], there is always a
direction of instability if σ is the curvature of Γ.

Proof of Lemma 4.3. Assume Q is of type (−1,+∞). By (4.2), there exists h0 ∈ H
with Q(h0) < 0. Now let V := {v ∈ H;φ(h0, v) = 0}. Since h0 6∈ V, H = V ⊕ {h0}.
Moreover, the restriction of Q to V \ {0} is strictly positive. Indeed, if it was not the
case, there would be v ∈ V \ {0} such that Q(v) ≤ 0 and this would contredict the
assumption (4.3).

Assume now that we have h0,V as above. Then (4.2) holds. Assume, by contra-
diction, that there exist linearly independent h1, h2 such that

φ(h1, h2) = 0, Q(h1) ≤ 0, Q(h2) ≤ 0.

Then, the restriction of Q to the subspace spanned by h1, h2 is nonpositive. But this
2-dimensional subspace necessarily intersects V \ {0} where Q is positive. This is a
contradiction.

For the invertibility of A, if h = v + µh0, v ∈ V and µ ∈ R, we have

< Ah, v − µh0 >= Q(v) − µ2Q(h0) ≥ β(‖v‖2 + µ2),

where β = min{α,−Q(h0)}. But we also have, for some γ > 0,

‖v‖2 + µ2 ≥ γ‖v + µh0‖‖v − µh0‖.

It follows from these inequalities, after simplifying by ‖v − µh0‖, that

∀v ∈ V, ∀µ ∈ R, ‖A(v + µh0)‖ ≥ β γ‖v + µh0‖.

This proves the invertibility of A.

Proof of Theorem 4.4. Assume (4.7). For w1 = A−1 ◦R (w), we have Q(w1) < 0.
Assume by contradiction that (4.6) does not hold, which means that there exists
w2 ∈ w⊥ \ {0} such that Q(w2) ≤ 0. Then

0 = (w,w2) = (R−1 ◦ A (w1), w2) =< Aw1, w2 >= φ(w1, w2).

Moroever, w1, w2 are linearly independent, because if we had w2 = θw1, θ 6= 0, then
we would have 0 = φ(w1, θw1) = θQ(w1) which is not the case. The existence of such
w1, w2 contradicts the fact that Q is of type (−1,+∞).

In the opposite direction, suppose now (4.6). Assume by contradiction that Q ◦
A−1 ◦R (w) ≥ 0. With the same notations as above, this writes Q(w1) ≥ 0 and even
Q(w1) > 0: indeed, since Q(w1) = φ(w1, w1) = (w,w1), ”Q(w1) = 0” would imply
w1 ∈ w⊥ \ {0}, but Q is assumed to be positive (strictly) on w⊥ \ {0}. We now
introduce

H2 = {h2 ∈ H; 0 = φ(w1, h2) =< Aw1, h2 >= (R−1 ◦ A (w1), h2) = (w, h2)},
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that is H2 = w⊥. We have H = {w1}⊕H2 since w1 6∈ H2 (< Aw1, w1 >= Q(w1) > 0).
Now, for all w2 = λw1 + h2, λ ∈ R, h2 ∈ H2, we have by (4.6)

Q(w2) = λ2 Q(w1) + Q(h2) ≥ 0, (Q(w1) > 0).

Thererefore Q is nonnegative on the whole space H which contradicts the fact that it
is of type (−1,+∞).

Assume that, moreover, Q satisfies (4.5). We also have H = V ⊕ {w1} and any
h2 ∈ w⊥ \ {0} may be written h2 = v2 + λw1, v2 ∈ V, λ ∈ R. Since φ(h2, w1) =
(h2, w) = 0, we have Q(v2) = Q(h2) + λ2Q(w1) so that, with γ = min{α,−Q(w1)}

Q(h2) ≥ γ(λ2 + ‖v2‖
2) ≥ γ′‖v2 + λw1‖

2,

for some γ′ > 0. The last part of the theorem follows.

Proof of Corollary 4.6. Assumptions of Theorem 4.4 are satisfied. We just
have to make the criterion explicit. Here H may be identified with ℓ2(N) as
well as its dual H′ and the Riesz isomorphism R is just the identity. The op-
erator is the multiplication by λi in each direction ei; therefore A−1 is just the
mutiplication by λ−1

i in each direction λi. The new expression of the criterion follows.

Proof of Corollary 4.7. Let us choose on H = H1/2(Γ) the norm defined by

‖u‖2 =

∫

Γ

u2 + uDu =

∫

Γ

u · (I + D)u.

Then, the Riesz isomorphism from H into H′ = H−1/2(Γ) is I + D and we have

∀h1, h2 ∈ H,

∫

Γ

h1h2 = ((I + D)−1h1, h2)H×H =< h1, h2 >H′×H .

Let A = D − σI be the operator such that Q(h) =< Ah, h >H′×H. Let z and u0 be
given as in the corollary. Note that u0|Γ

= A−1(z) and

Hz = {h ∈ H; 0 =

∫

Γ

z h =< z, h >H′×H= (R−1(z), h)H×H},

so that Hz = [R−1(z)]⊥ and the criterion (4.7) writes

0 > Q(A−1z) =< z,A−1z >H′×H=

∫

Γ

z u0.

This ends the proof of the corollary.

5. The proofs of the results of Section 3. In this section, we will prove the
results of Section 3. We start with the following technical lemma

Lemma 5.1. Let V be a real Hilbert space with norm || · ||, V1 and V2 closed
subspaces of V such that V = V1 ⊕ V2. Let Q1, Q2 be continuous quadratic forms on
V and φ1, φ2 the associated bilinear forms. Assume

∀v1 ∈ V1 , ∀v2 ∈ V2 , φ1(v1, v2) = 0, (5.1)

∃α1 > 0 , ∀v1 ∈ V1 , Q1(v1) ≥ α1||v1||
2, (5.2)

∀v2 ∈ V2 , Q1(v2) = 0, (5.3)

∃α2 > 0 , ∀v2 ∈ V2 , Q2(v2) ≥ α2||v2||
2. (5.4)
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Then, there exists ǫ0 > 0 and α > 0 such that, for all ǫ ∈ ]0, ǫ0[, the quadratic form
Qǫ = Q1 + ǫQ2 satisfies

∀v ∈ V , Qǫ(v) ≥ ǫα ||v||2. (5.5)

Proof of Lemma 5.1. Let v ∈ V. We write v = v1 + v2, v1 ∈ V1 and v2 ∈ V2. We
have, using (5.1) and (5.3)

Qǫ(v) = Q1(v1) + ǫ [Q2(v1) + Q2(v2) + 2φ2(v1, v2)].

By (5.2) and (5.4)

Qǫ(v) ≥ α1||v1||
2 + ǫ (α2||v2||

2 − M2||v1||
2 − 2M2||v1|| ||v2||),

where M2 is the continuity constant of φ2. Using that for all η > 0

2 ||v1|| ||v2|| ≤
1

η
||v1||

2 + η ||v2||
2,

we deduce

Qǫ(v) ≥ α1||v1||
2 + ǫ [(α2 − M2η) ||v2||

2 − M2(1 +
1

η
) ||v1||

2].

We choose η > 0 small enough so that α2 −M2η ≥ α2/2, and ǫ0 > 0 small enough so
that α1 − ǫ0M2(1 + 1

η ) ≥ ǫ0α1/2. Then, choosing γ = min{α1, α2}/2, we have for all

v ∈ V and all ǫ ∈ (0, ǫ0)

Qǫ(v) ≥ ǫγ (||v1||
2 + ||v2||

2) ≥ ǫα ||v1 + v2||
2,

for some α depending only on γ and on the decomposition V = V1 ⊕ V2. Then, (5.5)
follows.

Lemma 5.2. The quadratic form (3.1) can be rewritten on the unit circle Γ0 as

Q(h) = Q(H) =

∫

Γ0

βH D0(βH) − (2Λ − τC)CH2|φ′
ǫ| + τ

H ′2

|φ′
ǫ|

, (5.6)

where β2 = 2[Λ − τC(φǫ(e
iθ))] and H(θ) := h(φǫ(e

iθ)), θ ∈ [0, 2π]. When Λ = τCM ,
this becomes (η = sign(β))

Q(H) = τ

∫

Γ0

2ηH
√

CM − C D0(ηH
√

CM − C) − (2CM − C)CH2|φ′
ǫ| +

H ′2

|φ′
ǫ|

. (5.7)

Proof. We transfer the quadratic form (3.1) on the unit circle Γ0 by setting as in
(3.3), Γ∗ = {φǫ(e

iθ), θ ∈ [0, 2π]}. Note that, for all g ∈ H1(Γ∗) and G(θ) = g(φǫ(e
iθ)),

one has

(Dg)(φǫ(e
iθ))|φ′

ǫ(e
iθ)| = D0G. (5.8)

By change of variable, this implies
∫
Γ∗ gDg =

∫
Γ0

GD0G. For the last term in (5.6),

we recall that the length parameter on Γ∗ is given by s =
∫ θ

0
|φ′

ǫ(e
iϕ)|dϕ and we make

the appropriate change of variable.
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Lemma 5.3. Assume Λ = τCM , then the quadratic form Q can be written

Q = τ [Q1 + ǫQ2 + rǫ], (5.9)

where

Q1(H) =

∫

Γ0

H ′2 − H2 = −

∫

Γ0

H(H ′′ + H), (5.10)

Q2(H) =

∫

Γ0

2ℓH D0(ℓH) − (2g∞2 + g1)H
2 − g1H

′2, (ℓ = η
√

g∞2 − g2), (5.11)

|rǫ(H)| ≤ cǫ2||H||2H1(Γ0)
, (5.12)

for ǫ small enough and c independent of ǫ.

Proof. According to (3.3),(3.5),(3.6), we have the following expansion in the C2-
norm as ǫ tends to 0:

|φ′
ǫ(e

iθ)| = |1 + ǫR′(eiθ) + ǫ2T ′
ǫ(e

iθ)| = 1 + ǫg1(θ) + O(ǫ2). (5.13)

Since

C(φǫ(e
iθ)) =

[
1 + ℜ(

φ′′
ǫ (eiθ)eiθ

φ′
ǫ(e

iθ)
)
]
/|φ′

ǫ(e
iθ)|,

we also have (for the C1-norm)

C(φǫ(e
iθ)) = 1 + ǫg2(θ) + O(ǫ2),

CM = 1 + ǫg∞2 + O(ǫ2) (g∞2 = max g2),

β2 = 2(Λ − τ − τǫg2) + O(ǫ2) = 2τǫ(g∞2 − g2) + O(ǫ2),

(2Λ − τC)C = τ(1 + 2ǫg∞2 ) + O(ǫ2).

By replacing in (5.7), we obtain

Q(H) = τ

∫

Γ0

2ǫℓHD0(ℓH) − (1 + 2ǫg∞2 )(1 + ǫg1)H
2 + H ′2(1 − ǫg1) + r̃ǫ(H),

where r̃ǫ(H) ≤ Cǫ2‖H‖2
H1(Γ0)

. For this last estimate, we use, in particular, the fact

that (see e.g. [4])

||uv||H1/2(Γ0) ≤ k||u||H1/2(Γ0) ||v||C1(Γ0).

Lemma 5.3 follows.

Lemma 5.4. Assume Λ = τCM and (3.8). Then there exists α > 0 independent
of τ such that for ǫ small enough

∀H ∈ Z1
0 (Γ0) Q1 + ǫQ2)(H) ≥ ǫα||H||2H1(Γ0)

, (5.14)

∀H ∈ Z1
0 (Γ0) Q(H) ≥ τǫ

α

2
||H||2H1(Γ0)

, (5.15)

Q is of type(−1,+∞) and the associated operator A is invertible. (5.16)
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Proof. To prove (5.14), we apply Lemma 5.1 to Q1 + ǫQ2 with

V = Z1
0 (Γ0) = {H ∈ H1(Γ0) :

∫

Γ0

H = 0},

V2 = {cos θ, sin θ} the subspace of V spanned by cos θ, sin θ,

V1 = {cos nθ, sin nθ;n ≥ 2} the L2-orthogonal of V2 in V.

Then

φ1(cos nθ, cos θ) =

∫

Γ0

n sin θ sin nθ − cos θ cos nθ = 0 if n ≥ 2,

and similarly

φ1(cos nθ, sin θ) = φ1(sin nθ, cos θ) = φ1(sin nθ, sin θ) = 0 if n ≥ 2,

so that (5.1) is true. Obviously, by (5.10), Q1 vanishes on V2 so that (5.3) is true.
Now if v1 ∈ V1, that is v1 =

∑
n≥2 an cos nθ + bn sinnθ, then

Q1(v1) = π
∑

n≥2

(n2−1)(a2
n + b2

n) ≥ π
∑

n≥2

n2

2
(a2

n + b2
n) ≥ α1||v1||

2
H1(Γ0)

, (5.17)

so that (5.2) is checked. Finally, if v2 = λ cos θ + µ sin θ, we can write

Q2(v2) = λ2a + 2λµc + µ2b (5.18)

where

a = Q2(cos θ) , b = Q2(sin θ) , c = φ2(cos θ, sin θ).

By (5.11), this numbers are given by the expressions (3.7). Therefore, if assumption
(3.8) in Theorem 3.1 holds, the restriction of Q2 to V2 satisfies (5.4). The conditions
of Lemma 5.1 being satisfied, we can deduce (5.14) (see (5.5)). Coupled with (5.9)
and (5.12), we deduce (5.15) for ǫ small enough.

To obtain (5.16), recall that V = Z1
0 (Γ0) is of codimension 1 in H = H1(Γ0).

Then, since Q1(1) = −2π, obviously, for ǫ small enough, Q(1) < 0. Coupled with
(5.15), we deduce that the conditions of Lemma 4.3 are satisfied, whence (5.16).

Proof of Theorem 3.1. We use the same notations as in Lemma 5.4 (subspaces
V,V1,V2, forms Q1,Q2). Let us first prove the second part of the theorem. If (3.9)
holds, then there exists v2 ∈ V2 such that Q2(v2) < 0 (see (5.18)). Now we set
Hǫ = λǫ + v2 where λǫ is chosen so that

0 =

∫

Γ0

Hǫ|φ
′
ǫ| = λǫ

∫

Γ0

|φ′
ǫ| +

∫

Γ0

v2|φ
′
ǫ|. (5.19)

Since
∫
Γ0

v2 = 0, by (5.13) and the fact that
∫
Γ0

|φ′
ǫ| → 2π as ǫ → 0, we deduce

|λǫ| = O(ǫ). (5.20)

Now

(Q1 + ǫQ2)(λǫ + v2) = λ2
ǫ(Q1 + ǫQ2)(1) + 2λǫ(φ1 + ǫφ2)(1, v2) + (Q1 + ǫQ2)(v2).
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Since φ1(1, v2) = 0 and Q1(v2) = 0, by (5.20)

(Q1 + ǫQ2)(λǫ + v2) = ǫQ2(v2) + o(ǫ).

This can be made negative for ǫ small enough since Q2(v2) < 0. Therefore if
hǫ(φǫ(e

iθ)) = Hǫ(θ), we have by (5.9), (5.12) and (5.19)
∫

Γ∗

hǫ = 0 , Q(hǫ) < 0 for ǫ small enough.

We now come to the first part of the theorem. Assume (3.8) holds. According to
Lemma 5.2, we have to prove that the restriction of Q to the subspace of H ∈ H1(Γ0)
such that

∫
Γ0

H|φ′
ǫ| = 0 is H1(Γ0)-coercive (note that, since H = h ◦ Φǫ, by (5.13),

there exists C such that for ǫ small, ‖h‖2
H1(Γ∗) ≤ C‖H‖H1(Γ0)). Note that

∫

Γ0

H|φ′
ǫ| =< |φ′

ǫ|,H >H−1(Γ0)×H1(Γ0)=< R−1(|φ′
ǫ|),H >H1(Γ0)×H1(Γ0),

so that

{H ∈ H;

∫

Γ0

H|φ′
ǫ| = 0} = [R−1(|φ′

ǫ|)]
⊥.

By Lemma 5.4, for ǫ small enough, Q is of type (−1,+∞) and coercive on Z1
0 (Γ0). If

we write

Q(H) = τ < AǫH,H >H−1(Γ0)×H1(Γ0), (5.21)

by Theorem 4.4, to complete the proof of the theorem, we only have to prove that

0 > Q(A−1
ǫ (|φ′

ǫ|)) = τ < |φ′
ǫ|, A

−1
ǫ |φ′

ǫ| >H−1×H1 . (5.22)

We now denote by C all positive constants independent of ǫ. We have from
(5.9-5.13) and (5.21)

|φ′
ǫ| = 1 + ǫgǫ , ||gǫ||H1(Γ0) ≤ C, AǫH = A1H + ǫÃǫH

where A1H = −H − H ′′ , ||ÃǫH||H−1(Γ0) ≤ C||H||H1(Γ0).
Now, we set ωǫ = A−1

ǫ (|φ′
ǫ|) and we write ωǫ = λǫ + σǫ + τǫ, the decomposition of

ωǫ along {1} ⊕ V2 ⊕ V1 (see Lemma 5.4). According to (5.22), we need to prove that∫
Γ0

ωǫ|φ
′
ǫ| < 0 for ǫ small enough. Here, |φ′

ǫ| tends to 1 but, Aǫ tends to A1 which is
not invertible. Therefore, we need to control carefully each term in the decomposition
of ωǫ.

By definition of ωǫ, |φ
′
ǫ| = Aǫωǫ, that is, using A11 = −1, A1σǫ = 0:

1 + ǫgǫ = −λǫ + A1τǫ + ǫÃǫωǫ. (5.23)

Integrating over Γ0 gives (since
∫
Γ0

A1τǫ = 0)

2π = −2πλǫ + ǫ

∫

Γ0

−gǫ + Ãǫ(λǫ + σǫ + τǫ).

From this, we will only keep in mind that

|1 + λǫ| ≤ Cǫ(1 + ||σǫ||H1(Γ0) + ||τǫ||H1(Γ0)). (5.24)
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Multiplying (5.23) by τǫ and integrating give, since
∫
Γ0

τǫ = 0

ǫ

∫

Γ0

gǫτǫ =< A1τǫ, τǫ > +ǫ < Ãǫ(λǫ + σǫ + τǫ), τǫ > . (5.25)

We use the coercivity of A1 on V1 (see (5.17)) to deduce from (5.25)

α1||τǫ||
2
H1(Γ0)

≤ Cǫ||τǫ||H1(Γ0)(1 + |λǫ| + ||σǫ||H1(Γ0) + ||τǫ||H1(Γ0)),

which implies also for Cǫ ≤
α1

2

α1

2
||τǫ||H1(Γ0) ≤ Cǫ(1 + |λǫ| + ||σǫ||H1(Γ0)). (5.26)

Next we rewrite (5.23) as

1 + ǫgǫ = −λǫ + ǫÃǫ(λǫ) + Aǫσǫ + A1τǫ + ǫÃǫ(τǫ)

and we multiply it by σǫ and integrate to obtain

ǫ

∫

Γ0

gǫσǫ =

∫

Γ0

ǫλǫσǫÃǫ(1) + ǫσǫÃǫτǫ + σǫAǫσǫ. (5.27)

Under the assumption (3.8), we have by (5.15)

1

τ
Q(σǫ) =

∫

Γ0

σǫAǫσǫ ≥ ǫα||σǫ||
2
H1(Γ0)

for some α > 0. (5.28)

We deduce from (5.27), (5.28)

ǫα||σǫ||
2
H1(Γ0)

≤ Cǫ||σǫ||H1(Γ0)(1 + |λǫ| + ||τǫ||H1(Γ0)).

We simplify by ǫ||σǫ||H1(Γ0) and use (5.26) to obtain for ǫ small enough (and some
other C)

‖σǫ‖H1(Γ0) ≤ C(1 + |λǫ|), ‖τǫ‖H1(Γ0)) ≤ Cǫ(1 + |λǫ|). (5.29)

We now go back to (5.24) and with the help of (5.29), we prove

|1 + λǫ| ≤ Cǫ(1 + |λǫ|),

which implies that |λǫ| is bounded for ǫ small enough and limǫ→0 |1+λǫ| = 0. Finally,
we can control the expression in (5.22), namely

Q(ωǫ)/τ =

∫

Γ0

ωǫ|φ
′
ǫ| =

∫

Γ0

(λǫ + σǫ + τǫ)(1 + ǫgǫ) = 2πλǫ + ǫ

∫

Γ0

gǫ(λǫ + σǫ + τǫ).

and

|Q(ωǫ) + 2πτ | ≤ 2πτ |1 + λǫ| + Cǫ(1 + |λǫ|),

so that limǫ→0 Q(ωǫ) = −2πτ < 0, whence (5.22).
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Proof of Corollary 3.3. We easily compute the necessary quantities and, in par-
ticular

g1(θ) = −(2k + 1) cos (2k + 2)θ, g2 = −(2k + 3)g1, g∞2 = (2k + 1)(2k + 3),

ℓ(θ) =
√

2g∞2 sin(k + 1)θ,

a = b = 2k(2k + 1)(2k + 3)π and c = 0.

The conclusion of the corollary follows by applying Theorem 3.1.

Remark 5.5. In the case k = 0 where Γ∗ is an ellipse, the restriction of Q2 to
V2 is identically zero. Therefore, it is necessary to pursue the expansion with respect
to ǫ a little further to conclude.

Proof of Corollary 3.5. By the computations in [15], if f is the sum of N Dirac
masses, then, for τ large, Γ∗ is close to a circle and the constants a, b, c of Theorem
3.1 write

a = 2π
∑

1≤k,j≤N

αkαj

[ (1 + z̄2
k)(1 + z2

j )

(zj z̄k − 1)2
− 2

1

zj z̄k − 1

]
,

b = 2π
∑

1≤k,j≤N

αkαj [
(1 − z̄2

k)(1 − z2
j )

(zj z̄k − 1)2
− 2

1

zj z̄k − 1

]
,

c = −2π
1

i

∑

1≤k,j≤N

αkαj

z̄2
k − z2

j

(zj z̄k − 1)2
,

where, up to a global constant, the αi’s are the coefficients of the given Dirac
masses and where the zi are their location. We choose N = 4, αk = (−1)k for
1 ≤ k ≤ 4, z2p−1 = (−1)p+1(α + iβ), z2p = (−1)p+1(−α + iβ) for p = 1, 2. By
symmetry c = 0. Then, explicit computations show that there exists a region in
the set {(α, β);α, β > 0, α 6= β} where a < 0, b > 0. The conclusion follows from
Theorem 3.1.

Proof of Theorem 3.7. We recall that

Q(h) =

∫

Γ∗

βh D(βh) − (2Λ − τC)Ch2 + τh′2.

If τ = 0, Q(h) = Q0(h) = 2Λ
∫
Γ∗ hDh − Ch2. Moreover, we may write, for all

τ ∈ (0,Λ/2CM )

Q(h) = Q0(h) + τQτ (h), with |Qτ (h)| ≤ k‖h‖2
H1(Γ∗),

where k = k(Λ,Γ∗). It is proved in ([9]) that, if Γ∗ is different from a circle, then

∃ h ∈ H1(Γ∗) such that Q0(h) < 0,

∫

Γ∗

h = 0, ‖h‖H1(Γ∗) ≤ 1.
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Let τ0 = min{−Q0(h)/k,Λ/2CM ). It follows that, for τ ∈ (0, τ0),
Q(h) ≤ Q0(h) + kτ < 0. This proves the theorem.

Proof of Theorem 3.10. It is similar to the proof of the second part of Theorem
3.1. Expanding

β =
√

2(Λ − τC) =
√

2(Λ − τ) (1 −
ǫτg2

2(Λ − τ)
+ O(ǫ2)),

we write

Q = Q̂1 + ǫQ̂2 + r̂ǫ,

where

Q̂1(H) =

∫

Γ0

2(Λ − τ)H D0(H) − (2Λ − τ)H2 + τH ′2,

Q̂2(H)=−

∫

Γ0

τ [HD0(g2H) + g2HD0(H)] + [(2Λ − τ)g1 + 2(Λ − τ)g2]H
2 + τg1H

′2,

and

|r̂ǫ(H)| ≤ cǫ2||H||2H1(Γ0)
.

We check that Q̂1 vanishes on V2 and that V1 and V2 are orthogonal with respect to
φ1(·, ·). Now, if v2 = λ cos θ + µ sin θ, then Q̂2(v2) = λ2â + 2λµĉ + µ2b̂,

where â = Q̂2(cos θ) , b̂ = Q̂2(sin θ) , ĉ = φ̂2(cos θ, sin θ). We check that â, ĉ are

given by the expressions (3.10) and that b̂ = −â. By assumption, they are not all

equal to 0 so that ĉ2 − âb̂ > 0 and we can find v2 ∈ V2 such that Q̂2(v2) < 0. Then,
we finish as in the proof of the second part of Theorem 3.1.

Proof of corollary 3.12. By (3.10), the computation of â, b̂, ĉ gives

â = −b̂ = −(2Λ + τ)πσ1 and ĉ = 0,

whence (3.11) if σ1 6= 0. Then, we apply Theorem 3.10.

6. Appendix: proof of Proposition 2.2. The result of Proposition 2.2 is
obtained by differentiating each of the three terms in the total energy (1.2). Most of
the necessary computations are available in [21]. A difference is that everything is
stated in [21] for bounded domains while here we consider exterior domains. However,
the main point behind the structure theorem which is reproduced here in Lemma 2.1,
is based on the fact that any regular small perturbation of a regular domain may be
represented through normal displacements to the boundary. This is true whether we
consider perturbations of the domain itself or of its complement. Therefore, Lemma
2.1 may be stated without any change. Moreover, the computations for each of the
three energy terms involved here are exactly the same, except may be for the signs
(we have to switch from exterior to interior normal derivatives in some places).
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According to Lemma 2.1, let us denote by lSi , lPi , lMi , i = 1, 2 the linear and bilinear
forms respectively describing the first and second derivatives of each of the functionals

Ω → S(cΩ), P (Ω),

∫

Ω

|∇uΩ|
2,

where uΩ is solution of the exterior problem (1.1). Note that, by (1.2), if l1, l2 denote
the forms associated with the global functional E(·), we have for i = 1, 2

li = −
1

2
lMi + τ lPi − ΛlSi . (6.1)

The derivatives of the three terms are computed in [21] for bounded domains. The
results may be applied directly here. Indeed, the perimeter of a set is the same as
the perimeter of its complement. The derivative of θ → S

(c
(I + θ)(Ω)

)
is the same

except that the interior normal derivative to ∂Ω∗ is involved rather than the exterior
one. Finally, for the Dirichlet problem (1.1), the computations are exactly the same,
up to the signs at the boundary.

Recall that, here, we have denoted by ν the interior unit normal derivative to
Γ∗ = ∂Ω∗, which is directed toward Ω∗, and by C the curvature of Γ∗ seen from
outside Ω∗ (for instance, it is positive if Γ∗ is a circle). Recall also that displacements
are positive when they are made in the direction of ν, that is toward the inside of Ω∗.
We have (see [21]):

lS1 (h) =

∫

Γ∗

h, lS2 (h, h) =

∫

Γ∗

Ch2, (6.2)

lP1 (h) =

∫

Γ∗

Ch, lP2 (h, h) =

∫

Γ∗

|∇τh|2

where ∇τ denotes the tangential gradient,

lM1 (h) = −

∫

Γ∗

|∇u|2h, lM2 (h, h) =

∫

Γ∗

2ω(h)
∂ω(h)

∂ν
− h2[2

∂u

∂ν

∂2u

∂ν2
+ C(

∂u

∂ν
)2],

where ω(h) is the solution of

∆ω(h) = 0 in Ω, ω(h) = −h
∂u

∂ν
on Γ, |∇ω(h)| → 0 at ∞. (6.3)

We easily check that ∇τh = h′, where the derivative is taken with respect to the

length parameter, and that ω(h)∂ω(h)
∂ν = −hβ D(hβ) (recall that β = ∂u/∂ν). Next a

simple local computation (see e.g.[17],[9]) gives

∂u

∂ν

∂2u

∂ν2
= −Cβ2 − fβ.

Now the expressions of the forms l1, l2 associated with the derivatives of E(·) follow
(see (6.1)):

l1(h) =

∫

Γ∗

(
1

2
β2 + τC − Λ)h,
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l2(h, h) =

∫

Γ∗

βhD(βh) − (Cβ2/2 + ΛC + f β)h2 + τh′2.

If Ω∗ is an equilibrium shape, that is l1 ≡ 0, we have β2 = 2(Λ − τC). We plug this
identity into the above expression of l2(h, h) to obtain (2.6).
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