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AN INTRODUCTION TO THE Hq-SEMICLASSICAL
ORTHOGONAL POLYNOMIALS ∗

LOTFI KHERIJI†

Abstract. Orthogonal polynomials associated with Hq− semiclassical linear form will be stud-
ied as a generalization of the Hq−classical linear forms. The concept of class and a criterion for
determining it will be given. The q-difference equation that the corresponding formal Stieltjes se-
ries satisfies is obtained. Also, the structure relation as well as the second order linear q-difference
equation are obtained. Some examples of Hq−semiclassical of class 1 were highlighted.

Introduction. The aim of this paper is to present the analysis and characteri-
zation of the q-analogues of D-semiclassical orthogonal polynomials. D-semiclassical
orthogonal polynomials were introduced in a seminal paper by J. A. Shohat [22] and
extensively studied by P. Maroni and coworkers in the last decade[13-19]. Further-
more, the present contribution is a natural continuation of a previous work [9] by me
and P. Maroni on q-classical orthogonal polynomials.

In the literature, the extension of classical orthogonal polynomials (Hermite, La-
guerre, Jacobi, and Bessel) can be done in the q-case from three basic approaches (see
[2] for a comparative analysis).

The first one is related with the so called Askey Tableau, where all the classi-
cal families appear in a limiting process from the top of Askey-Wilson polynomials
(see[10]).

The second one concerns the hypergeometric character of classical orthogonal
polynomials , i.e. as solutions of a second order linear differential equation with
polynomial coefficients, the so called Nikiforov-Uvarov approach (see[21]).

The third one is based in the Pearson equation which satisfies the symmetric
factor for the above differential equation. This idea appears in several papers but the
basic theory was developed by P. Maroni.

The structure of this paper is as follows: The first section contains material of
preliminary and introductory character. Instead of the derivative operator, we use the
q-operator Hq introduced by Hahn [7]. In particular, we define a Hq−semiclassical
linear form u from a functional equation which is the q−difference distributional
Pearson one. The second section deals with so-called class of Hq−semiclassical linear
forms. A criterion for determining it is given. In the third section, we establish the
different characterizations of Hq−semiclassical linear forms. We can characterize a
Hq−semiclassical linear form through the fact that its Stieltjes function satisfies a first
order linear q−difference equation with polynomial coefficients. A second characteri-
zation is the so-called structure relation that the polynomials {Pn}n≥0orthogonal with
respect to u satisfy. It is deduced from theory of finite-type relations between polyno-
mial sequences [19]. A third characterization is the second order linear q−difference
equation satisfied by Pn+1, n ≥ 0. Lastly, in section 4 we construct some examples
of Hq−semiclassical linear forms of class 1 by taking into account a method studied
by P. Maroni in [15] for the D-case ( see paragraph 5.1 below ) and by using some
symmetric Hq−classical linear forms in [9].
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1. Preliminaries and notations. Let P be the vector space of polynomials
with coefficients in C and let P ′ be its topological dual.We denote by 〈u, f〉 the effect
of u ∈ P ′ on f ∈ P. In particular, we denote by (u)n := 〈u, xn〉 , n ≥ 0 the moments
of u. For any linear form u, any polynomial g , let gu , be the linear form defined by
duality

〈gu, f〉 := 〈u, gf〉 , f, g ∈ P.

For f ∈ P and u ∈ P ′, the product uf is the polynomial

(uf) (x) :=
〈

u,
xf (x) − ζf (ζ)

x − ζ

〉
=

n∑
k=0

(
n∑

ν=k

fν (u)ν−k

)
xk ,

where f (x) =
n∑

k=0

fkxk. The Stieltjes function of u ∈ P ′ is defined by

S (u) (z) := −
∑
n≥0

(u)n

zn+1
.

Denoting by ∆ the linear space generated by
{
δ(n)
}

n≥0
, where δ(n) means the n th

derivative of the Dirac delta in the origin, i.e.,〈
δ(n), f

〉
= (−1)n

f (n) (0) = (−1)n dn

dxn
f (0) , f ∈ P ,

and by � the isomorphism : ∆ −→ P defined as follows [14] :

for u =
n∑

k=0

(u)k

(−1)n

n!
δ(n) , � (u) =

n∑
k=0

(u)k zk.

Let {Pn}n≥0 be a sequence of monic polynomials with deg Pn = n , n ≥ 0 (poly-
nomial sequence : PS ) and let {un}n≥0 be its dual sequence, un ∈ P ′ defined by
〈un, Pm〉 := δn,m , n,m ≥ 0. Let us recall some results [17] .

Lemma 1.1. For any u ∈ P ′ and any integer m ≥ 1 , the following statements
are equivalent
i) 〈u, Pm−1〉 �= 0 , 〈u, Pn〉 = 0 , n ≥ m ,
ii) ∃λυ ∈ C , 0 ≤ ν ≤ m − 1 , λm−1 �= 0 such that

u =
m−1∑
ν=0

λνuν .

Similarly, with the definitions
〈hau, f〉 := 〈u, haf〉 = 〈u, f (ax)〉 , u ∈ P ′ , f ∈ P , a ∈ C − {0} .

The linear form u is called regular if we can associate with it a sequence of polynomials
{Pn}n≥0 such that

〈u, PmPn〉 = rnδn,m , n, m ≥ 0 ; rn �= 0 , n ≥ 0.

The sequence {Pn}n≥0 is then said orthogonal with respect to u. Necessarily, u =
λu0 , λ �= 0 and {Pn}n≥0 is an (OPS) such that any polynomial can be supposed
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monic (MOPS). In this case, we have un = r−1
n Pnu0 , n ≥ 0 and conversely. Also,

the (MOPS){Pn}n≥0 fulfils the recurrence relation⎧⎨⎩
P0 (x) = 1 , P1 (x) = x − β0 ,

Pn+2 (x) = (x − βn+1) Pn+1 (x) − γn+1Pn (x) , γn+1 �= 0 , n ≥ 0.

When u is regular , let φ be a polynomial such that φu = 0.Then φ = 0. Indeed, we
have 0 = 〈φu, Pm〉 = c

〈
u, P 2

m

〉
if φ = cxm + ... .

Lastly, from the linear application p 	→ (θcp) (x) =
p (x) − p (c)

x − c
, p ∈ P , c ∈ C , we

define (x − c)−1
u by
〈
(x − c)−1

u, p
〉

:= 〈u, θcp〉 .

The Hahn’s operator Hq is defined in the linear space P in the following way [7, 9, 12]

(Hqf) (x) =
f (qx) − f (x)

(q − 1) x
, f ∈ P , q ∈ C̃ ,

where C̃ := C−
(
{0}⋃( ⋃

n≥0

{z ∈ C, zn = 1}
))

. By duality, the image of a linear

form using this operator Hq is a linear form such that [9]

(1.1) 〈Hqu, f〉 = −〈u,Hqf〉 , ∀ f ∈ P.

In particular, this yields

(1.1)′ (Hqu)n = − [n]q (u)n−1 , n ≥ 0 ,

where (u)−1 = 0 and [n]q :=
qn − 1
q − 1

, n ≥ 0 [9].

As a consequence of lemma 1.1, the dual sequence
{

u
[1]
n (q)
}

n≥0
of{

P
[1]
n (.; q) :=

HqPn+1

[n + 1]q

}
n≥0

is given by [9]

(1.2) Hq

(
u

[1]
n (q)
)

= − [n + 1]q un+1 , n ≥ 0.

Remark. When q → 1, we meet again the derivative D. The following well
known results (see [9, 14, 19])will be useful for our work. We summarize them in

Lemma 1.2. Let {Pn}n≥0 and {Qn}n≥0 be sequences of monic polynomials with
{un}n≥0 and {vn}n≥0 their respective dual sequences. Let Φ be a monic polynomial
with deg Φ = t ≥ 0 and Φun �= 0 , n ≥ 0. The following properties are equivalent
i) There is an integer s ≥ 0 such that

(1.3) Φ (x) Qn (x) =
n+t∑

ν=n−s

λn,νPν (x) , n ≥ s ,

(1.4) ∃r ≥ s : λr,r−s �= 0.
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ii) There are an integer s ≥ 0 and an application from N into N : m 	−→ µm

satisfying

(1.5) max (0,m − t) ≤ µm ≤ m + s , m ≥ 0 ,

(1.6) ∃m0 ≥ 0 : µm0 = m0 + s ,

and such that

(1.7) Φum =
µm∑

ν=m−t

λν,mvν , m ≥ t ,

(1.8) λµm,m �= 0 , m ≥ 0.

Lemma 1.3. For f, g ∈ P , u ∈ P ′ and c ∈ C, we have

(1.9) (x − c)
(
(x − c)−1

u
)

= u ,

(1.10) (x − c)−1 ((x − c) u) = u − (u)0 δc ,

(1.11) S (fu) (z) = f (z)S (u) (z) + (uθ0f) (z) ,

(1.12) Hq (fg) (x) = (hqf) (x) (Hqg) (x) + g (x) (Hqf) (x) ,

(1.13) ha (gu) = (ha−1g) (hau) ,

(1.14) hq−1 ◦ Hq = Hq−1 , Hq ◦ hq−1 = q−1Hq−1 in P ,

(1.14)′ Hq ◦ Hq−1 = q−1Hq−1 ◦ Hq in P ,

(1.15) hq−1 ◦ Hq = q−1Hq−1 , Hq ◦ hq−1 = Hq−1 in P ′ ,

(1.16)
(
Hq

(
hq−1f
)
g
)
(x) = f (x) (Hqg) (x) + q−1g (x)

(
Hq−1f

)
(x) ,

(1.17) Hq (gu) =
(
hq−1g
)
Hqu + q−1

(
Hq−1g

)
u.

Furthermore,

Lemma 1.4. For f ∈ P and u ∈ P ′, the following formulas hold

(1.18) (Hq (uf)) (x) =
((

Hq−1u
)
(hqf)
)
(x) + q (u (Hqf)) (x) + (uθ0f) (x) ,

(1.19) S (Hqu) (z) = q−1
(
Hq−1 (S (u))

)
(z) ,

(1.20) (hq (θ0f)) (x) = q−1 (θ0 (hqf)) (x) ,

(1.21) (uθ0Hqf) (x) = q (u (Hq (θ0f))) (x) +
(
uθ2

0f
)
(x) ,

(1.22) Hq (uθ0f) (x) = q−1
(
Hq−1u

)
(θ0 ◦ hqf) (x) + (uθ0Hqf) (x) .
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Let Φ monic and Ψ be two polynomials, deg Φ = t , deg Ψ = p ≥ 1. We sup-
pose that the pair (Φ,Ψ) is admissible, i.e. when p = t−1 , writing Ψ (x) = apx

p + ...,
then ap �= [n + 1]q , n ∈ N.

Definition 1.5. A linear form u is called Hq−semiclassical when it is regular
and satisfies the equation

(1.23) Hq (Φu) + Ψu = 0 ,

where the pair (Φ,Ψ) is admissible. The corresponding orthogonal sequence
{Pn}n≥0 is called Hq−semiclassical.

Remark. We have the following result ( see[9] ).
Let
{

P̂n := a−n (haPn)
}

n≥0
, a �= 0 ; when u0 satisfies (1.23) , then û0 = ha−1u0

fulfils the equation

(1.24) Hq

(
Φ̂û0

)
+ Ψ̂û0 = 0 ,

where Φ̂ (x) = a−tΦ(ax) , Ψ̂ (x) = a1−tΨ (ax) .

2. Class of a Hq−semiclassical linear form. It is obvious that a
Hq−semiclassical linear form satisfies an infinity number of equations of type
(1.23) . Indeed, multiplying (1.23) by a polynomial χ we obtain

0 = χHq (Φu) + χΨu =
(
hq−1 (hqχ)

)
Hq (Φu) + χΨu

= Hq ((hqχ) Φu) − q−1
(
Hq−1 ◦ hqχ

)
Φu + χΨu ( by (1.17) )

= Hq ((hqχ) Φu) + {χΨ − Φ(Hqχ)}u ( by (1.14) ).

Then, for any pair (Φ,Ψ) satisfying (1.23) we associate the positive integer
max (deg Φ − 2,deg Ψ − 1) . Denoting

h (u) := {max (deg Φ − 2,deg Ψ − 1) , Hq (Φu) + Ψu = 0} ,

what leads us to the following definition

Definition 2.1. Giving a Hq−semiclassical linear form u, we define the class
of u, the positive integer s, as

s := min h (u) .

The corresponding orthogonal sequence {Pn}n≥0 will be said to be of class s.

Lemma 2.2. Let u be a Hq−semiclassical linear form satisfying

(2.1) Hq (Φ1u) + Ψ1u = 0 ,

and

(2.2) Hq (Φ2u) + Ψ2u = 0 ,
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where Φ1,Ψ1,Φ2,Ψ2 are polynomials, Φ1,Φ2 monic,deg Ψ1 ≥ 1,deg Ψ2 ≥ 1.
Denoting s1 = max (deg Φ1 − 2,deg Ψ1 − 1) , s2 = max (deg Φ2 − 2,deg Ψ2 − 1) . Let
Φ = gcd (Φ1,Φ2) .Then, there exists a polynomial Ψ,deg Ψ ≥ 1 such that

(2.3) Hq (Φu) + Ψu = 0 ,

with

(2.3)′ max (deg Φ − 2,deg Ψ − 1) = s1 − deg Φ1 + deg Φ = s2 − deg Φ2 + deg Φ.

Proof. With Φ = gcd (Φ1,Φ2) , there exist two coprime polynomials
∨
Φ1,

∨
Φ2 such

that

(2.4) Φ1 = Φ
∨
Φ1, Φ2 = Φ

∨
Φ2.

Taking into account (1.17) equations (2.1) − (2.2) become

(2.5)i

(
hq−1

∨
Φi

)
Hq (Φu) +

{
Ψi + q−1Φ

(
Hq−1

∨
Φi

)}
u = 0 , i ∈ {1, 2} .

The operation
(

hq−1

∨
Φ2

)
× (2.5)1 −

(
hq−1

∨
Φ1

)
× (2.5)2 gives{(

hq−1

∨
Φ2

)(
Ψ1 + q−1Φ

(
Hq−1

∨
Φ1

))
−

−
(

hq−1

∨
Φ1

)(
Ψ2 + q−1Φ

(
Hq−1

∨
Φ2

))}
u = 0.

From regularity of u we get

(2.6)
(

hq−1

∨
Φ2

)(
Ψ1 + q−1Φ

(
Hq−1

∨
Φ1

))
=
(

hq−1

∨
Φ1

)(
Ψ2 + q−1Φ

(
Hq−1

∨
Φ2

))
.

Thus, there exists a polynomial Ψ such that

(2.6)′

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Ψ1 + q−1Φ

(
Hq−1

∨
Φ1

)
= Ψ
(

hq−1

∨
Φ1

)
,

Ψ2 + q−1Φ
(

Hq−1

∨
Φ2

)
= Ψ
(

hq−1

∨
Φ2

)
.

Then, formulas (2.1) − (2.2) become(
hq−1

∨
Φi

)
{Hq (Φu) + Ψu} = 0 , i ∈ {1, 2}

writing
∨
Φi (x) =

li∏
k=1

(x − ci,k)αi,k , i ∈ {1, 2} , which yields

Hq (Φu) + Ψu =
l1∑

k=1

β1,k δ
(α1,k)
qc1,k =

l2∑
k=1

β2,k δ
(α2,k)
qc2,k .
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But the polynomials
∨
Φ1 and

∨
Φ2 have no common zero, which allows (2.3) . With (2.4)

and (2.6)′ it is easy to prove (2.3)′.

Proposition 2.3. For any Hq−semiclassical linear form u, the pair (Φ,Ψ)
which realizes the minimum of h (u) is unique.

Proof. If s1 = s2 in (2.1) − (2.2) and s1 = s2 = s = min h (u) , then
deg Φ1 = deg Φ = deg Φ2. Consequently Φ1 = Φ = Φ2 , Ψ1 = Ψ = Ψ2.
Then, it’s necessary to give a criterion which allows us to simplify the class.

Proposition 2.4. A regular form u H q−semiclassical satisfying (1.23) is of
class s if and only if

(2.7)
∏

c∈ZΦ

{
|q (hqΨ) (c) + (HqΦ) (c)| + |〈u, q (θcqΨ) + (θcq ◦ θcΦ)〉|

}
> 0,

where ZΦ is the set of zeros of Φ.

Proof. Let c be a zero of Φ : Φ (x) = (x − c) Φc (x) . The Euclidean algorithm gives

Φc (x) + qΨ (x) = (x − cq) Qcq (x) + rcq.

Then (1.23) becomes

(x − cq) {Hq (Φcu) + Qcqu} + rcqu = 0,

on account of (1.9) − (1.10) , the last equation is equivalent to

(2.8) Hq (Φcu) + Qcqu = (Hq (Φcu) + Qcqu)0 δcq − (x − cq)−1
rcqu.

Moreover, it is easy to see that

Φc (cq) = (HqΦ) (c) , Φc (x) = (θcΦ) (x) .

Finally

(2.9)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
rcq = (HqΦ) (c) + q (hqΨ) (c) ,

Qcq (x) = q (θcqΨ) (x) + (θcq ◦ θcΦ) (x) ,

(Hq (Φcu) + Qcqu)0 = 〈u,Qcq〉 = 〈u, q (θcqΨ) + (θcq ◦ θcΦ)〉 .

Necessity. Let us suppose that there exists c, Φ (c) = 0 , satisfying

rcq = 0 , 〈u,Qcq〉 = 0.

Then by (2.8) , u verifies

(2.10) Hq (Φcu) + Qcqu = 0 ,
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with sc = max (deg Qcq − 1,deg Φc − 2) < s , what contradicts that s := min h (u) .
Sufficiency. Let us suppose that the class of u is s̃ < s. There exist two polynomials ,
Φ̃ (monic), deg Φ̃ = t̃ ≥ 0, Ψ̃, deg Ψ̃ = p̃ ≥ 1 such that

Hq

(
Φ̃u
)

+ Ψ̃u = 0.

Consider Φ̂ = gcd
(
Φ, Φ̃
)

,deg Φ̂ = t̂. On account of lemma 2.2, there exists a poly-

nomial Ψ̂, deg Ψ̂ = p̂ ≥ 1, such that Hq

(
Φ̂u
)

+ Ψ̂u = 0 , ŝ = max
(
p̂ − 1, t̂ − 2

)
=

s − t + t̂ = s̃ − t̃ + t̂.
Using proposition 2.3, we easily obtain Φ̂ = Φ̃ , Ψ̂ = Ψ̃. Then, there exists a poly-
nomial χ satisfying

Φ = χΦ̃ , Ψ =
(
hq−1χ

)
Ψ̃ − q−1

(
Hq−1χ

)
Φ̃.

Since s̃ < s hence deg χ ≥ 1. Let c be a zero of χ : χ (x) = (x − c) χc (x) .

Writing Φ (x) = (x − c) Φc (x) ,
(
Φc = χcΦ̃

)
, which allows{

rcq = (HqΦ) (c) + q (hqΨ) (c) = 0 ,

〈u, q (θcqΨ) + (θcq ◦ θcΦ)〉 = 0 ,

what contradicts (2.7) . Consequently, s̃ = s, Φ̃ = Φ and Ψ̃ = Ψ.

Remarks. 1. When q → 1 we recover again the criterion which allows us to
simplify a D−semiclassical linear form [17] .
2. When q ∈ C̃ and s = 0, the linear form u is usually called H q−classical [9].

Definition 2.5 [4]. A linear form u is called symmetric if 〈u, x2n+1〉 = 0, n ≥ 0.

Proposition 2.6. Let u be a symmetric H q−semiclassical linear form of class
s satisfying (1.23) . The following statements hold
i) When s is odd then the polynomial Φ is odd and Ψ is even .
ii) When s is even then the polynomial Φ is even and Ψ is odd .

Proof. Writing Φ (x) = Φe
(
x2
)

+ xΦo
(
x2
)

, Ψ (x) = Ψe
(
x2
)

+ xΨo
(
x2
)
,

then (1.23) becomes{
Hq

(
Φe
(
x2
)
u
)

+ xΨo
(
x2
)
u
}

+
{
Hq

(
xΦo
(
x2
)
u
)

+ Ψe
(
x2
)
u
}

= 0.

Denoting we = Hq

(
Φe
(
x2
)
u
)

+ xΨo
(
x2
)
u , wo = Hq

(
xΦo
(
x2
)
u
)

+ Ψe
(
x2
)
u.

Then

(2.11) we + wo = 0.

From (2.11) we get

(2.12) (we)n = − (wo)n , n ≥ 0.
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From definitions we can write for n ≥ 0

(2.13)

⎧⎪⎪⎨⎪⎪⎩
(we)2n =

〈
u, x2n+1Ψo

(
x2
)− [2n]q x2n−1Φe

(
x2
)〉

(wo)2n+1 =
〈
u, x2n+1Ψe

(
x2
)− [2n + 1]q x2n+1Φo

(
x2
)〉

.

Now, with u symmetric: (u)2k+1 = 0 , k ≥ 0, (2.13) gives

(2.12)′ (we)2n = 0 = (wo)2n+1 , n ≥ 0.

On account of (2.12) and (2.12)′we deduce we = wo = 0. Consequently, u
satisfies two functional equations

(2.14) Hq

(
Φe
(
x2
)
u
)

+ xΨo
(
x2
)
u = 0 ,

and

(2.14)′ Hq

(
xΦo
(
x2
)
u
)

+ Ψe
(
x2
)
u = 0 .

i) When s = 2k + 1, with s = max (t − 2, p − 1) we get t ≤ 2k + 3, p ≤ 2k + 2, then
deg
(
xΨo
(
x2
)) ≤ 2k + 1 , deg

(
Φe
(
x2
)) ≤ 2k + 2. So, in accordance with (2.14) , we

obtain the contradiction s = 2k + 1 ≤ 2k. Necessary Φe = Ψo = 0.
ii) When s = 2k, with s = max (t − 2, p − 1) we get t ≤ 2k + 2, p ≤ 2k + 1, then
deg
(
Ψe
(
x2
)) ≤ 2k , deg

(
xΦo
(
x2
)) ≤ 2k + 1. So, in accordance with (2.14)′ , we

obtain the contradiction s = 2k ≤ 2k − 1. Necessary Φo = Ψe = 0.Hence the desired
result.

Remark. When q → 1 we recover again the same result for the D−semiclassical
case [1] .

3. Different characterizations of Hq−semiclassical linear forms. One of
the most important characterizations of the Hq−semiclassical linear forms is given
in terms of a non homogeneous first order linear q-difference equation which its
formal Stieltjes series satisfies. See also [6, 14] for the D−case and [11] for the Dω−one.

Proposition 3.1. The linear form u is Hq−semiclassical of class s, if and only
if, it is regular and there exist three coprime polynomials A (monic ),C,D such that

(3.1) A (z) Hq−1 (S (u)) (z) = C (z)S (u) (z) + D (z) ,

with

(3.2) s = max (deg C − 1,deg D) .

Proof. Necessity. From (1.23) , we have 0 = Hq (Φu) + Ψu =
(
hq−1Φ

)
(Hqu)

+
{
Ψ + q−1Hq−1Φ

}
u (with (1.17)). The isomorphism �yields

�
((

hq−1Φ
)
(Hqu) +

{
Ψ + q−1Hq−1Φ

}
u
)
(z) = 0.

From definition of S (u) , we obtain
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(3.3) S
((

hq−1Φ
)
(Hqu)

)
(z) + S (Ψu) (z) + q−1S

((
Hq−1Φ

)
u
)
(z) = 0.

On account of (1.11), (3.3) becomes(
hq−1Φ

)
(z) S (Hqu) (z) +

(
(Hqu)

(
θ0 ◦ hq−1Φ

))
(z) + Ψ (z) S (u) (z)+

+ (uθ0Ψ) (z) + q−1
(
Hq−1Φ

)
(z) S (u) (z) + q−1

(
uθ0Hq−1Φ

)
(z) = 0.

Then ,with (1.19)

q−1
(
hq−1Φ

)
(z)
(
Hq−1S (u)

)
(z) =

−{Ψ (z) + q−1
(
Hq−1Φ

)
(z)
}

S (u) (z)−
−{((Hqu)

(
θ0 ◦ hq−1Φ

))
(z) + (uθ0Ψ) (z) + q−1

(
uθ0Hq−1Φ

)
(z)
}

.

By using (1.22) the last equation becomes

(3.4)
(
hq−1Φ

)
(z)
(
Hq−1S (u)

)
(z) =

−{qΨ (z) +
(
Hq−1Φ

)
(z)
}

S (u) (z)−
−{Hq−1 (uθ0Φ) (z) + q (uθ0Ψ) (z)

}
.

From (3.4) denoting

(3.5)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
A (z) = qdeg Φ

(
hq−1Φ

)
(z) ,

C (z) = −qdeg Φ
(
qΨ (z) +

(
Hq−1Φ

)
(z)
)

,

D (z) = −qdeg Φ
(
Hq−1 (uθ0Φ) (z) + q (uθ0Ψ) (z)

)
.

Let c be a zero of Φ. From the first relation in (3.5) , we remark that cq is a
zero of A. As u is of class s, in accordance with (2.7) we get

q (hqΨ) (c) + (HqΦ) (c) �= 0 or 〈u, q (θcqΨ) + (θcq ◦ θcΦ)〉 �= 0.

But with definitions of Hq , θζ , uf and formula (1.14) , it is easy to see that

(3.6)

⎧⎨⎩
C (cq) = −qdeg Φ

(
hq−1 (q (hqΨ) + HqΦ)

)
(cq) ,

D (cq) = −qdeg Φ 〈u, q (θcqΨ) + (θcq ◦ θcΦ)〉 .

Consequently, A, C and D have no common zero. Then A, C, and D are co-
prime.
Sufficiency. Let u ∈ P ′ regular with its formal Stieltjes series S (u) satisfying (3.1) .
From (1.11) and (1.19) formula (3.1) becomes

(3.1)′ S
(
A (Hqu) − q−1Cu

)
(z) = (Hquθ0A) (z) − q−1 (uθ0C) (z) + q−1D (z) .

But

S
(
A (Hqu) − q−1Cu

)
(z) = S

((
hq−1 (hqA)

)
(Hqu) − q−1Cu

)
z
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= S
(
Hq ((hqA) u) − q−1

(
Hq−1 ◦ hqA

)
u − q−1Cu

)
(z) (by (1.17))

= S(Hq ((hqA) u) − {(HqA) + q−1C
}

u)(z) (with (1.14)).

Then, (3.1)′ could be written as

S(Hq ((hqA) u) − {(HqA) + q−1C
}

u) (z) =
(Hquθ0A) (z) − q−1 (uθ0C) (z) + q−1D (z) ,

which implies

{
Hq ((hqA) u) − {(HqA) + q−1C

}
u = 0 ,

D (z) = (uθ0C) (z) − q (Hquθ0A) (z) .

Denoting

(3.7)

{
Φ(x) = q− deg A (hqA) (x) ,

Ψ (x) = −q− deg A
{
(HqA) (x) + q−1C (x)

}
.

Now, it is easy to see that

Hq (Φu) + Ψu = 0 with s = max (deg Φ − 2,deg Ψ − 1).

Two structure relations for the Hq−semiclassical polynomials can be deduced
from theory of finite-type relations between polynomial sequences [19] .

Proposition 3.2. For any monic polynomial Φ and any orthogonal sequence
{Pn}n≥0 , the following statements are equivalent
a) There exists an integer s ≥ 0 such that

(3.8) Φ (x) P
[1]
n (x; q) =

n+t∑
ν=n−s

λn,νPν (x) , n ≥ s , t = deg Φ ,

(3.9) λn,n−s �= 0 , n ≥ s + 1.

b) There exists a polynomial Ψ, deg Ψ = p ≥ 1 such that

(3.10) Hq (Φu0) + Ψu0 = 0 ,

where the pair (Φ,Ψ) is admissible.
c) There exist an integer s ≥ 0 and a polynomial Ψ, deg Ψ = p ≥ 1 such that

(3.11) Φ (x)
(
Hq ◦ hq−1Pm

)
(x) − Ψ (x)

(
hq−1Pm

)
(x) =

m+sm∑
ν=m−t

λ̃m,νPν+1 (x) ,

m ≥ t ,

(3.12) λ̃m,m−t �= 0 , m ≥ t ,
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where s = max (p − 1, t − 2) , the pair (Φ,Ψ) being admissible and

sm =

⎧⎨⎩
p − 1 , m = 0 ,

s , m ≥ 1.

We may write

(3.13) λ̃m,ν = − [ν + 1]q
〈u0,P 2

m〉
〈u0,P 2

ν+1〉λν,m , 0 ≤ ν ≤ m + s.

Proof. a)⇒b),c). Supposing a), then Lemma 1.2 i) is fulfilled with Qn =
P

[1]
n (.; q) . But (3.9) implies µm = m + s, m ≥ 1, and (1.7) becomes Φum =

µm∑
ν=0

λν,mu
[1]
ν (q) , m ≥ 0.

By virtue of (1.2) , we have

Hq (Φum) = −
µm∑
ν=0

λν,m [ν + 1]q uν+1 , m ≥ 0.

In accordance with the orthogonality of {Pn}n≥0 , we get

(3.14) Hq (PmΦu0) = −Ψµm+1 u0 , m ≥ 0 ,

with

(3.15) Ψµm+1 (x) =
µm∑
ν=0

[ν + 1]q
〈u0,P 2

m〉
〈u0,P 2

ν+1〉λν,mPν+1 (x) , m ≥ 0.

Further, with (1.17) , we obtain for (3.14)

(3.16)
(
hq−1Pm

)
Hq (Φu0) + q−1

(
Hq−1Pm

)
Φu0 = −Ψµm+1 u0 , m ≥ 0.

Taking m = 0 into (3.16), we have

(3.17) Hq (Φu0) + Ψµ0+1 u0 = 0.

Inserting (3.17) into (3.16) , with (1.14) and according to the regularity of u0,
we get

Φ
(
Hq ◦ hq−1Pm

)− Ψµ0+1

(
hq−1Pm

)
= −Ψµm+1 , m ≥ 0.

The consideration of the degrees of both sides leads to : when t − 1 > µ0 +
1 (which implies t ≥ 3) , then t = s + 2 , µ0 < s and when t − 1 ≤ µ0 + 1, then
µ0 = s , t ≤ s+2.Obviously, the pair (Φ,Ψµ0+1) is admissible and putting p = µ0+1,
we have s = max (p − 1, t − 2) . So (3.11) and (3.12) are valid on account of (3.13) .
Thus, we have proved that a)⇒b) and a)⇒c).
b)⇒c). Consider for m ≥ 0

q−1Φ(x)
(
Hq−1Pm

)
(x) − Ψ (x)

(
hq−1Pm

)
(x) =

m+sm+1∑
ν=0

λ′
m,νPν (x) .
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We successively derive from this〈
u0,
(
q−1Φ
(
Hq−1Pm

)− Ψ
(
hq−1Pm

))
Pµ

〉
= λ′

m,µ

〈
u0, P

2
µ

〉
, 0 ≤ µ ≤ m + s + 1.

But〈
u0,
(
q−1Φ
(
Hq−1Pm

)− Ψ
(
hq−1Pm

))
Pµ

〉
=
〈
Φu0, q

−1
(
Hq−1Pm

)
Pµ

〉
+
〈−Ψu0,

(
hq−1Pm

)
Pµ

〉
=
〈
Φu0, q

−1
(
Hq−1Pm

)
Pµ

〉
+
〈
Hq (Φu0) ,

(
hq−1Pm

)
Pµ

〉
(by (3.10))

=
〈
Φu0, q

−1
(
Hq−1Pm

)
Pµ − Hq

((
hq−1Pm

)
Pµ

)〉
( by (1.1))

= −〈(HqPµ) Φu0, Pm〉 ( by (1.16)) .

Then

−〈(HqPµ) Φu0, Pm〉 = λ′
m,µ

〈
u0, P

2
µ

〉
.

Consequently, λ′
m,µ = 0 , 0 ≤ µ ≤ m − t , λ′

m,0 = 0 , m ≥ 0. Moreover, for µ =
m − t + 1, m ≥ t
−〈u0, (HqPm−t+1) ΦPm〉 = − [m − t + 1]q

〈
u0, P

2
m

〉
= λ′

m,m−t+1

〈
u0, P

2
m−t+1

〉
.

Therefore, for m ≥ t,

Φ(x)
(
Hq ◦ hq−1Pm

)
(x)−Ψ (x)

(
hq−1Pm

)
(x) =

m+sm∑
ν=m−t

λ′
m,ν+1Pν+1 (x) , λ′

m,m−t+1 �= 0.

c)⇒a). From (3.11) , we have

〈
un,Φ
(
Hq ◦ hq−1Pm

)− Ψ
(
hq−1Pm

)〉
=

m+sm∑
ν=0

λ̃m,νδn,ν+1 ,

〈
q−1Hq−1 (Φun) + hq−1 (Ψun) , Pm

〉
= −

m+sm∑
ν=0

λ̃m,νδn,ν+1 , m, n ≥ 0.

For n = 0,
〈
q−1Hq−1 (Φun) + hq−1 (Ψun) , Pm

〉
= 0 , m ≥ 0, therefore

(3.18) q−1Hq−1 (Φu0) + hq−1 (Ψu0) = 0.

Further, making n → n + 1, we obtain⎧⎨⎩
〈
q−1Hq−1 (Φun+1) + hq−1 (Ψun+1) , Pm

〉
= 0 , m ≥ n + 1 + t , n ≥ 0 ,〈

q−1Hq−1 (Φun+1) + hq−1 (Ψun+1) , Pn+t

〉
= −λ̃n+t,n �= 0 , n ≥ 0.

According to Lemma 1.1,

q−1Hq−1 (Φun+1) + hq−1 (Ψun+1) = −
n+t∑

ν=n−s

λ̃ν,nuν , n ≥ s.

The orthogonality of {Pn}n≥0 leads to

q−1Hq−1 (ΦPn+1u0) + hq−1 (ΨPn+1u0) = −
n+t∑

ν=n−s

λ̃ν,n

〈
u0, P

2
n+1

〉
〈u0, P 2

ν 〉
Pνu0 , n ≥ 0.
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By virtue of (3.18) and on account of regularity of u0, we finally obtain (3.8) − (3.9)
in accordance with (3.13).

Likewise the D−semiclassical case, see [16] , we can easily establish a writing
more simplified of (3.8) on account of the three-term recurrence relation. We get

(3.19) Φ (x) (HqPn+1) (x) = 1
2 (Cn+1 (x) − C0 (x)) Pn+1 (x)−γn+1Dn+1 (x) Pn (x) ,

n ≥ 0,

where

(3.20) Cn+1 (x) = −Cn (x) + 2 (x − βn) Dn (x) + 2x (q − 1) Σn (x) , n ≥ 0 ,

(3.21)

γn+1Dn+1 (x) = −Φ(x) + γnDn−1 (x) + (x − βn)2 Dn (x) − ( q+1
2 x − βn

)
Cn (x) +

+ x (q − 1)
{

1
2C0 (x) + (x − βn) Σn (x)

}
, n ≥ 0 ,

with

(3.22) C0 (x) = q− deg ΦC (x) , D0 (x) = q− deg ΦD (x) (see (3.5) ), D−1 (x) := 0 ,

and

(3.22)′ Σn (x) :=
n∑

k=0

Dk (x) , n ≥ 0.

It is easy to see that deg Cn ≤ s + 1 and deg Dn ≤ s, n ≥ 0.

On the other hand, from (3.20)− (3.21) ,by elimination of the terms (x − βn) Dn (x) ,

(x − βn)2 Dn (x) and after some calculations we get the important formula

(3.23) 1
4

(
C2

n+1 (x) − C2
0 (x)
)− γn+1Dn (x) Dn+1 (x)−

− 1
2 (Cn+1 (x) − C0 (x)) x (q − 1) Σn (x) = Φ (x) Σn (x) , n ≥ 0.

Remarks.1. When q → 1 in (3.19)− (3.23) we recover again the D−case [5, 16] .
2. The sequence {Dn+1}n≥0 gives us some informations about zeros of polynomials
Pn+1. In fact, when Pn+1 (c) = 0 , n ≥ 1 and

(
Hν

q Pn+1

)
(c) = 0 , 1 ≤ ν ≤ µ with

µ ≥ 2 then µ ≤ s + 1 and Dn+1 (c) = 0 ,
(
Hν

q Dn+1

)
(c) = 0 , 1 ≤ ν ≤ µ − 1.

3. When s = 0, writing Φ(x) = 1
2Φ′′(0)x2 + Φ′(0)x + Φ(0),Ψ(x) = Ψ′(0)x + Ψ(0), we

can easily determine the coefficients of the structure relation (3.19) (see also [20])

(3.19)’

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2 (Cn+1(x) − C0(x)) = 1

2Φ′′(0)([n + 1]qx − q−nSn)+

+q−n(Ψ′(0) − 1+qn

2 Φ′′(0)[n + 1]q)βn+1+

+q−n(Ψ(0) − Φ′(0)[n + 1]q) − q−n(q − 1)Ψ′(0)Sn , n ≥ 0 ,

Dn+1(x) = q−n( 1
2Φ′′(0)[2n + 1]q − Ψ′(0)) , n ≥ 0 ,

with Sn :=
n∑

k=0

βk , n ≥ 0.
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Regarding the relation (3.11) , we are going to give the characterization of a
Hq−semiclassical linear form in term of a second order linear q−difference equation,
satisfied by the corresponding (MOPS), which is the extension of the Bochner one[3].
This result is the q−analog of the Hahn characterization [8] for the D−semiclassical
case, see also [5 − 6] for the D−case and [11] for the Dω−one.

Proposition 3.3. Let {Pn}n≥0 be a (MOPS) with respect to the linear form
u. If The linear form u is H q-semiclassical of class s, then there exist polynomials
Jq (., n) ,Kq (., n) , Lq (., n), with coefficients depending on n and degree at most
2s+2,2s+1,2s, respectively, for which

(3.24)

Jq (x, n)
(
Hq ◦ Hq−1Pn+1

)
(x) + Kq (x, n)

(
Hq−1Pn+1

)
(x) + Lq (x, n) Pn+1 (x) = 0,

n ≥ 0.

Proof. Let write (3.19) in the following way

(3.25) Φ (x) (HqPn+1) (x) = A (x, n) Pn+1 (x) + B (x, n) Pn (x) , n ≥ 0,

(3.25)′ Φ(x) (HqPn+2) (x) = A1 (x, n) Pn+1 (x) + B1 (x, n) Pn (x) , n ≥ 0,

so that

(3.26)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
A (x, n) = 1

2 (Cn+1 (x) − C0 (x)) , B (x, n) = −γn+1Dn+1 (x) ,

A1 (x, n) = 1
2 (Cn+2 (x) − C0 (x)) (x − βn+1) − γn+2Dn+2 (x) ,

B1 (x, n) = − 1
2 (Cn+2 (x) − C0 (x)) γn+1 , n ≥ 0.

If we multiply in (3.25) by B1 (x, n) , in equation (3.25)′ by B (x, n) and sub-
tract the resulting expressions we have for n ≥ 0

(3.27) B1 (x, n) Φ (x) (HqPn+1) (x)−B (x, n) Φ (x) (HqPn+2) (x) = ∆n (x) Pn+1 (x) ,

with

(3.28) ∆n (x) = B1 (x, n) A (x, n) − B (x, n) A1 (x, n) , n ≥ 0.

From the three-term recurrence relation and by virtue of (1.12) , the relation
(3.27) becomes

(3.27)′ (B1 (x, n) − (qx − βn+1) B (x, n))Φ(x) (HqPn+1) (x) =

(∆n (x) + Φ (x) B (x, n))Pn+1 (x)−
−γn+1B (x, n) Φ (x) (HqPn) (x) , n ≥ 0.

Applying the operator Hq to (3.25), taking into account (1.12) and multiplying the
result by (−γn+1B (x, n) Φ (x)) we get
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(3.29)
−γn+1B (x, n) Φ (x) (hqΦ) (x)

(
H2

q Pn+1

)
(x)-

−γn+1B (x, n) Φ (x)((HqΦ) (x)-(hqA) (x, n))(HqPn+1) (x)+
+γn+1B (x, n) Φ (x) (HqA) (x, n) Pn+1 (x) =

−γn+1B (x, n) Φ (x) (hqB) (x, n) (HqPn) (x)-
-γn+1B (x, n) Φ (x) (HqB) (x, n) Pn (x) , n ≥ 0.

Using the expressions for Pn , HqPn from (3.25) and (3.27)′ , we obtain

(3.29)′

−B (x, n) Φ (x) (hqΦ) (x)
(
H2

q Pn+1

)
(x)−

−Φ(x){B (x, n)((HqΦ) (x) − (hqA) (x, n))+

+ 1
γn+1

(hqB) (x, n) (B1 (x, n) − (qx − βn+1) B (x, n) ) −
−Φ(x) (HqB) (x, n)}(HqPn+1) (x)+

+{Φ(x)(B (x, n) (HqA) (x, n) − A (x, n) (HqB) (x, n))+

+ 1
γn+1

(hqB) (x, n)(∆n (x) + Φ (x) B (x, n))}Pn+1 (x) = 0 , n ≥ 0.

But

∆n (x)
γn+1

=
1
2

(Cn+2 (x) − C0 (x))(− 1
2 (Cn+1 (x) − C0 (x)) + Dn+1 (x) (x − βn+1))−

−γn+2Dn+1 (x) Dn+2 (x) ( from (3.26) )
= 1

2 (Cn+2 (x) − C0 (x))
(

1
2 (Cn+2 (x) + C0 (x)) − x (q − 1) Σn+1 (x)

)−
−γn+2Dn+1 (x) Dn+2 (x) ( from (3.20) )

= 1
4

(
C2

n+2 (x) − C2
0 (x)
)− 1

2x (q − 1) (Cn+2 (x) − C0 (x)) Σn+1 (x)−
−γn+2Dn+1 (x) Dn+2 (x)

= Φ (x) Σn+1 (x) ( from (3.23) ) , n ≥ 0.

Applying the operator hq−1 to (3.29)′, taking into account (1.14), (3.25) ,definitions
of hq and Hq and after some calculations we obtain (3.24) with (compare with [6])

(3.30)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Jq (x, n) = qΦ(x)Dn+1 (x) ,

Kq (x, n) = Dn+1

(
q−1x
) (

Hq−1Φ
)
(x) − (Hq−1Dn+1

)
(x) Φ
(
q−1x
)
+

+C0

(
q−1x
)
Dn+1 (x) ,

Lq (x, n) = 1
2 (Cn+1

(
q−1x
)− C0

(
q−1x
)
)
(
Hq−1Dn+1

)
(x)−

− 1
2

(
Hq−1 (Cn+1 − C0)

)
(x)Dn+1

(
q−1x
)− Dn+1 (x) Σn

(
q−1x
)

, n ≥ 0.

From deg Cn ≤ s + 1 , deg Dn ≤ s, n ≥ 0, deg Φ ≤ s + 2 and (3.30) , it is
easy to see that deg Jq ≤ 2s + 2 ,deg Kq ≤ 2s + 1 and deg Lq ≤ 2s.

Remark. The converse is not proved.

4. Examples. 4.1. Let v be a regular linear form. Denoting by {Pn}n≥0 its
(MOPS) sequence
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(4.1)

⎧⎨⎩
P0 (x) = 1 , P1 (x) = x − β0 ,

Pn+2 (x) = (x − βn+1) Pn+1 (x) − γn+1Pn (x) , n ≥ 0.

Let u ∈ P ′ satisfying

(4.2) xu = λv , λ ∈ C.

Equation (4.2) is equivalent to

(4.3) u = δ + λx−1v.

Suppose u regular and let
{

P̃n

}
n≥0

its (MOPS) sequence

(4.4)

⎧⎪⎨⎪⎩
P̃0 (x) = 1 , P̃1 (x) = x − β̃0 ,

P̃n+2 (x) =
(
x − β̃n+1

)
P̃n+1 (x) − γ̃n+1P̃n (x) , n ≥ 0.

From (4.2) and by virtue of Lemma 1.2 we have

(4.5) P̃0 (x) = 1 , P̃n+1 (x) = Pn+1 (x) + anPn (x) , n ≥ 0 ,

with an �= 0 , n ≥ 0.

Let us recall the fundamental result [15,THÉORÈME 1.2] .

Proposition 4.1. Let v be a regular linear form. The following statements are
equivalent
i) The linear form u = δ + λx−1v is regular for any λ �= 0.
ii) v is symmetric.

We may write

(4.5)′ γn+1
an

+ an+1 = 0 , n ≥ 0 ,

(4.6)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
a2n = −λ

n∏
ν=0

γ2ν

γ2ν−1
, n ≥ 0 , γ−1 = 1 ,

a2n+1 = 1
λ

n∏
ν=0

γ2ν+1
γ2ν

, n ≥ 0 ,

(4.7) β̃0 = −a0 = λ , β̃n+1 = an − an+1 , γ̃n+1 = −a2
n , n ≥ 0 ,

(4.8)

⎧⎨⎩
xPn (x) = P̃n+1 (x) − anP̃n (x) , n ≥ 0 ,

xPn+1 (x) = (x − an) P̃n+1 (x) + a2
nP̃n (x) , n ≥ 0.

4.2. Suppose v be a symmetric Hq−classical linear form satisfying (1.23)

Hq (Φv) + Ψv = 0 , deg Φ ≤ 2 , deg Ψ = 1.

Multiplying the last equation by λ and on account of (4.2) we get



404 L. KHERIJI

(4.9) Hq

(
Φ̃u
)

+ Ψ̃u = 0

with

(4.10) Φ̃ (x) = xΦ(x) , Ψ̃ (x) = xΨ (x) .

In accordance with Proposition 2.4, the linear form u is Hq−semiclassical
of class 1.
Now, we are going to give the structure relation of

{
P̃n

}
n≥0

.

From (3.19)′ with βn = 0, n ≥ 0 the structure relation of {Pn}n≥0 is

(4.11) Φ (x) (HqPn+1) (x) = 1
2 (Cn+1 (x) − C0 (x)) Pn+1 (x) − γn+1Dn+1 (x) Pn (x) ,

n ≥ 0,
where

(4.12)⎧⎪⎪⎨⎪⎪⎩
1
2 (Cn+1 (x) − C0 (x)) = q−n

{
1
2Φ′′ (0) qn[n + 1]qx + Ψ (0) − Φ′ (0) [n + 1]q

}
,

Dn+1 (x) = q−n
(

1
2Φ′′ (0) [2n + 1]q − Ψ′ (0)

)
, n ≥ 0.

From (4.5) , (4.11) and (5.1) we have

(4.13) Φ (x)
(
HqP̃n+1

)
(x) = un (x) Pn+1 (x) + vn (x) Pn (x) , n ≥ 0,

with for n ≥ 0

(4.14)⎧⎨⎩
un (x) = 1

2 (Cn+1 (x) − C0 (x)) + anDn (x) ,

vn (x) =
{− 1

2 (Cn+1 (x) − C0 (x)) − C0 (x) + x (q − 1) Σn (x)} an − γn+1Dn+1 (x) .

On account of (4.8) , we have for (4.13)

(4.15)

Φ̃ (x)
(
HqP̃n+1

)
(x) = 1

2

(
C̃n+1 (x) − C̃0 (x)

)
P̃n+1 (x) − γ̃n+1D̃n+1 (x) P̃n (x) ,

n ≥ 0,
where

(4.16)

⎧⎪⎨⎪⎩
1
2

(
C̃n+1 (x) − C̃0 (x)

)
= (x − an) un (x) + vn (x)

γ̃n+1D̃n+1 (x) = (vn (x) − anun (x)) an

, n ≥ 0.



Hq-SEMICLASSICAL LINEAR FORMS 405

From (3.22) and (3.5) we have⎧⎪⎪⎨⎪⎪⎩
C̃0 (x) = −

(
qΨ̃ (x) +

(
Hq−1Φ̃

)
(x)
)

,

D̃0 (x) = −
(
Hq−1

(
uθ0Φ̃
)

(x) + q
(
uθ0Ψ̃
)

(x)
)

.

By virtue of (4.10) and (1.12) we get

(4.17)

⎧⎨⎩
C̃0 (x) = q−1xC0 (x) − ((q − 1) xΨ (x) + Φ (x)) ,

D̃0 (x) = C0 (x) + λD0 (x) ,

because(
uθ0Ψ̃
)

(x) =

〈
u,

Ψ̃ (x) − Ψ̃ (ζ)
x − ζ

〉
= Ψ (x) +

〈
λζ−1v,

Ψ̃ (x) − Ψ̃ (ζ)
x − ζ

〉

= Ψ (x) + λ

〈
v,

{
Ψ̃ (x) − Ψ̃ (ζ)

x − ζ
− Ψ (x)

}
1
ζ

〉
= Ψ (x) + λ (vθ0Ψ) (x) .

In addition, From (4.14)− (4.17) and by taking into account (4.5)′ and (3.20) we get
for n ≥ 0

(4.18) Σ̃n (x) :=
n∑

ν=0

D̃ν (x) = − 1
2 (Cn+1 (x) − C0 (x)) − anDn (x) + qxΣn (x) .

Now we are able to give the coefficients of the second order linear q−difference
equation satisfied by P̃n+1, n ≥ 0

(4.19)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

J̃q (x, n) = qxΦ(x) ( vn

(
q−1x
)− anun

(
q−1x
)
) ,

K̃q (x, n) = −q−1xΦ
(
q−1x
) ((

Hq−1vn

)
(x) − an

(
Hq−1un

)
(x)
)−

− (vn (x) − anun (x)) ( xΨ
(
q−1x
)

+ Φ
(
q−1x
)

+ q−2x
(
Hq−1Φ

) (
q−1x
)
)+

+
(
vn

(
q−1x
)− anun

(
q−1x
))

( Φ(x) + q−1x
(
Hq−1Φ

)
(x) ),

L̃q (x, n) = q−1xun

(
q−1x
) ((

Hq−1vn

)
(x) − an

(
Hq−1un

)
(x)
)−

− (vn

(
q−1x
)− anun

(
q−1x
)) (

un

(
q−1x
)

+ x
(
Hq−1un

)
(x)
)−

− (vn (x) − anun (x)) Σ̃n

(
q−1x
)
.

Finally, suppose that the function V represents the regular linear form v

〈v, f〉 =
∫
−∞

+∞
V (x) f (x) dx , f ∈ P , with

∫
−∞

+∞
V (x) dx = 1.
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In view of (4.3) , we may write

(4.20) 〈u, f〉 =

⎧⎨⎩1 − λP

∫
−∞

+∞
V (x)

x dx

⎫⎬⎭ f (0) + λP

∫
−∞

+∞
V (x)

x f (x) dx , f ∈ P ,

where

(4.21) P

∫
−∞

+∞
V (x)

x dx := lim
ε�0+

⎛⎝∫
−∞

−ε
V (x)

x dx +
∫
+ε

+∞
V (x)

x dx

⎞⎠ .

4.3. Before giving examples of Hq−semiclassical linear form of class 1, let us
recall the following standard material [4, 9, 10]

(4.22) (a; q)n :=

⎧⎪⎪⎨⎪⎪⎩
1 , n = 0

n∏
ν=1

(
1 − aqν−1

)
, n ≥ 1.

(4.22)′ [nk ]q :=
[n]q !

[k]q ![n−k]q ! = (q;q)n

(q;q)k(q;q)n−k
, 0 ≤ k ≤ n.

(4.23) (a; q)∞ =
+∞∏
ν=0

(1 − aqν) , |q| < 1.

(4.24)
+∞∑
k=0

q
1
2 k(k+1)

(q;q)k
(−1)k

zk = (qz; q)∞ , |q| < 1.

4.3.1. Consider the symmetric Hq−classical linear form v which is the q−analog
of Hermite. We have [9]

(4.25)

{
βn = 0 , γn+1 = 1

2qn [n + 1]q , n ≥ 0,

Φ(x) = 1 , Ψ (x) = 2x,

(4.26) (v)2n =
[2n]q ![2n+2]q

2n
n∏

ν=0
[2ν+2]q

, (v)2n+1 = 0 , n ≥ 0,

(4.27)

〈v, f〉 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
2

π (q − 1)
1
2

(q−2;q−2)∞
(q−1;q−2)∞

∫
−∞

+∞
f(x)

(−2(q−1)x2;q−2)∞
dx ,

f ∈ P , q > 1,

K1

∫ + 1
q
√

2(1−q)

− 1
q
√

2(1−q)

(
2q2 (1 − q) x2; q2

)
∞ f (x) dx ,

f ∈ P , 0 < q < 1,

with K1 = 1
2

⎛⎝∫
0

+ 1
q
√

2(1−q) (
2q2 (1 − q) t2; q2

)
∞ dt

⎞⎠−1

.
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Remark. Taking into account (4.24), we may write

K−1
1 =

1
q

√
2

1 − q

+∞∑
k=0

(−1)k

(2k + 1)
qk(k+1)

(q2; q2)k

.

From (3.22) − (3.22)′ and (4.12) we get

(4.28)

⎧⎪⎪⎨⎪⎪⎩
C0 (x) = −2qx , D0 (x) = −2q ,

1
2 (Cn+1 (x) − C0 (x)) = 0 , Dn+1 (x) = −2q−n ,

Σn (x) = −2q1−n [n + 1]q , n ≥ 0.

Consequently, for any λ �= 0, the linear form u defined by (4.2) is Hq−semiclassical
of class 1 and from (4.10) we get

(4.29) Φ̃ (x) = x , Ψ̃ (x) = 2x2.

In accordance of (4.2) and (4.26), the moments of u are

(4.30)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(u)0 = 1 , (u)2n = 0 , n ≥ 1,

(u)2n+1 = λ
[2n]q! [2n + 2]q

2n
n∏

ν=0
[2ν + 2]q

, n ≥ 0.

By virtue of (4.6) and (4.25) we obtain

(4.31)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
a2n = −λqn

(
q2; q2
)
n

(q; q2)n

, n ≥ 0,

a2n+1 = 1
2λqn

(
q3; q2
)
n

(q2; q2)n

, n ≥ 0.

Then with (4.7) we get

(4.32)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β̃0 = λ , β̃2n+1 = −qn

{
λ

(
q2; q2
)
n

(q; q2)n

+
1
2λ

(
q3; q2
)
n

(q2; q2)n

}
, n ≥ 0,

β̃2n+2 = qn

{
λq

(
q2; q2
)
n+1

(q; q2)n+1

+
1
2λ

(
q3; q2
)
n

(q2; q2)n

}
, n ≥ 0,

γ̃2n+1 = −λ2q2n

(
q2; q2
)2
n

(q; q2)2n
, γ̃2n+2 = − 1

4λ2
q2n

(
q3; q2
)2
n

(q2; q2)2n
, n ≥ 0.

On the other hand, from (4.14) and (4.16) − (4.18) we have
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(4.33)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

un (x) = −2q1−nan , vn (x) = 2q (1 − q + q−n) anx + [n + 1]q , n ≥ 0,

1
2

(
C̃n+1 (x) − C̃0 (x)

)
= 2q (1 − q) anx + 2q1−na2

n + [n + 1]q , n ≥ 0,

D̃n+1 (x) = −{2q (1 − q + q−n) anx + 2q1−na2
n + [n + 1]q }a−1

n , n ≥ 0,

C̃0 (x) = −2qx2 − 1 , D̃0 (x) = −2q (x + λ) ,

Σ̃n (x) = 2q1−n
(
an − q [n + 1]q x

)
, n ≥ 0.

Then, with (4.19) , the second order linear q−difference equation satisfied by
P̃n+1, n ≥ 0 is

(4.34)

{(1 − q + q−n) x + q−n (qan − an+1)}
(
Hq ◦ Hq−1 P̃n+1

)
(x)−

−{(1 − q + q−n)
(
2q−1x2 + 1

)
+ 2q−2−n (qan − an+1) x}(Hq−1 P̃n+1

)
(x) +

+2q1−n{(1 − q + q−n)
(
q [n + 1]q x − an

)
+

+q−n [n + 1]q (qan − an+1)}P̃n+1 (x) = 0.

From the definition (4.21) , and (4.27) , it easy to see that

P

∫
−∞

+∞ dx

x (−2 (q − 1) x2; q−2)∞
= 0 , q > 1, and

P

∫ + 1
q
√

2(1−q)

− 1
q
√

2(1−q)

(
2q2 (1 − q) x2; q2

)
∞

x
dx = 0 , 0 < q < 1.

Therefore, with (4.20) , and choosing

λ−1 =

⎧⎪⎨⎪⎩
√

2
π

(q − 1)
1
2

(
q−2; q−2

)
∞

(q−1; q−2)∞
, q > 1

K1 , 0 < q < 1

we obtain the integral representation of u

(4.35)

〈u, f〉 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f (0) + P

∫
−∞

+∞ f (x)
x (−2 (q − 1) x2; q−2)∞

dx ,

f ∈ P , q > 1,

f (0) + P

∫ + 1
q
√

2(1−q)

− 1
q
√

2(1−q)

(
2q2 (1 − q) x2; q2

)
∞

x
f (x) dx ,

f ∈ P , 0 < q < 1.

4.3.2. Consider the symmetric Hq−classical linear form v which is in the family
of q−Jacobi, we have [9]
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(4.36)

{
βn = 0 , γn+1 =

(
1 − qn+1

)
q−(2n+1) , n ≥ 0,

Hq

((
x2 + 1

)
v
)− (q − 1)−1

xv = 0,

(4.37) (v)2n = q−n2 (
q; q2
)
n

, (v)2n+1 = 0 , n ≥ 0,

(4.38) 〈v, f〉 =

(
q2; q2
)
∞

π (q; q2)∞

∫
−∞

+∞ 1
(−x2; q2)∞

f (x) dx, f ∈ P, 0 < q < 1.

Taking into account (3.22) − (3.22)′ and (4.12) we get

(4.39)

⎧⎪⎪⎨⎪⎪⎩
C0 (x) = (q (q − 1))−1

x , D0 (x) = (q − 1)−1
,

1
2 (Cn+1 (x) − C0 (x)) = [n + 1]qx , Dn+1 (x) = qn+1 (q − 1)−1

,

Σn (x) = (q − 1)−1 [n + 1]q , n ≥ 0.

The linear form u defined by (4.2) is Hq−semiclassical of class 1 for any λ �= 0 and
fulfils

(4.40) Hq

(
x
(
x2 + 1

)
u
)− (q − 1)−1

x2u = 0.

From (4.2) and (4.37) , the moments of u are

(4.41)

{
(u)0 = 1 , (u)2n = 0 , n ≥ 1,

(u)2n+1 = λq−n2 (
q; q2
)
n

, n ≥ 0.

By virtue of (4.6) and (4.36) we obtain

(4.42)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
a2n = −λq−n(n+1)

(
q2; q2
)
n

(q; q2)n

, n ≥ 0,

a2n+1 = 1
λ (1 − q) q−n(n+1)−1

(
q3; q2
)
n

(q2; q2)n

, n ≥ 0.

Then with (4.7) we get for n ≥ 0

(4.43)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β̃0 = λ , β̃2n+1 = −q−n(n+1)−1

{
λq

(
q2; q2
)
n

(q; q2)n

+
1
λ

(1 − q)

(
q3; q2
)
n

(q2; q2)n

}
,

β̃2n+2 = q−n(n+1)−1

{
λq−2n−1

(
q2; q2
)
n+1

(q; q2)n+1

+
1
λ

(1 − q)

(
q3; q2
)
n

(q2; q2)n

}
,

γ̃2n+1 = −λ2q−2n(n+1)

(
q2; q2
)2
n

(q; q2)2n
,

γ̃2n+2 = − 1
λ2

q−2(n2+n+1) (1 − q)2
(
q3; q2
)2
n

(q2; q2)2n
.

In accordance of (4.14) and (4.16) − (4.18) we obtain for n ≥ 0
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(4.44)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

un (x) = (q − 1)−1{(qn+1 − 1)x + qnan} ,

vn (x) = −(q − 1)−1{q−1anx + q−n(1 − qn+1)} ,

1
2

(
C̃n+1 (x) − C̃0 (x)

)
= (q − 1)−1

{
(qn+1 − 1)x2+

+(1 − q−1 + qn − qn+1)anx − qna2
n − q−n(1 − qn+1)

}
,

D̃n+1 (x) = (q − 1)−1{(q−1 + qn+1 − 1)anx + qna2
n + q−n(1 − qn+1)}a−1

n ,

C̃0 (x) = q−2 (q − 1)−1
x2 − 1 , D̃0 (x) = (q − 1)−1 (

q−1x + λ
)

,

Σ̃n (x) = −(q − 1)−1
{

(2q − 1)[n + 1]qx + qnan

}
.

Therefore, with (4.19) , the second order linear q−difference equation satisfied
by P̃n+1, n ≥ 0 is

(4.45)(
x2 + 1

){
(1 − q−1 − qn+1)x + qn+1(qan+1 − an)

}(
Hq ◦ Hq−1 P̃n+1

)
(x) +

+
{

q−2(q − 1)−1(q−1 + qn+1 − 1)(1 − q−2 − q2)x2 +qn−2(an − qan+1)(1 + q +

+ q2 − q−2(q − 1)−1)x + q−1 + qn+1 − 1
}(

Hq−1 P̃n+1

)
(x) + (q − 1)−2

{
(1 − q−1 −

− qn+1)x + qn−1(1 − qn+2)an + qn+1(q − 2)(1 − qn+1)an+1

}
P̃n+1 (x) = 0.

Lastly, from the definition (4.21) , and (4.38) , we have

P

∫
−∞

+∞ 1
x (−x2; q2)∞

dx = 0 , 0 < q < 1.

Therefore, with (4.20) ,and choosing λ−1 =

(
q2; q2
)
∞

π (q; q2)∞
, for f ∈ P , 0 < q < 1 we

obtain the integral representation of u

(4.46) 〈u, f〉 = f (0) + P

∫
−∞

+∞ 1
x (−x2; q2)∞

f (x) dx.
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