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AN INTRODUCTION TO THE H,-SEMICLASSICAL
ORTHOGONAL POLYNOMIALS *

LOTFI KHERIJI

Abstract. Orthogonal polynomials associated with Hy— semiclassical linear form will be stud-
ied as a generalization of the Hg—classical linear forms. The concept of class and a criterion for
determining it will be given. The g-difference equation that the corresponding formal Stieltjes se-
ries satisfies is obtained. Also, the structure relation as well as the second order linear g-difference
equation are obtained. Some examples of Hy—semiclassical of class 1 were highlighted.

Introduction. The aim of this paper is to present the analysis and characteri-
zation of the g-analogues of D-semiclassical orthogonal polynomials. D-semiclassical
orthogonal polynomials were introduced in a seminal paper by J. A. Shohat [22] and
extensively studied by P. Maroni and coworkers in the last decade[13-19]. Further-
more, the present contribution is a natural continuation of a previous work [9] by me
and P. Maroni on g-classical orthogonal polynomials.

In the literature, the extension of classical orthogonal polynomials (Hermite, La-
guerre, Jacobi, and Bessel) can be done in the g-case from three basic approaches (see
[2] for a comparative analysis).

The first one is related with the so called Askey Tableau, where all the classi-
cal families appear in a limiting process from the top of Askey-Wilson polynomials
(see[10]).

The second one concerns the hypergeometric character of classical orthogonal
polynomials , i.e. as solutions of a second order linear differential equation with
polynomial coefficients, the so called Nikiforov-Uvarov approach (see[21]).

The third one is based in the Pearson equation which satisfies the symmetric
factor for the above differential equation. This idea appears in several papers but the
basic theory was developed by P. Maroni.

The structure of this paper is as follows: The first section contains material of
preliminary and introductory character. Instead of the derivative operator, we use the
g-operator H, introduced by Hahn [7]. In particular, we define a H,—semiclassical
linear form u from a functional equation which is the g—difference distributional
Pearson one. The second section deals with so-called class of H;—semiclassical linear
forms. A criterion for determining it is given. In the third section, we establish the
different characterizations of H,—semiclassical linear forms. We can characterize a
H,—semiclassical linear form through the fact that its Stieltjes function satisfies a first
order linear g—difference equation with polynomial coefficients. A second characteri-
zation is the so-called structure relation that the polynomials { P, }, - orthogonal with
respect to u satisfy. It is deduced from theory of finite-type relations between polyno-
mial sequences [19]. A third characterization is the second order linear g—difference
equation satisfied by P41, n > 0. Lastly, in section 4 we construct some examples
of H,—semiclassical linear forms of class 1 by taking into account a method studied
by P. Maroni in [15] for the D-case ( see paragraph 5.1 below ) and by using some
symmetric H,—classical linear forms in [9)].

*Received January 24, 2003; accepted for publication September 24, 2003.
TInstitut Supérieur des Sciences Appliquées et de Technologie, de Gabés, Rue Omar Ibn El Khat-
tab 6072-Gabes, Tunisia (Lotfi.Kheriji@issatgb.rnu.tn).

387



388 L. KHERIJI

1. Preliminaries and notations. Let P be the vector space of polynomials
with coefficients in C and let P’ be its topological dual.We denote by (u, f) the effect
of w € P" on f € P. In particular, we denote by (u),, := (u,z™) , n > 0 the moments
of u. For any linear form u, any polynomial g , let gu , be the linear form defined by
duality

{gu, f) == (w,9f) » f,9€P.

For f € P and u € P’, the product uf is the polynomial
(u) () 1= (o ZHD =L 5 ( 3 <u>y_k> o
k=0 \v=k

where f(z) = fra®. The Stieltjes function of u € P’ is defined by
k=0

S (u) (2) = _Z,i:)ﬁ .

n>0

Denoting by A the linear space generated by {5(”)}n>0 , where 6(") means the n th
derivative of the Dirac delta in the origin, i.e., -

d’ﬂ
(n) — (=" £ (0) = (—=1)" =
(50, 1) = ()" 1 0) = (-1 o) e P,
and by F the isomorphism : A — P defined as follows [14] :

for u = Z(u)k (=1 6 L (u) = Z(u)k 2",

n!
k=0 k=0

Let {P,},,~, be a sequence of monic polynomials with deg P, = n, n > 0 (poly-
nomial sequence : PS ) and let {u,},~, be its dual sequence, u,, € P’ defined by
(tn, Pm) = 6n.m , n,m > 0. Let us recall some results [17].

LEMMA 1.1. For any u € P’ and any integer m > 1, the following statements
are equivalent
i) (UyPp_1)#0 , (u,P,)=0, n>m,
W) IN, €C,0<v<m—1, A\p_1# 0 such that

m—1
u = E AUy .
v=0

Similarly, with the definitions
(hau, f) := (u, ho f) = (u, f (ax)) ,ueP , feP,aecC-{0}.
The linear form wu is called regular if we can associate with it a sequence of polynomials
{Pn},>o such that
<U7PmPn> :Tnén,m , m, m>0; rn#oa n > 0.

The sequence {P,}, -, is then said orthogonal with respect to u. Necessarily, u =
Mg, A # 0 and {P,},, is an (OPS) such that any polynomial can be supposed
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monic (MOPS). In this case, we have u,, = 7, P,ug, n > 0 and conversely. Also,
the (MOPS){P,}, -, fulfils the recurrence relation

Po(l')zl y Pl(l'):$—60,

Pn+2 (.’E) = (CL‘ - ﬁn+1) Pn+1 (x) - 7n+1Pn (x) y Tn+1 7é 0,n=>0.

When w is regular , let ¢ be a polynomial such that ¢u = 0.Then ¢ = 0. Indeed, we
have 0 = (¢u, P,) = ¢ (u, P2) if ¢ = ca™ + ...

p(z) —p(c)

Lastly, from the linear application p — (6.p) () =
T —

define (z —¢) ' u by <(m —e) ! u,p> = (u, 0.p) .

,pEP,ceC, we

The Hahn’s operator H, is defined in the linear space P in the following way [7,9,12]

f(gz) — [ (z)

(Hqyf) (x) =

where C :=C— ({O} U ( U {z€eC, "= 1})) . By duality, the image of a linear

n>0
form using this operator Hy is a linear form such that [9]

(1.1) (Hyu, f) =—(u,Hyf) ,V feP.
In particular, this yields

(1.1) (Hqu),, = —[n], (u)_y , n 20,
" —1

qg—1
As a consequence of lemma 1.1, the dual sequence {uL1 ] (q)} of
n>0

where (u)_; =0 and [n], = , n>07[9].

H,P, .
{lel] (;q) := [nq+ 1“]‘: } is given by [9]
n>0
(1.2) H, (uw (q)) = [+ 1), ungs , n20.

REMARK. When ¢ — 1, we meet again the derivative D. The following well

known results (see [9,14, 19])will be useful for our work. We summarize them in

LEMMA 1.2. Let {P,},~, and {Qn},~o be sequences of monic polynomials with
{un}, ¢ and {v,}, s, their respective dual sequences. Let ® be a monic polynomial
with deg® =t > 0 and ®u,, # 0, n > 0. The following properties are equivalent
1) There is an integer s > 0 such that

n+t

(1.3) D (z)Qp (z) = Z APy (x) , n>s,

vV=n-—s

(1.4) Ir>s: Ap_s #0.
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11) There are an integer s > 0 and an application from N into N : m — pu,,
satisfying

(1.5) max (0,m —t) < <m+s, m>0,

(1.6) Ime >0 fim, =mo+s,

and such that

Hm

(1.7) du,, = Z Avmy , m2>t,
v=m-—t
(1.8) Ny 0, m >0,

LEMMA 1.3. For f,g€ P, ueP and c€ C, we have
(1.9) (z - ¢) ((x—c)_lu) —u,
(110)  (z—0) ' ((z—)u) =u—(u)yd,
(111  S(fu)(2) = [ (2) S (u) (2) + (ubo f) (2) ,
(1.12)  Hy(fg) (z) = (hqf) (x) (Hqg) () + g (x) (Hyf) (z) ,
(1.13) ha (gu) = (ha-19) (hau) ,
(1.14) hg10Hy=H,1, Hjohy-1=q 'Hy1in P,
(1.14) HyoH,1+=q 'Hy10H,in P,

(1.15)  hg1oH,=q 'Hys, Hyoh,r =H

g1 in P
(1.16) (Hy (hg=11) 9) () = f () (Hyg) (x) + ¢~ g (x) (Hg-1 f) (@)
(1.17) Hg (gu) = (hg-19) Hpu+ q~* (Hy-19) u.
Furthermore,
LEMMA 1.4. For f € P and u € P', the following formulas hold
(118)  (Hy (uf)) (z) = ((Hg-1u) (hef)) () + q (u (Hyf)) () + (ubo f) (),
(L19)  S(Hqu)(2) =q " (He- (S (w) (2),
(1.20)  (hg (00f)) (x) = g~ (6o (hef)) (),
(121)  (uboHyf) (x) = q (u(Hy (601))) () + (ubFf) (2),

(1.22) Hy (ubof) (2) = q~* (Hy-1u) (60 © hy f) (2) + (uboHy f) ().
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Let & monic and ¥ be two polynomials, deg® = t, deg¥ = p > 1. We sup-
pose that the pair (®, U) is admissible, i.e. when p =¢—1, writing ¥ (z) = apaP + ...,
then ap # [n+ 1], , n €N

DEFINITION 1.5. A linear form u is called Hy—semiclassical when it is regular
and satisfies the equation

(1.23) H, (Pu)+Yu=0,

where the pair (P,¥) is admissible. The corresponding orthogonal sequence
{Pn}, >0 is called Hy—semiclassical.

REMARK. We have the following result ( see[9] ).
Let {]3” =q" (haPn)} o’ @ # 0; when wg satisfies (1.23) , then @y = hg-1ug
fulfils the equation B

(1.24) H, (E)ao) 4+ Tty =0,

where ® (2) = a~t® (az) , ¥ (z) = o'tV (az).

2. Class of a H,—semiclassical linear form. It is obvious that a
H,—semiclassical linear form satisfies an infinity number of equations of type
(1.23) . Indeed, multiplying (1.23) by a polynomial x we obtain

0= xHy (Pu) + xVu = (hy-1 (hgX)) Hq (Pu) + xPu
= Hy ((hgx) ®u) — ¢! (Hy-1 0 hyx) ®u+ x¥u ( by (1.17) )
((hgx) ®u) + {x¥ — @ (Hyx)} u ( by (1.14) ).

Then, for any pair (®, V) satisfying (1.23) we associate the positive integer
max (deg ® — 2,deg ¥ — 1) . Denoting

h(u) := {max (deg® — 2,deg ¥ — 1), H, (Pu) + ¥u = 0},
what leads us to the following definition

DEFINITION 2.1. Giving a H,—semiclassical linear form u, we define the class
of u, the positive integer s, as

s:=minh (u).
The corresponding orthogonal sequence {Pn}n20 will be said to be of class s.
LEMMA 2.2. Let u be a Hy—semiclassical linear form satisfying
(2.1) H, (®1u) + T1u=0,
and

(2.2) Hy (Do) + Uou =0,
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where ®1,Wq1, Do, Uy are polynomials, ®1,Ps monic,deg¥; > 1,deg¥, > 1.
Denoting s; = max (deg ®; — 2,deg ¥y — 1), 82 = max (deg Po — 2,deg Uy — 1). Let
® = ged (Py, Py) . Then, there exists a polynomial U,deg ¥ > 1 such that

(2.3) H, (®u)+Tu=0,

with

(2.3)" max (deg® — 2,deg ¥ — 1) = s5; — deg®; + deg ® = 55 — deg Py + deg ®.

\% \%
Proof. With ® = ged (@1, ®3), there exist two coprime polynomials ®1, ®5 such

that
v v
(2.4) D1 = PPy, Py = DDy

Taking into account (1.17) equations (2.1) — (2.2) become
4 \
(2.5), (hq_lcpi) H, (du) + {\I: 1D (Hq_lcbi) } w=0,i€c{1,2}.

v v
The operation (hq—l <I>2> x (2.5); — (hq_1<I>1> x (2.5), gives

() 0 (1))
() (w00 (1, ,) } _o.

From regularity of u we get

20) (ny1a) (v a0 (H001) ) = (ot ) (w2 a0 (11,082 ).

Thus, there exists a polynomial ¥ such that

\ V

Uy + qil(p <Hq1 (I)l) =v (hql @1) R
\% vV

Uy + q—lq) (qu (I)2> =V (hqlq)2> .

Then, formulas (2.1) — (2.2) become

(2.6)

(hq1$i> (H, (du) + Tu} =0, i € {1,2)

l
v
writing ®; (z) = H (x —cip)™*, i € {1,2}, which yields
k=1

i

11 a Iy o
Hy (Pu) +Yu= 3 Bix 55011,’:) = > Bk 5(5022,’:)-
k=1 k=1
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v v
But the polynomials ®; and 2 have no common zero, which allows (2.3) . With (2.4)

and (2.6) it is easy to prove (2.3)". O

PROPOSITION 2.3. For any Hg—semiclassical linear form w, the pair (®,¥)
which realizes the minimum of b (u) is unique.

Proof. If s1 = sy in (2.1) — (2.2) and s; = s2 = s = minh(u), then
deg @1 = deg ® = deg ®5. Consequently &1 =P =Py, Uy =V =U,. O

Then, it’s necessary to give a criterion which allows us to simplify the class.

PROPOSITION 2.4. A regular form u H,—semiclassical satisfying (1.23) is of
class s if and only if

@7 T {la () (©) + (Hy®) (©) + (1,4 (6 ) + (6uq © 0:2) [} > 0,
cEZp

where Zg is the set of zeros of ®.

Proof. Let cbeazeroof @ : @ (x) = (z — ¢) . (z) . The Euclidean algorithm gives

O (z) + q¥ (2) = (z — ¢q) Qeq () + Teq-
Then (1.23) becomes
(x —cq) {Hy (Peu) + Qequ} + 1equ =0,
on account of (1.9) — (1.10), the last equation is equivalent to
(2.8) Hy (Du) + Qequ = (Hy (Pett) + Qeqtt)y g — (x — cq) ™' requ.
Moreover, it is easy to see that
D (cq) = (Hy®) (¢) » Pe(x) = (0:P) ().
Finally
req = (Hy®) (¢) + ¢ (hg¥) () ,
(2.9) Qeq () = q(0:40) () + (0cq 0 0.P) (z) ,
(Hy (Pew) + Qequ)g = (U Qeq) = (1,4 (0cq V) + (0cq © 6:P)) -
Necessity. Let us suppose that there exists ¢, ® (¢) = 0 , satisfying
Teqg =0, (u,Qcq) =0.
Then by (2.8), u verifies

(2.10) H, (®u)+ Qequ=0 |,
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with s, = max (deg Qcq — 1,deg ®. — 2) < s, what contradicts that s := minb (u) .
Sufficiency. Let us suppose that the class of u is § < s. There exist two polynomials ,
® (monic), deg® =t >0, ¥, deg¥ = p > 1 such that

H, (&Du) + Tu = 0.
Consider ® = ged ((ID, &)) ,deg&) = . On account of lemma 2.2, there exists a poly-

nomial \f/, deg\f/ = p > 1, such that H, (@u) +Tu =0 ,§ = max (ﬁf 1, — 2) =
s—t+t=35—t+t. L

Using proposition 2.3, we easily obtain ® = & , ¥ = W. Then, there exists a poly-
nomial x satisfying

d = XZI; , U= (hq—lx) v — ¢! (qulx) 3.

Since $ < s hence degx > 1. Let ¢ be a zero of x : x (z) = (z — ¢) x (2) .
Writing @ (z) = (x — ¢) . (2), (<I>C = Xc@), which allows

{ Teq = (Hq®) (¢) +q (hq¥) (c) =0,
<u, q (ch\IJ) + (ecq © OC<I>)> =0,

what contradicts (2.7) . Consequently, 5 = s, d=%and U =10.0O

REMARKS. 1. When ¢ — 1 we recover again the criterion which allows us to
simplify a D—semiclassical linear form [17].
2. When ¢ € C and s = 0, the linear form u is usually called H,—classical [9].

DEFINITION 2.5 [4]. A linear form u is called symmetric if (u,z?"*1) =0, n > 0.

PROPOSITION 2.6. Let u be a symmetric H,—semiclassical linear form of class
s satisfying (1.23). The following statements hold
i) When s is odd then the polynomial ® is odd and VU is even .
ii) When s is even then the polynomial ® is even and ¥ is odd .

Proof. Writing ® (z) = ®¢ (2?) 4+ 20° (2?) , ¥ (z) = ¥° (2?) + 2¥° (2?),
then (1.23) becomes

{H, (®° (2%) u) + 29° (2*) u} + {H, (2@° (2*) u) + ¥ (2®) u} = 0.

Denoting w® = H, (<I>e (xQ) u) + x e (:cz) u, w’ = H, (xq)" (:cQ) u) + pe (xz) U.
Then

(2.11) w® 4+ w® = 0.
From (2.11) we get

(2.12) (we), = = (w°)
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From definitions we can write for n > 0
(w°),, = <u, p2nt1lgo (xz) _ [2n]qx2n—1q)e (x2)>
(2.13)
(W)gpi1 = <u,x2”+1\116 (2?) = 2n + 1], 2?1 @0 (x2)> .
Now, with u symmetric: (u)y,,; =0, k>0, (2.13) gives
(212)/ (w®),, =0= (w0)2n+1 ; n=0.

On account of (2.12) and (2.12)'we deduce w® = w°® = 0. Consequently, wu
satisfies two functional equations

(2.14) Hy (9° (22) u) + 2¥° (%) u =0,
and
(2.14) Hy (2®° (2?) u) + 0° (z?)u=0.

i) When s = 2k + 1, with s = max (t —2,p— 1) we get t < 2k + 3, p < 2k + 2, then
deg (ac\I"’ (xQ)) <2k+1, deg (fb"‘ (xz)) < 2k + 2. So, in accordance with (2.14) , we
obtain the contradiction s = 2k + 1 < 2k. Necessary ®¢ = ¥° = (.

1) When s = 2k, with s = max(t —2,p— 1) we get t < 2k + 2, p < 2k + 1, then
deg (\I/e (xz)) < 2k, deg (ac<I>° (:E2)) < 2k + 1. So, in accordance with (2.14)", we
obtain the contradiction s = 2k < 2k — 1. Necessary ° = ¥°® = 0.Hence the desired
result. O

REMARK. When ¢ — 1 we recover again the same result for the D—semiclassical
case [1].

3. Different characterizations of H,—semiclassical linear forms. One of
the most important characterizations of the H;—semiclassical linear forms is given
in terms of a non homogeneous first order linear g¢-difference equation which its
formal Stieltjes series satisfies. See also [6, 14] for the D—case and [11] for the D,,—one.

PROPOSITION 3.1. The linear form u is Hy,—semiclassical of class s, if and only
if, it is reqular and there exist three coprime polynomials A (monic ),C, D such that

(3.1) A=) Hyr (S () (2) = C(2) 8 (u) (2) + D (2)
with
(3.2) s = max (degC' — 1,deg D).

Proof. Necessity. From (1.23), we have 0 = Hy (Pu) + Yu = (h,—1®) (Hqu)
+{¥ + ¢ 'H;-1®} u (with (1.17)). The isomorphism F yields

F ((hg—1®) (Hqu) + {V + ¢ "H;-1®} u) (2) = 0.

From definition of S (u), we obtain
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(3.3) S ((hg—1®) (Hqu)) (2) + S (Yu) (2) + ¢~ 1S ((Hy-1®) u) (2) = 0.
On account of (1.11), (3.3) becomes

(hg-1®) (2 HU)(ZH((HqU)(Goohq*‘P))()+‘P()S()()+
+(u00\11)( )+ a7t (Hy-1®) (2) S (u) (2) + ¢! (ubgHy-1 @) (2) =

Then ,with (1.19)

gt (hg—1®) (2) (Hg-1S (v)) (2)
— {\I/ (z) + ¢ (Hy1®) ( )} S (u) (2) —
—{((Hqu) (6 © hy-1®)) (2) + (ubo¥) (2) + ¢~ * (ubo Hy,—1®) (2) } .

By using (1.22) the last equation becomes

34) (hg1®) () ( ))()=
—{a¥ (= ( 1®) (2 }
-{H, u90 ) +q (ubo¥) (2)} .
From (3.4) denoting
A(z) = q18% (hg—19) (2) ,
(35) § C(z)=—q*8® (q¥ (2) + (H,;~1®) (2)) ,

D (2) = —¢"® (Hy1 (ufo®) (2) + q (ubo¥) (2)) -

Let ¢ be a zero of ®. From the first relation in (3.5), we remark that cq is a
zero of A. As w is of class s, in accordance with (2.7) we get

q(hq¥) (c) + (Hy®) (c) #0 or (u,q(0cqV) + (fcq 0 0:.P)) # 0.
But with definitions of Hy , 6., uf and formula (1.14), it is easy to see that
{ C (cq) = —q*8® (hy-1 (q(hq¥) + Hy®)) (cq) ,

D (cq) = —q%°8® (u, q (0 V) + (0cq © 0.2)) .

(3.6)

Consequently, A, C' and D have no common zero. Then A, C, and D are co-
prime.

Sufficiency. Let u € P’ regular with its formal Stieltjes series S (u) satisfying (3.1).
From (1.11) and (1.19) formula (3.1) becomes

(3.1) S (A(Hyu) —g'Cu) () = (Hyubod) () — ¢~ (uboC) (=) + 4D (2).

But

S(A(Hqu) — g 'Cu) (2) = 5 ((hg-1 (hqA)) (Hqu) — ¢ 'Cu) z
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= 5 (Hy ((hgA)u) — g~' (Hy+ 0 hyA) u— g~ Cu) (2) (by (1.17))
= S(Hy ((hgA)u) — {(H,A) + 7' C}u)(2) (with (1.14)).

Then, (3.1)" could be written as

S(Hy ((hgA)u) = {(HyA) + ¢~ C}u) (2) =
(HquboA) (2) — =" (uboC) (2) + ¢~ ' D (2),

which implies

{ Hy ((hqA)u) = {(HgA) +q7'Clu=0,
D (z) = (uboC) (z) — g (HqubpA) (2) .

Denoting

{ D (x) = ¢~ 984 (hyA) (z) ,
(3.7)

U (2) = —q~ 984 {(H,A) (x) + ¢7'C ()} .

Now, it is easy to see that

H,(Pu)+ Yu =0 with s=max(deg® —2,deg¥ —1). O

Two structure relations for the H,—semiclassical polynomials can be deduced
from theory of finite-type relations between polynomial sequences [19] .

PRrROPOSITION 3.2. For any monic polynomial ® and any orthogonal sequence
{Pn},>0, the following statements are equivalent
a) There exists an integer s > 0 such that

n+t

(3.8) ®(2) P (2:0) = Y. MwP(@)  n>s, t=deg®,
v=n-—s

(3.9) Ann—s 0, n>s+1.

b) There exists a polynomial ¥, deg¥ = p > 1 such that
(310) Hq (@Uo) + Yuy =0,

where the pair (®, V) is admissible.
¢) There exist an integer s > 0 and a polynomial V¥, deg¥ = p > 1 such that

m+sm

(3.11) ® () (Hy 0 hy1Py) (z) — ¥ (2) (hy Z muPoi1 ()

(3.12) At 20, m>t,
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where s = max (p — 1,t — 2), the pair (P, V) being admissible and

p—1, m=0,
Sm =
s , m2>1
We may write
Y ug, P2,
(3.13) Ama =—[v+1], ﬁ)\,,m“ 0<v<m+s.

Proof. a)=b),c). Supposing a), then Lemma 1.2 i) is fulfilled with @, =
p (;q). But (3.9) implies p,, = m + s, m > 1, and (1.7) becomes Pu,, =

fom
Z/\Vymug] (@) , m>0.
v=0

By virtue of (1.2), we have
Hm
H, (Duy,) = _Z)"’»m v+ l]q Uyt1 , m > 0.
v=0

In accordance with the orthogonality of {P,}, ., we get

(3.14) Hy (Pp®ug) =—-Y,, yiu, m>0,

with
\- (uo.P2)

(315) \Ijﬂm‘f’l (SC) = Z [l/ + 1]11 @T&AMW‘PI/+1 (1') , M 2 0.
1_/:0 v+1

Further, with (1.17), we obtain for (3.14)

(3.16) (hg-1Pm) Hy (Puo) + ¢~ (Hy-1 P) Puo = =V, 41ug , m > 0.
Taking m = 0 into (3.16), we have

(3.17) Hy (Dug) + U011 g = 0.

Inserting (3.17) into (3.16), with (1.14) and according to the regularity of wupg,
we get

® (Hyohy1Pn) = Vo1 (hg1Pm) = =W, 11, m>0.

The consideration of the degrees of both sides leads to : when ¢ —1 > pug +
1 (which implies t > 3), thent = s+ 2, ug < s and when ¢t — 1 < pug + 1, then
o =5 , t < s+2.0bviously, the pair (®, ¥, 4+1) is admissible and putting p = po+1,
we have s = max (p— 1,£ —2). So (3.11) and (3.12) are valid on account of (3.13).
Thus, we have proved that ¢)=b) and a)=-c).

b)=c). Consider for m >0

m=+sm—+1
q 0 (x) (Hy1Pr) (2) = W (2) (hg1 P) (2) = Y N, P (2) .
v=0
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We successively derive from this
(o, (q7'® (Hy=1Pry) = ¥ (hg=1Pp)) Pu) = Ay (w0, Po) , 0<p<m+s+1.
But
<“0a (q_lq) (qule) -V (h *“Dm)) Pu>
Pu) + (—Tuo, (hg-1Pm) Py)
)+ (Hy (Puo) , (hg—1 Py ) ) (by (3.10))
P,—H, gg;zqflpm) P,)) (by (1.1))

Then

<(H P/L) éu()» m> /\/ <U0,P3> .

Consequently, A, , =0,0<pu<m-—t,\,,=0,m > 0. Moreover, for y =
m—t+1, m>t

— (uo, (HgPr—t41) ®Pp) = —[m —t + l]q <u0, P72n> = Nnm—t41 <u0, Pﬁ@—t+1> :
Therefore, for m > t,

m—+Sm
® (z) (Hg 0 hg-1Pn) (2)—¥ (z) (hg-1 Pp) (z) = Z N1 Pog1 () 5N i1 # 0.
v=m—t
¢)=a). From (3.11), we have
m—+Sm
{(tp,® (Hy o hy1Pp) — W (hy-1Py,) Z A Onwt1 s
m+sm
(g7 Hy—1 (Pup) + hy—1 (Puy,) , Py, Z AmpOnvt1 , m,n > 0.
v=0
For n =0, (¢ ' Hy-1 (Puy) + hg-1 (Yuy), Pr) =0, m > 0, therefore
(318) qilqul (@LL()) + hq—l (\I/’U,O) =0.

Further, making n — n + 1, we obtain

<q71Hq_1 (@un+1) + hq_1 (\I/unJrl) 7Pm> =0,m>n+1+¢,n>0,
(g Hyr (®upi1) + hg1 (Wupi1), Pagt) = —Angtn £ 0, n > 0.

According to Lemma 1.1,
qleq71 (@un_,_l) + h (\Ijun+1 Z v,nly , T Z S.
The orthogonality of {P,}, - leads to

GV Hy 1 (9P, yug) + hys (WP 1) = Z uo’—”+1>Pyu0 > 0.
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By virtue of (3.18) and on account of regularity of ug, we finally obtain (3.8) — (3.9)
in accordance with (3.13). O

Likewise the D—semiclassical case, see [16], we can easily establish a writing
more simplified of (3.8) on account of the three-term recurrence relation. We get

(3.19) @ (x) (HgPns1) (2) = % (Cntr (2) = Co (@) Pagr (2) = Yns1 Dy (2) P ()

n >0,
where
(3.20) Cpy1(z)=—-Cp(x)+2(x—Bn)Dp(x)+22(¢—1) X, (x) , n>0,
(3.21)

'7n+an+1 (x) =-0 (.’L‘) + ’Vnanl (x) + (33 - Bn>2 Dn (3;‘) - (ﬂlx - ﬁn) Cn (w) +
+ z(qg—1){

with

(3.22)  Co(x) =q 9482C (x), Dy (x) = q~?D (z) (see (3.5) ), D_1(x) =0,

and
(3.22) S, (7)== zn:Dk (z) , n>0.
k=0

It is easy to see that deg C,, < s+ 1 and deg D,, < s, n > 0.

On the other hand, from (3.20) — (3.21) ,by elimination of the terms (v — ,) Dy, (x),
(z — B,)? Dy, (2) and after some calculations we get the important formula

(323) 1 (C21 ()~ C3 (=) — s1 Do () Doy (2) —
1 (Crsr (2) — Co ()2 (g — 1) By (1) = B () S, () . m > 0.

REMARKS.1. When ¢ — 1 in (3.19) — (3.23) we recover again the D—case [5, 16] .
2. The sequence {D,41},+, gives us some informations about zeros of polynomials
Pyy1. In fact, when Poyy(¢) = 0, n > 1 and (HYPyi1) () =0, 1 < v < p with
w>2then p<s+1and Dyyq(c) =0, (H;Dn+1)(c):07 1<v<pu-1
3. When s = 0, writing ®(z) = $9”(0)z? + ®'(0)z + ®(0), ¥(z) = ¥'(0)x + ¥(0), we
can easily determine the coefficients of the structure relation (3.19) (see also [20])

5(Cns1(z) — Co(x)) = 52"(0)([n + Lgz — ¢~ "Sn)+

+q 7 (W(0) — HH0"(0)[n + 1]g) Basa+
(3.19)’
+q7"(¥(0) — @'(0)[n +1]y) — ¢ (¢ — H)¥'(0)S, , n >0,

Dpia(z) = ¢ "(32"(0)[2n + 1], — ¥'(0)) , n 20,

with Sy = Zﬂk , n>0.
k=0
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Regarding the relation (3.11), we are going to give the characterization of a
H,—semiclassical linear form in term of a second order linear g—difference equation,
satisfied by the corresponding (MOPS), which is the extension of the Bochner one[3].
This result is the g—analog of the Hahn characterization [8] for the D—semiclassical
case, see also [5 — 6] for the D—case and [11] for the D, —one.

PROPOSITION 3.3. Let {P,},~, be a (MOPS) with respect to the linear form
w. If The linear form u is H,-semiclassical of class s, then there exist polynomials

Jg (), Ky (,n), Ly (.,n), with coefficients depending on n and degree at most
2s+2,2s+1,2s, respectively, for which

(3.24)
Jg(z,n) (Hy o Hy1Poii) (z) + Ky (2,0) (Hy-1 Poi) (z) + Ly (7,0) Poys () = 0,
n>0.
Proof.  Let write (3.19) in the following way

(3.25) @ (x) (HyPns1) (x) = A(2,n) Pory (z) + B (x,n) Py (z), n >0,

(3.25)" @ (z) (HyPni2) (2) = Ay (x,1) Py (x) + By (2,n) P, (z),n >0,

so that
A(z,n) = 5 (Cs1 (2) = Co (2)) , B(x,n) = —Yn41Dny1 (2)

(3.26) ¢ Ai(w,n) =5 (Cotz(z) = Co (2)) (z = But1) = Yns2Dns2 (2)

By (z,n) = =5 (Cpyz2 (x) = Co (2)) Yny1 , n>0.

If we multiply in (3.25) by B (z,n), in equation (3.25)" by B(z,n) and sub-
tract the resulting expressions we have for n > 0

(3:27)  Bi(z,n)® (x) (HyPny1) (z) =B (z,n) @ (x) (HyPni2) (1) = An () Py (z),
with
(3.28) A, (z) =By (x,n)A(z,n) — B(z,n) A1 (z,n) , n>0.

From the three-term recurrence relation and by virtue of (1.12), the relation
(3.27) becomes

(327) (Bi(w,n) = (g2 = Bus1) B (2,1))® () (HyPos1) (2) =
(An (@) + @ (2) B (,7)) Pass (2) -
_fY'fH—lB (Z‘,’I’L) o (1‘) (qun) (ZE) ,n>0.

Applying the operator Hy to (3.25), taking into account (1.12) and multiplying the
result by (—vp41B (z,n) ® (x)) we get
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(3.29)
1B (a,1) @ (z) (h®) () (H2Po) ()-

1B (2,1) @ () ((H,®) (2)-(hgA) (x,1) ) (HyPos1) (x)+
+yn+1B <m n) @ () (HyA) (2,n) Popy () =
1B (2,7) ® (2) (hyB) (z,n) (H,P,) (x)-
—fyn_HB (x n) ® (z) (H4B) (x,n) P, (z), n > 0.

Using the expressions for P, , H,P, from (3.25) and (3.27)", we obtain
(3.29)'
—B (z,n) ® (x) (hg®) (x) (HyPpi1) () —
7<I><z>{B () (H, ) (2) — (g A) (,m)) +
+ 5= (hyB) (2,m) (B (2,m) = (qz — Bui1) B(2,m) ) —
& (2) (H, B>< n) }(Hy Poi) (2) +
+{® (2)(B (2,n) (H,4) (w,n) — A (2, n) (H,B) (z,n))+

’Y+1

L (h, B) ( 1) (B (2) + @ (2) B (5,0)) } Pair (2) =0, 0> 0.
But
228 2 (Cora ) = Co @)~ (Cot (2) = o @) + Dos () & = )
Ynt2Dn+1 (2) Dny2 (z) ( from (3.26) )
= 5 (Cny2 () = Co (2)) (5 (Crya (2) + Co (x)) — 2 (g — 1) Xpy1 (2)) —
—Yn+2Dnt1 () Dyyo (z) (from (3.20) )
=1 (Chia (2) = CF (2)) — 32 (¢ = 1) <c;+2 () = Co (2)) S () —

=®(z) Ept1(x) (from (3.23) ), n > 0.

Applying the operator h,-1 to (3.29)', taking into account (1.14), (3.25) ,definitions
of hy and H, and after some calculations we obtain (3.24) with (compare with [6])

Jg (2,n) = q® (2) Dy (2)

Kq(z,n) = Dpy1 (¢7tx) (Hp-1®) (z) — (Hg-1Dpy1) (2) @ (¢~ )
(3.30) +Co (¢~ x) Dy (2)

Ly (z,n) = 3(Cry1 (¢712) — Co (¢712) ) (H, 1Dn+1) (x) —

—% (qul (Crg1 — Co)) () Dyt (q’lsc) —Dpy1 (2) 2, (q z) > 0.

From degC, < s+ 1,degD, < s,n > 0,deg® < s+ 2 and (3.30), it is
easy to see that deg J; <2s+2 ,degK; <2s+1 and deg L, <2s. 0

REMARK. The converse is not proved.

4. Examples. 4.1. Let v be a regular linear form. Denoting by {P,}, - its
(MOPS) sequence B
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Py(r)=1, Pi(z)=2—fo,
(4.1)
Pota (z) = (v — Bny1) Pov1 (2) = Y1 P (z) , n>0.

Let u € P’ satisfying

(42) a2u=Xv, AeC.
Equation (4.2) is equivalent to
(4.3) u=4+ Az~ w.

Suppose u regular and let {ﬁn} its (MOPS) sequence

n>0
Bo(x)=1, Pi(x)=2—F,
(4.4)

Pn+2 (:E> = (,CC - BnJrl) ﬁnJrl (LU) - ﬁn«klﬁn (SC) , N Z 0.

From (4.2) and by virtue of Lemma 1.2 we have
(45) Py(z) =1, Poy1 (z) = Pug1 (¥) + anPo () , n >0,

with a, #0, n>0.
Let us recall the fundamental result [15, THEOREME 1.2] .

PROPOSITION 4.1. Let v be a regular linear form. The following statements are
equivalent
i) The linear form u = 6 + \x~1v is regular for any \ # 0.
i) v is symmetric.
We may write
(45) 2 4a,,=0,n>0,

n

Aoy, = —A %,nzo,v,lzL
(4.6) =0

n
_ 1 Y2v41
agny1 =5 [[ 2524, n=0,
v=0

(4.7)  Bo=—ao =X, But1 =an — ant1 s Ynt1 = —aZ, n >0,

xpn(x):inLl(l')_anﬁn(x) , n=>0,
(4.8)

2Phi1(z) = (x — an) Poy1 () + a2 P, (z) , n > 0.

4.2. Suppose v be a symmetric H,—classical linear form satisfying (1.23)
H,(®v)+ Vv =0, deg® <2, deg¥ = 1.

Multiplying the last equation by A and on account of (4.2) we get
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(49) H, (&)u) +Uu=0
with

(410) @ (z) = 2P (z) , U (z) = 2V (z).

In accordance with PROPOSITION 2.4, the linear form u is H,—semiclassical
of class 1.

Now, we are going to give the structure relation of {ﬁn} .
n>0

From (3.19)" with 3, = 0, n > 0 the structure relation of {Pn},so 18

(411) @ (@) (H,Pas1) (2) = & (G () = Co (&) Py (2) a1 D1 (2) Py (2)

n >0,
where

(4.12)
L (G (2) = Co (@) = g {307 (0) g"n + Uy + ¥ (0) = @' (0) [0+ 1], } ,

Dot () =" (%@” (0) [2n + 1], — W’ (0)) ,n>0.

From (4.5),(4.11) and (5.1) we have
(4.13) @ () (Hqﬁm) (2) = tn (2) Pasy (z) + vn (z) Po (z) , 0> 0,
with for n >0

(4.14)
{ Uun () = % (Cns1 (@) = Co (@) + anDy (2)

o () = {~4 (Cus1 (2) = Co (2)) = Co (&) + 2 (g = 1) S (2)} n — Y1 D1 ().

On account of (4.8), we have for (4.13)

(4.15)

& (@) (HyPai1) (@) = § (Cosa (2) = Co (@) Pt (@) = Fus1 Dt (2) P (@)
n >0,

where

L (ot (2) = Co (@) = (3= an) up (&) + va ()
(4.16) , n> 0.

7n+1[~)n+1 (7) = (vn () — anuy (7)) ap
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From (3.22) and (3.5) we have
Co (@) = (q¥ (@) + (H, 1 ®) (@),
Do (z) = — (qul (ueoéﬁ) (z) +q (ueoﬁ?) (a:)) .

By virtue of (4.10) and (1.12) we get

{ Co () = q~'aCo (z) — (¢ — 1) 2¥ (2) + ® (),
(4.17)

Dy (x) = Co (x) + ADg (2),

because
)0 - (s 0 (1, B F10)
_ \Il(x)+)\<v, {w —\Il(x)} %> — W () + A (0000) ().

In addition, From (4.14) — (4.17) and by taking into account (4.5)" and (3.20) we get
forn>0

(4.18) ¥, (2):=> Dy (2) = =3 (Cns1 (2) — Co (2)) — anDy (x) + q23, (7).

Now we are able to give the coefficients of the second order linear g—difference

equation satisfied by P41, n >0
(4.19)
jq (z,n) = qz® (x) ( vy (¢712) — anuy, (¢ ') ) ,

Ky (x,n) = =g '2® (¢ @) ((Hy-1vn) (2) = an (Hg-run) (7)) =

— (0n (&) — apun () (20 (¢ ') + @ (¢ 2) + ¢ 22 (H, 1 @) (¢ ') )+
+ (vn (¢712) = anun (¢72)) (@ (@) + ¢ 'a (H, 1 0) (2) ),

Ly (x.n) = ¢ aun (¢ ') (Hy-10n) (2) = an (Hy-ruy) (2) -

= (vn (¢7') — anun (¢712)) (un (¢7'2) + 2 (Hy-1uy) (2)) —

— (vp () — anuy () Xy (q’lx) .

Finally, suppose that the function V' represents the regular linear form v

+oo +oo
(v,f>:/ V() f(x)dr, feP, with / V(z)de=1.

— 00 — 00
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In view of (4.3), we may write

—

+o0 +oo
(4.20) (u, f) = lfAP/ V@) gee 5 £ (0) + AP V@ g (z)de , feP,

—00 —

8

where

+oo —c 4o
(4.21) P/ V@) dp = lim / @dw—l—/ @dw

e~~0Tt
—00 +e

4.3. Before giving examples of H,—semiclassical linear form of class 1, let us
recall the following standard material [4,9, 10]

, n=20

4.22) (a; = n
( ) ( q)n H l_aql,l 77’L21

! N ) P (3:9),
(4.22) [lq = [k]q![nq—k]q! = GO el 0<k<n.
+oo
(4.23) (a;9)s = l:[o(l —aq’) , gl < 1.
T —k(k+1)
(4.24) oo =(q2,q) s > lal < 1.
k=0

4.3.1. Consider the symmetric H;—classical linear form v which is the g—analog
of Hermite. We have [9]

Bn=0, Y41 = 3¢" [n+1], , n>0,

(4.25) n =0,
O(z)=1, ¥(z) =2z,

[2n]q![2n+2]q

4.26 = —
(426) (o), = S

(U)2n+1 = 0 , n Z 07

(4.27)
1 2472 + f(z
?(q—l)z (¢ T;4-2) / (—2(q 1)(rgf1 ) dz
—00
JEP, qg>1,

(v, f) = S U

a/2(1—q)

K1 ) (2 (I_Q) 34 ) f(’r)dx7
ay/2(1—q)

feP,0<qg<,

+ 1
with K; = % / VR (2q2 (1-gq) 1?2;(]2)OO dt
0
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REMARK. Taking into account (4.24), we may write

k k:(kJrl)
\/l—qZka—l—l (g% q)

From (3.22) — (3.22)" and (4.12) we get

Co (z) = —2qz , Do (z) = —2q,
(4.28) 3 (Cuy1(2) = Co(2)) =0, Doy () = —2¢7",
Y, (1) = —2¢' " [n + 1], ., n=0.

Consequently, for any A # 0, the linear form w defined by (4.2) is H,—semiclassical
of class 1 and from (4.10) we get

(4.29) d(z)=z, ¥(z) =222
In accordance of (4.2) and (4.26), the moments of u are

(U)Ozl ) (u)2n207n217

(430) { (u),,,, = [2n], ! [2n + 2], 7

n
2n [T [2v +2],
v=0

By virtue of (4.6) and (4.25) we obtain

2. .2
a2pn = _)\qn% , 2 07
(¢:42),,
(4.31)
a2nt1 = 554" (qg;q2)" n>0
" 2T (¢%¢%), T
Then with (4.7) we get
2 2 3 2
(4% ¢) 1 (¢%4?)
Bo=X, Bont1 q"qA L4 — Tos,n>0,
"+ (6%,  2X(¢%¢%),
2. .2 3 2
~ (%), 1 (%)
4.32 Bonta = ¢"{ A\q ntl L L n>0,
(4.52) e { (¢:6%),11  2X(¢%¢2),
2. 2\2 3. 2\2
_ (%d%), 1, (¢
Font1 = —A2g*" o Yont2 —5q 5 ,n > 0.
(:2)2 AT (g2 ¢2)?

On the other hand, from (4.14) and (4.16) — (4.18) we have
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Up (2) = =2¢""an , v (2) =2¢(1—q+qg ") anz+[n+1], , n>0,
3 (5n+1 (z) — Co (x)) =2¢(1—q)anz +2¢""ap +[n+1], , n>0,
(4.33){ Dps1 (2) = —{20(1 — g+ ") anz +2¢""a% + [n+ 1], fay, n >0,
Co (z) = —2¢a2 — 1 , Do (z) = —2¢(z + A) ,

M

n(x) = 2(]17” (an _Q[n+1]q$> , n>0.

Then, with (4.19), the second order linear g¢—difference equation satisfied by
P,y1,n>0is

(4.34)
{0 —a+a™a+a(gan—an) } (Hyo Hyr P ) (2) -
—{(1 —q+q ") (2¢7'2? +1) +2¢72 " (qan — any1) x} (qul ~n+1> (x) +
+%L”{O*q+ﬂ’ﬂ(ﬂn+ﬂqxf%ﬂ+
+q " [0+ 1], (gan — ant1) fPora () = 0.

From the definition (4.21), and (4.27), it easy to see that

Foo dx
P =0,¢g>1,and
/ v(—2(g—)a%q ), 4= 5

— 00

tovas (22 (1-q) a2 ¢?)

P . X dr=0,0<qg<1.
1
7q\/2(1—(1)
Therefore, with (4.20), and choosing
5 (g2 g2
L),
A= (@107
Ky, 0<g<1
we obtain the integral representation of u
(4.35)
oo f (@)
0 P d
f()"’ / x(_2(q_1)x2;q72)oo z
Je€P,qg>1,
<ua f> = + 2(117 ) (2(]2 (1 7 q) x2.q2)
fO+pf = f (0)da,
T a/20-0
feP,0<qg< .

4.3.2. Consider the symmetric H,—classical linear form v which is in the family
of g—Jacobi, we have [9]
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{ Bn=0, Y1 = (1—¢"") g n>0,
(4.36) B
Hy((#*4+1)v) = (¢—1)" av=0,
(4.37) (0)g, =0 (6:¢%),, , (V)g, 1 =0, n >0,
q2;q2 - +oo 1

Taking into account (3.22) — (3.22)" and (4.12) we get

Co(r)=(a(q—1) "z, Do(x)=(¢—1)"
(4.39) ¢ 5 (Cns1(x) = Co(x)) =[n+ 1]qu° Dyt (@) =" (g — 1)
L@ =(-1)"[n+1],,n=0

The linear form u defined by (4.2) is H,—semiclassical of class 1 for any A # 0 and
fulfils

(4.40) Hy(z (2> +1)u) — (g— 1) 2%u = 0.

From (4.2) and (4.37), the moments of u are

{ (Wy=1, (u)y, =0, n>1,
(

(4.41)
Wiy = A" (0:¢%), . n > 0.

By virtue of (4.6) and (4.36) we obtain

2
Aon = —)\q_”("‘*‘l) ((q 4 ))n n >0,
(4.42) ("3 )
—n(n 454
asnt1 = 3 (1 —q) g nntH-1 R 2. n >0
Then with (4.7) we get for n >0
(4.43)
2. 2 3,
~ ~ &%), 1 (q q?),
=\, fang1 = —q "D )\7( ~(1-q) =7,
Po Pontr = —4 { TG, 39 (@*¢%),
3.

2. .2 2
~ 7*; %) 1 (4% %)
— ,—n(n+1)-1 Ag—2n—1 ( n+1 (1 — At 0t Jn
627l+2 q { q (q;qg)n+1 + 2\ ( Q) 2. 2)

2. ,2\2
Yont1 = —/\quzn("ﬂ)i(q 2,

(¢:2)2
2
=~ 1 72(n2+n+1) 2 (qS;q2)
Yont2 = — 54 1-q) —3F .
A? (4%;4%)2

In accordance of (4.14) and (4.16) — (4.18) we obtain for n > 0
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(4.44)
up (2) = (¢ = D~H(@" = D +q"an}
on (2) = (¢ = 1) Mg tapr + ¢ (1 = ¢")},
L (Coi (@)= Co@)) = (a= )7 (@ = 1)a>+
=g " = " apw — ¢"a2 — g (1 - ") }
Dpi1 (@) = (¢~ 1) {(¢ + ¢ — Danz + ¢"a% + ¢ (1 - ¢ }ayt
Co(x)=q2(q—1) " a2 =1, Do(z)=(¢—1)"" (¢ lz+ ) ,

S (@) = —(a= 1) {20 = Din+ Uz +q"an |

Therefore, with (4.19), the second order linear g¢—difference equation satisfied
by Pyt1, n >0 is

(4.45)

(@ + 1) {1 = a7 =g o+ ¢ gans1 — an) } (Hyo Hyr Paga ) (@) +
+{q*2(q 1) g " = 1) (1= ¢ = ¢®)2® +¢"2(an — qans1)(1 +q+
@ =g g 1) e+ g+ =1 (B Paa) (@) + (- D)7 {0 -7t -

_ qn-i-l)m + qn—l(l _ qn+2)an + qn+1(q _ 2)(1 _ qn+1)an+1}Pn+1 (.’Ii) =0.

Lastly, from the definition (4.21), and (4.38), we have

“+o0 1
P ——————dx=0,0 < 1.
/ z(—x2;¢%) ‘ U=

Therefore, with (4.20) ,and choosing A\~ = M o ,for feP,0<qg<1we
7(q;q

obtain the integral representation of u

+oo
(4.46) (u, f) = £(0) + P / x(_%

%4%)

f(z)dx.
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