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OPEN BOOKS FOR BOOTHBY–WANG BUNDLES,
FIBERED DEHN TWISTS AND THE MEAN EULER

CHARACTERISTIC

River Chiang, Fan Ding and Otto van Koert

We examine open books with powers of fibered Dehn twists as mon-
odromy. The resulting contact manifolds can be thought of as Boothby–
Wang orbibundles over symplectic orbifolds. Using the mean Euler
characteristic of equivariant symplectic homology we can distinguish
these contact manifolds and hence show that some fibered Dehn twists
are not symplectically isotopic to the identity relative to the boundary.
This complements results of Biran and Giroux.

1. Introduction

Since Giroux established the correspondence between open books with sym-
plectic monodromy and contact manifolds, there has been a lot of activity
to investigate this relation further. In dimension 3, this approach has been
particularly fruitful, since the requirement that the monodromy is a sym-
plectomorphism imposes no real constraints; it is possible to use the wealth
of knowledge about the mapping class groups of surfaces. One can think of
a mapping class group of a surface as being generated by Dehn twists along
curves.
For a general symplectic manifold, the symplectomorphism group is not

understood very well. Nevertheless, let us mention here the result of Sei-
del, [26], on the compactly supported symplectomorphism group of T ∗Sn
with its canonical symplectic structure: for n = 2, the generalized Dehn
twists generate the group; for n > 2, Dehn twists form an infinite cyclic
subgroup. The latter result can be recovered, through the Giroux correspon-
dence, by considering the associated open books with page T ∗Sn and N -fold
right-handed Dehn twist as monodromy. We shall denote these manifolds by
OB(T ∗Sn, τN ). In [29], it was shown that these contact manifolds are con-
tactomorphic to Brieskorn manifolds, OB(T ∗Sn, τN ) ∼= Σ(N, 2, . . . , 2). The
contact structures on these manifolds can be distinguished using the mean
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Euler characteristic of equivariant symplectic homology; see Section 4 for
the definition of this notion. For nice contact manifolds, including these
Brieskorn manifolds, one can compute the mean Euler characteristic com-
pletely in terms of Reeb orbit data; Floer theory is necessary but only to
show invariance of this number. For the Brieskorn manifold Σ(N, 2, . . . , 2)
of dimension 2n+1 (with n even and N odd), the mean Euler characteristic
is χm(Σ(N, 2, . . . , 2) ) = 1

2
nN+1

(n−1)N+2 ; see for example [17] or [28]. This is an
injective function of N . It implies that all odd powers of Dehn twists τN are
distinct, and so are all powers of Dehn twists τN . Note that for n odd, the
Brieskorn manifolds Σ(N, 2, . . . , 2) are all non-diffeomorphic.
Furthermore, such Dehn twists can be constructed for any symplectic

manifold containing a Lagrangian sphere. However, if a symplectic mani-
fold does not contain Lagrangian spheres, there is no general procedure to
construct symplectomorphisms that are not symplectically isotopic to the
identity.
On the other hand, Biran and Giroux [5] considered the case of fibered

Dehn twists, which can be constructed if the contact-type boundary of a
symplectic manifold admits a suitable S1-action. More precisely, consider
a symplectic manifold W with contact-type hypersurface P carrying a free
S1-action in the neighborhood P × [0, 1] that preserves the contact form on
P . Then one can define a right-handed fibered Dehn twist as a map of the
form

τ : P × [0, 1] −→ P × [0, 1],

(x, t) �−→ (x · [f(t)mod 2π] , t)

by choosing a function f : [0, 1]→ R such that f equals 2π near t = 0 and 0
near t = 1. The map τ is a symplectomorphism that is the identity near the
boundary of P × [0, 1]. This allows one to extend τ to a symplectomorphism
of W .
Biran and Giroux [5] showed that such fibered Dehn twists are often not

symplectically isotopic to the identity.

Theorem (Biran and Giroux). Let (M2n, ω) be an integral symplectic
manifold with an adapted Donaldson hypersurface H that is Poincaré dual
to [ω]. Consider W =M − ν(H), the complement of a tubular neighborhood
of H. Suppose that one of the following conditions hold

(1) π2(M) = 0,
(2) M is monotone and contains a simply connected Lagrangian such that

the minimal Chern number cM of M satisfies cM ≥ (n+ 2)/2.

Then a right-handed fibered Dehn twist τ on W along the boundary ∂W is
not symplectically isotopic to the identity relative to the boundary.
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Their proof used Lagrangian Floer homology. First, they observed that
certain Boothby–Wang bundles over symplectic manifolds carry a support-
ing open book whose monodromy is a fibered Dehn twist. By a result of
Cieliebak, see Theorem 2.12, contact open books with trivial monodromy are
always subcritically Stein fillable. On the other hand, compact sets in sub-
critical Stein manifolds are Hamiltonian displaceable, so Lagrangian Floer
homology must be trivial. The right sets of assumptions guarantee nontrivial
Lagrangian Floer homology, so one can deduce in this way that these fibered
Dehn twists are not symplectically isotopic to the identity.
We shall also address this question, but use a different approach. The

main idea is that the Reeb dynamics in subcritical manifolds is fairly well
understood, and this gives similar but different conditions for triviality of
fibered Dehn twists. We shall also consider powers of fibered Dehn twists.
Let us begin by stating the following result (Theorem 6.5).

Theorem A. Let (M,ω) be an integral symplectic manifold with an adapted
Donaldson hypersurface H that is Poincaré dual to [ω]. Consider W =
M − ν(H), the complement of a tubular neighborhood of H. Let τ denote
a right-handed fibered Dehn twist on W along the boundary ∂W . Then for
any positive integer N , OB(W, τN ) carries the structure of a Boothby–Wang
orbibundle over a symplectic orbifold.

Note that the special case of N = 1 recovers the open book decomposi-
tion of Boothby–Wang bundles considered by Biran and Giroux. We point
out that there is an important difference between left- and right-handed
twists from the point of view of contact topology. Indeed, in dimension
three, one can consider OB(T ∗S1, τ). In this case, a right-handed fibered
Dehn twist τ is isotopic to τ2

D, the square of a right-handed Dehn twist
along the zero-section. The resulting contact structure is the standard tight
structure on RP 3, which is of Boothby–Wang type. On the other hand, the
left-handed version, OB(T ∗S1, τ−1), gives an overtwisted structure. This
overtwisted structure is S1-invariant, but it is not of Boothby–Wang type.
Similar behavior occurs in higher dimensions, but we shall address this in a
future paper [8].
The methods we shall use to distinguish fibered Dehn twists from the

identity are the following. First of all, there always exist contractible Reeb
orbits in subcritically fillable contact manifolds. This is not always the case
for the above class of Boothby–Wang orbibundles. Secondly, the mean index,
i.e., the “average” Maslov index of periodic Reeb orbits, is positive in sub-
critically fillable contact manifolds if the first Chern class is trivial. Many
Boothby–Wang orbibundles have negative mean index though. A related
statement was made by Oancea and Viterbo [22, Proposition 5.14]. Thirdly,
we can use the mean Euler characteristic of equivariant symplectic homol-
ogy as mentioned earlier: for exactly fillable contact manifolds this number
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can be thought of as a contact invariant. Moreover, this number has to be
a half-integer for subcritically fillable contact manifolds.
The main application of our methods is the following result

(Theorem 7.11), while we also provide a short proof of the first case of
the above-mentioned theorem of Biran and Giroux (Theorem 7.1).

Theorem B. Let (M2n−2, ω) be a simply connected symplectic manifold
of dimension at least 6 such that [ω] ∈ H2(M ;Z) is a primitive element.
Suppose that c1(M) = c[ω] for some integer c, and let H be an adapted
Donaldson hypersurface that is Poincaré dual to k[ω] for some positive inte-
ger k. Let τ denote a right-handed fibered Dehn twist along the boundary
of M − ν(H). If τN is symplectically isotopic to the identity relative to the
boundary for a positive integer N , then one of the following conditions must
hold,

• c ≥ k, k does not divide N , and χ(H) = χ(M) = 0.
• c = k, k divides N , and χ(H) = 0.
• c > k, k divides N , and ((c− k)k + 1)χ(H) = (c− k)kχ(M).

In many cases this means that all positive powers of fibered Dehn twists
are distinct. We illustrate this with examples of certain smooth complete
intersections; see Examples 7.13 and 7.14.
Symplectic manifolds (M,ω) with c1(M) = c[ω] are often called mono-

tone. However, some people reserve monotone for positive c. Since we allow
any monotonicity constant, positive, zero, or negative, we shall not use this
terminology.
Finally, we want to mention an explicit formula for the mean Euler char-

acteristic, which might be of independent interest. With the notation from
Theorem B, put W 2n−2 = M − ν(H), and define PN = OB(W, τN ). Then
we have the following formula in case that k = 1:

χm(PN ) = (−1)n+1 (N − 1)χ(H) + χ(M)
2|(c− 1)N + 1| .

Observing thatMN := PN/S
1 carries the structure of a symplectic orbifold,

we can also write

χm(PN ) = (−1)n+1 χ(| ∧MN |)
2N |〈corb

1 (MN ), [BN ]〉|
,

where

• N is the total number of sectors,
• ∧MN is the inertia orbifold associated with MN , and χ(| ∧MN |) is
the Euler characteristic of the topological space associated with this
orbifold,

• corb
1 (MN ) is the orbifold Chern class, and
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• [BN ] is the homology class of an (orbi)-sphere intersecting H trans-
versely in one point: this is made precise in Proposition 7.9.

See Proposition 7.9 for more details.

Plan of the paper. The paper is organized as follows. In Section 2, we
give the basic definitions. In Section 3, we review the notion of Maslov
index. In Section 4, we discuss S1-equivariant symplectic homology and its
mean Euler characteristic, in order to have a suitable invariant. In Section 5,
we discuss the conditions for a Boothby–Wang bundle to possess a support-
ing open book. In Section 6, we construct the contact open book from the
data we extracted from a Boothby–Wang bundle with fibered Dehn twists
as monodromy. In Section 7, we apply our construction and inspect Reeb
dynamics to distinguish fibered Dehn twists, and conclude our paper with a
discussion about fibered Dehn twists that are not smoothly isotopic to the
identity relative to the boundary.

2. Preliminaries

2.1. Boothby–Wang or prequantization circle bundles. Let (M,ω)
be a compact integral symplectic manifold. By this we mean that we can
choose and fix a lift [ω] ∈ H2(M ;Z). Given this lift, there is a unique (up to
isomorphism) differentiable complex line bundle L overM with c1(L) = [ω].
Its associated principal S1-bundle Π : P → M carries a contact form ϑ,

the so-called Boothby–Wang form, which is a connection 1-form on P
with curvature form

dϑ = −2πΠ∗ω.
The condition that ϑ is a connection form means that the vector field Rϑ
generating the principal S1-action satisfies the following equations,

ιRϑ
ϑ = 1, ιRϑ

dϑ = 0.

It is therefore the Reeb vector field for ϑ. This S1-bundle is called a
Boothby–Wang bundle associated with (M,ω). It is also known as a
prequantization circle bundle.

2.2. Weinstein manifolds.

Definition 2.1. Let (W,ω) be a symplectic manifold. A proper smooth
function f : W → [0,∞[ is called ω–convex if it admits a complete gradient-
like Liouville vector field X, i.e., LXω = ω. We say (W,ω) is a Weinstein
manifold if there exists an ω–convex Morse function. We say the Weinstein
manifold is of finite type if, in addition, the ω-convex Morse function has
only finitely many critical points.

Remark 2.2. From this definition it follows that all ends of a finite type
Weinstein manifold W are convex, i.e., they look like symplectizations. We
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shall often abuse notation, and just use the word Weinstein manifold to
mean Weinstein manifold of finite type.

Note that ιXω defines a primitive of ω, so Weinstein manifolds are exact
symplectic.

Remark 2.3. A compact Weinstein manifold or Weinstein domain
(W0, ω) is a compact symplectic manifold with boundary that can be embed-
ded into a Weinstein manifold (W,ω) with an ω-convex Morse function f
such thatW0 is given as the preimage f−1([0, C]), and such that C = f(∂W0)
is a regular value of f . Note that the corresponding regular level set is auto-
matically contact.

In practice ω-convex functions can often be found by looking for strictly
plurisubharmonic functions. Recall here that, for a complex manifold (W,J),
a smooth function f : W → R is strictly plurisubharmonic if g(X,Y ) :=
−d(df ◦ J)(X, JY ) defines a Riemannian metric. Stein manifolds can be
defined as complex manifolds admitting exhausting, strictly plurisubhar-
monic functions. A compact complex manifold W0 with boundary is called
a compact Stein manifold if it admits a strictly plurisubharmonic function
f such that the boundary ∂W0 is a regular level set. A compact Stein man-
ifold is a compact Weinstein manifold. By results of Eliashberg, Weinstein
manifolds can be deformed into Stein manifolds.

2.3. Contact open books.

Definition 2.4. An abstract (contact) open book (W,λ, ψ) consists of
• a compact Weinstein manifold (W,dλ) with λ being a primitive of its
symplectic form such that the Liouville vector field X for dλ defined
by ιXdλ = λ is transverse to ∂W and pointing outward, and

• a symplectomorphism ψ : W → W equal to the identity near the
boundary ∂W .

Given an abstract (contact) open book, Giroux proposed an explicit con-
struction of a closed contact manifold. This construction is as follows. First,
we assume ψ∗λ = λ− dh where h is a positive function. This can always be
done by the following lemma [18].

Lemma 2.5 (Giroux). The symplectomorphism ψ can be isotoped, via
symplectomorphisms equal to the identity near ∂W , to a symplectomorphism
ψ̂ that satisfies ψ̂∗λ = λ− dh.
Then we define

A(W,ψ) :=W × R/(x, ϕ) ∼ (ψ(x), ϕ+ h(x)) .

This mapping torus carries the contact form

α = dϕ+ λ.
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Figure 1. Functions for the contact form near the binding.

Since ψ is the identity near the boundary of W , a neighborhood of the
boundary looks like ∂W× ]−ε, 0]×S1, with contact form α = Cdϕ+et λ|∂W .
Here, ϕ ∈ S1 = R/2πZ, t ∈]−ε, 0] and C > 0, 0 < ε < 1 are constant.
Denote the disk

{
z ∈ C | |z| < R

}
by D2

R and the annulus
{
z ∈ C | r <

|z| < R
}
by A(r,R). The closed unit disk

{
z ∈ C | |z| ≤ 1

}
is denoted by

D2. We can glue the mapping torus A(W,ψ) to

BW := ∂W ×D2
1+ε

using the map

Φglue : ∂W ×A(1, 1 + ε) −→ ∂W× ]−ε, 0]× S1(
x, reiϕ

) �−→ (
x, 1− r, ϕ) .

Pulling back the form α by Φglue, we obtain Cdϕ + e1−r λ|∂W on ∂W ×
A(1, 1 + ε), which can be easily extended to a contact form

β = h1(r)λ|∂W + h2(r) dϕ

on BW by requiring that h1 and h2 are functions from [0, 1] to R whose
behavior is indicated in Figure 1: h1(r) has exponential drop-off and h2(r)
increases quadratically near 0 and is constant near 1.
Gluing A(W,ψ) to BW via Φglue, we get a closed manifoldM . Note that the

contact forms α on A(W,ψ) and β on BW glue together to a globally defined
contact form onM , whose associated contact structure will be denoted by ξ.
The contact manifold (M, ξ) is determined by the data (W,λ, ψ). We shall

call it a contact open book, and denote it by OB(W,ψ−1). Note that we
use ψ−1 rather than ψ in this notation. The following remark explains this.

Remark 2.6. A contact open book OB(W,ψ−1) has the structure of a
fiber bundle over S1 away from the set BW . Hence we can talk about the
monodromy of an open book, which can be obtained by lifting the tangent
vector field to S1, given by ∂ϕ, to a vector field on A(W,ψ). If we rescale the
function h to 2π, then the time-2π flow gives the monodromy. Note that a
positive function times the Reeb field is a suitable lift of ∂ϕ. As a result, we
see that the monodromy is given by ψ−1.



386 R. CHIANG, F. DING AND O. VAN KOERT

Definition 2.7. An open book on a manifold M is a pair (B,Θ), where
• B is a codimension 2 submanifold of M with trivial normal bundle,
and

• Θ : M −B → S1 gives M −B the structure of a fiber bundle over S1

such that Θ is equal to the angular coordinate of the D2–factor on a
neighborhood B ×D2 of B.

The set B is called the binding of the open book. A fiber of Θ together
with the binding is called a page of the open book.
Suppose M is an oriented manifold with an open book (B,Θ). We regard

S1 as an oriented manifold, so each page W gets an induced orientation
by requiring that the orientation of M − B, as a bundle over S1, matches
the one coming from M . If this induced orientation on W coincides with
its orientation as a symplectic manifold (W,ω), then we call the symplectic
form ω positive. Now orient the binding B as the boundary of a page W
using the outward normal first convention. We say that α induces a positive
contact structure if this orientation of B matches the one coming from a
contact form α.

Definition 2.8. A positive contact structure ξ on an oriented manifoldM is
said to be carried by an open book (B,Θ) if ξ admits a defining contact
form α satisfying the following conditions.

• α induces a positive contact structure on B, and
• dα induces a positive symplectic structure on each fiber of Θ.

A contact form α satisfying these conditions is said to be adapted to (B,Θ).
If the above holds, the open book (B,Θ) is said to be a supporting open
book for (M, ξ).

Two well-known results are listed below.

Lemma 2.9. Suppose that B is a connected contact submanifold of a contact
manifold (M, ξ). A contact form α for (M, ξ) is adapted to an open book
(B,Θ) if and only if the Reeb field Rα of α is positively transverse to the
fibers of Θ, i.e., Rα(Θ) > 0.

Proposition 2.10. A contact open book OB(W,ψ−1) admits a natural open
book carrying the contact structure ξ as defined in the above construction.

2.4. Fibered Dehn twists. Suppose (P, ϑ) is a contact manifold that
admits an S1-action generated by the flow of the Reeb field Rϑ, i.e.,
Boothby–Wang orbibundles over symplectic orbifolds. Now choose a func-
tion f : [0, 1] → R that is constant 2π in a neighborhood of 0 and con-
stant 0 in a neighborhood of 1. Then we can define a symplectomorphism
of (P × [0, 1], d(etϑ)) equal to the identity near the boundary by sending

ψ : (x, t) �−→ (x · f(t)mod 2π, t).
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Since we also need to know the action of ψ on etϑ rather than just on d(etϑ),
let us compute ψ∗(etϑ). Observe that

Lf(t)Rϑ
(etϑ) = d(ιf(t)Rϑ

(etϑ)) + ιf(t)Rϑ
d(etϑ)

= d(etf(t))− etf(t)dt

= −d
(
A− etf(t) +

∫ t

0
esf(s)ds

)
,

where A is constant. Hence, we have

ψ∗(etϑ) = etϑ− d
(
A− etf(t) +

∫ t

0
esf(s)ds

)
,

so we see in particular that ψ is a symplectomorphism.

Definition 2.11. Let (W,ω) be a convex symplectic manifold whose bound-
ary admits a quasi-regular contact form (i.e., all Reeb orbits are periodic).
Define a symplectomorphism ψ̃ ofW by declaring ψ̃ to be equal to ψ on a col-
lar neighborhood of ∂W and extending ψ̃ to be the identity on W outside
that neighborhood. Such a symplectomorphism is called a right-handed
fibered Dehn twist.

Consider a fibered Dehn twist on an exact convex symplectic manifold
(W,dλ). Observe that the above computation allows us to avoid Lemma 2.5,
since the symplectomorphism has already the appropriate form, i.e., ψ∗λ =
λ− dh, where the function h is only non-constant in a collar neighborhood
of ∂W ,

h = A− etf(t) +
∫ t

0
esf(s)ds.

2.5. Monodromy and fillability. The monodromy of a contact open book
provides information about the fillability of a contact manifold. For our
purposes, the following result is the most relevant.

Theorem 2.12. A contact manifold (M, ξ) is subcritically Stein fillable
if and only if there is a contact open book OB(W, Id) contactomorphic to
(M, ξ).

This assertion follows from a theorem of Cieliebak [9], which asserts that
subcritical Stein manifolds are split, and the simple observation that an open
book with trivial monodromy can be written as

OB(W, Id) = (∂W ×D2) ∪∂ (W × S1) = ∂(W ×D2),

where W is Stein. Suppose fW is an exhausting, strictly plurisubharmonic
function on W . Then we obtain an exhausting, strictly plurisubharmonic
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function on W ×D2,

f :W ×D2 −→ R

(x, z) −→ fW (x) + |z|2,
inducing the same contact structure as the one coming from an open book
with trivial monodromy.

3. Maslov index

3.1. Definition of a Maslov index using a crossing form. Here we
shall work with the Robbin–Salamon definition of the Maslov index, see [24].
Let ω0 denote the standard symplectic form on R2n given by

ω0 = dx ∧ dy.
Definition 3.1. Let ψ : [0, T ] → Sp(2n) be a path of symplectic matrices.
We call a point t ∈ [0, T ] a crossing if det(ψ(t) − Id) = 0. For a crossing t,
let Vt = ker(ψ(t)− Id) and define for v ∈ Vt the quadratic form

Qt(v, v) := ω0(v, ψ̇(t)v).

The quadratic form Qt is called the crossing form at t.

Let us now define the Maslov index for symplectic paths in the following
steps.
(1) Take a path of symplectic matrices ψ : [0, T ] → Sp(2n) and suppose

that all crossings are isolated. Suppose furthermore that all crossings
are non-degenerate, i.e., the crossing form Qt at the crossing t is non-
degenerate as a quadratic form.

(2) Then we define the Maslov index for such a path ψ as

μ(ψ) =
1
2
sgnQ0 +

∑
t∈(0,T ) crossing

sgnQt +
1
2
sgnQT

Here sgn denotes the signature (i.e., the number of positive eigenvalues
minus the number of negative eigenvalues) of a quadratic form. For
∗ = 0 or T , sgnQ∗ = 0 if ∗ is not a crossing.
According to Robbin and Salamon, μ(ψ) is invariant under homo-

topies of the path ψ with fixed endpoints.
(3) For a general path of symplectic matrices ψ : [0, T ] → Sp(2n), we

choose a perturbation ψ̃ of ψ while fixing the endpoints such that ψ̃
has only non-degenerate crossings.

(4) Define
μ(ψ) := μ(ψ̃).

This is well defined according to Robbin and Salamon [24].
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Recall that a non-degenerate Reeb orbit is a periodic Reeb orbit for which
the restriction of the linearized return map to the contact structure has
no eigenvalues equal to 1. To define the Conley–Zehnder index of a non-
degenerate Reeb orbit γ we choose a spanning disk Dγ for γ and trivialize
the contact structure ξ over Dγ . The linearized flow along γ with respect to
that trivialization then gives rise to a path of symplectic matrices, ψ(t) :=
TF lRt (γ(0) )|ξ. Then the Conley–Zehnder index of γ is given by

μCZ(γ) := μ(ψ).

Remark 3.2. Some remarks are in order.

(1) For a spanning disk to exist, the orbit γ needs to be contractible. If
we use Seifert surfaces rather than disks, then we can also consider
homologically trivial periodic orbits.

(2) The Conley–Zehnder index depends on the choice of spanning disk
via the formula,

μCZ(γ;D′ = D#A) = μCZ(γ,D) + 2〈c1(ξ), [A]〉.
Here A is a 2-sphere, and [A] its homology class. To deal with this
issue in symplectic homology (see Section 4), one can consider coeffi-
cient rings other than Q. However, we shall only consider symplectic
manifolds W with contact-type boundary for which c1(W ) evaluates
to 0 on π2(W ).

(3) The Conley–Zehnder index is defined for non-degenerate orbits. We
shall often use a Morse–Bott setup though. In such a degenerate setup
we shall say Maslov index (or Robbin–Salamon index): this notion is
defined using the same scheme.

(4) The Conley–Zehnder index appears in the index formula for the mod-
uli space of Floer trajectories. It plays the same role as the Morse
index in Morse homology.

(5) The Maslov index has useful properties; see [24]. The catenation prop-
erty is of particular interest to us. If ψ1 and ψ2 are symplectic paths
with matching endpoints, then the Maslov index of the catenation is
given by

μ(ψ1 ∗ ψ2) = μ(ψ1) + μ(ψ2).

It is important to use the Robbin–Salamon version of the Maslov
index for this.

4. S1-equivariant symplectic homology

In this section, we briefly discuss S1-equivariant symplectic homology, a
symplectic deformation invariant of exact symplectic manifolds with contact-
type boundary.
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Let (W0, ω) be a compact exact symplectic manifold with contact-type
boundary. Symplectic homology is a Floer-like homology theory that mea-
sures both information about periodic Reeb orbits on the boundary and
information about the filling. The version of symplectic homology that we
shall use is S1-equivariant symplectic homology. S1-equivariant homology is
a special version of parametrized symplectic homology, introduced first by
Viterbo [30], and worked out by Bourgeois and Oancea [7].
We survey Bourgeois and Oancea’s approach. The idea is to think of S1 as

acting on S2N+1 and to take the limit N →∞ in order to have a model for
ES1. Using such a model one can apply the Borel construction to symplectic
homology.
First of all, we complete the symplectic manifold W0 by attaching the

positive part of a symplectization: define

W :=W0

⋃
∂

(R≥0 × ∂W0),

where the symplectic form on the symplectization part is given by d(etα).
Here α is obtained from the Liouville form for ω by restricting to ∂W0.
The action spectrum Spec(α) of (∂W0, α) is defined by

Spec(α) :=
{
T ∈ R+ | there is a closed Reeb orbit of period T}.

Choose a Hamiltonian family H ∈ C∞(S1 × W × S2N+1,R) with the
following properties:
(1) H < 0 on S1 ×W0 × S2N+1;
(2) there exists t0 ≥ 0 such that H(ϑ, t, q, λ) = set + β(λ) for t ≥ t0 with

0 < s /∈ Spec(α) and β ∈ C∞(S2N+1,R).
Such a Hamiltonian family is called an admissible Hamiltonian family. Con-
sider the family of action functionals

A : C∞contr(S
1,W )× S2N+1 −→ R

(γ, λ) �−→ Aλ(γ) = −
∫
D2

σ∗ω −
∫
S1

Hλ(ϑ, γ(ϑ) )dϑ.

Here C∞contr(S
1,W ) denotes the space of smooth contractible loops in W ,

σ : D2 →W is a spanning disk for γ and Hλ(ϑ, x) = H(ϑ, x, λ).

Remark 4.1. This can be generalized to non-contractible loops γ by choos-
ing reference loops for all free homotopy classes of loops in W and taking
for σ : [0, 1] × S1 → W a homotopy from such a reference loop to γ. Note
also that if (γ, λ) is a critical point of this action functional, then γ is a
1-periodic Hamiltonian orbit of Xϑ

Hλ
(in [7], S1 = R/Z). Here we use the

convention
iXϑ

Hλ

ω = dHλ,ϑ,

where Hλ,ϑ(x) = H(ϑ, x, λ), to define the Hamiltonian vector field.
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Let {J = (Jϑλ ), λ ∈ S2N+1, ϑ ∈ S1} be a family of ϑ-dependent com-
patible almost complex structures on W which, at infinity, are invariant
under translations in the R-direction and satisfy the relations Jϑλ ξ = ξ,
Jϑλ (∂t) = Rα, where ξ is the contact structure kerα on ∂W0.

Definition 4.2. Such an admissible family of almost complex structures
J = (Jϑλ ) is called S

1-invariant if

Jϑ+τ
τλ = Jϑλ .

Note that here S1 acts diagonally on S1 × S2N+1. Given such a family of
almost complex structures we obtain a family of L2-metrics on C∞(S1,W ),
parametrized by S2N+1: for X,Y ∈ TγC∞(S1,W ) = Γ(γ∗TW ),

〈X,Y 〉λ =
∫
S1

ω(X(ϑ), JϑλY (ϑ) )dϑ.

Finally, we also need an S1-invariant metric g on the parameter space S2N+1

to write down the flow equations.
Let H : S1×W ×S2N+1 → R be an admissible Hamiltonian family which

is S1-invariant, i.e., H(ϑ + τ, ·, τλ) = H(ϑ, ·, λ). We denote by P0(H) the
set of critical points of A. Since H is S1-invariant, the family A is invariant
with respect to the diagonal action of S1, i.e., A(τγ, τλ) = A(γ, λ), where
(τγ)(·) = γ(· − τ), τ ∈ S1. Thus P0(H) is S1-invariant, i.e., if (γ, λ) ∈
P0(H), then (τγ, τλ) ∈ P0(H) for all τ ∈ S1. Given p = (γ, λ) ∈ P0(H), we
denote Sp = S(γ,λ) := {(τγ, τλ) : τ ∈ S1} ⊂ P0(H).
The “gradient” flow of the action gives rise to the parametrized Floer

equation for a pair (u, λ), where u : R×S1 →W and λ : R → S2N+1. These
equations and initial conditions are as follows.

∂su+ Jϑλ(s)∂ϑu− Jϑλ(s)X
ϑ
Hλ(s)

(u) = 0,

λ̇(s)−
∫
S1

�∇λH(ϑ, u(s, ϑ), λ(s))dϑ = 0,

lim
s→−∞(u(s, ·), λ(s) ) ∈ Sp̄,
lim
s→∞(u(s, ·), λ(s) ) ∈ Sp,

where p̄, p ∈ P0(H). Denote byM(Sp̄, Sp;H, J, g) the moduli space of such
Floer trajectories up to reparametrization. The reparametrization action is
here given by the R-action on the s-coordinate.

4.1. Chain complex and differential. Let H : S1 ×W × S2N+1 → R be
an admissible Hamiltonian family which is S1-invariant and satisfies the fol-
lowing: every S1-orbit of critical points Sp ⊂ P0(H) is non-degenerate in the
sense that the Hessian d2A(γ, λ) has a 1-dimensional kernel for some (and
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hence any) (γ, λ) ∈ Sp. We denote by HS1

N,reg the set of such Hamiltonian
families.
Define the S1-equivariant chain complex SCS

1,N
∗ (H, J, g) as a chain com-

plex whose underlying Q-vector space is

SCS
1,N
∗ (H, J, g) :=

⊕
Sp⊂P0(H)

Q〈Sp〉.

The grading of each Sp is given by

|Sp| = −μ(p) +N +
1
2
.

See [7] for the definition of μ(p). We assume here that c1(W0) is a torsion
class, see Remark 3.2.

Remark 4.3. Note that there is a sign and a shift with respect to the con-
ventions of contact homology: the sign is necessary since we are considering
Hamiltonian orbits, where we use the convention that iXH

ω = dH. With
this definition, the Hamiltonian vector field runs in the direction opposite
to that of the Reeb field.

Since A and (J, g) are S1-invariant, M(Sp̄, Sp;H, J, g) carries a free
action of S1 induced by the diagonal action on C∞(S1,W ) × S2N+1, i.e.,
τ(u(·), λ) := (u(·−τ), τλ). We denote the quotient byMS1(Sp̄, Sp;H, J, g) :=
M(Sp̄, Sp;H, J, g)/S1. According to Bourgeois and Oancea [7], this is a
smooth manifold of dimension

dimMS1(Sp̄, Sp;H, J, g) = −μ(p̄) + μ(p)− 1

if we choose a suitable perturbation data (J, g) for the Hamiltonian family
H. Hence, the following definition for the differential makes sense,

∂S
1
(Sp̄) =

∑
Sp⊂P0(H)

−μ(p̄)+μ(p)=1

(
#MS1(Sp̄, Sp;H, J, g)

)
Sp,

where # is a signed count of the number of elements ofMS1(Sp̄, Sp;H, J, g).
One can prove that ∂S

1
is actually a differential, so ∂S

1 ◦ ∂S1
= 0.

Next, define the S1-equivariant Floer homology groups by taking the
homology,

SHS1,N
∗ (H, J, g) := H∗(SCS

1,N
∗ (H, J, g), ∂S

1
).

One can show that these Floer homology groups do not depend on the
choice of perturbation data (J, g), so we shall write SHS1,N

∗ (H) from now
on. Taking the direct limit over the Hamiltonians as the non-equivariant
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symplectic homology:

SHS1,N
∗ (W0, ω) := lim−→

H∈HS1
N,reg

SHS1,N
∗ (H).

To complete the construction take the direct limit over N ,

SHS1

∗ (W0, ω) := lim−→
N

SHS1,N
∗ (W0, ω).

4.2. Subcomplexes and relation to symplectic homology. Instead
of taking the direct limits, we can also first investigate subcomplexes. For
sufficiently small ε > 0 define the subcomplex

SCS
1,−,N
∗ (H, J, g) :=

⊕
Sp⊂P0(H)
A(p)≤ε

Q〈Sp〉.

This leads to the quotient complex

SCS
1,+,N
∗ (H, J, g) := SCS

1,N
∗ (H, J, g)/SCS

1,−,N
∗ (H, J, g).

For either of these groups, we can define direct limits over H and N as in the
two steps for SHS1

∗ (W0, ω), leading to the homology groups SH
S1,±
∗ (W0, ω).

Equivariant symplectic homology is related to non-equivariant symplectic
homology through a Gysin sequence. We have

· · · −→ SHb
∗(W0, ω) −→ SHS1,b

∗ (W0, ω) −→ SHS1,b
∗−2 (W0, ω)

−→ SHb
∗−1(W0, ω) −→ · · ·

Here, b is used to denote any of the three types of complexes: the full com-
plex, the − complex and the + complex.

4.3. Homological boundedness and index positivity. Assume that
(W,ω = dλ) is a compact exact symplectic manifold, i.e., ω = dλ is a
symplectic form onW , with convex boundary ∂W . We assume that the first
Chern class c1(W ) of (W,ω) is a torsion class.

Definition 4.4. We say (W,ω) is homologically bounded if there exists
C > 0 such that bi(W,ω) = dim(SHS1,+

i (W,ω)) < C for all i ∈ Z.

Definition 4.5. We say that a cooriented contact manifold (Σ, α) is index-
positive if the mean index Δ(γ) of every contractible, periodic Reeb orbit γ
is positive. Similarly, we say that (Σ, α) is index-negative if the mean index
Δ(γ) of every contractible, periodic Reeb orbit γ is negative. Finally, we say
that (Σ, α) is index-definite if it is index-positive or index-negative.

Recall that the mean index Δ is related to the Conley–Zehnder index
μCZ as follows: For any non-degenerate Reeb orbit γ in a contact manifold
(Σ2n−1, α), its N -fold cover γN satisfies
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(4.1) μCZ(γN ) = NΔ(γ) + e(N),

where e(N) is an error term bounded by n− 1, see [25, Lemma 3.4].
There is also a homological version of this notion.

Definition 4.6. We shall call a homologyH∗(C∗, ∂) index-positive if there
exists N such that Hi(C∗, ∂) = 0 for all i < N .

If (Σ, α = iXLiouville
dλ) = ∂(W,dλ) is index-positive in the previously

defined sense, and if the inclusion of Σ into W induces an injection on π1,
then SHS1,+

∗ (W,dλ) is index-positive in the homological sense. One way
to see this is to use a spectral sequence argument similar to the proof of
Proposition 4.14. The notions index-negative and index-definite are defined
on homology level in a similar way.
We observe that for a compact subcritical Stein manifold (W 2n, ω) with

torsion first Chern class, SHS1,+
∗ (W,ω) is index-positive. To see this, we

consider Corollary 1.3 from [7] which states that there is an isomorphism of
exact sequences,

�� SH+∗ (W,ω)
��

∼=
��

SHS1,+
∗ (W,ω) ��

∼=
��

SHS1,+
∗−2 (W,ω) ��

∼=
��

�� H∗+n−1(W,∂W ) �� HS1

∗+n−1(W,∂W ) �� HS1

∗+n−3(W,∂W ) ��

As the equivariant homology of (W,∂W ) is index-positive, we see that
SHS1,+

∗ (W,ω) is index-positive.

4.4. Mean Euler characteristic. To simplify computations we shall use
the mean Euler characteristic of the positive part of the S1-equivariant sym-
plectic homology. This number can be computed explicitly for certain classes
of symplectic manifolds. Furthermore, it can be used to detect the non-
existence of subcritical fillings, see Proposition 4.7, and also serves as an
obstruction against the existence of displaceable exact contact embeddings,
see [14].
Let (W,ω) be a compact exact symplectic manifold with contact-type

boundary. Suppose that (W,ω) is homologically bounded. We define the
mean Euler characteristic of (W,ω) as

χm(W,ω) =
1
2

(
lim inf
N→∞

1
N

N∑
i=−N

(−1)ibi(W,ω)

+ lim sup
N→∞

1
N

N∑
i=−N

(−1)ibi(W,ω)
)
.
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The uniform bound on bi(W,ω) implies that the limit inferior and the limit
superior exist. See also [12,17,28]. In some cases, the mean Euler character-
istic is independent of the filling, and can be computed in terms of data on
∂W only, see [14]. This allows us to use this number as a contact invariant.
For later applications, the main observation is that the mean Euler charac-
teristic of compact subcritical Stein manifolds is always a half-integer:

Proposition 4.7. Let (Y 2n−1, ξ = kerα) be a contact manifold with subcrit-
ical filling (W 2n, ω) such that c1(W ) is a torsion class. Then SHS1,+

∗ (W,ω) ∼=
H∗+n−1(W,∂W ;Q) ⊗ H∗(CP∞;Q). In particular, it is index-positive with
generators in arbitrarily large degrees. Furthermore,

χm(W,ω) =
(−1)n+1χ(W )

2
.

Lemma 4.8. Suppose we have a Gysin style exact sequence for H∗(B) and
HS1

∗ (B) of the form

· · · �� H∗(B) �� HS1

∗ (B) �� HS1

∗−2(B)
�� H∗−1(B) �� · · ·

Suppose furthermore that Hi(B) is finite dimensional for all i ∈ Z, there
exists a positive integer N0 such that Hi(B) = 0 for all i > N0 and all
i < −N0, dim(HS1

i (B)) are uniformly bounded, i.e., there exists C > 0 such
that dim(HS1

i (B)) < C for all i ∈ Z, and HS1

∗ (B) is index-definite. Then

χm(HS1

∗ (B) ) = ±χ(H∗(B) )
2

,

where one should take a + sign if HS1

∗ (B) is index-positive, and a − sign if
HS1

∗ (B) is index-negative. The definition of χm(HS1

∗ (B) ) is similar to that
of χm(W,ω) (replacing bi(W,ω) by dim(HS1

i (B)) in that definition).

Proof. First of all, observe that the conditions on H∗(B) guarantee that
χ(H∗(B) ) exists. Secondly, for N > N0 we have

0 =
N∑

i=−N
(−1)i dim(Hi(B)) +

N∑
i=−N

(−1)i+1 dim(HS1

i (B))

+
N∑

i=−N
(−1)i dim(HS1

i−2(B))

= χ(H∗(B) ) + (−1)N dim(HS1

N−1(B)) + (−1)N+1 dim(HS1

N (B))

+ (−1)−N dim(HS1

−N−2(B)) + (−1)−N+1 dim(HS1

−N−1(B)).

Since we assume that HS1

∗ (B) is index-definite, we have two cases to
consider.
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(1) HS1

∗ (B) is index-positive. Then for sufficiently large N we have

χ(H∗(B) ) = (−1)N−1 dim(HS1

N−1(B)) + (−1)N dim(HS1

N (B)).

Hence,

χm(HS1

∗ (B) ) = lim
N→∞

1
N

N∑
i=−N

(−1)i dim(HS1

i (B))

= lim
N→∞

1
N

N∑
i=N0

(−1)i dim(HS1

i (B)) =
χ(H∗(B) )

2
.

(2) The proof in the index-negative case is very similar, but there is a
sign change since now for sufficiently large N we have

χ(H∗(B) ) = (−1)−N−1 dim(HS1

−N−2(B)) + (−1)−N dim(HS1

−N−1(B)).

�

Proof of Proposition 4.7. Observe that SH∗(W,ω) vanishes by a result of
Cieliebak [10]. Hence, the Viterbo long exact sequence, see [30], reduces to

0 ∼= SH∗(W,ω) −→ SH+
∗ (W,ω) −→ H∗+n−1(W,∂W ) −→ SH∗−1(W,ω) ∼= 0.

Furthermore, if c1(W ) is a torsion class, then it follows from the preceding
section that SHS1,+

∗ (W,ω) is index-positive. Hence, Lemma 4.8 applies and
we obtain

χm(W,ω) = χm(SHS1,+
∗ (W,ω) ) =

χ(SH+∗ (W,ω) )
2

= (−1)n−1χ(H∗+n−1(W,∂W ) )
2

= (−1)n−1χ(W )
2

.

�

Remark 4.9. This proposition can also be proved by using Yau’s results
on the contact homology of subcritically fillable contact manifolds; see [31].
Alternatively, one can use Espina’s argument, see [12, Corollary 5.7], which
tells us that subcritical surgery changes the mean Euler characteristic by±1

2 .

Since the mean Euler characteristic of (S2n−1, ξ0) = ∂(D2n, ω0) is
(−1)n+1

2 ,
the result follows by successive handle attachments.
Also observe that the above result holds true for a set bounded by a dis-

placeable contact embedding. In such a case, one can apply [23, Theo-
rem 97]. See also [14].

Remark 4.10. Note that grading conventions in contact homology differ
from the ones in symplectic homology. As a result we have the sign (−1)n+1.
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We shall now consider the case of Boothby–Wang orbibundles. By intro-
ducing the notion of Morse–Bott contact form we can avoid using perturba-
tions of the contact form.

Definition 4.11. A contact form α on Σ is said to be of Morse–Bott type
if the following hold:

• The action spectrum Spec(α) is discrete.
• For every T ∈ Spec(α), NT = {p ∈ Σ|FlRα

T (p) = p} is a smooth
submanifold of Σ such that the rank dα|NT

is locally constant and
TpNT = ker(TF lRα

T − id)p.
To avoid orientation problems of the moduli spaces, we need the notion

of bad orbit in Morse–Bott sense. Let NT denote the submanifold consisting
of periodic orbits with period T , that is

NT = {p ∈ Σ | FlRα
T (p) = p}

For a periodic Reeb orbit γ ⊂ NT of period T , the Maslov index is inde-
pendent of the choice of γ inside NT . Hence, we write μ(NT ) rather than
μ(γ).

Definition 4.12. A Reeb orbit γ of period T is called bad if it is the 2m
fold cover of a simple orbit γ′ and μ(NT ) − 1

2 dim
(
NT /S

1
) − μ(N T

2m
) +

1
2 dim

(
N T

2m
/S1

)
is odd.

We introduce some notation to state the result. Consider a contact man-
ifold (Σ, α) with Morse–Bott contact form α such that all Reeb orbits are
periodic, so that we have an S1-action on Σ (not necessarily free). Denote
the minimal periods by T1 < · · · < Tk, so all Ti divide Tk. As before, denote
the subspace consisting of periodic Reeb orbits with period Ti in Σ by NTi .
For the proof of the following lemma, see [14].

Lemma 4.13. If H1(NTi ;Z2) = 0, then H1(NTi ×S1 ES1;Z2) = 0.

The proof of the following proposition is similar to that of [14, proposi-
tion 2.4]. The main difference is that we need to keep track of the homotopy
class of periodic orbits. For later use the following definition is useful. Let
(P 2n−1, α) be a cooriented contact manifold whose Reeb flow is periodic.
Assume furthermore that the following hold.
P1 There is a connected codimension two set of exceptional orbits NT1

with period T1. The principal orbits, denoted by NT2 , have period T2.
P2 π1(P ) ∼= Zk, generated by a simple exceptional orbit. Furthermore,

c1(ξ) is torsion.
P3 The Maslov index of the smallest contractible cover of a principal

orbit, denoted by μP , is non-zero.
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Write N := T2/T1, and put � = gcd(N, k). Define the mean Euler charac-
teristic of (P, α) by the number

(4.2) χm(P, α) = (−1)n+1 (
N
� − 1)χS

1
(NT1) + χS

1
(NT2)

|μP | .

Here, χS
1
(NT ) denotes the Euler characteristic of the S1-equivariant homol-

ogy of the S1-manifold NT . In general, this is a meaningless number, but
the following proposition shows that it is a contact invariant provided that
there is a suitable filling.

Proposition 4.14. Let (P 2n−1, ξ = kerα) be a cooriented contact manifold
satisfying the following conditions:
P1–3 The conditions P1, P2 and P3 hold. In particular μ(NNk

�
T1
= N k

�
T2
) =

μP .
P4 Furthermore H1(NT ×S1 ES1;Z2) = 0 for all NT and there are no

bad orbits.
P5 There is an exact filling (W 2n, dλ) such that the inclusion P → W

induces an injection on π1. In addition, c1(W ) is torsion.
Then the mean Euler characteristic of equivariant symplectic homology in
the class of contractible orbits is given by

χm(SHS1,+
∗ (W,dλ) ) = χm(P, α).

Remark 4.15. This proposition is a generalization of [12, Example 8.2],
and Espina’s methods could also be used to show the above.

Proof. The Reeb flow on P is periodic, so we can use Morse–Bott methods
to construct a spectral sequence converging to SHS1,+

∗ (W,dλ), see [15, Sec-
tion 7.2.2]. Its E1-page is given by

E1
pq =

⊕
NT consists of contractible orbits

μ(NT )− 1
2

dim(NT /S
1)=p

HS1

q (NT ;Q).

See also Seidel, [27, formula 3.2], for a similar spectral sequence for sym-
plectic cohomology with different conventions. Note that the sum is over all
orbit spaces of contractible orbits including multiple covers. Since we have
two orbit types, namely corresponding to NT1 and NT2 , we can split the
direct sums as

E1
∗q =

⊕
m>0 such that km/∈NZ

HS1

q (NkmT1 ;Q)⊕
⊕
m′>0

HS1

q (Nm′Nk
�

T1
;Q).

Indeed, if km ∈ NZ for the first term, then the orbits are part of the larger
orbit space Nm′Nk

�
T1
= Nm′k

�
T2
withm′N� = m, which we count in the second

term. The second term consists of contractible covers of principal orbits. We
have indicated what happens pictorially in Figure 2.
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Figure 2. A single period in the E1-page of Morse–Bott
spectral sequence for SHS1,+

∗ (W,dλ).

Since the flow is periodic, the spectral sequence repeats itself after reach-
ing the block consisting of contractible covers of principal orbits. Hence,
we count the contribution of each block, which either corresponds to
HS1

q (NkmT1 ;Q) or to H
S1

q (Nmk
�
T2
;Q), to the Euler characteristic. We see

that N
� − 1 copies of HS1

q (NkmT1 ;Q) occur before a block of principal orbits
appears. The blocks repeat with degree shift of μP , since the flow is periodic.
To determine the signs of each contribution, we observe that μP is even.

To see this, note that μP = μ(N k
�
T2
). Since the flow is periodic for the prin-

cipal orbits, we have μ(Nmk
�
T2
) = mμ(N k

�
T2
). Since all orbits are assumed

to be good, this can only hold if μ(N k
�
T2
) = μP is even. The contri-

bution of the principal orbits to the mean Euler characteristic is hence
(−1)μP− 1

2
dim(NT2

/S1)χS
1
(NT2) = (−1)n−1χS

1
(NT2).

Finally, we claim that the Maslov indices of the contractible covers of
the exceptional orbits that are not contained in a space of principal orbits,
are odd. We write μE , μ2E , . . . for these Maslov indices. Indeed, suppose
that μE is even. Note that an N -fold cover of an exceptional orbit is
principal, so by Definition 4.12 we have that μNE − n + 1 − μE + n − 2
is odd. This contradicts the non-existence of bad orbits. We note that
the exceptional orbits contribute (N� − 1)(−1)μE− 1

2
dim(NT1

/S1)χS
1
(NT1) =

(−1)n−1(N� − 1)χS
1
(NT1). �

4.5. Maslov index for simple Boothby–Wang bundles. In this sec-
tion, we consider Boothby–Wang bundles for which multiple covers of the
S1 fibers are contractible.
Let (M,ω) be a compact simply connected symplectic manifold such that

[ω] ∈ H2(M ;Z) is primitive. Consider a Boothby–Wang bundle PM asso-
ciated with the symplectic manifold (M,kω), and denote the projection
PM →M by Π.
Suppose that c1(M) = c[ω] for some c ∈ Z. This implies that c1(ξ) =

−Π∗(c1(M)) is a torsion cohomology class, so we can use Q as a coefficient
ring of symplectic homology. See [6, Chapter 9] for the following lemma.
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Lemma 4.16. The Maslov index of a k-fold cover of a principal orbit S is
given by μ(S) = 2c.

Remark 4.17. In this setup, π1(PM ) ∼= Zk, so a k-fold cover of a principal
orbit is contractible. Furthermore, if γ is a principal orbit, then [γ] ∈ π1(PM )
represents 1 ∈ Zk.

5. Open books for Boothby–Wang bundles

In this section, we discuss the topological conditions for a Boothby–Wang
bundle to possess a specific supporting open book. We look for a codimension
two submanifold with trivial normal bundle such that its complement is a
fiber bundle over S1.

5.1. Setup. Let (M,ω) be a compact symplectic manifold with integral
symplectic form. Fix � ∈ Z>0 and consider a Boothby–Wang bundle PM,�

associated with (M, �ω).
Let H ⊂M be a Donaldson hypersurface Poincaré dual to k[ω] for some

positive integer k ∈ Z>0 [11]. The restriction of PM,� to the symplectic
submanifold H, which we denote by PH,�, is a codimension two contact
submanifold in PM,�.

5.2. Neighborhood of a Donaldson hypersurface. By the Weinstein
symplectic neighborhood theorem, a neighborhood of H in M can be iden-
tified with the normal bundle to H. By Milnor and Stasheff [21, Corol-
lary 11.2], the fundamental cohomology class for the normal bundle of H
in M corresponds to a canonical cohomology class u′ ∈ H2(M,M −H;Z).
Write the inclusion (M, ∅) ↪→ (M,M −H) by jM . Since the homology class
[H] is Poincaré dual to k[ω], it follows that u′|M := j∗Mu

′ is equal to k[ω]
by [21, Problem 11-C]. Then [21, Theorem 11.3] tells us that the first Chern
class of the normal bundle νM (H) of H in M is given by

c1(νM (H)) = i∗(u′|M ) = i∗(k[ω]),

where i : H → M is the inclusion. Thus, the normal bundle νM (H) can be
identified with the associated line bundle

νM (H) ∼= PH,k ×S1 C,

where S1 acts diagonally on PH,k × C by

(x, v) · a = (x · a, va)
for a ∈ S1, x ∈ PH,k, and v ∈ C. The symplectic form on νM (H) can then
be expressed as

Π∗k i
∗(kω) +

1
2π
d(r2ϑ)− 1

2π
d(r2dϕ),
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where (r, ϕ) are the polar coordinates on C, Πk : PH,k → H is the projec-
tion, and ϑ is the connection 1-form on PH,k with dϑ = −2πΠ∗k i∗(kω); cf.
Biran [4].

Remark 5.1. The hypersurface H can be seen as the convex end ofM−H.
More precisely, there is a neighborhood νM (H) such thatM−νM (H) carries
a compact Weinstein structure: see [19, Proposition 11].

5.3. Choice of symplectic form. We shall now argue that we can only
expect the Boothby–Wang bundle PH,� over the Donaldson hypersurface H
to serve as the binding for an open book on PM,� if we choose k = �.
The choice of � dividing k is motivated by the following proposition.

Proposition 5.2. Suppose � divides k. Then the normal bundle νPM,�
(PH,�)

of PH,� in PM,� is trivial.

Proof. We consider the following diagram of bundles:

S1

��

S1

��

C �� νM (H)×̃S1

��

�� PH,� ⊂ PM,�

Π

��

C �� νM (H) �� H ⊂M.

The columns in this diagram represent Boothby–Wang bundles and the
rows indicate normal bundles. We use the same notation for the projec-
tion Π : PM,� → M and its restrictions. νM (H) is identified with a tubular
neighborhood of H in M .
According to the diagram, the Boothby–Wang bundle νM (H)×̃S1 can be

considered as the normal bundle of PH,� in PM,�,

Π−1(νM (H)) = νPM,�
(PH,�).

In order to regard PH,� as a binding of an open book for PM,�, its normal
bundle has to be trivial. Let i : H →M denote the inclusion. The diagram
of Gysin sequences

H0(M ;Z)
∪�[ω]

�� H2(M ;Z) Π∗
��

i∗
��

H2(PM,�;Z)

��

H0(H;Z)
∪�i∗[ω]

�� H2(H;Z) Π∗
�� H2(PH,�;Z)
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shows that the first Chern class

c1(νPM,�
(PH,�)) = Π∗c1(νM (H)) = Π∗i∗(k[ω])

is zero by exactness, if � divides k. �
Remark 5.3. The condition of Proposition 5.2 is not always necessary for
the normal bundle νPM,�

(PH,�) to be trivial. We can take for example the
case where H consists of points in a surface (M,ω).
However, to obtain a proper open book, the condition � divides k is still

necessary as the following example shows. Consider RP 3 as a Boothby–Wang
bundle over (S2, ω). If ω represents a primitive cohomology class, then we
have � = 2.
If we choose [H] to be Poincaré dual to [ω], then [H] is represented by a

single point. This results in a decomposition of RP 3 into two solid tori, one
for a neighborhood of the fiber over H, and one for the complement. The
gluing map for this pair of solid tori does not correspond to an open book,
because the projection to S1 in a neighborhood of the fiber over H has the
form

PH,� × (D2 − {0}) −→ S1

(eiψ, reiϕ) �−→ ei(2ϕ−ψ),

where we have identified PH,� with S1. Baker, Etnyre and Van Horn-Morris
[3] refer to such structures as rational open books.

Now consider the case that k divides �.

Proposition 5.4. Suppose k divides �. Then the restriction of the Boothby–
Wang bundle PM,� to M −H is trivial.

Note that we can think of a trivial S1-bundle overM−H as an (M−H)-
bundle over S1, which is necessary for an open book.

Proof. Consider the long exact sequence of the pair (M,M − H) in coho-
mology,

H2(M,M −H;Z) j∗M �� H2(M ;Z)
j∗

�� H2(M −H;Z).
All maps are pullbacks under inclusion. As we have seen in the beginning
of Section 5.2 u′|M = k[ω]. Furthermore, u′|M = j∗Mu

′, so j∗(u′|M ) = 0 by
exactness. Hence, PM,k is trivial when restricted to M −H. As k divides �,
it follows that PM,� is trivial when restricted to M −H. �

6. Abstract open book

Motivated by Section 5.3, we choose k = � in our search of an open book for
a Boothby–Wang bundle associated with (M, �ω) accompanied by a Don-
aldson hypersurface H ⊂ M Poincaré dual to k[ω]. In principle, we can
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then try to show directly that we obtain a contact open book in terms
of the S1 bundle away from the binding. However, it is more convenient to
approach the problem by constructing an open book with fibered Dehn twist
as monodromy. We then show that the resulting contact manifold is contac-
tomorphic to a Boothby–Wang bundle we were considering. For simplicity,
we rescale the symplectic form and set k = � = 1.
Let (W,−dλ/2π) be a compact Weinstein manifold such that the bound-

ary (P = ∂W, ϑ = λ|P ) is a Boothby–Wang bundle over some symplectic
manifold (H,ωH) with projection map ΠH : P → H. By the Boothby–Wang
condition, all Reeb orbits of ϑ are periodic. We denote the Reeb vector field
by Rϑ.
We can construct two contact manifolds out of the data given above. First

of all, we can define a symplectic manifold M and a Boothby–Wang bundle
over M . Secondly, as discussed in Section 2.4, we can define a fibered Dehn
twist τ for W along its boundary, and then define a contact open book with
page W and monodromy τ .
The following diagram illustrates the constructions we shall perform. The

maps will be defined subsequently. Note that the horizontal maps are only
defined on subsets of the spaces in the diagram, since they serve as gluing
maps.

(6.1)
ν/Binding piece Middle piece W piece

Open book P × D̊2 ψOB
�� P × I × R /∼ Id �� W × S1

Boothby–Wang (P ×S1 D̊2)×̃S1

∼= P × D̊2

ψBW
��

Πν

��

Id

��

P × I × S1 Id ��

Πmid

��

ψmid

��

W × S1

ΠW

��

Id

��

Symplectic P ×S1 D̊2 ψS
�� P × I Id �� W

6.1. Symplectic manifold. Let us now define the three symplectic pieces
we shall patch together to form our symplectic manifold M . Note that the
sizes we choose for the construction are artificial.

• TheW piece is the given Weinstein manifold equipped with the exact
symplectic form − 1

2πdλ. In a collar neighborhood of the boundary,
the symplectic form looks like a symplectization form. For later com-
putations, it is convenient to rescale this form though. In other words,
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we take (
P × I−,− 1

2π
d(et−Cϑ)

)
as a collar neighborhood of the boundary of W for a fixed positive
constant C. Here I− stands for the interval ]−1, 0].

• The middle piece P × I serves as an auxiliary piece and we furnish it
with the exact symplectic form

− 1
2π
d (ρ(t)ϑ) ,

where ρ is a function defined on I that we shall specify later. Here I
stands for the interval ]−1, 1[.

• The last piece is the associated disk bundle ν := P ×S1 D̊2, regarded
as the orbit space of P × D̊2 under the S1 action

(x, reiϕ) · a = (x · a, rei(ϕ+a)).

Here, D̊2 ⊂ C is the open disk at 0 of radius 1 with polar coordinates
(r, ϕ), and a ∈ S1 ∼= R/2πZ is identified with eia ∈ C. We take the
symplectic form

ων = Π∗HωH +
1
2π
d
(
r2ϑ

)− 1
2π
d
(
r2dϕ

)
= − 1

2π
d
(
(1− r2)ϑ− (1− r2)dϕ) .

Note that this symplectic form is not exact but it is an integral sym-
plectic form on ν with the cohomology class Π∗H [ωH ]. In our con-
ventions, the connection 1-form ϑ of the Boothby–Wang bundle P
satisfies dϑ = −2πΠ∗HωH .

Next we define the two gluing maps between the pieces. They ought to be
symplectomorphisms so that we obtain a closed symplectic manifold (M,ω).
This imposes necessary behaviors on our function ρ.
We begin with gluing the middle piece P × I to W using the identity:

P × I ⊃ P × I− Id−→ P × I− ⊂W.

This implies that, for t ∈ I− and small positive values of t, we must have

ρ(t) = et−C .

On the other hand, we can glue P×S1D̊2 to P×I using the diffeomorphism
ψS : P ×S1 D̊2 ⊃ P ×S1

(
D̊2 − {0}

)
−→ P × I[

x, reiϕ
] �−→ (

x · (−ϕ), 1− r).
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If we pull back the symplectic form − 1
2πd(ρ(t)ϑ) under this diffeomorphism,

we find

ψ∗S

(
− 1
2π
d(ρ(t)ϑ)

)
= − 1

2π
d
(
ρ(1− r)(ϑ− dϕ)),

because L−ϕRϑ
ϑ = −dϕ. For this symplectic form to coincide with the

symplectic form on P ×S1

(
D̊2 − {0}

)
near r = 0, we require that

ρ(1− r) = 1− r2 = (1− r) (2− (1− r)) ,
near r = 0. For t near 1, we set ρ(t) = t(2 − t). By gluing the three pieces
together, one obtains a symplectic manifold.
On the other hand, we can go back to the discussion from Section 5. Given

an integral symplectic manifold (M,ω), and hypersurface H that is Poincaré
dual to k[ω], one can define W := M − νM (H). It is not clear that we can
then apply the above construction. We need W to be Weinstein, and such
that P = ∂W has a Boothby–Wang type contact form.
However, for a smoothly polarized Kähler manifold P = (M2n, ω, J ;H),

i.e., (M,ω, J) is a Kähler manifold, and H ⊂ M is a smooth and reduced
complex hypersurface whose homology class [H] ∈ H2n−2(M ;Z) represents
the Poincaré dual to k[ω] ∈ H2(M ;Z) for some k ∈ N, the symplectic
manifold (M,kω) can be reconstructed by patching the three symplectic
pieces as above (see [4, proof of Theorem 2.6.A]).
In order to make a general statement, consider the following. Let

(M2n, ω) be a closed symplectic manifold with integral symplectic form
[ω] ∈ H2(M ;Z), and let H be a closed symplectic hypersurface, i.e., a codi-
mension two closed symplectic submanifold, whose homology class [H] ∈
H2n−2(M ;Z) is the Poincaré dual to k[ω] ∈ H2(M ;Z) for some k ∈ N.

Definition 6.1. If (M2n, kω) can be constructed by patching three sym-
plectic pieces as above, then we say that H is an adapted Donaldson
hypersurface.

Remark 6.2. For a smoothly polarized Kähler manifold P = (M2n, ω, J ;H),
the complex hypersurfaceH is an adapted Donaldson hypersurface. As Biran
points out in [4], the symplectic hyperplane section obtained by Donaldson’s
theory of symplectic hypersurfaces [11] is probably an adapted Donaldson
hypersurface.

6.2. Boothby–Wang bundle. We now construct the Boothby–Wang bun-
dle over the three pieces of M .

• The symplectic form on W is exact, so the associated Boothby–Wang
bundle W × S1 can be endowed with the contact form

dϕ+ λ.



406 R. CHIANG, F. DING AND O. VAN KOERT

The bundle projection is the natural one:

ΠW :W × S1 −→W,

(x, ϕ) �−→ x.

• Similarly, the Boothby–Wang bundle over the middle piece P×I looks
like (

P × I × S1, dϕ+ ρ(t)ϑ
)

with the projection

Πmid : P × I × S1 −→ P × I,
(p, t, ϕ) �−→ (p, t).

• By Proposition 5.2 and its proof, we can identify the Boothby–Wang
bundle over ν with the manifold P×D̊2. We furnish it with the contact
form

αν = (1− r2)ϑ+ r2dϕ.

The corresponding Reeb field is given by

Rϑ + ∂ϕ

and therefore generates an S1 action on P × D̊2. This Reeb action
coincides with the S1 action we used to define ν as an orbit space.
We check that the map

Πν : P × D̊2 −→ ν = P ×S1 D̊2

(x, v) �−→ [x, v]

pulls back the symplectic form −2πων to dαν . It follows that αν is a
connection 1-form and Πν is the projection map for this S1-bundle.
Note that, as a Boothby–Wang bundle, it is not trivial.

The gluing maps are induced from the symplectic gluing maps used for
M as follows:

P × I × S1 ⊃ P × I− × S1 Id−→W × S1.

and

ψBW : P × D̊2 ⊃ P ×
(
D̊2 − {0}

)
−→ P × I × S1(6.2)

(x, reiϕ) �−→ (
x · (−ϕ), 1− r, ϕ).
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6.3. Contact open book. Finally, we construct a contact open book out
of the three pieces announced in our diagram (6.1). For the construction,
we adopt a method similar to the standard one described in Section 2.3.
However, we separate what used to be one page into a piece with trivial
monodromy and a piece with a perturbation of a fibered Dehn twist as
monodromy. In fact, our monodromy is not the identity near the bound-
ary, so we need to glue differently. We shall give a recipe to correct this in
Section 6.5.
First we consider the following pieces:

• OnW , we take the identity for the monodromy, so the mapping torus
looks like W × S1 with contact form dϕ+ λ.

• The middle piece P × I ×R /∼ carries a nontrivial monodromy given
by

(x, t, ϕ) ∼ (
x · f(t), t, ϕ+ h(t)

)
.

By the same token as in Section 2.4, we set

h(t) = A− et−Cf(t) +
∫ t

0
es−Cf(s) ds.

The function f : I → R shall be specified later. Nevertheless, we
demand f(t) = 0 for t ∈ I−, and choose A = 2π. We see that dϕ +
et−Cϑ descends to a well-defined contact form here.

• The neighborhood of the binding is given by P × D̊2 with contact
form h1(r)ϑ + h2(r)dϕ. Since we will glue in a way that differs from
the standard method for open books, we choose h1(r) = 1 − r2 and
h2(r) = r2.

Next let us define the gluing maps. For the trivial monodromy part, we
use the identity map:

P × I × R /∼ ⊃ P × I− × R /∼ Id−→W × S1.

To glue in the binding piece, we first define an auxiliary map

ψmid : P × I × S1 −→ P × I × R /∼(6.3)

(x, t, ϕ) �−→
(
x · f(t)ϕ

2π
, t,

h(t)ϕ
2π

)
.

Then we define the gluing map as composition of ψmid and ψBW :

ψOB : P × D̊2 ⊃ P × (D̊2 − {0}) −→ P × I × R /∼(6.4)

(x, reiϕ) �−→ ψmid ◦ ψBW (x, reiϕ).
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6.4. The twisting profile. We have defined all maps in the diagram (6.1),
but two of the maps still depend on the yet to be defined twisting profile f .
Let us now find out what it should be.
We pull back the open book form using the diffeomorphism ψmid. Using

a computation similar to Section 2.4, we see that

ψ∗mid(dϕ+ et−Cϑ) =
1
2π

(
2π +

∫ t

0
es−Cf(s) ds

)
dϕ+ et−Cϑ.

If we choose the profile f appropriately, this becomes a multiple of the
Boothby–Wang form

dϕ+ ρ(t)ϑ.

In other words, we solve the equation

ρ(t) = 2π
et−C

2π +
∫ t
0 e

s−Cf(s) ds

for the profile function f , and we obtain

(6.5) f(t) = 2π
ρ(t)− ρ′(t)

ρ(t)2
.

Since the behavior of the function ρ(t) for t near 0 or 1 is determined by our
choices of symplectic forms, we see that the twisting profile f(t) is 0 for t
near 0 and f(t)→ 2π for t→ 1.
Hence we get a commutative diagram (6.1). Furthermore, since f goes

from 0 to 2π, the monodromy is a right-handed fibered Dehn twist (observe
that f is the twisting profile for the inverse of a right-handed fibered Dehn
twist).

6.5. Deforming the contact form. In this section, we adapt the contact
form on the set P × D̊2 to obtain a compatible open book. Let f be a
smooth monotone function which is 0 near 0 and 2π near η, where 0 <
η < min{C, 1}. We now take this f as twisting profile. Note that h(t), the
function used in the definition of the mapping torus, is always positive.
Let

α0 = ψ∗OB(dϕ+ et−Cϑ) = h0
1(r)ϑ+ h0

2(r)dϕ,

where

h0
1(r) = e1−r−C , and h0

2(r) = 1 +
1
2π

∫ 1−r

0
es−Cf(s) ds− e1−r−C ,

for r ∈]1 − η, 1[. Note that h0
2(r) is constant near r = 1 − η. We extend h0

1

and h0
2 near r = 1− η such that h0′

1 (r) < 0, h0
1(r) > 0, h0′

2 (r) ≥ 0, h0
2(r) > 0

for r > 0 and h0
1(r) = 1 − r2, h0

2(r) = r2 near r = 0. We obtain a contact
open book whose monodromy is a right-handed fibered Dehn twist.
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On the other hand, let

α1 = ψ∗BW (dϕ+ ρ(t)ϑ) = h1
1(r)ϑ+ h1

2(r)dϕ,

where h1
1(r) = ρ(1− r), h1

2(r) = 1− ρ(1− r). Note that
h1′

1 (r) < 0, h1
1(r) > 0, h1′

2 (r) ≥ 0, h1
2(r) > 0

for r > 0 and h1
1(r) = 1 − r2, h1

2(r) = r2 near r = 0. The contact forms α0

and α1 are the same near r = 1. For a contact form h1(r)ϑ + h2(r)dϕ, the
following condition imposed on h1 and h2:

h′1(r) < 0, h1(r) > 0, h′2(r) ≥ 0, h2(r) > 0

for r > 0 and
h1(r) = 1− r2, h2(r) = r2

near r = 0, is a convex condition. Thus we can connect α0 and α1 by
(1− s)α0 + sα1. Then use Gray stability to see that the associated contact
structures are contactomorphic. Hence, we deform the contact form on P ×
D̊2 to obtain a compatible open book.

6.6. Summary. We summarize these results in the following theorem.

Theorem 6.3. Let W be a Weinstein domain with boundary ∂W given by
a Boothby–Wang bundle P over H. Let τ be a fibered Dehn twist on W
along the boundary ∂W = P . Then OB(W, τ) is contactomorphic to the
Boothby–Wang bundle over the symplectic manifold (M,ω) as constructed
in Section 6.1.

Corollary 6.4. Let (M,ω) be a manifold with integral symplectic form ω
accompanied by an adapted Donaldson hypersurface H Poincaré dual to [ω].
Then the Boothby–Wang bundle PM associated with (M,ω) has an open book
decomposition whose monodromy is a right-handed fibered Dehn twist.

Proof. This follows from Theorem 6.3. �

6.7. Boothby–Wang orbibundles over symplectic orbifolds. Let us
now consider a multiply fibered Dehn twist as monodromy for a contact
open book. We begin by showing that the resulting contact manifold carries
an S1-action generated by its Reeb field. We copy the contact part of the
diagram we used earlier,

Open book P × D̊2
ψOB,N

�� P × I × R /∼ Id �� W × S1.

Boothby–Wang (P ×S1 D̊2)×̃S1

∼=P×D̊2

ψBW,N
��

Id

��

P × I × S1 Id ��

ψmid,N

��

W × S1

Id

��
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For N ∈ N, let W ×S1 be endowed with the contact form dϕ+ 1
N λ. Over

the middle piece P × I, the role of ρ will be taken by ρN := 1
N ρ. For the

twisting profile fN we take Nf , where f is the profile found in Section 6.4.
We set hN (t) = h(t). We adjust the gluing maps as follows.

ψBW,N : P × D̊2 ⊃ P × (D̊2 − {0}) −→ P × I × S1

(x, reiϕ) �−→ (
x · (−Nϕ), 1− r, ϕ)

and

ψmid,N : P × I × S1 −→ P × I × R /∼

(x, t, ϕ) �−→
(
x · fN (t)ϕ

2π
, t,

hN (t)ϕ
2π

)
.

If we pull back the contact form dϕ+ρN (t)ϑ by ψBW,N we find the contact
form

αN =
1
N
(1− r2)ϑ+ r2dϕ

near r = 0.
This specifies the contact form on each of the pieces on the “Boothby–

Wang” side. We check that all Reeb orbits are periodic.
• On the binding piece P × D̊2, the Reeb field of the contact form αN
is given by

RαN = NRϑ + ∂ϕ.

It generates a locally free S1 action on P × D̊2. Indeed, the S1 action
is given by

(x, v) · a = (x · aN , av).
We see that (x, 0) is fixed by ZN , while the stabilizer for any other
(x, v), v �= 0, is trivial.

• On the middle piece, the Reeb field of the contact form dϕ+ ρN (t)ϑ
is given by R = ∂ϕ.

• On W × S1, the Reeb field of the contact form dϕ + 1
N λ is given by

R = ∂ϕ.
These contact forms fit together to a global contact form α with our gluing
maps, so we obtain a closed contact manifold (Y, α) whose Reeb orbits are
all periodic. The orbits corresponding to the binding have period 2π/N ,
whereas all other orbits have period 2π. In particular, this implies that
the quotient of the presymplectic manifold (Y, dα) by the S1-action is a
symplectic orbifold.

Theorem 6.5. Let W be a Weinstein domain with boundary ∂W given by
a Boothby–Wang bundle P over H. Let τ be a fibered Dehn twist on W
along the boundary ∂W = P . Then OB(W, τN ) is contactomorphic to the
Boothby–Wang orbibundle over the symplectic orbifold (Y, dα)/S1.
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7. Applications

We conclude this paper with some applications of the above open book
decompositions and the mean Euler characteristic. We consider certain
Boothby–Wang orbibundles PM over symplectic orbifolds M . By the cor-
respondence from Theorem 6.5 we can use contact invariants to deduce
non-triviality of fibered Dehn twists.
We shall consider two cases. Suppose (M,ω) is an integral symplectic

manifold with an adapted Donaldson hypersurfaceH and τ is a right-handed
fibered Dehn twist.

• If π2(M) = 0, then τ is not symplectically isotopic to the identity
relative to the boundary. This case was already considered by Biran
and Giroux [5]: they used Lagrangian Floer homology to prove this
result; we shall give a different argument.

• If c1(M) = c[ω], then the mean Euler characteristic and index-
positivity give an efficient criterion to see whether fibered Dehn twists
are symplectically isotopic to the identity relative to the boundary.

7.1. Non-contractible fibers and π2(M) = 0.

Theorem 7.1 (Biran and Giroux). Let W be a Weinstein domain whose
boundary is a Boothby–Wang contact manifold (P, ϑ) over a symplectic man-
ifold H. Suppose that the integral symplectic manifold M , obtained via the
construction in Section 6.1, satisfies π2(M) = 0. Then a right-handed fibered
Dehn twist τ along P = ∂W is not symplectically isotopic to the identity
relative to the boundary.

Remark 7.2. Alternatively, we could take any integral symplectic manifold
(M,ω) with π2(M) = 0 and find an adapted Donaldson hypersurface H in
M ; its complement W :=M − ν(H) then satisfies the above condition.
Proof. By Theorem 6.3 it follows that OB(W, τ) is contactomorphic to the
Boothby–Wang bundle PM over M , whose periodic Reeb orbits are exactly
the S1-fibers. The homotopy exact sequence for the fibration S1 → PM →M
shows us that each fiber is non-contractible,

0 ∼= π2(M)
p∗−→ π1(S1) −→ π1(PM ),

so the condition that π2(M) = 0 implies that all Reeb orbits are non-
contractible in PM .
Assume that τ is symplectically isotopic to the identity relative to the

boundary. Then the following contact open books are contactomorphic

OB(W, Id) ∼= OB(W, τ).

By Theorem 2.12, it follows that PM ∼= OB(W, τ) is subcritically Stein
fillable. We claim that then every contact form for the contact structure on
PM must have contractible Reeb orbits.
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Corollary 3 from [13] implies that PM has a Reeb orbit γ that is con-
tractible in its subcritical filling W × D2. See also [30]. To see that this
orbit is also contractible in the boundary PM , we use that in our setup
dimPM ≥ 3, so the filling has dimension at least 4. Since the subcritical
filling W × D2 can be obtained from [0, 1] × PM by attaching handles of
index ≥ 3, we see that

i∗ : π1(PM ) −→ π1(W ×D2)

is an isomorphism. This gives the existence of a contractible Reeb orbit
in PM , which contradicts our earlier observation that the Boothby–Wang
bundle PM does not have any periodic contractible Reeb orbits. �

7.2. Powers of fibered Dehn twists. Next, we shall distinguish powers
of fibered Dehn twists. We need a few lemmas that all use the following
setup and notation.
Setup S

(1) Following Section 6.7, construct a Boothby–Wang orbibundle by tak-
ing an integral symplectic manifold M with an adapted Donaldson
hypersurface H that is Poincaré dual to k[ω], where [ω] ∈ H2(M ;Z)
is primitive. It follows that we can giveW :=M−νM (H) a Weinstein
structure. Assume in addition that M and H are simply connected,
and that dimM = 2n− 2 ≥ 6. We denote the Boothby–Wang bundle
over (H, k[ω|H ]) by P . This is also the contact boundary of W .

(2) For a positive integer N , define the contact open book (PN , ϑN ) :=
OB(W, τN ): this is a Boothby–Wang orbibundle over the symplectic
orbifold MN . As a topological space, we have MN

∼= PN/S
1.

(3) The Chern class of M1 =M can be written as c1(M) = c[ω].
We will call these assumptions setup S. Note that the Boothby–Wang

orbibundle obtained this way satisfies conditions P1 and P2. To see the last
claim, we have the following lemma.

Lemma 7.3. The first Chern class of the contact structure in setup S is
torsion.

Proof. First consider N = 1. Then P1 is a Boothby–Wang bundle over the
symplectic manifold M . Consider a part of the Gysin sequence for the circle
bundle S1 → P1 →M ,

H0(M)
∪k[ω]−→ H2(M) π∗−→ H2(P1).

We have ξ1 ∼= π∗TM , so we see that c1(ξ) = −π∗c1(TM) = −π∗c[ω] is
torsion, since k �= 0.
For N > 1, we use the Mayer–Vietoris sequence. Put AN = P × D̊2,

and let BN be the mapping torus of W with monodromy τN . Noting that
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AN ∩BN � P × S1 we find

H1(AN )∼=0
⊕H1(BN )∼=Z

i1−→ H1(AN ∩BN )∼=Z

−→ H2(PN )
j2−→ H2(AN )⊕H2(BN ).

The map i1 is an isomorphism, so j2 is injective. Now observe that the
restriction of c1(ξN ) to both AN and BN is a torsion class. Indeed, the con-
tact structure over BN is a Boothby–Wang bundle for an exact, symplectic
manifold, and the restriction to AN , a neighborhood of the binding, has the
same Chern class as in the case N = 1. �

Lemma 7.4 (Mean index for Boothby–Wang orbibundles). Suppose
we have the setup S as above. Then the Maslov index of a k-fold cover of a
principal orbit is equal to

2(N(c− k) + k).

Proof. In a neighborhood of H ⊂MN , the Boothby–Wang orbibundle looks
like (

P × D̊2,
1
N
(1− r2)ϑ+ r2dϕ

)
,

where P is the Boothby–Wang bundle over H. The Reeb field is given by

R = NRϑ + ∂ϕ.

Its flow is given by FlRt (x, z) = (x ·Nt, eitz). Now write i : H ⊂ M for the
inclusion. Observe that P is an S1-bundle over H with Euler class i∗k[ω]
and that M − ν(H) = W is Weinstein. Hence the dimension condition
dimM ≥ 6 guarantees that the map i∗ : H2(H) → H2(M) is surjective.
This implies that i∗[ω] is primitive. It follows that π1(P ) ∼= Zk. As in the
proof of Theorem 7.1, the inclusion P →W induces an isomorphism on π1.
With a Seifert–Van Kampen argument we see that π1(OB(W, τN ) ) ∼= Zk:
generators are simple exceptional orbits. A k-fold cover of any periodic orbit
γ is hence contractible.
Given a trivialization ε of the contact structure along a capping disk of a

k-fold cover of γ in P we construct a trivialization of the contact structure
on P × D̊2 by using the additional vector fields with coordinates (x, y) for
the open disk D̊2,

X =
1
N
(1− x2 − y2)∂x + yRϑ, Y =

1
N
(1− x2 − y2)∂y − xRϑ.

The symplectic trivialization ε⊕ span(X,Y ) extends over a disk spanning a
k-fold covered orbit in P × D̊2.
With respect to this trivialization we can write down a path of symplectic

matrices describing the linearized flow. First of all, let γk be a k-fold cover of
a simple periodic Reeb orbit in (P, ϑ). Let ψ(t) be the matrix representation
of the linearized time-t flow along γk with respect to the trivialization ε. We
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can then compute the linearized flow of a k-fold cover of a principal orbit in
P × D̊2 with respect to the above trivialization. The result is

ψ(γk(Nt),eiktz0) =
(
ψ(Nt) 0
0 eikt

)
.

We see that the Maslov index of the periodic Reeb orbit (γk(Nt), eiktz0) is
given by

μ((γk(Nt), eiktz0), t ∈ [0, 2π]) = μ(γk(t), t ∈ [0, 2Nπ]) + 2k.

To compute the Maslov index, we determine the first Chern class of H

c1(H) = c1(i∗TM)− c1(νM (H) ) = (c− k)i∗[ω].
With the chosen trivialization, we apply Lemma 4.16 to compute μ(γk(t), t ∈
[0, 2Nπ]) = 2(c− k)N . Hence

μ((γk(Nt), eiktz0), t ∈ [0, 2π]) = 2(c− k)N + 2k.

We conclude that the Maslov index of a k-fold cover of a principal orbit is
2(c− k)N + 2k. �

Remark 7.5. We see directly from this Lemma that all principal orbits are
good (that means not bad) in setup S, as all Maslov indices of these orbits
are even. Looking at the proof also shows that the exceptional orbits are
good.

Lemma 7.6. Suppose we have the setup S. If c < k, then τN is not sym-
plectically isotopic to the identity relative to the boundary.

Proof. Consider

PN = OB(W, τN ).

We argue by contradiction, and suppose that τN is symplectically isotopic
to the identity relative to the boundary. Then PN is subcritically fillable by
W ×D2. It follows that the universal cover, P̃N , is subcritically fillable by
W̃ ×D2. The first Chern class of W̃ ×D2 is torsion, so Proposition 4.7 tells
us that

SHS1,+
∗ (W̃ ×D2) ∼= H∗+n−1(W̃ , ∂W̃ ;Q)⊗H∗(CP∞;Q),

which is index-positive and has generators in arbitrarily large, positive
degree.
On the other hand, PN , and therefore P̃N has periodic Reeb flow. Also,

the conditions P1, P2 and P4 are satisfied for P̃N . Furthermore, P5 holds
since we are assuming that W̃ ×D2 is subcritical.
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Hence there is a Morse–Bott spectral sequence converging to SHS1,+
∗ (W̃×

D2), see also the proof of Proposition 4.14. Its E1-page is given by

E1
pq =

⊕
NT consists of contractible orbits

μ(NT )− 1
2

dim(NT /S
1)=p

HS1

q (NT ;Q).

For sufficiently large N , all Maslov indices of covers of principal orbits are
negative by Lemma 7.4. It follows that all Maslov indices are bounded from
above, and therefore the entries of this spectral sequence have also an upper
bound on their degree. This contradicts that SHS1,+

∗ (W̃×D2) has generators
in arbitrarily large, positive degree. We conclude that τN is not symplecti-
cally isotopic to the identity relative to the boundary for large values of N .
To obtain the claim for small N , we just observe that if τN0 is symplec-

tically isotopic to the identity relative to the boundary, then so is τN0m for
any positive integer m. �

Lemma 7.7. Let (P 2n−1, α) = (PN , ϑN ) be a cooriented contact manifold as
constructed in setup S such that conditions P1, P2 and P3 hold, and suppose
that π : (P̃ , α̃)→ (P, α) is a connected m-fold cover such that conditions P1,
P2, P3, P4 and P5 hold for (P̃ , α̃). Denote the exact filling of P̃ by W̃ . Then

χm(SHS1,+
∗ (W̃ ) ) = χm(P̃ , α̃)

= (−1)n+1

(
N
� − gcd(N,m)

)
χ(H) + gcd(N,m)χ(M)
|μP |

with � = gcd(N, k).

Proof. By Proposition 4.14 it suffices to show χm(P̃ , α̃) satisfies the given
formula. Write p : P → MN and p̃ : P̃ → M̃N for the projections to the
quotient spaces. Denote the simple exceptional orbits in P by NT1 , and the
principal orbits by NT2 . Similarly, write NT̃1

and NT̃2
for the exceptional

and principal orbits in P̃ . We first relate the periods. As P̃ is an m-fold
cover, it follows that T̃1 = mT1. For P , we have T2 = NT1. In P̃ , we have
T̃2 = Ñ T̃1 with Ñ = N

gcd(N,m) Recall that � is defined by � = gcd(N, k). The

corresponding notion in P̃ is �̃ = gcd(Ñ , km). Hence we have

�̃ = gcd
(

N

gcd(N,m)
,
k

m

)
=

gcd(N, k)
gcd(N,m)

.

To compute the equivariant Euler characteristics, we use [16, Lemma 5.3],
which asserts that for an S1-manifold N with locally free (i.e., only finite
isotropy groups) action, one has HS1

∗ (N ;Q) ∼= H∗(N/S1;Q). The excep-
tional orbits in P and in P̃ lie both in an S1-bundle over H. Hence,
HS1

∗ (NT1 ;Q) ∼= H∗(H;Q) ∼= HS1

∗ (NT̃1
;Q) and in particular χS

1
(NT̃1

) =
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χ(H). For χS
1
(NT̃2

) we decompose MN = ν(H) ∪ C and M̃N = ν̃(H) ∪ C̃,
where ν(H) is a neighborhood of H in MN , C is the complement of H in
MN , ν̃(H) is a neighborhood of H in M̃N , and C̃ is the complement of
H in M̃N . Away from the exceptional orbits, we have free circle actions:
p : P −NT1 → C, and p̃ : P̃ −NT̃1

→ C̃ are circle bundles.
We see that a point in C lifts to a single orbit γ in P . The preimage

in P̃ under π consists of gcd(N,m) distinct orbits, which project down
to gcd(N,m) distinct points in C̃. We apply this observation to a sim-
plicial decomposition of C. It follows that each simplex in C gives rise
to gcd(N,m) distinct simplices in C̃. By putting together all simplices
obtained this way, we obtain a simplicial decomposition for C̃. It follows
that χ(C̃) = gcd(N,m)χ(C). We conclude that

χS
1
(NT̃2

) = χ(M̃N ) = χ(H) + gcd(N,m)χ(C)

= (1− gcd(N,m) )χ(H) + gcd(N,m)χ(M).

Finally, observe that μP̃ = μP . Indeed, the smallest contractible cover
of a principal orbit in P lifts to a contractible loop in P̃ : by lifting the
trivialization of the contact structure as well, we see that the Maslov indices
must coincide.
Put the above into Formula (4.2). We find

χm(P̃ , α̃) = (−1)n+1

(
Ñ
�̃
− 1

)
χS

1
(NT̃1

) + χS
1
(NT̃2

)

|μP̃ |

= (−1)n+1

(
N
� − gcd(N,m)

)
χ(H) + gcd(N,m)χ(M)
|μP | .

�

Remark 7.8. Lemma 7.4 does not directly apply to compute the Maslov
index of a k-fold cover of a principal orbit in (P̃ , α̃) since

α̃ =
m

N
(1− r2)ϑ+ r2dϕ,

and m
N is not necessarily an integer.

A special case worth mentioning is the following.

Proposition 7.9. Again, suppose that (P 2n−1
N , ϑN ) is as in setup S with k

odd. Suppose that (PN , ϑN ) has an exact filling W ′ such that

• c1(W ′) is torsion.
• i : PN →W ′ induces an injection on π1.
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Suppose furthermore that N(c − k) + k �= 0. Then the mean Euler charac-
teristic of SHS1,+(W ′) in the class of contractible orbits is

(7.1) χm(SHS1,+
∗ (W ′)) = (−1)n+1 (N − �)χ(H) + �χ(M)

2|N(c− k) + k| .

with � = gcd(N, k). Furthermore for k = 1, we can rewrite this as

(7.2) χm(SHS1,+
∗ (W ′)) = (−1)n+1 χ(| ∧MN |)

2N |〈corb
1 (MN ), [BN ]〉|

,

where
• N can be identified with the total number of sectors, and
• the homology class [BN ] is represented by a 2-sphere BN lying in
νMN

(H), such that

〈j∗[ω], π∗([BN ])〉 = 1,

where j denotes the inclusion H ⊂ MN , and π : νMN
(H) → H the

projection.

Remark 7.10. The simplest case of such an exact filling is a Stein filling.
Our dimension assumptions show that i∗ : H2(W ′) → H2(PN ) is injective.
Hence, c1(W ′) is torsion. Furthermore, our dimension assumptions imply
that the inclusion i : PN →W ′ induces an isomorphism on π1.

Proof. Consider the smallest contractible cover of a principal orbit: this
is a k

� -times cover of a principal orbit. By Lemma 7.4 we find μP =
2(N(c−k)+k)

� . Hence P3 holds. The given conditions imply that P1, P2, P4
(use Lemma 4.13) and P5 hold as well, so with m = 1 we apply Lemma 7.7
and obtain.

χm(SHS1,+
∗ (W ′) ) = (−1)n+1 (

N
� − 1)χ(H) + χ(M)

|μP |
Combine to obtain the first claim.
We proceed to give some details for the last part. By [1, Corollary 3.17],

we have that χorb(MN ) = χ(| ∧MN |), where ∧MN is the inertia orbifold
associated withMN . Together with [1, Theorem 3.17], we find χ(|∧MN |) =
(N − 1)χ(H) + χ(M).
For the Chern number, we first considerM1 =M . We construct a 2-sphere

B1 with [B1] · [H] = 1. Define

B1 = D1 ∪∂ D2.

Here, D2 is a disk of the form

D2 = {[p, z]1 ∈ P ×S1,1 D
2
ε | |z| < ε},
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where [p, z]1 denotes the equivalence class of the relation (p, z) ∼S1,1 (p ·
g, gz). The boundary of D2 is a circle lying in ∂νM (H) ∼= P , which is simply
connected. Hence, we find a disk D1 ⊂ P bounding the same circle. Denote
the inclusion of B1 into M1 by i1.
Using a metric, we can split the tangent bundle TM along H as TM |H ∼=

TH ⊕ νbM1
(H), where νbM1

(H) is the normal bundle of H in M . Since B1 ⊂
νbM1

(H), we have i∗1TM ∼= i∗1TH⊕i∗1νbM1
(H). We are interested in c1(TM) =

c1(ΛtopTM), and we shall compute this using Chern–Weil theory.
By the above, we have i∗1ΛtopTM ∼= i∗1ΛtopTH ⊗ i∗1νbM1

(H). We construct
connections on L1,N=1 := i∗1νbM1

(H), and on L2 := i∗1ΛtopTH.

• We trivialize the normal bundle νbM1
(H) on the collar neighborhood

ν∂(D2) of the boundary of D2 by ([p, z], λ) �→ ([p, z], λz). Here, we use
that D2 is a disk that is normal to H. We extend this trivialization
over D1.
Now choose a connection ∇L1,1 that equals the trivial connection

d on D1 and on the collar neighborhood ν∂(D2). A standard formula
for the change of frame v �→ 1

zv gives the connection form on D2:
this is zd1

z = −dz
z . The resulting connection is invariant under the

ZN -action by Nth roots of unity in the disk D2 near H.
• For L2 choose a connection ∇L2 that equals the trivial connection d
on D2.

Using the Chern–Weil construction, we have
∫
D2
c1(∇L1,1) = 1 since

c1(ν(H) ) = [ω]. Alternatively, we can integrate directly. Furthermore,∫
D1
c1(∇L2) = c − 1 as c1(i∗TH) + c1(i∗νbM (H) ) = ci∗[ω]. In trivializing

charts we can define a connection for L1,1 ⊗ L2
∼= i∗1ΛtopTM by putting

∇L1,1⊗L2 = d + ϑL1,1 + ϑL2 , where ϑL1,1 and ϑL2 are the connection forms
with respect to a frame for L1,1 and L2, respectively. We shall use these
connections to construct a connection for the general case.
For the caseMN with N > 1, the sphere BN is replaced by the orbisphere

BN = D1 ∪∂ DN
2 ,

where DN
2 is the orbidisk

DN
2 = {[p, z]N ∈ P ×S1,N D2

ε | |z| < ε},
and [p, z]N denotes the equivalence class of the relation (p, z) ∼S1,N (p ·
gN , gz). Note that p is an orbifold point with isotropy group ZN in BN , and
that [BN ] satisfies the homological condition given in the Proposition.
Let iN denote the inclusion BN into MN , and consider the orbibundle

i∗NΛ
topTMN . On the disk D1 this is a vector bundle and the disk D2 serves

as a uniformizing chart for DN
2 , so we apply the construction of a connection
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to these (uniformizing) disks and find∫
BN

i∗Nc
orb
1 (ΛtopTMN ) =

∫
D1

c1(∇L2) +
1
N

∫
D2

c1(∇L1,1) = c− 1 +
1
N
.

�
Theorem 7.11. Let (M2n−2, ω) be a simply connected symplectic manifold
of dimension at least 6 such that [ω] ∈ H2(M ;Z) is a primitive element.
Suppose that c1(M) = c[ω], and let H be an adapted Donaldson hypersurface
Poincaré dual to k[ω]. Let τ denote a right-handed fibered Dehn twist along
the boundary of M − ν(H). If τN is symplectically isotopic to the identity
relative to the boundary, then one of the following conditions must hold,

• c ≥ k, k does not divide N , and χ(H) = χ(M) = 0.
• c = k, k divides N , and χ(H) = 0.
• c > k, k divides N , and ((c− k)k + 1)χ(H) = (c− k)kχ(M).

Remark 7.12. This means in many cases that all positive powers of fibered
Dehn twists along the boundary ofM −ν(H) are distinct. Indeed, note that
if τM is symplectically isotopic to τN relative to the boundary withM > N ,
then τM−N is symplectically isotopic to the identity relative to the boundary.

Proof. By Lemma 7.6 a fibered Dehn twist cannot be symplectically isotopic
to the identity relative to the boundary if c < k.
For c ≥ k we investigate the mean Euler characteristic. Take N ∈ N such

that τN is symplectically isotopic to the identity relative to the boundary.
Then for m ∈ N, τNm is also symplectically isotopic to the identity relative
to the boundary. PutW :=M−ν(H). Consider PNm = OB(W, τNm). Then
PNm is subcritically fillable byW×D2. The universal cover of PNm, denoted
by P̃Nm is then subcritically fillable by W̃ ×D2. Then Proposition 4.7 shows
that

χm(W̃ ×D2) = (−1)n+1χ(W̃ )
2

= (−1)n+1 kχ(W )
2

= (−1)n+1 k (χ(M)− χ(H))
2

.

On the other hand, Remark 7.5 and the fact that W̃ × D2 is a subcritical
Stein filling show that Lemma 7.7 applies. We obtain

χm(W̃×D2) = (−1)n+1
( Nm
gcd(Nm,k) − gcd(Nm, k) )χ(H) + gcd(Nm, k)χ(M)

|μP |
with μP = 2(Nm(c− k) + k)/ gcd(Nm, k). Comparing the two formulas for
the mean Euler characteristic yields the following equation,

(Nm− gcd(Nm, k)2 )χ(H) + gcd(Nm, k)2χ(M)

= ( (c− k)Nm+ k)kχ(M)− ( (c− k)Nm+ k)kχ(H),
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which we rewrite into

( (k(c− k) + 1)Nm+ k2 − gcd(Nm, k)2 )χ(H)

= ( k(c− k)Nm+ k2 − gcd(Nm, k)2 )χ(M).

We check when this equation can hold:
• if k divides N , and c = k, then this equation reduces to Nmχ(H) = 0,
so we conclude that χ(H) = 0.

• if k divides N , and c > k, then this equation reduces to

(k(c− k) + 1)Nmχ(H) = k(c− k)Nmχ(M),

so we conclude that

(k(c− k) + 1)χ(H) = k(c− k)χ(M).

• if k does not divide N , then we define the functions
f(m) := ( (k(c− k) + 1)Nm+ k2 − gcd(Nm, k)2 )χ(H)

g(m) := ( k(c− k)Nm+ k2 − gcd(Nm, k)2 )χ(M).

The above equation tells us that f(m) = g(m). This cannot hold for
different values of m with gcd(Nm, k) = gcd(N, k) unless χ(H) =
χ(M) = 0.

�

We conclude this paper by giving some examples where Theorem 7.11
applies.

Example 7.13. Let M = CPn with n ≥ 3 and H = Hd a hypersurface of
degree d in M . One can check that

χ(M) = n+ 1, χ(H) =
1
d

(
(1− d)n+1 − 1

)
+ n+ 1, c = n+ 1.

Then a right-handed fibered Dehn twist τ along the boundary of M − ν(H)
is not symplectically isotopic to the identity relative to the boundary unless
d = 1. Note that CPn does not contain Lagrangian spheres. Therefore, these
fibered Dehn twists are not Dehn twists.

Note that Example 7.13 satisfies the conditions of Theorem 7.11.

Example 7.14. Consider the degree d hypersurface Hn−1
d ⊂ CPn defined

by
Hn−1
d = {(z0 : . . . : zn) ∈ CPn |

∑
j

zdj = 0}.

One can check that

χ(Hn−1
d ) =

1
d

(
(1− d)n+1 − 1

)
+ n+ 1
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and that c, as defined above, is equal to

c = n+ 1− d.
Take the hypersurface in Hn−1

d given by

Hn−2
d = {(z0 : . . . : zn−1 : zn) ∈ Hn−1

d | zn = 0}.
Observe that H := Hn−2

d is a hypersurface of degree d = 1 inM := Hn−1
d . If

n > 3, then the manifolds Hn−2
d and Hn−1

d are simply-connected. We apply
Theorem 7.11 and check whether the last condition χ(H)c = χ(M)(c − 1)
holds. This leads to the equation(
1
d
((1− d)n − 1) + n

)
(n+1− d) =

(
1
d

(
(1− d)n+1 − 1

)
+ n+ 1

)
(n− d).

Consider

fn(d) = d ·
((

1
d
((1− d)n − 1) + n

)
(n+ 1− d)

−
(
1
d

(
(1− d)n+1 − 1

)
+ n+ 1

)
(n− d)

)
.

We can simplify fn(d) to

fn(d) = (1− d)n(1 + nd− d2)− (1− d2).

We claim that for integers d with 2 ≤ d ≤ n, the number fn(d) does not
vanish. For d ≥ n+ 1, we find c = n+ 1− d ≤ 0, so we conclude:

Result: If d ≥ 2, then all powers of fibered Dehn twists along Hn−1
d −

ν(Hn−2
d ) are pairwise distinct.

To verify our claim, we do a little computation. First of all, note that
n > 3 and

fn(2) = 3 + (−1)n(2n− 3).

So fn(2) is positive if n is even, and negative if n is odd. Now we check that
the function fn is monotone on the interval [2, n− 2]. We compute

f ′n(d) = (1− d)n−1
(
d
(
(n+ 2)d− (n2 + n+ 2)

))
+ 2d.

If n is even, then f ′n(d) > 0 on the interval [2, n − 2]. If n is odd, then
f ′n(d) < 0 on the interval [2, n− 2].
Finally, we check fn(n− 1) and fn(n) separately:

fn(n− 1) =
(
(2− n)n−1 − 1

)
(2− n)n �= 0

and
fn(n) = (1− n)n − 1 + n2 �= 0.
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7.3. Fibered Dehn twists that are not smoothly isotopic to the
identity. The most interesting case is probably when a fibered Dehn twist
is smoothly isotopic to the identity relative to the boundary, yet not sym-
plectically. This problem is unfortunately very hard to solve in general. We
give some examples to illustrate this. These examples also show that fibered
Dehn twists are very often not even smoothly isotopic to the identity relative
to the boundary.

7.3.1. Dehn twists versus fibered Dehn twists. Consider W :=
T ∗≤1S

n = {(q, p) ∈ T ∗Sn | ‖p‖ ≤ 1}. Its boundary P = ST ∗Sn has a
periodic Reeb flow, and this can be used to define Dehn twists and fibered
Dehn twists. To define a Dehn twist, choose a smooth function f̃ : [0, 1]→ R

such that f̃ is 2π near 0 and f̃ is equal to π near 1. Define

τ : ST ∗Sn × [0, 1] −→ ST ∗Sn × [0, 1]

(x, t) �−→ (− Id ◦FlR
f̃(t)

(x), t)

This defines a Dehn twist on a collar neighborhood of the boundary of
W . We extend the map to − Id on the interior of W . Note that the square
of a Dehn twist, τ2, is symplectically isotopic to a fibered Dehn twist τf .
From [2, Theorem 1.21] we have

Proposition 7.15. Fibered Dehn twists in T ∗≤1S
n are not smoothly isotopic

to the identity relative to the boundary unless n = 2, 6. On the other hand,
fibered Dehn twists in T ∗≤1S

2 and T ∗≤1S
6 are smoothly isotopic to the identity

relative to the boundary.

In particular, we see that fibered Dehn twists are often not smoothly
isotopic to the identity relative to the boundary. We give another example
to describe another method to see that fibered Dehn twists are not smoothly
isotopic to the identity.

7.3.2. “Roots” of fibered Dehn twists via coverings. Here is a sample
statement that can be obtained via coverings.

Proposition 7.16. Let Wd := CPn − ν(Hn−1
d ) be the complement of a

neighborhood of a smooth hypersurface of degree d > 1 in CPn. Then a
fibered Dehn twist in Wd is not smoothly isotopic to the identity relative to
the boundary.

Proof. We start by giving another description of Wd. We may assume that
the smooth hypersurface of degree d > 1 in CPn is in standard form,

Hn−1
d =

{
[z0 : . . . : zn] |

∑
i

zdi = 0

}
.
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We claim that Wd
∼= Vd/Zd. Here Vd is a smooth, affine variety given by

Vd =

{
(z0, . . . , zn) |

∑
i

zdi = 1

}
.

Furthermore, we have an action of Zd via multiplication of all coordinates
with ζd, a dth root of unity. To see that this holds, consider the map

ϕ : Vd/Zd −→ CPn −Hn−1
d

[(z0, . . . , zn)]d �−→ [z0 : . . . : zn]

Here [(z0, . . . , zn)]d denotes the equivalence class of (z0, . . . , zn) in Vd/Zd.
Claim: ϕ is a diffeomorphism, and in fact a biholomorphism. It is not
difficult to check, but we omit the proof here.
Now consider the contact open book OB(Wd, τf,Wd

)

OB(Wd, τf,Wd
) ∼= (L(d) = S2n+1/Zd, ξ0).

Here, the contact structure on the lens space (L(d), ξ0) is obtained by taking
the quotient of (S2n+1, ξ0) under action by multiplication with roots of unity
in each coordinate. By taking the d-fold cover of the open book, we obtain
a contact open book for (S2n+1, ξ0). With our earlier identification Wd

∼=
Vd/Zd, we find

(S2n+1, ξ0) = OB(W̃d, τ̃f,Wd
) = OB(Vd, τ̃f,Wd

).

The cover of the monodromy τf,Wd
is a map that is the identity on the

boundary, and multiplication by a dth root of unity in the interior. In a
neighborhood of the boundary, an interpolation similar to a fibered Dehn
twist occurs, with the angle going from 2π/d to 0 instead.
Suppose now that a fibered Dehn twist τf,Wd

on Wd is smoothly isotopic
to the identity relative to the boundary. Then the isotopy can be lifted to
its cover. Since τf,Wd

= Id near the boundary of Wd, this remains true on
the cover. It follows that the lifted monodromy, τ̃f,Wd

, is smoothly isotopic
to the identity near the boundary.
To obtain a contradiction, we consider two cases. For d = 2, we observe

that τ̃f,W2 is a standard right-handed Dehn twist on T
∗Sn. It is well known

that a standard right-handed Dehn twist on T ∗Sn is not smoothly isotopic
to the identity relative to the boundary. This is a contradiction. For d > 2,
we claim that τ̃f,Wd

acts non-trivially on homology. An easy way to see this
is to use the basis of homology given by [20, Chapter 12]: multiplication by
a dth root of unity acts obviously non-trivially on this basis. So we get a
contradiction in this case as well and we conclude that τf,Wd

is not smoothly
isotopic to the identity relative to the boundary if d > 1. �
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In principle, this method can be applied in other situations as well, such
as Weinstein manifolds that are formed as the complement in an integral
symplectic manifold of an adapted Donaldson hypersurface.
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gularitaëten, Lecture Notes in Mathematics, 57, Springer-Verlag, Berlin-New York
1968, iv+132 pp.

[21] J. Milnor and J. Stasheff, Characteristic classes, Princeton University Press, Prince-
ton, N. J., 1974, Annals of Mathematics Studies, No. 76.

[22] A. Oancea and C. Viterbo, On the topology of fillings of contact manifolds and
applications, Comment. Math. Helv. 87(1) (2012), 41–69.

[23] A. Ritter, Topological quantum field theory structure on symplectic cohomology,
J. Topol. 6(2) (2013), 391–489.

[24] J. Robbin and D. Salamon, The Maslov index for paths, Topology 32(4) (1993),
827–844.

[25] D. Salamon and E. Zehnder, Morse theory for periodic solutions of Hamiltonian sys-
tems and the Maslov index, Commun. Pure Appl. Math. 45(10) (1992), 1303–1360.

[26] P. Seidel, Symplectic automorphisms of T ∗S2, arXiv:math/9803084.

[27] P. Seidel, A biased view of symplectic cohomology, Current developments in mathe-
matics, 2006, 211–253, Int. Press, Somerville, MA, 2008.

[28] O. van Koert, Open books for contact five-manifolds and applications of contact homol-
ogy, Ph.D. thesis, Universitaet zu Koeln, 2005.
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