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ON THE ANTI-DIAGONAL FILTRATION FOR THE
HEEGAARD FLOER CHAIN COMPLEX OF A BRANCHED

DOUBLE-COVER

Eamonn Tweedy

Seidel and Smith introduced the graded fixed-point symplectic Kho-
vanov cohomology group Khsymp, inv(K) for a knot K ⊂ S3, as well
as a spectral sequence converging to the Heegaard Floer homology
group ĤF (Σ(K)#(S2 × S1)) with E1-page isomorphic to a factor of
Khsymp, inv(K) [22]. There the authors proved that Khsymp, inv is a
knot invariant. We show here that the higher pages of their spectral
sequence are knot invariants also.

1. Introduction

Heegaard Floer homology was introduced by Ozsváth and Szabó in [13],
and has proven to be a very useful tool in studying manifolds of dimen-
sions three and four. We will be particularly interested in the invariant ĤF ,
which assigns to a 3-manifold M an abelian group ĤF (M). Given a knot
K ⊂ S3, the present paper will study ĤF

(
Σ(K)#(S2 × S1)

)
, where Σ(K)

is the two-fold cover of the sphere S3 branched along the knot K. The
Heegaard Floer homology of branched double-covers was studied in [14], in
which Ozsváth and Szabó constructed a spectral sequence from the reduced
Khovanov homology group K̃h (−K; Z/2Z) to the group ĤF (Σ(K); Z/2Z),
where −K denotes the mirror of K.

Given a presentation of a knot K ⊂ S3 as the braid closure of a braid b,
Seidel and Smith introduced in [21] the symplectic Khovanov cohomology
group Khsymp(b), which is defined by taking the Lagrangian Floer cohomol-
ogy of two Lagrangian submanifolds inside an affine variety. Clearly there
may be different braids, which have isotopic braid closures. However, Seidel
and Smith proved in [21] that Khsymp is a knot invariant. In [16], Rezazade-
gan proved the existence of a spectral sequence from Kh(L) to Khsymp(L)

313



314 EAMONN TWEEDY

with Z/2Z coefficients. Recent work-in-progress of Abouzaid and Smith [1]
indicates that in fact rkQKh(L) = rkQKhsymp(L).

Furthermore, by studying the fixed-point sets of an involution on the
variety, Seidel and Smith further define in [22] the fixed-point symplectic
Khovanov cohomology group Khsymp, inv(b) for a braid b. Via the choice of
a particular holomorphic volume form, one obtains gradings (in the sense of
[20]) on the totally-real submanifolds T and T ′ used to define Khsymp, inv(b);
the gradings on these submanifolds induce an absolute Z-valued Maslov
grading R̃ on the set T ∩ T ′.

We will consider braids in B2n, the braid group on 2n strands (where
n ∈ N), and obtain knot diagrams by taking plat closures. Although Sei-
del and Smith [21,22] and Manolescu [9] considered braid closures instead,
our convention will be chosen for computational reasons (note that Waldron
illustrated in [25] that Khsymp can be defined for bridge diagrams com-
ing from such plat closures). We will recall the definition for the set G of
Bigelow generators, unordered n-tuples of distinct intersection points in a
fork diagram obtained from the braid b. Following [3,9], we will then define
functions Q,P, T : G → Z, which can be computed from this diagram in an
elementary fashion.

In [9], Manolescu used the fork diagram to give a description of the
group Khsymp, inv(b), and in particular showed a one-to-one correspondence
between G and a set of generators for the Seidel–Smith cochain complex. In
this context, one can view the totally real submanifolds T and T ′ as admis-
sible Heegaard tori for the manifold Σ(K)#(S2×S1). Thus the set G is also
in one-to-one correspondence with a set of generators for the chain group
ĈF (Σ(K)#(S2 × S1)). This identification provides a function R̃ : G → Z,
and following [9] we have that R̃ = T −Q+ P .

The function R is obtained from R̃ by a rational shift sR which depends
on some properties of the braid b ∈ B2n and the knot diagram D which is its
plat closure. Let e(b) be the signed count of braid generators in the word b
and let w(D) be the writhe of the diagram D for K given by the plat closure
of b. Then define

R = R̃+ sR(b,D), where sR(b,D) =
e(b)− w(D)− 2n

4
.

Furthermore, for s ∈ Spinc(M) torsion, Ozsváth and Szabó used surgery
cobordisms to define an absolute Q-valued grading g̃r on the subcomplex
ĈF (M, s) which is an absolute lift of the relative Maslov Z-grading. Then
for torsion s, we define a filtration ρ on the Heegaard Floer chain complex
ĈF (Σ(K)#(S2 × S1), s) by ρ = R− g̃r.

Two braids with isotopic plat closures can be connected via a finite
sequence of Birman moves [4], which in turn induce sequences of isotopies,
handleslides, and stabilizations (and associated chain homotopy equivalences
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on the Heegaard Floer complexes). We will prove the following theorem
about the filtration ρ in Section 5.2:

Theorem 1.0.1. Let the braids b ∈ B2n and b′ ∈ B2m have plat closures,
which are diagrams for the knot K. Let H and H′ be the pointed Heegaard
diagrams for Σ(K)#(S2×S1) induced by b and b′, respectively, in the sense
of Proposition 4.2.1 below. Let s ∈ Spinc(Σ(K)#(S2×S1)) be torsion. Then
the ρ-filtered chain complexes ĈF (H, s) and ĈF (H′, s) have the same filtered
chain homotopy type.

More concisely, we can state the following:

Corollary 1.0.2. For each torsion s ∈ Spinc(Σ(K)#(S2 × S1)), the ρ-
filtered chain homotopy type of the complex ĈF (Σ(K)#(S2 × S1), s) is an
invariant of K.

In a standard way, the filtration ρ provides a spectral sequence (whose
pages we will denote by Ek) computing the group ĤF (Σ(K)#(S2 × S1)).
Furthermore, the page E1 is isomorphic to the subgroup of Khsymp, inv(b)
obtained by taking cohomology of the subcomplex whose generators corre-
spond to generators of ĈF in the torsion Spinc structures on Σ(K)#(S2 ×
S1). This spectral sequence is the same as the one defined by Seidel and
Smith in [22]. There they proved that Khsymp, inv is a knot invariant, and
so the the factor corresponding to E1 is also. Because higher pages are deter-
mined by the filtered chain homotopy type of E0, Corollary 1.0.2 implies the
following.

Corollary 1.0.3. For k ≥ 1, the page Ek is a knot invariant.

Under certain degeneracy conditions of the spectral sequence, the func-
tion R in fact provides a homological grading on Heegaard Floer theory.
We say that a knot K is ρ-degenerate if the spectral sequence collapses at
E1 and the induced filtration ρ on E∞ is constant on each nontrivial fac-
tor ĤF (Σ(K)#(S2 × S1), s). The following is an easy consequence of the
definitions.

Proposition 1.0.4. Let K ⊂ S3 be a knot. Then the following are equiva-
lent:

(i) K is ρ-degenerate.
(ii) The filtration R is a grading and lifts the relative Maslov Z-grading on

each nontrivial factor ĤF (Σ(K)#(S2 × S1), s).
Moreover, the grading R is a knot invariant when the above hold.

2. Topological preliminaries

In [13], Ozsváth and Szabó define the Heegaard Floer homology group
ĤF (M) associated to a connected, closed, oriented 3-manifold M . A genus-g
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Heegaard splitting for such a manifold can be described via a pointed Hee-
gaard diagram H = (Σ; α; β; z), where Σ is the splitting surface, α and β are
g-tuples of attaching curves for the handlebodies, and z ∈ (Σ−∪αi −∪βi).
Definition 2.0.5. Let (Σ; α; β; z) be a pointed Heegaard diagram, and let
D1, . . . , Dm be the connected components of Σ\(∪αi)\(∪βi), where z ∈ Dm.
Then a two-chain

P :=
m−1∑
i=1

niDi with ni ∈ Z

is called a periodic domain if its boundary is a sum of α and β circles.

Definition 2.0.6. A Heegaard diagram (Σ;α; β; z) is called admissible if
every periodic domain has both positive and negative coefficients.

IfH is an admissible pointed Heegaard diagram, then one can compute the
chain complex ĈF (H) and its homology group ĤF (M) is the Lagrangian
Floer homology of the tori Tα and Tβ lying inside of the symplectic manifold
Symg (Σ \ z).

More precisely, the group ĈF (H) is generated by the set of intersections
Tα ∩ Tβ ⊂ Symg(Σ), and the differential is given by

∂̂(x) =
∑

y∈Tα∩Tβ

⎛
⎝ ∑
{φ∈π2(x,y)|μ(φ)=1,nz(φ)=0}

(
#M̂ (φ)

)⎞⎠y,

where M̂(φ) denotes the reduced moduli space of pseudo-holomorphic rep-
resentatives for the class φ, μ(φ) denotes the Maslov index of φ, and
nz(φ) := Im(φ) ∩

(
{z} ∩ Symg−1(Σ)

)
.

Recall that there is a function

sz : Tα ∩ Tβ −→ Spinc(M)

partitioning Tα ∩ Tβ into equivalence classes Us. In fact, this function sz
induces decompositions

ĈF (H) =
⊕

s∈Spinc(M)

ĈF (H, s) and ĤF (M) =
⊕

s∈Spinc(M)

ĤF (M, s).

For each s ∈ Spinc(M) the chain complex ĈF (M, s) carries a relative
grading gr defined via the Maslov index. For s ∈ Spinc(M) torsion, Ozsváth
and Szabó use surgery cobordisms to construct in [15] an absolute Q-valued
grading g̃r on Us which lifts the relative grading in the following sense: if
x,y ∈ Us, then

g̃r(x)− g̃r(y) = gr(x,y).
Whenever b1(M) = 0, all Spinc structures on M are torsion and so the
group ĤF (M) can be absolutely graded via g̃r. In particular, this holds
for M = Σ(K) for a knot K ⊂ S3. However, although Spinc(Σ(K)#(S2 ×
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S1)) contains non-torsion elements, the group ĤF (Σ(K)#(S2 × S1), s) is
nontrivial only if s is torsion.

2.1. 3-gon chain maps and 4-gon homotopies.

Remark 2.1.1. There can be some ambiguity surrounding terms like “tri-
angle” and “quadrilateral”, in particular when distinguishing between the
polygons in the symmetric product Symg(Σ) and the regions which are their
shadows in the surface Σ. We will follow Sarkar’s convention in [18] in using
neither of these words. The Whitney polygons in symmetric products will
be referred to as n-gons and regions in surfaces will be referred to as n-sided
regions.

In [13, 15], maps between Floer homologies are constructed by counting
pseudo-holomorphic 3-gons in a certain equivalence class. We review these
ideas below.

First recall the notion of a pointed Heegaard triple-diagram (Σ; α; β; γ; z),
where Σ is an oriented two-manifold of genus g,α,β, and γ are complete
g-tuples of attaching circles for handlebodies Uα, Uβ, and Uγ , respectively,
and z ∈ (Σ \ ∪αi \ ∪βi \ ∪γi). We then have pointed Heegaard diagrams
Hαβ = (Σ; α; β; z), Hβγ = (Σ; β; γ; z), and Hαγ = (Σ; α; γ; z), depicting
manifolds Yαβ, Yβγ, and Yαγ, respectively. There is an analogous notion of
a pointed Heegaard quadruple-diagram (Σ; α; β; γ; δ; z).

There are notions of triply-periodic domains in triple-diagrams and
quadruply-periodic domains in quadruple-diagrams, and the definitions are
analogous to that of a periodic domain. Multi-diagrams also have analogous
notions of admissibility.

Definition 2.1.2. A pointed Heegaard triple-diagram (resp. quadruple-
diagram) is admissible if every triply-periodic domain (resp. quadruply-
periodic domain) has both positive and negative coefficients.

If the pointed triple-diagram (Σ;α; β; γ; z) is admissible, then there is a
chain map

f̂αβγ : ĈF (Hαβ)⊗ ĈF (Hβγ) → ĈF (Hαγ)
given by the formula

f̂αβγ(x⊗ y) =
∑

w∈Tα∩Tγ

⎛
⎝ ∑
{ψ∈π2(x,y,w)|μ(ψ)=0,nz(ψ)=0}

(#M (ψ))

⎞
⎠w

where M (ψ) is the moduli space of pseudo-holomorphic representatives for
the class ψ. The induced map on homology will be denoted by F̂αβγ .

If the pointed quadruple-diagram (Σ;α; β; γ; δ; z) is admissible, then one
can define a map

ĥαβγδ : ĈF (Hαβ)⊗ ĈF (Hβγ)⊗ ĈF (Hγδ) → ĈF (Hαδ)
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by the formula

ĥαβγδ(x⊗ y ⊗w) =
∑

z∈Tα∩Tδ

⎛
⎝ ∑
{ψ∈π2(x,y,w,z)|μ(ψ)=−1,nz(ψ)=0}

(#M (ψ))

⎞
⎠ z

A 4-gon map actually provides a chain homotopy between two composi-
tions of 3-gon maps:

Theorem 2.1.3 ([13]). Let (Σ; α; β; γ; δ; z) be an admissible pointed Hee-
gaard quadruple-diagram. Then for ξ ∈ ĈF (Hαβ), η ∈ ĈF (Hβγ), and
ζ ∈ ĈF (Hγδ),

∂ĥαβγδ(ξ ⊗ η ⊗ ζ) + ĥαβγδ(∂(ξ ⊗ η ⊗ ζ))
= f̂αγδ(f̂αβγ(ξ ⊗ η)⊗ ζ)− f̂αβδ(ξ ⊗ f̂βγδ(η ⊗ ζ))

Classes of Whitney n-gons can be studied by examining their ‘shadows’
in the Heegaard surface Σ. We recall the definition of the domain of a 2-gon
class, though there are analogous notions of domains of n-gon classes.

Definition 2.1.4. Let (Σ; α; β; z) be a pointed Heegaard diagram, and
denote by D0,D1, . . . ,DN the connected components of Σ \ (∪iαi) \ (∪iβi) ,
where D0 is the component containing the basepoint z. Then for 0 ≤ j ≤ N ,
choose a point zj in the interior of Dj . For some class φ ∈ π2(x,y) for
x,y ∈ Tα ∩ Tβ, the domain of φ is the 2-chain

D(φ) :=
N∑
j=0

njDj where nj := Im(φ) ∩
(
{zj} × Symg−1(Σ)

)
.

We will say that φ avoids the basepoint if n0 = 0 (equivalently, nz(φ) = 0).

2.1.1. Some index-zero 3-gon classes. We are interested in 3-gon classes
of Maslov index zero. To calculate index, we will follow Sarkar’s work in [18]
on Whitney n-gons, which we will review here. Some labeling conventions
have been modified to fit our notation, and we will specialize to the n = 3
case for this discussion.

Let (Σ; α; β; γ; z) be an admissible pointed Heegaard triple-diagram, and
let ψ be a 3-gon class connecting x, y, and w as defined above. Denote
by a(ψ), b(ψ), and c(ψ) the boundaries ∂D(ψ)|α, ∂D(ψ)|β , and ∂D(ψ)|γ ,
respectively.

Now given some 1-chains a supported on α and b supported on β, Sarkar
defines the number b.a as follows. Assuming some orientation on the α and
β circles and on Σ, we have four well-defined directions in which we can
translate b so that no endpoint of a lies on the translate b′ and no endpoint
of b′ lies on a. These can be thought of as ‘northeast”, “northwest”, “south-
east”, and “southwest”. After a small translation in some direction, we can
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Figure 1. Decomposing the obtuse 6-sided component of D(ψ).

calculate the intersection number of b′ with a. Then b.a is defined to be the
average of these numbers over the four possible translation directions.

Some element x ∈ Tα∩Tβ is an unordered g-tuple {x1, x2, . . . , xg}. Define
the number μx(ψ) =

∑
μxi(ψ), where μxi(ψ) is the average of the local

coefficients of the 2-chain D(ψ) over the four quadrants around xi ∈ Σ.
The Euler measure of D(ψ) will be denoted by e(ψ). The Euler measure

is additive, and it is enough for our purposes to know that the measure of
an n-sided region is (1− n/4).

Equipped with these concepts, we present the following formula of Sarkar:

Theorem 2.1.5 ([18]). Let (Σ; α; β; γ; z) be a pointed Heegaard triple-
diagram, and let ψ ∈ π2(x,y,w) be a 3-gon class connecting x ∈ Tα ∩ Tβ,
y ∈ Tβ ∩ Tγ, and w ∈ Tα ∩ Tγ. Then the Maslov index μ(ψ) satisfies the
formula

μ(ψ) = e(ψ) + μx(ψ) + μy(ψ) + a(ψ).c(ψ)− g/2.

Here we will discuss two types of 3-gon classes in Symg(Σ).
A 3-gon ψ of the first type has domain D(ψ) given by the sum of g disjoint

3-sided regions, each with coefficient +1. A 3-gon ψ of the second type has
domain D(ψ′) given by the sum of (g − 1) disjoint regions, consisting of
(g−2) 3-sided regions and a single 6-sided region with one angle larger than
π, each with coefficient +1. Components of α, β, and γ are solid, dashed,
and dotted arcs, respectively. Components of x, y, and w are dark gray,
white, and light gray dots, respectively.

The reader can verify that μ (ψ) = 0 in either case (in the second, it
will help to split the obtuse hexagonal component of the domain as seen in
Figure 1).

2.1.2. 3-gons and 4-gons in Heegaard moves.

Definition 2.1.6. Let
(
Σ; α; β; β′; z

)
be a pointed Heegaard triple-diagram.

(i) Let β′j differ from βj by an isotopy (avoiding z) such that β′j inter-
sects βj transversely in two canceling points and βj ∩ β′i = ∅ when
i �= j. Then we say that β′ differs from β by a pointed isotopy. A
pointed isotopy, which preserves the set of intersection points Tα∩Tβ

in the obvious way will be called a small pointed isotopy.
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(ii) Instead let β1, β2, and β′1 bound an embedded pair of pants disjoint
from z such that β′1 intersects β1 transversely in two points. Assume
also that βj ∩ β′i for i �= j, and that for i > 1, β′i relates to βi as (i)
above. Then we say that β′ differs from β by a pointed handleslide.

In either of the cases above,
(
Σ; β; β′; z

)
is an admissible pointed Heegaard

diagram for #g(S1 × S2) and there is a canonical intersection point θββ′ ∈
Tβ ∩ Tβ′ representing the top-degree homology class in ĤF (Yββ′). If the
triple-diagram is admissible, we have a well-defined chain map

f̂αββ′(· ⊗ θββ′) : ĈF (Hαβ) → ĈF (Hαβ′).

Note that in the original proof of invariance in [13], isotopies were not
treated in terms of chain maps, which count pseudo-holomorphic 3-gons.
Lipshitz proves in Proposition 11.4 from [8] that this can be done.

Now let
(
Σ; α; β; β′; β̃

)
be an admissible pointed Heegaard quadruple-

diagram, where β̃ differs from β by a small pointed isotopy, and β′ differs
from β (and necessarily from β̃) by a pointed handleslide or a pointed iso-
topy. We can identify Tα ∩ Tβ with Tα ∩ T

β̃
via the canonical nearest-

neighbor map N
ββ̃

: x �→ x̃, and extend this linearly to a chain complex

isomorphism N
ββ̃

: ĈF (Hαβ) → ĈF (H
αβ̃

) (note that
(
N

ββ̃

)
6−1 = N

β̃β
).

We then have that

f̂
αββ̃

(
x⊗ f̂

ββ′β̃

(
θββ′ ⊗ θ

β′β̃

))
= f̂

αββ̃

(
x⊗ θ

ββ̃

)
= x̃ for all x ∈ Tα ∩ Tβ,

where the last equality is due to Lemma 9.28 of [6] (cf. Proposition 9.8
of [13]). Then by Theorem 2.1.3, we have that

f̂
αβ′β̃

(
f̂αββ′

(
x⊗ θββ′

)
⊗ θ

β′β̃

)
− x̃

= ∂̂
(
ĥ

αββ′β̃

(
x⊗ θββ′ ⊗ θ

β′β̃

))
+ ĥ

αββ′β̃

(
∂̂
(
x⊗ θββ′ ⊗ θ

β′β̃

))
.

Letting β̃
′
differ from β′ by a pointed isotopy and studying the admissible

pointed Heegaard quadruple-diagram
(
Σ; α; β′; β; β̃

′
; z

)
, one finds that for

x ∈ Tα ∩ Tβ′ ,

f̂
αββ̃

′
(
f̂αβ′β

(
x⊗ θβ′β

)
⊗ θ

ββ̃
′
)
− x̃

= ∂̂
(
ĥ

αβ′ββ̃
′
(
x⊗ θβ′β ⊗ θ

ββ̃
′
))

+ ĥ
αβ′ββ̃

′
(
∂̂
(
x⊗ θβ′β ⊗ θ

ββ̃
′
))

.

Therefore, we see that when β′ differs from β by a pointed isotopy or
a pointed handleslide, the chain map f̂αββ′(· ⊗ θββ′) is a chain homotopy
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equivalence with homotopy inverse given by f̂αβ′β(· ⊗ θβ′β). Furthermore,
the associated homotopies relating their compositions to the appropriate
identity maps are given by

(2.1)
N

β̃β
◦ ĥ

αββ′β̃

(
· ⊗ θββ′ ⊗ θ

β′β̃

)
and

N
β̃
′
β′ ◦ ĥαβ′ββ̃

′
(
x⊗ θβ′β ⊗ θ

ββ̃
′
)
.

Remark 2.1.7. Given admissible pointed Heegaard quadruple-diagrams
(Σ; α̃; α′; α; β; z) and

(
Σ; α̃′; α; α′; β; z

)
, where α′ differs from α by a

pointed isotopy or a pointed handleslide (with α̃ and α̃′ analogous to β̃

and β̃
′
), one can define the chain maps f̂α′αβ(θα′α⊗·) and f̂αα′β(θαα′⊗·).

These two maps are chain homotopy inverses to one another, and the asso-
ciated chain homotopies are

(2.2)
Nα̃α ◦ ĥα̃α′αβ (θα̃α′ ⊗ θα′α⊗ ·) and

Nα̃′α′ ◦ ĥα̃′αα′β (θα̃′α⊗ θαα′ ⊗ ·) .

2.2. Periodic domains. Recall that a periodic domain in a pointed Hee-
gaard diagram (Σ;α; β; z) is a domain avoiding the basepoint z whose
boundary is a sum of the α and β circles. Denote by Παβ ⊂ H2 (Σ; Z)
the group of such periodic domains and let Sαβ = Sα + Sβ ⊂ H1 (Σ; Z) be
the span of the α and β circles.

Recall also the analogous notions of triply- and quadruply-periodic
domains in Heegaard triple-diagrams and quadruple-diagrams.

In [10], it is shown that if (Σ;α; β; z) is a pointed Heegaard diagram, then
Παβ is a free Abelian group of rank 2g − rank(Sαβ). It can be shown in a
completely analogous way that for a triple-diagram (respectively, quadruple-
diagram), the group Παβγ (respectively Παβγδ) is free Abelian of rank
3g − rank(Sαβγ) (respectively, 4g − rank(Sαβγδ)). One should note that
because we do not permit periodic domains in a pointed Heegaard diagram
to intersect the basepoint, our ranks are 1 lower than those stated in [10].

Let α and β be two g-tuples of attaching circles on a genus-g surface Σ
such that β differs from α by a pointed isotopy. Then for each i, the circles
αi and βi are separated by two 2-sided regions, and we denote by Dαβ

i the
periodic domain which is their difference — these domains look like the ones
shown in Figure 2(a).

Now instead let α and β be two g-tuples of attaching circles on a genus-g
surface Σ such that β differs from α by a pointed handleslide of α1 over α2.
For i > 1, the circles αi and βi are separated by two thin 2-sided regions,
and we denote by Dαβ

i the periodic domain which is their difference. The
circles α1 and β1 are separated by a thin 2-sided region, and we denote by
Dαβ

1 the periodic domain, which is the difference between this region and
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Figure 2. The periodic domains Dαβ
i for the handleslide

of α1 over α2. The α circles are solid and the β circles are
dashed. The domains of interest are shaded and local coef-
ficients are labelled. (a) The handleslide domains Dαβ

i for
i > 1 and (b) The handleslide domain Dαβ

1 .

the annular region bounded by α1, α2, and β1. These domains can be seen
in Figure 2.

The following facts are exercises in linear algebra:

Proposition 2.2.1. Let (Σ; α; β; z) be a pointed Heegaard diagram of genus
g such that β is obtained from α via a pointed isotopy or pointed handleslide.
Then the set {Dαβ

1 , . . . ,Dαβ
g } is a generating set for the group Παβ.

Proposition 2.2.2. Let (Σ; α; β; γ; z) be a pointed Heegaard triple-diagram
of genus g such that γ is obtained from β via a pointed isotopy or pointed
handleslide. Then the set {Dβγ

1 , . . . ,Dβγ
g } is a generating set for the group

Παβγ.

Proposition 2.2.3. Let (Σ; α; β; γ; δ; z) be a pointed Heegaard quadruple-
diagram of genus g such that γ is obtained from β via a pointed isotopy or
pointed handleslide, and δ is obtained from β via a small pointed isotopy.
Then the set {Dβγ

1 , . . . ,Dβγ
g } ∪ {Dβδ

1 , . . . ,Dβδ
g } is a generating set for the

group Παβγδ.

The above facts imply the following useful fact about admissibility of
multi-diagrams:

Proposition 2.2.4. Let (Σ; α; β; γ; δ; z) be a pointed Heegaard quadruple-
diagram of genus g such that γ is obtained from β via a pointed isotopy or
pointed handleslide, and δ is obtained from β via a small pointed isotopy.
Then if the six pointed diagrams formed by choosing any two tuples out of α,
β, γ, and δ are all admissible, so is the quadruple-diagram. Moreover, each
of the four triple-diagrams composed of three of the tuples is also admissible.
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Proof. Let D0,D1, . . . ,DN denote the connected components of

Σ \ (∪iαi) \ (∪iβi) \ (∪iγi) \ (∪iδi) ,
where D0 is the component containing z. Consider some nontrivial
quadruply-periodic domain

P =
N∑
j=1

cjDj .

Then by Proposition 2.2.3, we can write

(2.3) P =
g∑
j=1

njDβγ
j +

g∑
j=1

mjDβδ
j .

Now at least one of n1, . . . , ng,m1, . . . ,mg is nonzero — without loss of
generality, let it be n1. Now the domain Dβγ

1 is the sum of two regions,
which have coefficients +1 and −1, respectively. Neither can be canceled by
any other terms in the right-hand side of equation (2.3), and so there are
both positive and negative numbers among the ci.

The argument for triple diagrams is similar, making use of Proposition
2.2.2. �

2.3. Filtrations and spectral sequences. Let (C∗, ∂) be a chain complex
generated by {xi}ni=1 and equipped with a filtration grading f : {xi} → Z.
We can view the filtration as the nested family of subcomplexes {Fk}k∈Z,
with

Fk = span{xi : f(xi) ≤ k}.
Definition 2.3.1. Let (C, ∂) and (C′, ∂′) be chain complexes with filtrations
{Fk} and {F ′k}.
(a) A chain map F : (C, ∂) → (C′, ∂′) is called a filtered chain map if for all

k, F (Fk) ⊂ F ′k.
(b) Let H : (C, ∂) → (C′, ∂′) be a chain homotopy connecting two maps

F,G : (C, ∂) → (C′, ∂′). We call H a filtered chain homotopy if for all k,
H(Fk) ⊂ F ′(k+1).

(c) Let F : (C, ∂) → (C′, ∂′) be a chain homotopy equivalence with homotopy
inverse mapG : (C′, ∂′) → (C, ∂) and associated homotopiesH : (C, ∂) →
(C, ∂) from G ◦ F to idC and H ′ : (C′, ∂′) → (C′, ∂′) from F ◦G to idC′ .
We say that F is a filtered chain homotopy equivalence if both F and G
are filtered maps and both H and H ′ are filtered chain homotopies.

For each i, k ∈ Z, let FkCi := Fk ∩ Ci. Now note that the filtration on C∗
induces a filtration on the homology of C∗ given by

FkHi (C∗) :=
{
α ∈ Hi (C∗)

∣∣α = [x] for some x ∈ FkCi
}
.
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One can associate to a filtered complex a spectral sequence, which is
defined recursively. First, for each p, q ∈ Z, define the associated graded
module by

E0
p,q := FpCp+q/Fp−1Cp+q.

The differential ∂ induces a differential ∂0 : E0
p,q → E0

p,q−1, and we refer to
the chain complex

(
E0, ∂0

)
as the E0-page of the spectral sequence. The

homology of this associated graded complex is denoted by

E1
p,q := Hp+q (FpC∗/Fp−1C∗) ,

and ∂ induces a differential ∂1 : E1
p,q → E1

p−1,q (yielding the E1-page(
E1, ∂1

)
).

Continuing this process, one obtains a sequence of chain complexes(
Ek, ∂k

)
(the Ek-pages), where ∂k : Ekp,q → Ekp−k,q+k−1 and

Ekp,q :=
Ker

(
∂k : Ekp,q → Ekp−k,q+k−1

)
Im

(
∂k : Erp−r,q−r+1 → Ekp,q

) .

Since C∗ was finitely-generated, eventually these pages stabilize and are
isomorphic to the homology of C∗. More precisely, for k sufficiently large,

Ekp,q
∼= FpHp+q (C∗) /Fp−1Hp+q (C∗) and ∂k ≡ 0.

If K denotes the smallest such k such that the above holds, we say that the
spectral sequence collapses at EK .

One should note that the spectral sequence will collapse at E1 if ∂ pre-
serves the filtration, i.e., if for each j,

∂(xj) =
∑

f(xi)=f(xj)

aixi.

3. Braids and the Bigelow picture

Let B2n denote the braid group on 2n strands. This group is generated by
{σ1, . . . , σ2n−1}, where σk denotes a half-twist of the kth strand over the
(k + 1)st strand. Given a braid b ∈ B2n, we can obtain a diagram of a knot
or a link (the plat closure of b) by connecting ends of consecutive strands
with segments at the top and bottom, as shown in Figure 3.

Figure 3. The left-handed trefoil.
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Figure 4. The Birman move b �→ bB.

Any knot K can be presented as the plat closure of an element in B2n.
Many distinct braid elements can have isotopic plat closures, but such braids
are related.

Definition 3.0.2. Let K2n be the subgroup of the braid group B2n gener-
ated by A = σ1, B = σ2σ

2
1σ2, and Ci = σ2iσ2i−1σ2i+1σ2i for i = 1, 2, . . . , 2n.

Theorem 3.0.3 (Theorem 1 from [4]). Let b ∈ B2n and b′ ∈ B2n′ be two
oriented braids. The braids b and b′ have isotopic plat closures if and only if
they are related by a finite sequence of the following moves:

(i) b �→ gbh where b ∈ B2n and g, h ∈ K2n

(ii) b↔ σ2nb where b ∈ B2n and σ2nb ∈ B2n+2

We will refer to the local moves appearing in the statement of Theorem
3.0.3 as “Birman moves” - one of these is illustrated in Figure 4.

3.1. The Bigelow generators. Let D2n ⊂ C denote the unit disk with
2n punctures μ1, . . . , μ2n evenly spaced along R∩D. We can view the braid
group B2n as the mapping class group of D2n, where the generator σk is a
diffeomorphism, which is the identity outside of a neighborhood of the kth

and (k + 1)st punctures and exchanges these two punctures by a counter-
clockwise half-twist. Any braid can be written as a word in the σ′ks, and we
view them as operating on D2n in this way, read from left to right.

Let b ∈ B2n be an oriented braid on 2n strands. We will establish some
terminology, following Bigelow in [3].

Definition 3.1.1. Let D ⊂ C be the unit disk.
(i) Let the standard fork diagram in D2n be a collection of maps

α1, . . . , αn : I → D and h1, . . . , hn : I → D called tine edges and
handles, respectively, such that the following hold:
(a) The segments αi|(0,1) are disjoint embeddings of (0, 1) into D2n

such that for each k, αk(0) = μ2k−1, αk(1) = μ2k, and αk(t) ∈ R

for all t ∈ I.
(b) The segments hi|(0,1) are disjoint embeddings of (0, 1) into D2n

such that that for each k, hk(1) = dk ∈ ∂D, hk(0) = mk is the
midpoint of the segment αk, and the segment hk is vertical.

(ii) Let a fork diagram for b be the standard fork diagram along with
the compositions b ◦ α1, . . . , b ◦ αn and b ◦ h1, . . . , b ◦ hn. We will let
βk = b ◦ αk.
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Figure 5. Structures in fork diagrams (a) Tine edges αk and
(b) Figure-eights Ek.

(iii) Let an augmented fork diagram for b be obtained from a fork diagram
by replacing each arc βk with bEk, where Ek is a figure-eight encir-
cling μ2k−1 and μ2k, where Ek is oriented such that it winds counter-
clockwise about μ2k.

A standard fork diagram in D4 and an augmented version of it are
depicted in Figure 5.

The reader should note that by drawing a picture containing just the α
and β arcs and treating the α arcs as undercrossings at each intersection,
we get a diagram of the plat closure of b.

We will define some notation. Let Confn(C) denote the configuration
space of C, i.e., the set of unordered n-tuples of distinct points in C. Let Z̃
be the set of intersections between α and β arcs. Then if τ denotes the set of
puncture points, we see that τ ⊂ Z̃. Then we construct a set Z by doubling
the points in Z̃ \τ by introducing for each x ∈ τ one element ex ∈ Z and for
each x ∈ Z̃ \ τ two elements ex, e′x ∈ Z. The set Z can then be seen as the
intersections points between α arcs and figure-eights bEk. We distinguish
between ex and e′x by requiring that the loop traveling along a figure-eight
from ex to e′x and back to ex along an α arc has winding number +1 around
the puncture point.

Remark 3.1.2. Via an abuse of notation, we will often refer to the points
corresponding to x ∈ Z̃ as x ∈ Z (if x ∈ τ) or x, x′ ∈ Z (if x ∈ Z̃ \ τ).

We then define G̃ = (α1 × · · · × αn) ∩ (β1 × · · · × βn) ⊂ Confn(C), the
set of unordered n-tuples of points in Z̃ such that no two points are on the
same α or β arcs.

Similarly, define G = (α1 × · · · × αn) ∩ (bE1 × · · · × bEn) ⊂ Confn(C),
which will be referred to as the set of Bigelow generators for the diagram.

Remark 3.1.3. From this point forward, something of the form xy will
denote an element in G or G̃ such that x ∈ Z or x ∈ Z̃ is some component
of the n-tuple and y is the rest of the n-tuple.

3.2. Gradings on the Bigelow generators. We will define some gradings
Q,T, P : G → Z based on loops in the configuration space of the disk. Our
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Figure 6. The augmented fork diagram induced by σ3
2 ∈ B4.

Table 1. Distributions of T , P ∗, P , Q∗, and Q for σ3
2 ∈ B4.

T G elements

0 x1x4, x1u, x1u
′, tx4, t′x4

1 x2v, x2v
′, sx3, s′x3, sv, s′v, sv′, s′v′

2 tu, t′u, tu′, t′u′

3 x2x3

P ∗ Z elements

0 x1, x4

1 s, v
2 s′, t, u, v′

3 t′, x2, x3, u′

P G elements

0 x1x4

2 x1u, tx4, sv
3 x1u

′, t′x4, s′v, sv′

4 x2v, sx3, s′v′, tu
5 x2v

′, s′x3, t′u, tu′

6 x2x3, t′u′

Q∗ Z elements

0 x1, v, x4

1 v′

2 x3, t, u, s
3 t′, u′, s′

4 x2

Q G elements

0 x1x4

2 x1u, tx4, sv
3 x1u

′, t′x4, s′v, sv′

4 x2v, sx3, s′v′, tu
5 x2v

′, s′x3, t′u, tu′

6 x3x3, t′u′

definitions of Q and T are identical to Bigelow’s in [3], while our definition
for P is adapted from Manolescu’s definition for P̃ in [9] (in which he used
braid closures).

For the sake of concreteness, a sample calculation will accompany the
description of the gradings. We will study the left-handed trefoil knot
depicted as the plat closure of σ3

2 ∈ B4, as seen in Figure 3.
Figure 6 depicts the augmented fork diagram for our example. Label the

elements of Z from left to right in the diagram asZ = {x1, s, s
′, t, t′, x2, x3, u

′,
u, v′, v, x4}.

One can verify that the set of Bigelow generators is given by

G =
{
x1x4, x1u, x1u

′, x2v, x2v
′, x2x3, sx3, s′x3, tx4,

t′x4, sv, s′v, sv′, s′v′, tu, t′u, tu′, t′u′

}
.

We will turn to defining various gradings on the set G. Grading distribu-
tions for our trefoil example can be found in Table 1. Figure 7 illustrates
how to compute the gradings in practice.

3.2.1. The Q grading. The grading Q on G will be computed additively
from a grading Q∗ : Z → Z. Consider some x ∈ Z, where x ∈ αi ∩ bEj .
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Figure 7. Computing the gradings Q, T , and P . (a)
Q∗(x3) = 2, (b) T (x2x3) = 3, (c) P ∗(x3) = 3 and P ∗(x1) = 0.

Define an arc γx in the disk by starting at dj , traveling along −bhj to
bmj , traveling along bEj to x, traveling along αi to mi, and traveling along
hi to di. Then let γij be the arc traveling along the lower portion of ∂D from
di to dj . Then γxγij is an arc from dj to itself, and we define Q∗(x) to be
the winding number of this loop around the set of punctures.

Then for each e = e1e2 . . . en ∈ G, define

Q(e) =
n∑
i=1

Q∗(ei).

3.2.2. The T grading. Given e = e1e2 · · · en ∈ G, we have that for each
k, ek = exk

or ek = e′xk
for some xk ∈ Z̃. Now let x = x1x2 · · ·xn ∈ G̃.

Then denote by γ̃xk
the arc obtained by replacing the figure-eight seg-

ments of γxk
with the corresponding β arc segments. Then T (x) can be

computed as twice the sum of the pairwise winding of the γ̃xk
around each

other. In other words, if γ̃xk
and γ̃xm make a half-twist counter-clockwise

around each other for k �= m, this contributes +1 to the value of T (x).
Define T : G → Z by letting T (e) = T (x).

3.2.3. The P grading. This grading will be computed additively from a
grading P ∗ : Z → Z, which measures twice the relative winding number of
the tangent vectors to the figure eights bEk at the points in Z.

For x ∈ Z, where x ∈ αi ∩ bEj , we define P ∗(x) in the following way.
We view the arc bhj as being oriented downward at the point where it
intersects ∂D. Let bEj have the orientation induced by the orientation on
Ej in the standard fork diagram. Then we let P ∗(x) be twice the winding
number of the tangent vector relative to the downward-pointing tangent
vector at the point bhj ∩ ∂D. In other words, if the tangent vector makes
k counter-clockwise half-revolutions and m clockwise half-revolutions as we
travel first along bhj from bhj(0) to bhj(1) then along bEj to x, then we set
P ∗(x) = m − k. This number is an integer because we assume that at any
point x ∈ Z, the figure-eight intersects the α arc at a right angle.

Then for e = e1e2 · · · en ∈ G, we define

P (e) =
n∑
i=1

P ∗(ei).
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4. The anti-diagonal filtration

We review here how one obtains from the above picture a filtration on the
Heegaard Floer complex, following Manolescu in [9] and Seidel and Smith
in [22].

We will first recall in Section 4.1 a formal construction involving graded
totally-real submanifolds, as discussed by Manolescu in [9]. This repeats the
construction of graded Lagrangians by Seidel in [20], following the ideas of
Kontsevich in [7].

Then we will apply the formalism in Section 4.1 to define Seidel grad-
ings on two particular totally real tori in the n-fold symmetric product of a
Riemann surface Σ. It is illustrated in [9] that by taking the Lagrangian
Floer cohomology of these tori in the complement of a certain divisor
∇ ⊂ Symn(Σ), one obtains the fixed-point symplectic Khovanov homol-
ogy group Khsymp, inv(K). However, Manolescu also showed that these tori
can be viewed as Heegaard tori Tα̂,Tβ̂

for the manifold Σ(K)#(S2×S1). A
holomorphic volume form on W = Symn(Σ)\∇ induces an absolute Maslov
grading R̃ on intersections of these tori when viewed inside W .

Furthermore, we have an identification of the set of Bigelow generators
G with a generating set for the Heegaard Floer chain groups. This allows
us to view R̃ as a function on G, and it in fact coincides with P − Q + T .
However, when we view these tori inside all of Symn(Σ), this grading is no
longer a priori consistent with Maslov index calculations (but rather also
records intersections of 2-gons with the factor ∇).

We can use R (a shifted version of R̃) to define a filtration ρ on
ĈF (Σ(K)#(S2 × S1), s) for each torsion s ∈ Spinc(Σ(K)#(S2 × S1)). The
definition for ρ will appear to depend heavily on the braid b chosen to rep-
resent the knot K. However, we will obtain an invariance result for this
filtration in Section 5.2 in the form of Theorem 1.0.1.

4.1. Graded totally real submanifolds. First recall the following defi-
nition:

Definition 4.1.1. A real subspace V ⊂ Cn is called totally real (with
respect to the standard complex structure if dimRV = n and V ∩ iV = 0.
A half-dimensional submanifold T of an almost complex manifold (Y, J) is
called totally real if TxT ∩ J(TxT ) = 0 for all x ∈ T .

We will first work in the setting of a Kähler manifold (Y,Ω) such that
Ω is exact and c1(Y ) = 0. Recall that Y then carries an almost-complex
structure J which is compatible with the symplectic form Ω — in this con-
text, a totally real submanifold (with respect to J) is a generalization of a
Lagrangian submanifold (with respect to Ω). Let T and T ′ be two totally
real submanifolds of Y , intersecting transversely.
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Under these conditions, there is a well-defined abelian group HF ∗

(T , T ′) = H(CF ∗(T , T ′), d) with a relative Z-grading given by a Maslov
index calculation. However, by a construction of Seidel in [20], this relative
grading can be improved to an absolute Z-grading.

Let T→ Y be the natural fiber bundle whose fibers Tx are the manifolds
of totally real subspaces of TxY . Choosing a complex volume form Θ on Y
determines a square phase map θ : T → C∗/R+

∼= S1 defined by θ(V ) =
Θ(e1 ∧ · · · ∧ en)2, where e1, . . . , en is any orthonormal basis for V ⊂ TxY.

Let T̃ → T be the infinite cyclic covering obtained by pulling back the
covering R → S1 via the map θ. Consider the canonical section sT : T → T
given by sT (x) = TxT . This section induces a S1-valued map θT = θ◦sT . In
some cases, the section sT can be lifted to a section s̃T : T → T̃ (inducing
a lift θ̃T : T → R of the map θT ). Let us assume such a lift exists.

Definition 4.1.2. A grading on T is a choice of lift θ̃T : T → R.

Given such gradings on the submanifolds T and T ′, one can define the
absolute Maslov index μ(x) ∈ Z for each element x ∈ T ∩T ′ [20]. This index
is constructed using the Maslov index of paths in Tx, which is discussed
in [17]. We will sometimes refer to the grading structure on T as T̃ , and we
will refer to the absolutely-graded Lagrangian Floer groups for the graded
submanifolds T̃ and T̃ ′ as HF ∗(T̃ , T̃ ′).

If Φ : Y → Y is a symplectic automorphism with respect to the Kähler
form Ω, let ΦT : T → T denote the map given by ΦT(V ) = DΦ(V ). We
recall the following definition:

Definition 4.1.3. Let Φ : Y → Y be a symplectic automorphism, and
suppose that there is a Z-equivariant diffeomorphism Φ̃ : T̃ �→ T̃ which is a
lift of ΦT. Then the pair (Φ, Φ̃) is called a graded symplectic automorphism.

A graded symplectic automorphism (Φ, Φ̃) acts on a graded Lagrangian
submanifold (L, L̃) by

(Φ, Φ̃)(L, L̃) = (Φ(L), Φ̃ ◦ L̃ ◦ Φ−1).

Remark 4.1.4. We will often write Φ̃ to refer to the pair (Φ, Φ̃) (and thus
Φ̃(L̃) will denote (Φ, Φ̃)(L, L̃)).

As discussed in [20], many Lagrangian Floer identities can be extended
to the absolutely-graded case. For instance, as absolutely-graded complexes,

CF (T̃ , T̃ ′) ∼=
(
CF (T̃ , T̃ ′)

)∨
, where “ ∨ ” denotes the dual complex.

Furthermore, if Φ̃ is a graded symplectic automorphism, then there is
a natural isomorphism of absolutely-graded complexes CF (Φ̃(T̃ ), Φ̃(T̃ ′)) ∼=
CF (T̃ , T̃ ′).
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Figure 8. Stabilizing near ±∞.

4.2. From fork diagrams to Heegaard Floer homology. We summa-
rize Manolescu’s work in [9], describing a connection between Bigelow’s fork
diagram and a Heegaard diagram for the manifold Σ(K)#(S2 × S1).

We represent a knot K as the plat closure of a braid b ∈ B2n, the braid
group on 2n strands, and obtain a fork diagram for b by following the action
the braid on the standard fork diagram, as described in Section 3.1.

Now let Pμ ∈ C[t] be a polynomial with set of roots {μ1, . . . μ2n}, which
is exactly the set of punctures in C. We define an affine space Ŝ = {(u, z) ∈
C2 : u2 + Pμ(z) = 0} ⊂ C2.

Also , for k = 1, . . . , n, define the subspaces α̂k and β̂k of Ŝ by

α̂k = {(u, z) ∈ C : z = αk(t), for some t ∈ [0, 1];u = ±
√
−Pμ(z)} and

β̂k = {(u, z) ∈ C : z = βk(t), for some t ∈ [0, 1];u = ±
√
−Pμ(z)}.

Note that the map Ŝ → C defined by (u, z) �→ z is a double branched
covering with branch set equal to {μ1, . . . , μ2n} ⊂ C. This means that Ŝ can
be seen as Σn−1−{±∞}, where Σn−1 is a Riemann surface of genus (n−1).
Furthermore, the α̂k and β̂k are simple closes curves in Ŝ which induce
totally real tori Tα̂ = α̂1 × · · · × α̂n,Tβ̂

= β̂1 × . . . × β̂n ⊂ Symn
(
Ŝ
)
. We

want a Heegaard diagram, so we stabilize this surface as shown in Figure 8
to acquire Σn − {±∞}.

Proposition 4.2.1 (Proposition 7.4 from [9]). The collection of data
H = (Σn; α̂1, . . . , α̂n; β̂1, . . . , β̂n; +∞) is an admissible pointed Heegaard dia-
gram for Σ(K)#(S2 × S1).

Now note that with respect to the covering map above, each puncture
μk ∈ C has a single point as its preimage. However, the preimage of a point
x ∈ βj ∩ int(αi) consists of a pair of points upstairs. This gives a bijection
between the intersection Tα̂ ∩ T

β̂
and the set G of Bigelow generators as

defined in Section 3.1. However, this identification isn’t canonical, since for
some x ∈ Z̃ − τ it is only required that the pair {ex, e′x} is identified with
the two preimages of x upstairs. In any case, the grading function R defined
below will satisfy R(ex) = R(e′x).
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4.3. A grading induced by a volume form. Define a subset W =
Symn(Ŝ)−∇, where the anti-diagonal ∇ is defined by

∇ = {(uk, zk), k = 1, . . . , n : u2
k + Pμ(zk) = 0,

(ui, zi) = (−uj , zj) for some i �= j}
When we restrict to W , the Maslov grading on Tα̂ ∩ T

β̂
can be lifted to

an absolute Maslov Z-grading by endowing the tori Tα̂, T
β̂

with gradings in
the sense of Section 4.1 via the choice of a particular holomorphic volume
form.

Proposition 4.3.1 (Proposition 7.5 from [9]). There exists a complex
volume form Θ on W so that we can endow Tα̂ and T

β̂
with gradings on

the sense of Section 4.1. The resulting absolute Maslov grading (in W) on
the elements of Tα̂ ∩ T

β̂
is P −Q+ T .

Proof. One can describe points in Symn(Ŝ) by their coordinates {(uj , zj)}j ,
where u2

j + Pμ(zj) = 0. Following Manolescu, we let the C-valued n-form Θ
on Symn(Ŝ) be given by

Θ =
∏

1≤i<j≤n
(zi − zj) ·

n∏
k=1

dzk
uk

.

By using a basis of symmetric functions in the zj near any point on the
diagonal Δ ⊂ Symn(Ŝ), Manolescu shows that Θ in fact gives a well-defined
volume form on W := Symn(Ŝ) \ ∇.

As described in Section 4.1, one can obtain from Θ two functions θα :
Tα̂ → S1 and θβ : T

β̂
→ S1. A point x ∈ T

β̂
has coordinates {(uj , zj)}j

where zj = βj(tj) for some tj ∈ [0, 1], and uj = ±
√
−Pμ(βj(tj)). So, we can

write

θβ(x) =
∏

1≤i<j≤n
(βi(ti)− βj(tj))2 ·

n∏
k=1

β′j(tj)
2

−Pμ(βj(tj))
,

and write θα(x) similarly for x ∈ Tα̂.
A choice of R-valued lifts θ̃α and θ̃β of θα θβ will induce an absolute Maslov

grading on Tα̂ ∩ T
β̂
⊂ W . Note that θα has a constant value of 1 ∈ S1; it

is shown in [9] (by examination of the function θβ) that any choice of lifts
θ̃α, θ̃β will induce a Maslov grading, which agrees with P −Q+ T upto an
overall shift, and the same argument applies here.

In [9], the absolute Maslov grading is fixed to be exactly P − Q + T by
choosing θ̃β to be obtained continuously from θ̃α by following the family of
crossingless matchings (induced by the braid action) starting at {α1, . . . , αn}
and ending at {β1, . . . , βn}; this effectively sets R̃(x0) = 0 for a distinguished
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Table 2. Distributions of R̃ and R for σ3
2 ∈ B4.

R̃ G elements

0 x1x4, x1u, x1u
′, tx4, t′x4

1 x2v, x2v
′, sx3, s′x3, sv, s′v,

sv′, s′v′

2 tu, t′u, tu′, t′u′

3 x2x3

R G elements

1/2 x1x4, x1u, x1u
′, tx4, t′x4

3/2 x2v, x2v
′, sx3, s′x3, sv, s′v,

sv′, s′v′

5/2 tu, t′u, tu′, t′u′

7/2 x2x3

generator x0 ∈ Tα̂ ∩ T
β̂
. In our case, there is no such distinguished gener-

ator. Instead, we set θ̃α ≡ 0 and then choose the lift θ̃β in a way that the
induced Maslov grading R̃ satisfies R̃(x) = (P−Q+T )(x) for some choice of
generator x ∈ Tα̂∩T

β̂
. Necessarily we will then have that R̃ = P−Q+T . �

We can now view R̃ as a function both on Tα̂ ∩ T
β̂

and on the set G of
Bigelow generators. Now we define a rational number sR(b,D), which will
depends on properties of the braid b and of the oriented link diagram D
which is its plat closure. Denote by ε(b) the sum of the powers (with sign)
of the braid group generators making up the word b, and denote by w the
writhe of the diagram D. Then let

sR(b,D) =
ε(b)− w(D)− 2n

4
∈ Q.

Then for e ∈ G, define R(e) = R̃(e) + sR = P (e)−Q(e) + T (e) + sR.
One should note that for any x ∈ Z̃ \τ , we have that Q∗(e′x) = Q∗(ex)+1

and P ∗(e′x) = P ∗(ex) + 1. As a result, R(e′xy) = R(exy); following [9], we
say that the grading R is stable.

4.4. Computing R for the left-handed trefoil. Here we have that n =
2, ε = 3, and w = −3, and so

sR(b,D) =
(3)− (−3)− 2(2)

4
=

1
2
.

Combining this with Table 1, one obtains the distributions of R̃ and R seen
in Table 2.

4.4.1. Drawing Heegaard diagrams. Given a fork diagram, it is straight-
forward (albeit sometimes tedious) to construct the admissible pointed Hee-
gaard diagram discussed in Proposition 4.2.1. Figure 9(a) shows a standard
fork diagram with six punctures (where the handle arcs are omitted). Cut-
ting along the dashed arcs produces three disks, each with two punctures.
The double cover of each such disk branched over the punctures is an annu-
lus, as shown in Figure 9(b). One can reglue the annuli to form a genus-two
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Figure 9. Producing a pointed Heegaard diagram from a
fork diagram. The dotted arcs (resp. circles) represent the αi
(resp. their covers α̂i) and black dots represent punctures.
(a) A fork diagram cut along dashed arcs, (b) The annuli
covering the three pieces from Figures 9(a) and (c) The glued-
up genus-two surface.

surface with two boundary components, as shown in Figure 9(c). Capping off
the boundary components and stabilizing the surface with a handle whose
feet lie near ±∞ yields the required pointed Heegaard diagram.

During the invariance proof, we will exhibit local pictures of Heegaard
diagrams covering local pictures of fork diagrams with three punctures. In
this case, one should cut the fork diagram into two disks (one with two
punctures and one with one), as in Figure 10(a). The branched covers of
these pieces are an annulus and a disk, respectively; gluing yields a genus-
one surface with one boundary component, as seen in Figure 10(c).

4.5. Intersections with the anti-diagonal. However, as observed in [22],
the volume form Θ has an order-one zero along the antidiagonal ∇. There-
fore, R is not compatible with Maslov index counts in all of Symn(Ŝ).

Let φ ∈ π2(x,y) be counted by a term in ∂̂(x). If φ intersects ∇ with
multiplicity k ∈ Z (it can be arranged that k ≥ 0, with equality only if φ
completely avoids ∇), then [22] gives that R(x)−R(y) = 2k + 1.

More generally, one can say that if φ ∈ π2(x,y) with n+∞(φ) = 0, then

R(x)−R(y) = μ(φ) + 2 ([φ] · [∇]) = gr(x,y) + 2 ([φ] · [∇]) .

Now for each torsion s ∈ Spinc(Σ(K)#(S2 × S1)) define ρ : Us → Q by
ρ(x) = R(x) − g̃r(x). Then we have that if x,y ∈ Us for s torsion and
φ ∈ π2(x,y) with n+∞(φ) = 0, ρ(x)− ρ(y) = 2[φ] · [∇].
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Figure 10. A local region of a pointed Heegaard diagram
covering a thrice-punctured region of a fork diagram. (a) A
region of a fork diagram cut along dashed arcs, (b) The annu-
lus and disk covering the two pieces from Figures 10(a) and
(c) The glued-up genus-one surface.

Figure 11. A portion of a fork diagram. The domain
π(D(φ)) is shaded, the α arcs are solid, and the β arcs are
dashed.

Now ρ provides a filtration grading on the factor ĈF (H, s) for each
torsion s.

4.5.1. A schematic example of non-trivial intersection. For the sake
of concreteness, let us see an example of a 2-gon whose intersection number
with the anti-diagonal is nonzero. Figure 11 shows a portion of a fork dia-
gram induced by some braid in B6. Let x,y ∈ G be the Bigelow generators
whose components are indicated in Figure 11.

Figure 12 shows the Heegaard diagram of genus 3 obtained from the fork
diagram via Theorem 4.2.1, and let π denote the branched covering map.
Let x̂, ŷ ∈ Tα̂∩T

β̂
have components as indicated in the Heegaard diagram,

where π(x̂i) = xi and π(ŷi) = yi for i = 1, 2, 3. The shaded region in
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Figure 12. A Heegaard diagram induced by Figure 11. The
domain D(φ) is shaded.

Figure 12 is the domain D(φ) of a 2-gon φ ∈ π2(x̂, ŷ) and the shaded region
in Figure 11 is its image π(D(φ)).

Note that for each i, π−1(xi) contains two points; the point x̂2 and ŷ2

are both chosen to be the preimage of x2 = y2 which lies outside of the
domain D(φ).

One can see that g̃r(x̂) − g̃r(ŷ) = μ(φ) = 1. However, [φ] · [∇] = 1, and
one can verify from the fork diagram that indeed R(x)−R(y) = 3.

4.5.2. The anti-diagonal and Heegaard multi-diagrams. Throughout
the rest of Section 4, we will assume that Σ is a genus-n Heegaard surface
arising as the double branched cover of S2, as described in the discussion
preceding Proposition 4.2.1, with basepoint +∞ ∈ Σ. Further, assume that
α, β, and β′ be n-tuples of attaching curves on Σ such that β′ differs from
β by a pointed handeslide or pointed isotopy.

We will find in Section 5 that Birman moves will induce sequences of
Heegaard moves such that only the initial and final α and β circles are lifts
of arcs from fork diagrams. However, one should consider ∇ ⊂ Symn(Σ) as
being determined by the branched covering map π : Σ → C (and thus being
a well-defined feature of intermediate Heegaard diagrams).

We will analyze several types of 3-gons in the invariance proof in Section 5.
For x ∈ Tα ∩ Tβ and y ∈ Tα ∩ Tβ′ , let ψ ∈ π2(x,θβ,β′ ,y) be a 3-gon class
avoiding the basepoint with μ(ψ) = 0, where the domain D(ψ) has one of
the two types discussed in Section 2.1.1. If D(ψ) is of the first type (a sum
of n disjoint 3-sided regions D1, . . . ,Dn), a point in Im(ψ) ⊂ Symn(Σ) is of
the form x = {x1, . . . , xn}, where each xi ∈ Di. Further assume that at least
n − 1 of the regions Di are small 3-sided regions of the type appearing in
Figure 13. It can easily be arranged that

(4.1) Di ∩ π−1 (π (Dj)) = ∅ for i �= j,

and so x /∈ ∇.
However, in Section 5.3.4, we will encounter a case in which D(ψ) is of the

second type (a sum of (n−1) disjoint regions D1, . . . ,D(n−1), where the first
(n − 2) are 3-sided regions and the last is a 6-sided region with one obtuse
angle). Additionally, assume that D1, . . . ,D(n−2) are as shown in Figure 13.
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Figure 13. A small 3-sided region appearing in a small isotopy.

In this case, a point in Im(ψ) ⊂ Symn(Σ) is of the form x = {x1, . . . , xn},
where xi ∈ Di for 1 ≤ i ≤ n − 2 and x(n−1), xn ∈ D(n−1). An analog of
equation (4.1) can also be achieved here; as a result, x /∈ ∇ as long as it
is not the case that xg �= x(n−1) and π(xn) = π(x(n−1)). We will show that
this is impossible by arranging that π−1

(
π
(
D(n−1)

))
has two connected

components (one of which is D(n−1) itself).

4.5.3. The anti-diagonal and periodic domains. Let αi∩βi = {xi, yi},
as labelled in Figure 2, and let x = {x1, . . . , xn} and y = {y1, . . . , yn}.
Assume without loss of generality that such a handleslide is of α1 over α2.
Then let the domains Dαβ

i be the ones defined in Section 2.2. In this context,
we have the following fact:

Lemma 4.5.1. Let (Σ; α; β; +∞) be the pointed Heegaard diagram men-
tioned above. Let φ ∈ π2 (v,v), where v = x or v = y. Then φ avoids the
anti-diagonal ∇.

Proof. Without loss of generality, let v = x. Letting Dαβ
i be as in Sec-

tion 2.2, one can see that for each i, there is a class φi ∈ π2(x,x) with
D(φi) = Dαβ

i .
First assume that β differs from α by a pointed isotopy. Then every point

in Im(φ1) ⊂ Symn(Σ) is of the form {x, x2, . . . , xn}, where x ∈ Dα
1 . It can

be arranged that Dαβ
1 avoids the branched covering pre-image “twin” of xj

for each j ≥ 2, and so φ1 avoids ∇.
Instead assume that β differs from α by a pointed handleslide of α1 over

α2, as in Figure 2. The argument for the isotopy case above implies that φi
avoids ∇ for i ≥ 2. Note that we can write φ1 = φ1,1 + φ1,2, where φ1,1 ∈
π2(x,y) has domain given by the annular component of Dαβ

1 (with local
coefficient +1) and φ1,2, ∈ π2(y,x) has domain given by the small two-sided
component of Dαβ

1 (with local coefficient −1). By an argument analogous
to that in the isotopy case, φ1,2 avoids ∇. Note that any point in Im(φ1,1)
is of the form {x, x2, . . . , xn}, where x lies in the annular component. It
can be arranged that this annular component avoids the branched covering
pre-image “twin” of xj for each j ≥ 2, and so φ1,1 avoids ∇ as well.

In either case, φ can be written as a sum (concatenation) of the classes
φi, and so it can be arranged that φ avoids ∇. �
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4.5.4. The anti-diagonal and the homotopy for a small pointed
isotopy.

5. Invariance of the filtration

Here we will prove a few facts that we will use in our invariance proofs.

Remark 5.0.2. From now on, we will suppress the hat when discussing a
lift α̂ of an arc α unless the distinction is not obvious from the context.

Now let (Σ; α′; α; β; z) be a pointed Heegaard triple-diagram, where the
set of attaching circles α′ is obtained from α a pointed handleslide or pointed
isotopy. Then (Σ;α; β; z) and (Σ;α′; β; z) are two pointed Heegaard dia-
grams for the same 3-manifold M . Recall that in fact (Σ;α′; α; z) is an
admissible pointed Heegaard diagram for #n(S1 × S2). There is a natu-
ral choice of top-degree generator θα′α ∈ Tα′ ∩ Tα. We also assume that
Hαβ := (Σ;α; β; z) and Hα′β := (Σ;α′; β; z) are admissible — Proposi-
tion 2.2.4 thus implies that the triple-diagram is admissible also. Recall that
there is a 3-gon counting chain homotopy equivalence

f̂α′,α,β(θα′α⊗ ·) : ĈF (Hαα) → ĈF (Hα′α) .

Now for any x ∈ Tα′ ∩ Tα, y ∈ Tα ∩ Tβ, and z ∈ Tα′ ∩ Tβ, there is a
well-defined map

sz : π2 (x,y, z)→ Spinc(X),

whereX is the cobordism induced by the Heegaard move. SinceX is induced
by a handleslide or any isotopy, the cobordism is in fact a cylinder. Therefore,
if θα′α ∈ Tα′ ∩Tα represents the top-degree generator of ĈF (#n(S2×S1)),
then for some ψ ∈ π2 (θα′α,y, z), sz(ψ) is completely determined by either
restriction sz (y) or sz (z).

We will need the following fact about the absolute grading g̃r:

Lemma 5.0.3. Let (Σ; α′; α; β; z) be an admissible pointed Heegaard triple-
diagram such that α′ differs from α by a pointed isotopy or pointed han-
dleslide. Then if x ∈ Us ⊂ Tα ∩ Tβ for s ∈ Spinc (Yαβ) torsion and
y ∈ Tα′ ∩Tβ is a generator appearing with nonzero coefficient in the expan-
sion of f̂α′,α,β(θα′α⊗ x), g̃r(y) = g̃r(x).

Proof. Let X be the cobordism induced by the Heegaard move and choose
some t ∈ Spinc(X) restricting to s on Yαβ and s′ on Yα′β, where y ∈ Us′ ⊂
Tα′∩Tβ. The absolute grading g̃r is uniquely characterized in [11] by several
properties, one of which implies that

g̃r(y)− g̃r(x) =
c21(t)− 2ξ(X)− 3σ(X)

4
.

Since X is in fact a cylinder, the right-hand side vanishes. �
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Letting α̃ differ from α by a small pointed isotopy and working in the
pointed Heegaard quadruple-diagram (Σ; α̃; α′; α; β; z), one can make an
analogous observation regarding Spinc structures associated to 4-gons.

Recall that the filtration ρ is only well-defined on the summands
ĈF (Σ(K)#(S2×S1), s) with s ∈ Spinc(Σ(K)#(S2×S1)) torsion. However,
due to the observations above, everything in sight will be Spinc-equivalent
and we will suppress Spinc structures in notation when proving many of the
lemmas in this section.

Below we discuss Heegaard diagrams obtained from braids. The Birman
stabilization move on braids induces in the Heegaard diagram a Heegaard
stabilization followed by two handleslides. For a Heegaard diagram H, stabi-
lization amounts to taking a connected sum withH0, the standard genus-one
pointed Heegaard diagram for S3 with α ∩ β = {x}, where the connected
sum is performed near the respective basepoints of the diagrams. Ozsváth
and Szabó showed in [13] that as chain complexes, ĈF (H) ∼= ĈF (H#H0).
If H is a Heegaard diagram for Σ(K)#(S2 × S1) obtained from a braid
b, we extend R and ρ to ĈF (H#H0, s#s0) for each torsion s by setting
R(xy) = R(y).

Let us first establish some terminology that will be used in Lemma 5.0.6
to follow.

Definition 5.0.4. Let (Σ; α; β; z) and
(
Σ; α′; β′; z

)
be two admissible Hee-

gaard diagrams of genus n appearing in some sequence of Heegaard moves
connecting two diagrams covering fork diagrams, and let ∇ ⊂ Symn(Σ)
denote the anti-diagonal.

(i) If β′ = β and α′ differs from α by a pointed isotopy or pointed han-
dleslide, then a α-triangle injection is a function g : Tα ∩ Tβ ↪→
Tα′ ∩ Tβ such that the following hold:
(a) There is a Heegaard triple-diagram (Σ;α+; α; β; z) (where for each

k, α+
k is isotopic to α′k and intersects αk transversely in two points)

such that for each x ∈ Tα ∩ Tβ, there is a 3-gon class ψ+
g ∈

π2(θα+α,x,y+) with μ(ψ+
g ) = 0, ψ+

g ∩ ∇ = ∅, and nz(ψ+
g ) = 0,

where y+ ∈ Tα ∩ Tα+ is the nearest neighbor to g(x).
(b) There is a Heegaard triple-diagram (Σ;α; α−; β; z) (where for

each k, α−k is isotopic to α′k and intersects αk transversely in
two points) such that for each x ∈ T′α ∩ Tβ, there is a 3-gon
class ψ−g ∈ π2(θαα− ,y−,x) with μ(ψ−g ) = 0, ψ−g ∩ ∇ = ∅, and
nz(ψ−g ) = 0, where y− ∈ Tα∩Tα− is the nearest neighbor to g(x).

(ii) If α′ = α and β′ differs from β by a pointed isotopy or pointed han-
dleslide, then a β-triangle injection is a function g : Tα∩Tβ ↪→ Tα∩Tβ′

such that the following hold:
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(a) There is a Heegaard triple-diagram
(
Σ; α; β; β+; z

)
(where for

each k, β+
k is isotopic to β′k and intersects βk transversely in

two points) such that for each x ∈ Tα ∩ Tβ, there is a 3-gon
class ψ+

g ∈ π2(x,θββ+ ,y+) with μ(ψ+
g ) = 0, ψ+

g ∩ ∇ = ∅, and
nz(ψ+

g ) = 0, where y+ ∈ Tβ ∩Tβ+ is the nearest neighbor to g(x).
(b) There is a Heegaard triple-diagram

(
Σ; α; β−; β; z

)
(where for

each k, β−k is isotopic to β′k and intersects βk transversely in
two points) such that for each x ∈ Tα ∩ T′β, there is a 3-gon
class ψ−g ∈ π2(y−,θβ−β,x) with μ(ψ−g ) = 0, ψ−g ∩ ∇ = ∅, and
nz(ψ−g ) = 0, where y− ∈ Tβ ∩Tβ− is the nearest neighbor to g(x).

Remark 5.0.5. Recall that when constructing chain homotopies associated
to triangle-counting chain homotopy equivalences in Section 2.1.2, we com-
posed them with nearest neighbor maps so that compositions were honestly
chain-homotopic to identity maps.

For instance, if (Σ;α; β; z) and (Σ;α′; β; z) are two admissible pointed
Heegaard diagrams such that α′ is obtained from α via a pointed isotopy
or handle slide, then

f̂αα′β

(
θαα′ ⊗ f̂α′αβ (θα′α⊗ ·)

)
− id

ĈF (Hαβ )
= ∂̂H +H∂̂ and

f̂α′αβ

(
θα′α⊗ f̂αα′β (θαα′ ⊗ ·)

)
− id

ĈF (Hα′β )
= ∂̂G+G∂̂,

where H and G are given by the expressions in equation (2.2) appearing in
Remark 2.1.7.

Lemma 5.0.6. Let H = (Σ; α; β; z) and H′ = (Σ; α′; β; z) be two admissi-
ble pointed Heegaard diagrams for the manifold Σ(K)#(S2 × S1) which are
obtained from braids b and b′ (possibly after Heegaard stabilization). Assume
that there is a sequence of pointed isotopies or handeslides

H = H0 → H1 → . . .→ Hn = H′,

where each pointed Heegaard diagram Hk :=
(
Σ; αk; βk; z

)
is admissible.

Also, let g = gn ◦ · · · ◦ g1 be a composition of triangle injections

gk : Tα(k−1) ∩ Tβ(k−1) → Tαk ∩ Tβk

and assume that R(g(x)) = R(x) for each x ∈ Tα ∩ Tβ. Now for 1 ≤
k ≤ n, let fk : ĈF (H(k−1)) → ĈF (Hk) denote the 3-gon-counting chain
homotopy equivalence induced by the kth Heegaard move in the sequence,
let hk : ĈF (Hk) → ĈF (H(k−1)) denote its homotopy inverse, and let Hk :
ĈF (H(k−1)) → ĈF (H(k−1)) and Gk : ĈF (Hk) → ĈF (Hk) be associated
homotopies as described in Remark 5.0.5.
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Now let H : ĈF (H) → ĈF (H) and G : ĈF (H′) → ĈF (H′) be given by

(5.1)

H := H1 +
n−1∑
i=1

(
h1 ◦ · · · ◦ hi

)
◦H i+1 ◦

(
f i ◦ · · · ◦ f1

)
and

G := Gn +
n−1∑
i=1

(
fn ◦ · · · ◦ f (i+1)

)
◦Gi ◦

(
h(i+1) ◦ · · · ◦ hn

)
,

so that

hf − id
ĈF (H)

= ∂̂H +H∂̂ and fh− id
ĈF (H′) = ∂̂G+G∂̂.

Then for each torsion s ∈ Spinc(Σ(K)#(S2 × S1)), the following hold:

(i) If y ∈ Tα′ ∩Tβ′ is a term in the sum f(x) for some x ∈ Us ⊂ Tα∩Tβ

and if w ∈ Tα ∩ Tβ is a term in the sum h(z) for some z ∈ U′s ⊂
Tα′ ∩ Tβ′, then ρ(y) ≤ ρ(x) and ρ(w) ≤ ρ(z).

(ii) If y ∈ Tα∩Tβ is a term in the sum H(x) for some x ∈ Us ⊂ Tα∩Tβ

and if w ∈ Tα′ ∩ Tβ′ is a term in the sum G(z) for some z ∈ U′s ⊂
Tα′ ∩ Tβ′, then ρ(y) ≤ ρ(x) and ρ(w) ≤ ρ(z).

Proof of part (i). Let x ∈ Us ⊂ Tα ∩ Tβ and let y ∈ Tα′ ∩ Tβ′ be a term in
the sum f(x). Then there are two sequences

x = y0,y1, . . . ,yn = y and x = x0,x1, . . . ,xn = g(x)

such that yj ,xj ∈ Tαj∩βj , yj is a term in the sum f j(y(j−1)), and xj =
gj(x(j−1)) for each j.

We proceed by induction. Without loss of generality, assume that the
jth Heegaard move in the sequence is one among the α curves. i.e., that
βj = β(j−1) and gj is a α-triangle injection.

Recall that we have a class ψfj ∈ π2(θαjα(j−1) ,y(j−1),yj) with a pseudo-
holomorphic representative such that μ(ψfj ) = nz(ψfj ) = 0. Furthermore,
the triangle injection gj provides a class ψgj ∈ π2(θαjα(j−1) ,x(j−1),xj) avoid-
ing ∇ such that μ(ψgj ) = nz(ψgj ) = 0.

Assume that we have already obtained a 2-gon class ηα(j−1)β ∈ π2

(x(j−1),y(j−1)) with μ(ηα(j−1)β) = nz(ηα(j−1)β) = [ηα(j−1)β] · [∇] = 0. For
the base case, we note that x0 = y0 = x and we let ηα0β ∈ π2(x,x) be the
class with trivial domain. Then the concatenation ψ̃j := (ηα(j−1)α + ψfj )
is an element of π2(θαjα(j−1) ,x(j−1),yj). The classes ψ̃j and ψgj are Spinc-
equivalent, and thus there are 2-gons η(j−1) ∈ π2(x(j−1),x(j−1)), ηαjβ ∈
π2(xj ,yj), and ηαjα(j−1) ∈ π2(θαjα(j−1) ,θαjα(j−1)) such that

ψ̃j = ψgj + η(j−1) + ηαjβ + ηαjα(j−1) .
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Now D(η(j−1)) +D(ηαjα(j−1)) can be viewed as a triply-periodic element
of Πα(j−1)βjαj , and so by Proposition 2.2.2 can be written as a sum of

the doubly-periodic domains Dα(j−1)αj

k ∈ Πα(j−1)αj . For each k, let ηjk ∈
π2(θαjα(j−1) ,θαjα(j−1)) denote the 2-gon whose domain is Dα(j−1)αj

k — by
Lemma 4.5.1, ηjk avoids the anti-diagonal ∇ (and of course the basepoint).
The class ξj := η(j−1) + ηαjα(j−1) can be written as a sum of elements of
classes in the set {ηj1, . . . , η

j
g}, and thus [ξj ] · [∇] = nz(ξj) = 0. Thus,

μ(ηαjβ) = μ(ψfj + ηα(j−1)α)− μ(ψgj )− μ(ξj) = 0,

[ηαjβ] · [∇] = [ψfj + ηα(j−1)α] · [∇]− [ψgj ] · [∇]− [ξj ] · [∇]

= [ψfj ] · [∇] ≥ 0, and nz(ηαjβ) = 0.

where the last inequality follows from the fact that ψfj has a pseudo-
holomorphic representative. After n steps, we obtain the required class
ηαnβ ∈ π2(g(x),y).

Now since R(x) = R(g(x)) ≥ R(y), n iterations of Lemma 5.0.3 give that

ρ(x) = R(x)− g̃r(x) ≥ R(y)− g̃r(x) = R(y)− g̃r(y) = ρ(y).

On the other hand, let z ∈ U′s ⊂ Tα′ ∩ Tβ′ and let w be a term in the
sum (h1 ◦ · · · ◦ hn)(z). A similar induction argument provides a 2-gon class
η ∈ π2 (g(w), z)) such that

μ(η) = nz(η) = 0 and [η] · [∇] ≤ 0.

Now we have that R(w) = R(g(w)) ≤ R(z), and so

ρ(w) = R(w)− g̃r(w) = R(z)− g̃r(w) ≤ R(z)− g̃r(z) = ρ(z)

�

Proof of part (ii). Without loss of generality, assume that the kth Hee-
gaard move is among the α curves (so that βk = β(k−1) and gk is a
α-triangle injection). We work in the pointed Heegaard quadruple-diagram(
Σ; α̃(k−1); αk; α(k−1); βk; z

)
, where α̃(k−1) is a set of attaching circles

obtained from α(k−1) by a small admissible isotopy. Suppose that y ∈
Tα ∩ Tβ appears as a term in the sum(

h1 ◦ · · · ◦ hk
)
◦H(k+1) ◦

(
fk ◦ · · · ◦ f1

)
(x),

then ρ(y) ≤ ρ(x).
Then there are zj ,uj ∈ Tαj ∩ Tβj for j = 0, . . . , k with z0 = x, u0 = y,

zi a term in f i(z(i−1)), uk a term in H(k+1)(zk), and u(i−1) a term in hi(ui)
for i = 1, . . . , k.

Recall that
H(k+1) := Nα̃kαk ◦ H̃(k+1),
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Figure 14. A component of the domain of the 3-gon ψθ ∈
π2(θα̃kα(k+1) ,θα(k+1)αk ,θα̃kαk).

where Nα̃kαk : ṽ → v is the nearest neighbor isomorphism and

H̃(k+1) := ĥα̃kα(k+1)αkβ

(
θα̃kα(k+1) ⊗ θα(k+1)αk ⊗ ·

)
is a map counting pseudo-holomorphic representatives of 4-gon classes.
There is then such a 4-gon class σ ∈ π2(θα̃kα(k+1) ,θα(k+1)αk , zk, ũk) such
that μ(σ) = −1 and [σ] · [∇] ≥ 0.

Now for 0 ≤ j ≤ k, sz(uj) = sz(zj) and by Lemma 5.0.3,

g̃r(zj)− g̃r(uj) = g̃r(zk)− g̃r(uk) = g̃r(zk)− g̃r(ũk) = μ(σ) = −1

As a result, there are 2-gon classes ζj ∈ π2(zj ,uj) such that μ(ζj) = −1.
There are also index-zero 3-gon classes ψ̃ ∈ π2(θα̃kαk ,uk, ũk) (with

domain components as in Figure 13) and ψθ ∈ π2(θα̃kα(k+1) ,
θα(k+1)αk ,θα̃kαk) (with domain components as in Figure 14); it can be
arranged that these classes have small domains, so that ψ̃∩∇ = ψθ∩∇ = ∅.

Note that ψ̃ + ψθ + ζk ∈ π2(θα̃kα(k+1) ,θα(k+1)αk , zk, ũk), and so there is
some 4-gon η with quadruply-periodic domain such that ψ̃+ψθ+ζk = σ+η.

But recall that η can be written as the concatenation of 2-gons which
avoid the anti-diagonal ∇ and the basepoint z, and so

[ζk] · [∇] = [σ] · [∇] + [η] · [∇]− [ψ̃] · [∇]− [ψθ] · [∇] = [σ] · [∇] + 0− 0− 0 ≥ 0.

Consider the sequence x0 := x = z0,x1, . . . ,xk with xj = gj(x(j−1)) for
each j (here xj ∈ Tαj ∩ Tβj ). Recall that the proof of the first part of this
lemma provided 2-gon classes φi ∈ π2(xi, zi) with μ(φi) = 0 and [φi]·[∇] ≥ 0
for i = 1, . . . , k. We will show that for each i with 1 ≤ i ≤ k

(5.2) [ζ(i−1)] · [∇] + [φ(i−1)] · [∇] ≥ [ζi] · [∇] + [φi] · [∇],

where φ0 denotes the class with trivial domain connecting x0 = z0 = x to
itself.

Fix i with 1 ≤ i ≤ k and assume (without loss of generality) that the
ith Heegaard move is among the α curves. The triangle injection gi provides
a class ψgi ∈ π2(θα(i−1)αi ,xi,x(i−1)) such that μ(ψgi) = nz(ψgi) = 0 and
[ψgi ] · [∇] = 0. Additionally, there is a class ψhi ∈ π2(θα(i−1)αi ,ui,u(i−1))
with pseudo-holomorphic representative such that μ(ψhi) = nz(ψhi) = 0.
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Note that ψgi + ζ(i−1) + φ(i−1), φi + ζi + ψhi ∈ π2(θα(i−1)αi ,xi,u(i−1)).
Then there is some 3-gon ηi with triply-periodic domain such that

ψgi + ζ(i−1) + φ(i−1) = φi + ζi + ψhi + ηi.

Since [ψgi ] · [∇] = [ηi] · [∇] = 0 and [ψhi ] · [∇] ≥ 0, equation (5.2) holds.
Therefore,

[ζ0] · [∇] ≥ [ζ1] · [∇] + [φ1] · [∇] ≥ · · · ≥ [ζk] · [∇] + [φk] · [∇] ≥ 0.

On the other hand, given some z,w ∈ Tα′ ∩ Tβ′ such that w is a term
in G(z), a similar argument produces a 2-gon class ξ0 ∈ π2(z,w) such that
[ξ0] · [∇] ≥ 0 and μ(ξ0) = −1. �

We formulate the following restatement of Lemma 5.0.6.

Corollary 5.0.7. Let H = (Σ; α; β; z) and H′ =
(
Σ; α′; β′; z

)
be two admis-

sible pointed Heegaard diagrams for the manifold Σ(K)#(S2 × S1) which
are obtained from braids b and b′ (possibly after Heegaard stabilization), and
related by handleslides and isotopies in the sense of Lemma 5.0.6, where the
intermediate pointed Heegaard diagrams are all admissible. Assume also that
there are triangle injections corresponding to each of these Heegaard moves
such that their composition g : Tα ∩ Tβ → Tα′ ∩ Tβ′ satisfies R(g(x)) =
R(x) for all x ∈ Tα ∩ Tβ. Then for each s ∈ Spinc(Σ(K)#(S2 × S1))
torsion, the following hold:

(i) The composition f : ĈF (H, s)→ ĈF (H′, s) of chain homotopy equiva-
lences induced by the moves and its homotopy inverse h : ĈF (H′, s) →
ĈF (H, s) are ρ-filtered chain maps.

(ii) The homotopies H from g◦f to id
ĈF (H,s) and G from f ◦g to id

ĈF (H′,s)
are ρ-filtered chain homotopies.

In particular, the ρ-filtered complexes ĈF (H, s) and ĈF (H′, s) have the same
filtered chain homotopy type.

We turn to a few lemmas which will later allow us to restrict our attention
to multiplication of braids in B2n by elements of K2n on the right side only.
Note first that the symplectic automorphism induced by the braid b ∈ B2n

on the punctured disk induces a symplectic automorphism fb : Symn(Σ) →
Symn(Σ).

One can see that there is an induced graded symplectic automorphism f̃b
with respect to gradings provided by the volume form.

Lemma 5.0.8. Let fb : Symn(Σ) → Symn(Σ) be the automorphism
discussed above and let ∇ ⊂ Symn(Σ) denote the anti-diagonal. Then
fb(∇) = ∇.
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Proof. Let x ∈ ∇. Then x contains components (u1, z1) and (u2, z2) such
that z2 = z1 and u2 = −u1. Suppose that u2 �= 0. Then fb(x) = (vk, wk)
contains components (v1, w1) = fb(u1, z1) and (v2, w2) = fb(u2, z2). Since f
is induced by a map on the punctured disk, we have that w2 = w1. Therefore,
(v2)2 = (v1)2 and so v2 = ±v1.

Now let x′ = (u′k, z
′
k) ∈ Δ be such that u′2 = −u2, u′j = uj for j �= 2, and

z′j = zj for j = 1, . . . , n. Then if fb(x′) = (v′k, w
′
k), we then have that v′j = vj

for j �= 2 and w′j = wj for j = 1, . . . , n. Further, v′2 = v′1 = v1 = ±v2. But
x �= x′, so v′2 �= v2 and thus v2 = −v1.

Now suppose that u2 = u1 = 0. Then z2 is a puncture point. However, a
braid element diffeomorphism on the punctured disk fixes the set of punc-
tures, and so v2 = v1 = 0 also. So, fb(x) ∈ ∇ in this case also.

One can similarly show that f−1
b (∇) ⊂ ∇. �

As shorthand, let f̃b (Tα) be denoted by bTα from now on. Since R
provides an absolute grading on CF∗ (Tα, bTα), when computed inside
Symn(Σ) − ∇, then one can define a grading R∗ on CF−∗ (Tα, bTα) by
letting R∗ (x∗) = −R(x) for each x ∈ Tα ∩ bTα.

Lemma 5.0.9. Let b ∈ B2n be a braid. Then when computed inside
Symn(Σ)−∇, the complexes CF∗ (Tα, bTα) and CF−∗

(
Tα, b

−1Tα

)
are iso-

morphic as absolutely graded chain complexes equipped with the gradings R
and R∗, respectively.

Proof. The grading R̃ arises as an absolute grading induced by gradings on
totally-real submanifolds, and so as R̃-graded complexes,

CF∗ (Tα, bTα) ∼= CFn−∗ (bTα,Tα) ∼= CFn−∗
(
Tα, b

−1Tα

)
.

But since sR(b−1) + sR(b) = −n, the result follows. �

When one computes these complexes inside all of Symn(Σ), recall that
CF−∗ (Tα, bTα) = ĈF (Hb) , where Hb is the admissible Heegaard diagram
for Σ(K)#(S2 × S1) provided by Proposition 4.2.1 and K is the closure of
b. It is clear that R∗ provides a filtration on this complex.

Lemma 5.0.10. Let b ∈ B2n be a braid and denote by Hb and Hb−1 the
admissible Heegaard diagrams induced by the braid b and b−1, respectively.
Then the complexes ĈF ∗ (Hb−1) and ĈF

−∗
(Hb) are isomorphic as filtered

chain complexes equipped with the filtrations R and R∗, respectively.

Proof. When one extends the computation of the Floer complexes to all of
Symn(Σ), the differentials may have additional terms which count classes of
2-gons intersecting ∇. By Lemma 5.0.8, the chain isomorphisms in the proof
of Lemma 5.0.9 induce identifications between such classes which preserve
intersection counts with ∇. �
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Figure 15. Local pictures of fork diagrams, where corre-
sponding points are marked with matching dots. (a) The
diagram F+, (b) F̃ , the mirror of F+ and (c) The
diagram F−.

Now given a braid word b = σk1i1 . . . σ
km
im
∈ B2n, let −b denote the braid

word σ−k12n−i1 · · ·σ
−km
2n−im ∈ B2n.

Lemma 5.0.11. Let b ∈ B2n be a braid whose closure is the knot K, let s ∈
Spinc(Σ(K)#(S2×S1)) be torsion, and denote by Hb and H−b the admissible
Heegaard diagrams induced by the braids b and −b, respectively. Then the
complexes ĈF ∗ (Hb, s) and ĈF

−∗
(H−b, s) are isomorphic as filtered chain

complexes equipped with the filtrations R and R∗, respectively.

Proof. Let F+ and F− be the fork diagrams induced by b and −b, respec-
tively. Note that if the closure of b is the knot K, then the closure of −b
is −K, the mirror image of K. Therefore, H±b is a Heegaard diagram for
±Σ(K)#(S2 × S1). Let ι : C → C be the map given by z �→ −z, and let F̃
denote the “fork-like” diagram obtained by applying ι to F+. Note that if
one ignores the handles, then F̃ is isotopic to F−. Figure 15 compares local
pictures of these diagrams.

This map induces a diffeomorphism ι̂ : Σ → −Σ, where Hb =
(Σ,α,β,+∞) and H−b = (−Σ,α,β,+∞). Recall that for any closed, con-
nected, oriented 3-manifold Y , Spinc(Y ) ∼= Spinc(−Y ). For each torsion
s ∈ Spinc(Σ(K)#(S2×S1)), Ozsváth and Szabó described in [12] a natural
chain isomorphism

Φ : ĈF ∗(Σ(−K)#(S2 × S1), s) → ĈF
−∗

(Σ(K)#(S2 × S1), s),

which in our case is realized by Φ(x) =
(
{ι̂−1(xi)}

)∗ for each generator x
for ĈF ∗(Σ(−K)#(S2 × S1), s).

Figure 15 displays a suitably general local picture of the fork diagrams
involved. Let z+ be a generator in F+, let z̃ be the tuple in F̃ such that
z̃j = ι(z+

j ), and let z− be the corresponding generator in F−. Define the
functions Q, P , T , and R̃ on F̃ in the obvious way. One can verify that

(P ∗ −Q∗) (z−j ) = (P ∗ −Q∗) (z̃j) + 1 = − (P ∗ −Q∗) (z+
j ) + 1,

and so (P −Q) (z−) = − (P −Q) (z+) + n.
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Figure 16. An isotopy in a fork diagram introducing two
intersections between a α arc (solid) and a β arc (dotted).
(a) Before the isotopy and (b) After the isotopy.

Furthermore, T (z−) = −T (z+), and

sR(b−, D−) =
e(b−)− w(D−)− 2n

4
=
−e(b+) + w(D+)− 2n

4

= −e(b
+)− w(D+)− 2n

4
− n.

Therefore, we have that R(z−) = −R(z+), and so both Φ and Φ−1 are
filtered. �

5.1. Fork diagram isotopy. The identification of a braid b with its asso-
ciated fork diagram is only defined up to isotopy of the fork diagram. We
should verify the following:

Proposition 5.1.1. Let s ∈ Spinc(Σ(K)#(S2 × S1)) be torsion. Then the
ρ-filtered chain homotopy type of ĈF (Σ(K)#(S2×S1), s) is an invariant of
the braid b.

Remark 5.1.2. The reader should note that in the original proof in [13] of
the invariance of the group ĤF (M) under isotopies of the Heegaard diagram
for M , pseudo-holomorphic 3-gons were not used. Lipshitz observed in [8]
that the induced chain map could be defined in terms of counting 3-gons.

Proof. We omit explicit analysis of isotopies which do not introduce or anni-
hilate intersection points between α and β arcs (i.e., preserve Z and G);
these just induce intersection-preserving isotopies on the Heegaard diagram.
Below we will study two type of isotopies, which introduce new intersection
points — we need not study isotopies, which remove intersection points,
since filtered chain homotopy equivalence is an equivalence relation and is
this symmetric.

First consider an isotopy of the type illustrated in Figure 16. This type of
isotopy induces a pair of analogous isotopies of the Heegaard diagram, and
one can define the obvious triangle injection. All components of associated
domains appear far from the new intersection points and are of the form
shown in Figure 13.

One could also perform an isotopy of a fork diagram near a puncture
point, as shown in Figure 17.
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Figure 17. Introducing new intersections via an isotopy.
(a) Before isotopy and (b) After isotopy.

Figure 18. Isotopic Heegaard diagrams for Σ(K)#(S2×S1)
covering the fork diagrams in Figure 17. (a) Before isotopy
and (b) After isotopy.

Figure 19. Local regions in domains of the 3-gons
ψ+
giso (dark gray) and ψ−giso (light gray).

Figure 20. Loops used to compute gradings for x(a) and u(b).

Taking the two-fold cover of this local fork diagram branched on the one
puncture gives the local Heegaard diagrams for Σ(K)#(S2 × S1) shown
in Figure 18. The isotopy on the fork diagram amounts to an isotopy on
the Heegaard diagram, and by Lemma 5.0.6 it is sufficient to construct a
β-triangle injection giso and check that it preserves R.

We see from the 3-sided region in Figure 19 that we can define the
injection giso such that giso(xz) = uz. Furthermore, the loops in Figure 20
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show that Q∗(u) = Q∗(x), P ∗(u) = P ∗(x), and T (uz) = T (xz). Therefore,
R(uz) = R(xz). �

5.2. Invariance under choice of braid.

Proof of Theorem 1.0.1. It suffices to verify that if b and b′ (inducing Hee-
gaard diagrams H and H′ for Σ(K)#(S2 × S1)) are related by a Birman
move, then the ρ-filtered complexes ĈF (H, s) and ĈF (H′, s) have the same
filtered chain homotopy type for each torsion s ∈ Spinc(Σ(K)#(S2 × S1)).

We first claim that we do not need to explicitly examine Birman moves of
the form b �→ gb, where b ∈ B2n and g ∈ K2n. Well, by Lemmas 5.0.10 and
5.0.11, the R-filtered complexes ĈF ∗(Hgb, s) and ĈF ∗(Hbf , s) are filtered
chain isomorphic, where f = −g−1. We will not explicitly analyze moves of
the form b �→ b(−g) for generators g of K2n, but the local pictures would be
mirror images of those for b �→ bg and the arguments would be completely
analogous.

We will see that each Birman move induces either a diffeomorphism of
the Heegaard surface or a sequence of isotopies and handleslides relating
Heegaard diagrams for Σ(K)#(S2×S1) induced by the fork diagrams before
and after the move (also preceded by a Heegaard stabilization in the Birman
stabilization move).

For the case of a surface diffeomorphism, one obtains a chain complex
isomorphism which will be shown to preserve R. By Lemma 5.0.8, such an
isomorphism also preserves the filtration ρ.

We saw in Section 2.1 that isotopies and handleslides on Heegaard dia-
grams induce chain homotopy equivalences on ĈF (Σ(K)#(S2×S1)) which
count pseudo-holomorphic 3-gon classes of index zero. For each isotopy or
handleslide taking α and β to α′ and β′, we will define a triangle injection
g : Tα ∩ Tβ ↪→ Tα′ ∩ Tβ′ . By Corollary 5.0.7, it suffices to construct these
injections g and verify that R(g(x)) = R(x) for each x ∈ G. Note that since
the moves induce local changes only, we will only demonstrate local regions
in the domains of the 3-gons lying in neighborhoods of the moves. We exhibit
such domains and check gradings in Section 5.3. �

5.3. Local effects of Birman moves.

5.3.1. b �→ bA±1 = bσ±1
1 . The fork diagrams for b �→ bA can be seen

in Figure 21. This move induces a diffeomorphism on the Heegaard surface
for Σ(K)#(S2 × S1) (in fact, a single Dehn twist) which sends xi �→ yi
for i = 1, 2 and sends {u, u′} ↪→ {v, v′}. One thus obtains a chain isomor-
phism gA on Heegaard Floer complexes, and we verify that for each w ∈ G,
R(gA(w)) = R(w).
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Figure 21. Fork diagrams associated to the move b �→ bA
(a) Local diagram for b and (b) Local diagram for bA.

Figure 22. Loops associated to elements of Z affected by
b �→ bA. (a) x1, (b) y2, (c) u, (d) v, (e) x2 and (f) y1.

Figure 23. Fork diagrams associated to b �→ bCi. (a) Local
diagram for b and (b) Local diagram for bCi.

Since R is stable, we only need to examine one Z representative for each
element of Z̃ \τ . By examining the local pictures in Figure 22, one can verify
that Q(gA(w)) = Q(w) + 1 and P (gA(w)) = P (w) + 1 and all w ∈ G. Since
moves are local and at most one component is modified, T is preserved. The
number of strands n is also preserved, but ε and w each increase by 1. So,
sR(bA) = sR(b), and thus R(gA(w)) = R(w) for all w ∈ G. The details for
the move b �→ bA−1 are analogous.

5.3.2. b �→ bC±1
i = b (σ2iσ2i−1σ2i+1σ2i)

±1. Figure 23 depicts local
pictures of fork diagrams before and after this move. This move induces a
sequence of two Dehn twists, mapping intersections via x1 �→ y3, x2 �→ y4,
x3 �→ y1, x4 �→ y2, {s, s′} ↪→ {v, v′}, and {u, u′} ↪→ {t, t′}. By examining the
local pictures in Figure 24, one can verify that for each w ∈ G, Q(gCi(w)) =
Q(w) + 2, P (gCi(w)) = P (w), and T (gCi(w)) = T (w) + 1. Here n and
w are unchanged, but ε increases by 4. So, sR(bCi) = sR(b) + 1, and thus
R(gCi(w)) = R(w) for all w ∈ G. The proof associated to the move b �→
bC−1

i is analogous.
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Figure 24. Loops associated to elements of Z affected by
b �→ bCi. (a) x1, (b) y3, (c) s, (d) v, (e) x2, (f) y4, (g) x3, (h)
y1, (i) u, (j) t, (k) x4 and (l) y2.

5.3.3. b �→ bB±1 = b
(
σ2σ2

1σ2

)±1. The fork diagrams before and after
this move can be seen in Figure 25. To better understand the fork diagram
for bB, we perform the isotopy resulting in Figure 25(c).

It is clear that only α2 is altered by the move. To be more precise, we
take a look at the Heegaard diagrams for Σ(K)#(S2 × S1) which are the
branched double-covers of the fork diagrams for b and bB. These can be seen
in Figure 26.

To get from the left diagram to the right, we can perform a sequence of
two handleslides as shown in Figure 27.

We first address admissibility of the intermediate pointed Heegaard dia-
gram

(
Σ; α2; β; +∞

)
.

Label the m domains of
(
Σ; α1; β; +∞

)
as indicated in Figure 29(a),

where Dk lies entirely outside of the picture for k ≥ 11; label the (m + 4)
domains of

(
Σ; α2; β; +∞

)
as indicated 29(b), where D′k corresponds to Dk

for k ≥ 11. Now consider some periodic domain in
(
Σ; α2; β; +∞

)
P ′ = c̃1D̃1 + c̃2D̃2 + c̃1D̃3 + c̃1D̃4 +

m∑
i=1

ciD′i.

Note that

c1 − c10 = c̃1 − c10 = c5 − c9 = c̃i − ci for 1 ≤ i ≤ 4 and
c̃2 − c9 = c̃3 − c8 = c̃4 − c7 = c10 − c6.
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Figure 25. Fork diagrams associated to b �→ bB. (a) Local
diagram for b, (b) Local diagram for bB and (c) Isotopic to
Figure 25(b).

Figure 26. Heegaard diagrams for Σ(K)#(S2×S1) covering
the fork diagrams in Figure 25. (a) From b and (b) From bB.

As a result,

c̃1 = c1 and c2 − c9 = c3 − c8 = c4 − c7 = c1 − c6.
So, we can conclude that there is a periodic domain in

(
Σ; α1; β; +∞

)
of

the form

P =
m∑
i=1

ciDi.

But since
(
Σ; α1; β; +∞

)
is admissible, there are both positive and negative

integers among the ci, and thus
(
Σ; α2; β; +∞

)
is also admissible.
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Figure 27. Two handleslides connecting Heegaard diagrams
for b and bB. In each picture, the pair of pants is shaded, the
new circle is dotted, and the old one is dashed. (a) α = α1 �→
α2 and (b) α2 �→ α3 = α′.

Figure 28. Local regions in domains of 3-gons ψ+ (dark
gray) and ψ− (light gray) for gaB. White dots are compo-
nents of θα′′α,θαα′′ ∈ Tα ∩ Tα′′ . (a) u �→ w, (b) x1 �→ s1,
(c) u′ �→ w′, (d) x2 �→ s2, (e) x3 �→ s3.

Figure 29. Domains of on Heegaard surfaces before and
after the handleslide α1 → α2 induced by the Birman move
b �→ bB. (a) Σ \

(
∪iα1

i

)
\ (∪iβi) and (b) Σ \

(
∪iα2

i

)
\ (∪iβi).

Let the injection gB act as x1x3y �→ y1y3y, x2x3y �→ y2y3y, ux3y �→ vy3y,
u′x3y �→ v′y3y, x1z �→ y1z, x2z �→ y2z, uz �→ vz, and u′z �→ v′z. Note that
z is an (n − 1)-tuple whose component on the α2 arc is not shown in the
local fork diagram.
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Figure 30. Local regions in domains of 3-gons ψ+ (dark
gray) and ψ− (light gray) for gbB. White dots are compo-
nents of θα′α′′ ,θα′′α′ ∈ Tα′′ ∩ Tα′ . (a) w �→ v, (b) s1 �→ y1,
(c) w′ �→ v′, (d) s2 �→ y2 and (e) s3 �→ y3.

Figure 31. Loops associated to elements of Z affected by
b �→ bB. (a) x1, (b) y1, (c) u, (d) v, (e) x2, (f) y2, (g) x3 and
(h) y3.

When viewed as a function on Tα ∩ Tβ, gB is a composition gα,2
B ◦ gα,1

B
of triangle injections corresponding to the two handleslides. Local regions in
domains of 3-gons for gα,1

B (resp. gα,2
B ) can be seen in Figure 28 (resp. 30).

One can verify that if two of these regions appear in the domain of a 3-gon
associated with gα,1

B , then there are neighborhoods of these regions which
map to disjoint neighborhoods in the fork diagram downstairs (and likewise
for those associated with gα,2

B ). As a result, all 3-gons presented here avoid
the anti-diagonal ∇.
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Figure 32. Fork diagrams associated to b ∈ B2n �→ bσ2n ∈
B2n+2. (a) Local diagram for b ∈ B2n and (b) Local dia-
gram for bσ2n ∈ B2n+2. (a) Local diagram for b ∈ B2n and
(b) Local diagram for bσ2n ∈ B2n+2.

Figure 33. Heegaard diagrams for Σ(K)#(S2×S1) covering
the fork diagrams in Figure 32. (a) From b ∈ B2n, (b) From
bσ2n ∈ B2n+2.

We see from Figure 31 that Q(y1y3y) = Q(x1x3y) + 3, Q(vy3y) =
Q(ux3y) + 3, Q(y1z) = Q(x1z) + 1, Q(y2y3y) = Q(x2x3y) + 3, Q(y2z) =
Q(x2z) + 1, Q(vz) = Q(uz) + 1, and P (gB(w)) = P (w) for all w ∈ G.

Furthermore, one can check that T (y1y3y) = T (x1x3y) + 2, T (vy3y) =
T (ux3y)+2, T (y1z) = T (x1z), T (y2y3y) = T (x2x3y)+2, T (y2z) = T (x2z),
and T (vz) = T (uz). This move preserves n and w, but increases ε by 4.
Thus sR(bB) = sR(b) + 1 and R(gB(w)) = R(w) for all w ∈ G. The proof
associated to the move b �→ bB−1 is analogous.

5.3.4. b ∈ B2n ↔ bσ2n ∈ B2n+2. Fork diagrams before and after stabi-
lization can be seem in Figure 32, and the induced Heegaard diagrams in
Figure 33.

The stabilization braid move corresponds to a Heegaard diagram stabi-
lization followed by several handleslides, which can be seen in Figure 34. The
destabilization braid move induces the inverse of this sequence of Heegaard
moves.

We first address admissibility. Clearly stabilizing or destabilizing an
admissible Heegaard diagram yields another admissible one. By analyzing
domains, it is not hard to verify that the handleslides in Figure 34 pre-
serve admissibility; we will demonstrate this explicitly for third handleslide
(β2 �→ β3), and leave the rest as an exercise to the reader.
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Figure 34. Four handleslides connecting Heegaard dia-
grams for b and bσ2n. In each picture, the pair of pants is
shaded, the new circle is dotted, and the old one is dashed.
(a) β = β1 �→ β2, (b) α �→ α′, (c) β2 �→ β3, and
(d) β3 �→ β4 = β′.

Figure 35. Domains on Heegaard surfaces before and after
the handleslide β2 �→ β3 induced by Birman stabilization.
(a) Σ \ (∪iαi) \

(
∪iβ2

i

)
and (b) Σ \ (∪iαi) \

(
∪iβ3

i

)
.

Assume that
(
Σ; α; β2; +∞

)
is admissible. Label the m domains of(

Σ; α; β2; +∞
)

as indicated in Figure 35(a), where Dk lies entirely out-
side of the picture for k ≥ 7; label the (m + 2) domains of

(
Σ; α; β3; +∞

)
as indicated in Figure 35(b), where D′k corresponds to Dk for k ≥ 7. Now
consider some periodic domain in

(
Σ; α; β3; +∞

)
P ′ = c̃1D̃1 + c̃2D̃2 +

m∑
i=1

ciD′i.

Now because P ′ is periodic, we have that

c̃2 − c1 = c2 − c1, and so c̃2 = c2.

Therefore, there is a periodic domain in
(
Σ; α; β2; +∞

)
given by

P =
m∑
i=1

ciDi.

Because
(
Σ; α; β2; +∞

)
is admissible, there is at least one positive ci and

at least one negative ci. So, P ′ has positive and negative coefficients, and
thus

(
Σ; α; β3; +∞

)
is also admissible.

Let x2n+1 denote the additional intersection obtained via Heegaard sta-
bilization. We define the injection gstab as x2nx2n+1v �→ y2n+1y2nv and
x2n+1z �→ y2n+2z, where v is an (n − 1)-tuple not contained in the local
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Figure 36. Local regions in domains of the 3-gons ψ+ (dark
gray) and ψ− (light gray) for gβ,1

stab. White dots are compo-
nents of θββ2 ,θβ2β ∈ Tβ ∩ Tβ2 . (a) x2n+1 �→ w2n+1, and
(b) x2nx2n+1 �→ w2nw2n+1.

Figure 37. Local regions in domains of the 3-gons ψ+ (dark
gray) and ψ− (light gray) for gα

stab. White dots are compo-
nents of θαα′ ,θα′α ∈ Tα ∩ Tα′ . (a) w2n+1 �→ y2n+2 and (b)
w2nw2n+1 �→ y2n+1y2n.

Figure 38. Arranging that a 3-gon avoids the anti-diagonal.
The dark gray region is the domain D, and the light gray
region is the other connected component of π(π−1(D)).

picture, and z is an n-tuple not contained within the local picture. In fact,
gstab can be written as a composition gβ,3

stab ◦ g
β,2
stab ◦ gα

stab ◦ g
β,1
stab of triangle

injections corresponding to the four handleslides in Figure 34. All of the
3-gons required for gβ,2

stab and gβ,3
stab are 3-gons with “small” domains, and we

will not exhibit these in figures. Local regions in domains of 3-gons for gβ,1
stab

and gα
stab are exhibited in Figures 36 and 37, respectively. Note that the

3-gon appearing in Figure 37(b) is of the second type (cf. Figure 1).
It can be arranged that these 3-gons avoid the anti-diagonal ∇ (making

use of the discussion in Section 4.5.2). In particular, if D denotes one of
the six-sided regions appearing in Figure 37(b) and π : Σ → S2 is the
branched covering map, it suffices to show that π(π−1(D)) has two connected
components. This is illustrated in Figure 38.
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Figure 39. Loops for elements of Z affected by b ∈ B2n ↔
bσ2n ∈ B2n+2. (a) x2n, (b) y2n+1 and (c) y2n and (d) y2n+2.

Figure 40. The effect of the move b �→ bB on a pass-through
arc appearing in a grading loop. (a) Grading loop for ux,
(b) Grading loop for u′x.

By examining the local pictures in Figure 39, one can verify that
Q(y2n+1y2nv) = Q(x2nv) + 1, Q(y2n+2z) = Q(z), P (y2n+1y2nv) = P (x2nv),
P (y2n+2z) = P (z), T (y2n+1y2nv) = T (x2nv) + 1, and T (y2n+2z) = T (z).
Stabilization adds two strands, increases ε by 1, and decreases w by 1. Thus
sR(bσ2n) = sR(b) and so R(y2n+1y2nv) = R(x2nv) and R(y2n+2z) = R(z).

We need not explicitly analyze the destabilization move at all, since fil-
tered chain homotopy equivalence is an equivalence relation.

5.4. Generality of local pictures. It remains to justify that our local
pictures above were sufficiently general:

(i) There could be some u ∈ Z̃ such that ux ∈ Z and one of the loops used
to compute gradings for ux contain vertical arcs that pass through the
local diagram, as seen in Figure 40. One can verify that the grading
contributions of such arcs are preserved by Birman moves.

(ii) Several β arcs intersecting the interior of the same α arc can be iso-
toped to be very close to one another and thus behave identically under
moves.

(iii) We assumed above that all β arcs shown belong to distinct βi. If two
β arcs share the same βi, then fewer Bigelow generators are allowed.

(iv) The local pictures in Section 5.2 never have handles passing through
them. A handle bhi contributes a vertical arc as in (5.4) to each loop
associated to a point on βi.

(v) For arcs terminating at punctures near the boundary of the local pic-
ture, we can modify the entrance trajectory (i.e., from above or from
below) by applying an isotopy to the β arc and shrinking the scope of
the picture (see Figure 41).
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Figure 41. Modifying the entry trajectory of a β arc termi-
nating near the boundary. (a) Dashed arc enters from above
and (b) Now from below.

Figure 42. Modifying the entry trajectory of a β arc ter-
minating far from the boundary. (a) Dashed arc enters from
above and (b) Now from below.

Figure 43. The Heegaard diagram for L(3, 1)#(S1 × S2)
obtained from σ3

2 ∈ B4.

Entrance trajectories of β arcs terminating far from the boundary
can be modified in the same way, but at the expense of adding a pass-
through arc to the local picture (see Figure 42).

6. The left-handed trefoil and the lens space L(3, 1)

The fork diagram for the left-handed trefoil obtained from σ3
2 ∈ B4

induces the admissible Heegaard diagram
(
Σ2, {α̂1, α̂2}, {β̂1, β̂2},+∞

)
for

L(3, 1)#(S1 × S2) shown in Figure 43. Label the intersections on α̂1 from
left to right as s′, t′, x2, t, s, and x1, and label those on α̂2 from bottom top
as x4, v

′, u′, x3, u, and v.
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Let us perform the calculation with Z/2Z coefficients; this can be done
combinatorially, since the diagram in Figure 43 is nice in the sense of [19].

The differential is thus

∂̂(x2x3) = ut′ + u′t, ∂̂(ut) = sx3 + vx2, ∂̂(ut′) = ∂̂(u′t) = sv′ + s′v,

∂̂(u′t′) = s′x3 + v′x2, ∂̂(s′v′) = ∂̂(sx3) = ∂̂(vx2) = u′x1 + t′x4,

∂̂(s′v) = ∂̂(sv′) =x1x4 + x1x4 = 0, ∂̂(v′x2) = ∂̂(s′x3) = ∂̂(sv) = tx4 + ux1,

and ∂̂(u′x1) = ∂̂(t′x4) = ∂̂(x1x4) = ∂̂(tx4) = ∂̂(ux1) = 0.

Now recall that L(3, 1), has three Spinc structures si, i = 0, 1, 2. These
induce three Spinc structures on L(3, 1)#(S1 × S2) given by si#s, where s
is the unique torsion Spinc-structure on S2 × S1. One should observe that
the diagram in Figure 43 can be related via handleslides to one which is
the disjoint union of a diagram for Σ(K) and the usual admissible genus-
one diagram for S2 × S1. As a result, all generators x in Figure 43 have
s+∞(x) = si#s. They partition this set of generators as

U0 = {x2x3, ut
′, u′t, s′v, sv′, x1x4},

U1 = {ut, s′v′, sx3, vx2.u
′x1, t

′x4},
U2 = {u′t′, v′x2, s

′x3, sv, tx4, ux1}.

Note that the differential always lowers the R-grading by 1 in this case,
and thus the left-handed trefoil is evidently ρ-degenerate. The R-grading
then provides an absolute Maslov grading on the group ĤF (L(3, 1)#(S1 ×
S2); Z/2Z).

One can see that homology group decomposes with respect to the
R-grading as

ĤF (L(3, 1)#(S1 × S2); Z/2Z) =
[
(Z/2Z)⊕3

]
R=3/2

⊕
[
(Z/2Z)⊕3

]
R=1/2

.

7. Reduced theory

The sequel to the present paper [24] outlines a reduced theory which pro-
vides a filtration on the Heegaard Floer chain complex for Σ(K). The
reduced version is easier to compute, and it is shown in [24] that the spec-
tral sequence discussed in the present paper is completely determined by
an analogous reduced spectral sequence. The reduced theory can be shown
to have some nice formal properties with respect to taking connected sums
and mirrors of knots, and can be used to show that all two-bridge knots are
ρ-degenerate. It would be tempting to speculate that all alternating knots
are ρ-degenerate, but this is not known.
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8. Future directions

8.1. Relationship with Khsymp, inv. Given a pointed Heegaard diagram
H for Σ(K)#(S2 × S1) coming from a braid, we saw that the filtration ρ
can only be defined on generators in torsion Spinc structures. It would be
interesting to investigate whether Heegaard diagrams encountered in this
context actually contain generators in non-torsion Spinc structures; if not,
then E1 is in fact all of Khsymp, inv(K). In particular, we would obtain that
when K is ρ-degenerate,

ĤF (Σ(K)#(S2 × S1)) ∼= Khsymp, inv(K).

Since all Spinc structures of Σ(K) are torsion, one can define a reduced
filtration ρ on the entire complex ĈF (Σ(K)) — this is done in [24]. The E1

page of the induced reduced spectral sequence is a reasonable candidate for
a reduced version of Khsymp, inv(K).

8.2. The Khovanov–Heegard Floer spectral sequence. Ozsváth and
Szabó showed in [14] that the groups ĤF (Σ(L)), ĤF (Σ(L0)), and ĤF
(Σ(L1)) fit into a long exact sequence:

· · · −→ ĤF (Σ(L0) −→ ĤF (Σ(L1) −→ ĤF (Σ(L) −→ · · · ,
where the diagrams for L0 and L1 exhibit the two smooth resolutions of
some crossing c in L and coincide with L away from c. The existence of this
sequence is a consequence of the surgery exact sequence for ĤF , and Ozsváth
and Szabó use it to construct a spectral sequence whose E2 term is isomor-
phic to the reduced Khovanov homology K̃h(L; Z/2Z) of the mirror of L and
which converges to the Heegaard Floer homology group ĤF (Σ(L); Z/2Z).
Let δ = (j − i) denote the quantum grading, the collapse of the bigrading
on the group

K̃h(L) =
⊕
i,j

K̃h
i,j

(L).

It was shown in [10] that the class of quasi-alternating links is Khovanov-

thin, with K̃h
i,j

(L) �= 0 only if δ = (j − i) = −σ(L)/2 = σ(L)/2. In the
sequel [24], we describe a function R defined on a set of generators for
ĈF (Σ(K)). If K is ρ-degenerate, R indeed provides an absolute Maslov
grading on ĤF (Σ(K)). In [24] we show that when K is a two-bridge knot,
then K is ρ-degenerate and ĤF (Σ(K)) is supported entirely in the level
R = σ(K)/2.

Baldwin [2] conjectured the existence of an induced δ-grading on higher
pages in the spectral sequence, and Greene [5] conjectured that a term
arising in his spanning tree model could provide a quantum grading on
ĤF (Σ(K)). If the gradings conjectured by Greene and Baldwin indeed exist,
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it would be interesting to compare them to the R-grading for ρ-degenerate
knots.

Furthermore, Szabó [23] constructed a geometric spectral sequence in
Z/2Z Khovanov homology. Although this spectral sequence is not known to
abut to the Heegaard Floer homology, the construction is similar to that
for the spectral sequence in [14]. Szabó’s spectral sequence preserves the
Khovanov δ-grading, and it would be interesting to compare the induced
grading on the E∞-page with the reduced function R.
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