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NONCOMMUTATIVE POISSON BRACKETS ON LODAY
ALGEBRAS AND RELATED DEFORMATION

QUANTIZATION

Kyousuke Uchino

Given a Lie algebra, there uniquely exists a Poisson algebra that
is called a Lie–Poisson algebra over the Lie algebra. We will prove
that given a Loday/Leibniz algebra there exists uniquely a noncom-
mutative Poisson algebra over the Loday algebra. The noncommuta-
tive Poisson algebras are called the Loday–Poisson algebras. In the
super/graded cases, the Loday–Poisson bracket is regarded as a non-
commutative version of classical (linear) Schouten–Nijenhuis bracket.
It will be shown that the Loday–Poisson algebras form a special sub-
class of Aguiar’s dual-prePoisson algebras. We also study a problem
of deformation quantization over the Loday–Poisson algebra. It will be
shown that the polynomial Loday–Poisson algebra is deformation quan-
tizable and that the associated quantum algebra is Loday’s associative
dialgebra.

1. Introduction

A Loday algebra (also called Leibniz algebra [8,10]) is an algebra equipped
with a binary bracket satisfying the Leibniz identity,

[x1, [x2, x3]] = [[x1, x2], x3] + [x2, [x1, x3]].

This new type algebra was introduced by Loday. Hence, it is called a
Loday algebra. A Lie algebra is clearly a Loday algebra whose bracket is
anti-commutative. However, the Loday bracket is not anti-commutative in
general.

The Loday algebras arise in several area of mathematics, for example, as
Loday algebroids in Nambu-mechanics [6]; as Courant algebroids in Poisson
geometry; in representation theory of Lie algebras and so on.
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94 K. UCHINO

Since Loday algebras are considered to be noncommutative analogues
of Lie algebras, it is natural to ask what type of algebra is noncommuta-
tive analogue of Lie–Poisson algebra. The aim of this note is to solve this
question.

In first, we recall classical Lie–Poisson algebras. If g is a Lie algebra,
then the polynomial functions S(g) becomes a Poisson algebra, that is, the
Lie–Poisson algebra. The Lie–Poisson bracket is characterized by the follow-
ing 4-conditions; (C1) The Lie–Poisson algebras are Lie- and Commutative-
algebras. (C2) The Lie–Poisson bracket is a biderivation with respect to the
associative multiplication on S(g). (C3) The base algebra g is a Lie subal-
gebra of S(g). (C4) The Lie–Poisson bracket on S(g) is free over the Lie
bracket on g.

Let us consider noncommutative analogues of the conditions (C1)–(C4).
We assume that g is a Loday algebra and that A is a certain algebra gener-
ated from g. The noncommutative analogues of (C1)–(C4) are respectively
as follows:

(A1) The algebra A is a Loday- and associative-algebra, not necessarily
commutative.

(A2) The Loday bracket on A is a biderivation with respect to the associa-
tive multiplication.

(A3) The base algebra g is a Loday subalgebra of A.
(A4) The Loday bracket on A is free over the bracket on g.

We notice that Aguiar’s dual-prePoisson algebras [1] satisfy (A1)–(A3). We
will prove that given a Loday algebra there exists a dual-prePoisson alge-
bra satisfying also (A4) (Theorem 4.4 below). We call this special dual-
prePoisson algebra a Loday–Poisson algebra, which is considered to be a
noncommutative version of Lie–Poisson algebra. As an application, we will
study super Loday–Poisson brackets, which are considered as noncommu-
tative analogues of classical (linear) Schouten–Nijenhuis (SN) brackets (see
Section 4.2 below).

To understand the dual-prePoisson algebras we will study a category of
linear mappings LM in [9]. It is known that Loday algebras are Lie gebras
in LM (so-called Lie objects). We will introduce the notion of Poisson gebra
in LM, which are called Poisson objects (see Section 3 below). It will be
shown that the Loday–Poisson algebra is the free Poisson gebra defined over
a Lie gebra.

We also study an algebraic quantization of polynomial Loday–Poisson
algebras. It will be shown that the polynomial Loday–Poisson algebras are
deformation quantizable in the sense of Kontsevich [7] and that the quan-
tum algebras are associative dialgebras in [10]. Namely, given a Loday–
Poisson algebra of polynomials, there exists a unique associative dialgebra
parameterized by � whose classical limit is the Loday–Poisson algebra. It is
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a difficult problem whether Nambu–Poisson brackets are quantizable. Since
the Nambu–Poisson brackets are equivalently Loday brackets, our results
provide a hope that Nambu–Poisson brackets are quantizable.

The paper is organized as follows. In Section 2, we recall three noncom-
mutative algebras, i.e., Loday algebras, perm-algebras of Chapoton [2, 3]
and dual-prePoisson algebras. In Section 3, we study a category of linear
mappings. In Section 4, we give the main theorem of this note, namely, the
problem above is solved. In Section 5, we discuss the deformation quantiza-
tion for the Loday–Poisson algebras.

2. New type algebras

2.1. Loday/Leibniz algebras [8,10]. A Loday algebra (g, [, ]) is, by defi-
nition, a vector space equipped with a binary bracket product which satisfies
the Leibniz identity,

[x, [y, z]] = [[x, y], z] + [y, [x, z]],

where x, y, z ∈ g. If the bracket is anti-commutative, then the Loday algebra
is a Lie algebra. Thus, Loday algebras are considered to be noncommutative
analogues of Lie algebras.

We consider a subspace of the Loday algebra composed of the symmetric
brackets,

gann := {[x, y] + [y, x] | x, y ∈ g}.
This becomes a two side ideal of the Loday algebra because

[[x, x], y] = [x, [x, y]] − [x, [x, y]] = 0,

[x, [y, y]] = [[x, y], y] + [y, [x, y]],

for any x, y ∈ g. Hence, the quotient space gLie := g/gann becomes a Lie
algebra. The projection g → gLie, which is called a Liezation, is a universal
arrow, that is,

HomLod(g, �h) ∼= HomLie(gLie, h),

where h is an arbitrary Lie algebra and � is the forgetful functor from the
category of Lie algebras to the one of Loday algebras. One can define a Lie
algebra action gLie ⊗ g → g by

(2.1) ad(x̄)(y) := [x, y].

The Loday bracket is identified with this action.
The free Loday algebra over a vector space has the following form:

FLod(V ) = T̄ V :=
⊕

n≥1

V ⊗n.
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96 K. UCHINO

Here, the Loday bracket is defined by

[x1, [x2, [. . . , [xn−1, xn]]]] := x1 ⊗ · · · ⊗ xn,

for any x· ∈ V .

2.2. Perm-algebras [2, 3]. An associative algebra (A, ∗) is called a per-
mutation algebra, or perm-algebra for short, if A satisfies

(2.2) (x ∗ y) ∗ z = (y ∗ x) ∗ z,

where x, y, z ∈ A.
We consider a monomial on the perm-algebra. x1 ∗ · · ·xn−1 ∗ xn ∈ A. Up

to the (−) ∗ xn, x1 ∗ · · · ∗ xn−1 is regarded as a monomial of commutative
algebra. This implies that the free perm-algebra over a vector space V has
the following form:

FPerm(V ) = S(V ) ⊗ V,

where S(V ) is the free “unital” commutative algebra over V , or the polyno-
mial algebra over V . The perm-multiplication on FPerm(V ) is defined by

(2.3) (f ⊗ x) ∗ (g ⊗ y) := fxg ⊗ y,

where f, g ∈ S(V ) and x, y ∈ V .

Example 2.1. Let (C, d) be a differential graded (dg) commutative algebra.
Define a new product on C by

x ∗ y := −(−1)|x|(dx)y.

Then (C, ∗) becomes a graded perm-algebra.

2.3. Dual-prePoisson/Aguiar algebras [1]. Let (A, ∗, {, }) be a perm-
algebra equipped with a Loday bracket. It is called a dual-prePoisson alge-
bra1 , if the following three conditions are satisfied:

{x, y ∗ z} = {x, y} ∗ z + y ∗ {x, z},(2.4)

{x ∗ y, z} = x ∗ {y, z} + y ∗ {x, z},(2.5)

{x, y} ∗ z = −{y, x} ∗ z,(2.6)

where x, y, z ∈ A. We call the axioms (2.4) and (2.5) the biderivation
conditions of dual-prePoisson algebra. In the graded cases, (2.4)–(2.6) have
the following form,

{x, y ∗ z} = {x, y} ∗ z + (−1)(|x|−n)|y|y ∗ {x, z},
{x ∗ y, z} = x ∗ {y, z} + (−1)|x||y|y ∗ {x, z},
{x, y} ∗ z = −(−1)(|x|−n)(|y|−n){y, x} ∗ z,

1The operad of dual-prePoisson algebras is the Koszul “dual” of the one of pre-Poisson
algebras. As such the name is.
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where |x|, |y| are the degrees of elements and n is the one of the bracket.
The perm-multiplication also satisfies the natural sign convention,

x ∗ y ∗ z = (−1)|x||y|y ∗ x ∗ z,

where we put | ∗ | := 0.
We sometimes call the dual-prePoisson algebra an Aguiar algebra,

because the name “dual-prePoisson” is long.
We consider a subspace of the dual-prePoisson algebra generated by the

symmetric elements,

Aann := 〈x ∗ y − y ∗ x, {x, y} + {y, x}〉.
This is a two-side ideal of the dual-prePoisson algebra. Hence, the quotient
space A/Aann becomes a Poisson algebra. One can easily check that A →
A/Aann is the universal arrow, like the Liezation g → gLie. So, we call the
projection A → A/Aann a Poissonization of dual-prePoisson algebra.

From the axioms of dual-prePoisson algebras, we obtain Aann ∗A = 0 and
{Aann, A} = 0. Under a mild assumption, A is considered to be a semi-direct
product algebra

A = APoiss � Aann,

where APoiss is the result of the Poissonization A → APoiss. Conversely, given
a Poisson algebra P and a left Poisson module M , the semi-direct product
P � M becomes a dual-prePoisson algebra, whose dual-prePoisson products
are defined by

(p1 + m1) ∗ (p2 + m2) := p1p2 + p1 · m2,(2.7)

{p1 + m1, p2 + m2} := {p1, p2} + {p1, m2},(2.8)

where p1, p2 ∈ P , m1, m2 ∈ M and where {p1, p2} is the Poisson bracket on
P and p1 · m2, {p1, m2} are the left-module structures.

Example 2.2. Let (P, d, {, }′) be a dg Poisson algebra with a Poisson
bracket {, }′. Define the new products by

x ∗ y := −(−1)|x|(dx)y,

{x, y} := −(−1)|x|{dx, y}′.
Then (P, ∗, {, }) becomes a graded dual-prePoisson algebra.

We consider the free dual-prePoisson algebra. By the biderivation prop-
erties (2.4) and (2.5), a monomial of dual-prePoisson algebra, m, is decom-
posed into the form,

(2.9) m =
∑

m′,n

m′ ∗ n,
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where m′ and n are monomials and where n has no ∗. For example,

{{x, y∗z}, w} = {x, y}∗{z, w}+z∗{{x, y}, w}+y∗{{x, z}, w}+{x, z}∗{y, w},
where {z, w}, {{x, y}, w}, {{x, z}, w} and {y, w} are n in (2.9).

Since a dual-prePoisson algebra is a Loday algebra, n is regarded as a
monomial of Loday algebra. From the axioms of dual-prePoisson algebra,
(x ∗ y) ∗ z = (y ∗ x) ∗ z and {x, y} ∗ z = −{y, x} ∗ z, m′ is regarded as a
monomial of Poisson algebra up to (−)∗A. From this observation, we obtain

Proposition 2.3. Let V be a vector space. The free dual-prePoisson algebra
over V has the following form:

(2.10) FPoiss(V ) ⊗FLod(V ),

where FPoiss(V ) is the free “unital” Poisson algebra.

Proof. We will give a proof of the proposition in Section 4. �

Proposition 2.4. FPoiss(V ) ∼=
(
FPoiss(V )⊗FLod(V )

)

Poiss
, where FPoiss(V )

is the free Poisson algebra of nonunital.

Proof. Because the Poissonization is universal. �

3. Category of linear mappings

The category of linear maps [9], which is denoted by LM, is a category
whose objects are linear maps ρ : V1 → V0 and morphisms (F1, F0) are
commutative diagrams of liner maps:

V1
F1−−−−→ V ′

1

ρ

⏐⏐�
⏐⏐�ρ′

V0
F0−−−−→ V ′

0 .

One can define a tensor product on LM by

ρ ⊗LM ρ′ := ρ ⊗ 1 + 1 ⊗ ρ′,(3.1)

ρ ⊗LM ρ′ : (V1 ⊗ V ′
0) ⊕ (V0 ⊗ V ′

1) → V0 ⊗ V ′
0 .(3.2)

If F := (F1, F0) and G := (G1, G0) are morphisms in LM, then the tensor
product of F and G has the following form:

(3.3) F ⊗LM G = (F1 ⊗ G0 ⊕ F0 ⊗ G1, F0 ⊗ G0).

It is known that (LM,⊗LM) becomes a symmetric monoidal category.
A Lie algebra object (shortly, Lie object) is by definition a Lie (al)gebra

in LM. That is, a Lie object is a linear mapping ρ : g1→g0 equipped with
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a bracket morphism μ = (μ1, μ0),

g1 ⊗ g0 ⊕ g0 ⊗ g1
μ1−−−−→ g1⏐⏐�

⏐⏐�

g0 ⊗ g0
μ0−−−−→ g0,

satisfying the axioms of Lie algebras, i.e., skewsymmetry and Jacobi law,

μ(21) = −μ,

μ(1 ⊗LM μ) = μ(μ ⊗LM 1) + μ(1 ⊗LM μ)(213),

where (21), (213) are usual actions of symmetric groups S2, S3, respectively.
The morphisms between Lie objects are defined by the usual manner.

If ρ: g1 → g0 is a Lie object equipped with a bracket (μ1, μ0), then (g0, μ0)
becomes a Lie algebra and (g1, μ1) becomes a g0-bimodule satisfying the
equivariant condition,

ρ[ρ(x), y]μ1 = [ρ(x), ρ(y)]μ0 ,

for any x, y ∈ g1. The natural bracket, [x, y]Lod := [ρ(x), y]μ1 , becomes a
Loday bracket on g1.

Proposition 3.1 ([9]). The Liezation g → gLie is a Lie object and an arrow
g ⇒ (g → gLie) is an adjoint functor with respect to the forgetful functor,
(h1 → h0) ⇒ h1, i.e.,

HomLieobj(g → gLie, h1 → h0) ∼= HomLod(g, h1),

where LHS is the space of morphisms between Lie objects.

Proof. (Sketch) Let g be a Loday algebra. The Liezation g → gLie has a
bracket

μ =
(

μ1

μ0

)
,

where μ0 is the Lie bracket on gLie and μ1 is the action of gLie to g.
From (3.3),

μ(1 ⊗LM μ) = μ

(
1 ⊗ μ0 ⊕ 1 ⊗ μ1

1 ⊗ μ0

)
=

(
μ1(1 ⊗ μ0 ⊕ 1 ⊗ μ1)

μ0(1 ⊗ μ0)

)
.

By a direct computation, one can check the Jacobi identity.
Given a Loday algebra homomorphism g → h1 in HomLod(g, h1), by the

universality of the Liezation g → gLie, there exists a unique Lie algebra
morphism of gLie → h0. Thus we obtain a morphism of Lie objects. �

We introduce the notion of Poisson object. The Poisson objects are by
definition linear mappings P1 → P0 equipped with the pairs of commutative
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associative multiplications ν and Lie brackets μ satisfying the distributive
law,

μ(ν ⊗LM 1) = ν(1 ⊗LM μ) + ν(1 ⊗LM μ)(213).
The morphisms between Poisson objects are also defined by the usual
manner.

If P1 → P0 is a Poisson object, then P0 becomes a Poisson algebra and
P1 becomes a P0-bimodule satisfying certain equivariant conditions. Then,
P1 becomes a dual-prePoisson algebra by a similar method with (2.7) and
(2.8). The Poisson version of Proposition 3.1 is as follows.

Proposition 3.2. If A is a dual-prePoisson algebra, the Poissonization A →
APoiss is a Poisson object in LM, and in a similar way the arrow A ⇒ (A →
APoiss) has the universality

HomPoissobj(A → APoiss, P1 → P0) ∼= HomAgu(A, P1),

where LHS (resp. RHS) is the space of morphisms between Poisson objects
(resp. Aguiar/dual-prePoisson algebras) and where P1 → P0 is an arbitrary
Poisson object.

4. Loday–Poisson algebras

In this section we solve the question in Introduction.

4.1. Polynomial cases. Let g be a Loday algebra. We define a space of
nonstandard polynomial functions on the dual space g∗ as

Apoly(g∗) := S(gLie) ⊗ g.

Here 1⊗ g(∼= g) is the space of linear functions on g∗. An associative multi-
plication on Apoly(g∗) is defined by

(f ⊗ x) ∗ (g ⊗ y) = fx̄g ⊗ y,

where f, g ∈ S(gLie), x, y ∈ g and x̄ is the image of x by the Liezation
g → gLie.

Lemma 4.1. The space (Apoly(g∗), ∗) becomes a perm-algebra.

We define an action of S(gLie) to Apoly(g∗). For any f ∈ S(gLie), g ⊗ y ∈
Apoly(g∗),

{f, g ⊗ y} := {f, g} ⊗ y + g{f, y},(4.1)

{x̄1 · · · x̄n, y} :=
∑

i

x̄1 · · · x̄i−1x̄i+1 · · · x̄n ⊗ [xi, y],(4.2)

where {f, g} is the Poisson brackets on S(gLie), x̄1 · · · x̄n is a monomial in
S(gLie) and the bracket {f, y} in (4.1) is defined by (4.2) which is well-defined
(cf. (2.1)). For example, {x̄ȳ, g ⊗ z} = {x̄ȳ, g} ⊗ z + gx̄⊗ [y, z] + gȳ ⊗ [x, z].
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Definition 4.2. For any f ⊗ x, g ⊗ y ∈ Apoly(g∗),

(4.3) {f ⊗ x, g ⊗ y} := {fx̄, g ⊗ y}.
We remark that the bracket (4.3) is not skewsymmetric, even if g is Lie.

Lemma 4.3. Define a projection Apoly(g∗) → S(gLie) by

f ⊗ x = fx̄,

where S(gLie) is the Lie–Poisson algebra of nonunital. The projection pre-
serves the perm-multiplication and the bracket on Apoly(g∗),

(f ⊗ x) ∗ (g ⊗ y) = (fx̄)(gȳ),

{f ⊗ x, g ⊗ y} = {fx̄, gȳ}.
The main result of this note is as follows.

Theorem 4.4. The algebra (Apoly(g∗), ∗, {, }) is the free dual-prePoisson
algebra over g and g is a subalgebra of Apoly(g∗). Namely Apoly(g∗) satisfies
the conditions (A1)–(A4) in the Introduction section.

Proof. We show that the bracket (4.3) satisfies the Leibniz identity. It suffices
to prove that the action (4.1) is Lie algebraic.

Lemma 4.5. For any f, g ∈ S(gLie), h ⊗ z ∈ Apoly(g∗), L(f, g, h ⊗ z) = 0,
where L is the Leibnizator L(1, 2, 3) := {1, {2, 3}}− {{1, 2}, 3}− {2, {1, 3}}.
Proof. By the biderivation property, we have

L(f, g, h ⊗ z) = L(f, g, h) ⊗ z + hL(f, g, z) = hL(f, g, z).

Here the Jacobi identity L(f, g, h) = 0 is used. So it suffices to show that
L(f, g, z) = 0. When f = x̄ and g = ȳ, L(x̄, ȳ, z) = 0 is equivalent to the
Leibniz identity of g. By the biderivation properties again,

L(fx̄, g, z) = fL(x̄, g, z) + x̄L(f, g, z).

By the assumption of induction with respect to the degree of polynomials,
we have L(x̄, g, z) = L(f, g, z) = 0, which gives L(fx̄, g, z) = 0. In the same
way L(f, gx̄, z) = 0 is shown. �

From this lemma, we obtain the desired identity,

L(f ⊗ x, g ⊗ y, h ⊗ z) = L(fx̄, gȳ, h ⊗ z) = 0.

By a direct computation, one can check the axioms (2.4)–(2.6). Thus,
Apoly(g∗) satisfies (A1) and (A2) in Introduction. The Leibniz algebra g is
identified with 1⊗g as the linear subalgebra of Apoly(g∗). Namely (A3) holds.

We show that Apoly(g∗) is the free dual-prePoisson algebra over g.
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Lemma 4.6. Given a dual-prePoisson algebra P and given a Loday algebra
homomorphism φ : g → P , there exists the unique dual-prePoisson algebra
morphism φ̂ : Apoly(g∗) → P , which is defined by

φ̂ : (x̄1x̄2 · · · x̄n) ⊗ y �→ φ(x1) ∗ φ(x2) ∗ · · · ∗ φ(xn) ∗ φ(y).

Proof. The mapping φ̂ is well-defined because P satisfies (1∗2)∗3 = (2∗1)∗3
and {1, 2}P ∗3 = −{2, 1}P ∗3. Here {, }P is the dual-prePoisson bracket on P .
It is obvious that φ̂ preserves the perm-product. We show that φ̂ preserves
the dual-prePoisson bracket. The defining equation (4.2) is preserved:

φ̂{x̄1 · · · x̄n, y}
= φ̂

∑

i

x̄1 · · · x̄i−1x̄i+1 · · · x̄n ⊗ [xi, y]

=
∑

i

φ(x1) ∗ · · · ∗ φ(xi−1) ∗ φ(x)i+1 ∗ · · · ∗ φ(x)n ∗ {φ(xi), φ(y)}P

= {φ(x1) ∗ φ(x2) ∗ · · · ∗ φ(xn), φ(y)}P .

From φ̂({x̄, ȳ} ⊗ z) = φ̂([x, y] ⊗ z) = φ[x, y] ∗ φ(z) = {φ(x), φ(y)} ∗ φ(x), for
any f, g ∈ S(gLie) we have

φ̂({f, g} ⊗ z) = {φ̂(f), φ̂(g)} ∗ φ(z),

which implies that (4.1) is also preserved. �

Thus, we know that Apoly(g∗) satisfies (A1)–(A4). The proof of the the-
orem is completed. �

Proof of Proposition 2.3. Since the free Poisson algebra is unital, there exists
an injection,

V → 1 ⊗FLod(V ) → FPoiss(V ) ⊗FLod(V ).

The Liezation of the free Loday algebra is the free Lie algebra, because the
Liezation is universal. It is well known that FPoiss = FComFLie. Hence,

FPoiss(V ) = FCom

((FLodV
)
Lie

)
.

Thus FPoiss(V )⊗FLod(V ) becomes a dual-prePoisson algebra. The univer-
sality is followed from the diagram:

V −−−−→ FLod(V ) −−−−→ FPoiss(V ) ⊗FLod(V )
⏐⏐�

⏐⏐�
⏐⏐�

A A A,

where A is an arbitrary dual-prePoisson algebra. The proof of Proposition
2.3 is completed. �
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We note that the projection Apoly(g∗) → S(gLie) coincides with the Pois-
sonization of Apoly(g∗), that is,

(
Apoly(g∗)

)

Poiss

∼= S(gLie).

There exists a natural morphism (I1, I0) in LM,

g
I1−−−−→ Apoly(g∗)

⏐⏐�
⏐⏐�

gLie
I0−−−−→ S(gLie).

It is natural to ask whether or not (I1, I0) is a universal arrow.

Corollary 4.7. The Poissonization Apoly(g∗) → S(gLie) is free over the
Liezation, that is, this Poisson object is the “Lie–Poisson object” over the
Lie object.

4.2. Smooth and graded cases. We consider a smooth case. Assume
dim g < ∞ and replace (4.2) to

{f, y} =
∑

i

∂f

∂ēi
⊗ [ei, y],

where f ∈ C∞(gLie) and {ēi} is a linear coordinate on g∗Lie which is iden-
tified with a linear basis of g. Then the definition (4.3) can be extended to
C∞(g∗Lie) ⊗ g.

Corollary 4.8 (smooth cases). We put A∞(g∗) := C∞(g∗Lie) ⊗ g. Then
A∞(g∗) is a dual-prePoisson algebra.

Proof. Lemma 4.5 is shown by a direct computation without induction. �

We consider the super (graded) cases. Let V be a usual vector space. The
parity change of V , which is denoted by ΠV , is a superspace whose structure
sheaf is the Grassmann algebra over the dual space V ∗,

C∞(ΠV ) :=
·≥0∧

V ∗.

If V = g∗Lie the dual space of a Lie algebra, then C∞(Πg∗Lie) becomes a
Poisson algebra of degree (−1, 0). Its Poisson bracket is known as SN bracket.
In the cases of Loday algebras, the superspace is not commutative algebra
but perm-algebra. We introduce the Loday algebra version of SN-bracket.

Corollary 4.9 (Noncommutative SN brackets). Given a Loday algebra
g, we define a nonstandard superspace Πg∗ as

A∞(Πg∗) := C∞(Πg∗Lie) ⊗ (↑ g).
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Here ↑ g is the linear functions on g∗ with the degree +1. Then A∞(Πg)
becomes a super (graded) dual-prePoisson algebra with the degree (−1, 0).

Definition 4.10. We call the dual-prePoisson algebras Apoly(g∗), A∞(g∗)
and A∞(Πg∗) the Loday–Poisson algebras.

Example 4.11. Let us consider the case of g := sl(2). Since sl(2) = sl(2)Lie,

A∞(Πsl∗(2)) =
( ∧· sl(2)

)⊗ ↑ sl(2).

In the classical case, r = X ∧H is a (triangular-)r-matrix which satisfies the
integrability condition {r, r}SN = 0, where {, }SN is a classical SN bracket
on

∧· g. In the noncommutative case, we obtain

{X ⊗ H, X ⊗ H}NSN = {X ∧ H, X ⊗ H}
= X ∧ {H, X ⊗ H} − H ∧ {X, X ⊗ H}
= 2H ∧ X ⊗ X,

where [H, X] = 2X is used.

5. Quantization

In this section, we study an algebraic quantization of Loday–Poisson algebra.
In first, we recall the notion of associative dialgebra.

Definition 5.1 ([10]). Let D be a vector space with two associative mul-
tiplications � and �. When the following three axioms are satisfied, D is
called an associative dialgebra, or called an associative Loday algebra,

(a � b) � c = (a � b) � c,

(a � b) � c = a � (b � c),

a � (b � c) = a � (b � c),

where a, b, c ∈ D.

If D is a dialgebra, then the commutator

[a, b]di := a � b − b � a

is a Loday bracket. Hence, dialgebras are associative analogues of Loday
algebras.

Given a Loday algebra g, the universal enveloping dialgebra, Ud(g), has
the form of Ud(g) := U(gLie) ⊗ g. The dialgebra multiplications on Ud(g)
are defined by

f ⊗ x � g ⊗ y := fx̄g ⊗ y,

f ⊗ x � 1 ⊗ y := fȳ ⊗ x − f ⊗ [y, x],

f ⊗ x � (ȳ1 · · · ȳn−1 ⊗ yn) := (· · · (f ⊗ x � 1 ⊗ y1) � · · · ) � (1 ⊗ yn),
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where f, g, x̄· ∈ U(gLie). We have

(1 ⊗ x) � (1 ⊗ y) − (1 ⊗ y) � (1 ⊗ x) = 1 ⊗ [x, y].

Since grU(gLie) ∼= S(gLie) (PBW-theorem), we obtain grUd(g) = Apoly(g∗).

Remark 5.2 ( [9]). It is known that Ud(g) → U(gLie) is the universal
enveloping gebra, which is an associative gebra (or associative object) in
LM, over the Lie object g → gLie.

Let S�(gLie) :=
(
S(gLie)[[�]], �

)
be a canonical deformation quantization

(Kontsevich [7]) of the Lie–Poisson algebra, where dim g < ∞ and � is the
formal parameter of deformation. In [7] Section 8.3.1, it was shown that
S�(gLie) is isomorphic to U�(gLie) as an associative algebra, where U�(gLie)
is the universal enveloping algebra over gLie with the Lie bracket �[, ]. We
recall the proof of this theorem. Assume � := 1. The star-product satisfies

x̄ � ȳ = x̄ȳ +
1
2
{x̄, ȳ},

on the level of generators. Since {x̄, ȳ} = [x̄, ȳ], we have x̄ � ȳ− ȳ � x̄ = [x̄, ȳ],
which gives an algebra homomorphism, I: U(gLie) → S�(gLie). This mapping
is clearly surjective and preserves the top terms of polynomials. Hence, it
is bijective. When � �= 1, I is the map of U�(gLie) to S�(gLie), because the
degree of monomial is coherent with the one of �:

We extend I to the following isomorphism:

I ⊗ 1: Ud�(g) → Apoly
� (g∗),

where Apoly
� (g∗) := S�(gLie)⊗g and where Ud�(g) is the universal enveloping

dialgebra over g with the Loday bracket �[, ]. Via the isomorphism, one can
define the unique dialgebra structure on Apoly

� (g∗). Let us denote by �� and
�� the dialgebra multiplications on Apoly

� (g∗). For example,

g ⊗ y �� x̄1 ⊗ x2

= (I ⊗ 1)
(
I−1(g) ⊗ y � x̄1 ⊗ x2

)

= (I ⊗ 1)
(
(I−1(g)x̄1 ⊗ y − I−1(g) ⊗ �[x1, y]) � 1 ⊗ x2

)

= (I ⊗ 1)
(
I−1(g)x̄1x̄2 ⊗ y − I−1(g)x̄1 ⊗ �[x2, y] − I−1(g)x̄2 ⊗ �[x1, y]

+ I−1(g) ⊗ �
2[x2, [x1, y]]

)

= g � x̄1 � x̄2 ⊗ y − �g � x̄1 ⊗ [x2, y]− �g � x̄2 ⊗ [x1, y] + �
2g ⊗ [x2, [x1, y]],

where I(x̄) = x̄ is used.



�

�

�

�

�

�

�

�

106 K. UCHINO

Proposition 5.3. For any f ⊗ x, g ⊗ y ∈ Apoly
� (g∗),

lim
h→0

(f ⊗ x) �� (g ⊗ y) = (f ⊗ x) ∗ (g ⊗ y),

lim
h→0

1
�
[f ⊗ x, g ⊗ y]di = {f ⊗ x, g ⊗ y}.

One concludes that Apoly
� (g∗) is a deformation quantization of the Loday–

Poisson algebra Apoly(g∗).

Proof. By the definition of the star dialgebra products,

(5.1) x̄1 � · · · � x̄n−1 ⊗ xn �� g ⊗ y = x̄1 � · · · � x̄n � g ⊗ y

and

g ⊗ y �� (x̄1 � · · · � x̄n−1 ⊗ xn)

= g � x̄1 � · · · � x̄n ⊗ y − �

∑

i≥1

g � x̄1 � · · · � x̄∨
i � · · · � x̄n ⊗ [xi, y] + · · ·

= g � x̄1 � · · · � x̄n ⊗ y − �

∑

i≥1

gx̄1 · · · x̄∨
i · · · x̄n ⊗ [xi, y] + · · · .

Equation (5.1) yields the first identity of the proposition because f is a
polynomial with respect to the star product. The commutator is

lim
�→0

1
�
[x̄1 � · · · � x̄n−1 ⊗ xn, g ⊗ y]di

= lim
�→0

1
�
[x̄1 � · · · � x̄n, g] ⊗ y +

∑

i≥1

gx̄1 · · · x̄∨
i · · · x̄n ⊗ [xi, y]

= {x̄1 · · · x̄n−1 ⊗ xn, g ⊗ y},
where

lim
�→0

1
�
[x̄1 � · · · � x̄n, g] = {x̄1 · · · x̄n, g}.

The proof of the proposition is completed. �

Remark 5.4 (recall Remark 5.2). The associative object, Apoly
� (g∗) →

S�(gLie), can seen as a quantization of the Lie–Poisson object;

g
Poiss1−−−−→ Apoly(g)

Quanti1−−−−−→ Apoly
� (g∗)

⏐⏐�
⏐⏐�

⏐⏐�

gLie
Poiss0−−−−→ S(gLie)

Quanti0−−−−−→ S�(gLie).

Here Poiss· is the Lie–Poisson functor and Quanti· is the quantization
functor.
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Final Remark. We studied six types of algebras, i.e., three classical alge-
bras; Lie, Poisson, Associative and their noncommutative analogues; Loday,
Loday–Poisson, di-associative. We recall their operads (see [4,5,10–12] for
operads).

Definition 5.5 ([13]). Let P be a binary quadratic operad and let Perm
be the operad of perm-algebras. We call the functor

P �→ Perm ⊗ P
a derived bracket construction, on the level of operad.

It is known that the operads of the six algebras are related via the derived
bracket constriction

Lod = Perm ⊗ Lie,

LodPoiss = Perm ⊗ Poiss,

Dias = Perm ⊗Ass,

where Lie, Poiss and Ass are respectively operads of Lie algebras, Pois-
son algebras and associative algebras and Lod, LodPoiss and Dias are
respectively operads of Loday algebras, Loday–Poisson algebras (or dual-
prePoisson algebras) and associative dialgebras. Thus, we obtain an operad
theoretical description for the results of the previous sections:

Type Symmetry Classical Quantum
Perm ⊗ P Lod LodPoiss Dias
P Lie Poiss Ass
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