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ON THE REGULARIZATION OF THE KEPLER PROBLEM

Gert Heckman and Tim de Laat

Dedicated to the memory of Hans Duistermaat (1942–2010)

In 1970, Moser showed that the Hamiltonian flow of the Kepler prob-
lem in R

n for a fixed negative energy level is regularized via stereo-
graphic projection to the geodesic flow on the punctured cotangent
bundle of the unit sphere in R

n+1, in such a way that the time param-
eter in the Kepler problem and the arc length for the geodesic flow
are related by the Kepler equation. Ligon and Schaaf gave an alterna-
tive regularization of the Kepler problem, treating the whole negative
energy part of the phase space at once, such that the Kepler flow and the
Delaunay flow on the punctured cotangent bundle of the sphere become
related by a canonical transformation. The rather elaborate calculations
of Ligon and Schaaf were simplified by Cushman and Duistermaat.

In this paper, we derive the Ligon–Schaaf regularization as an almost
trivial adaptation of the Moser regularization. As a consequence, the
hidden symmetry of the Kepler problem becomes naturally visible.

1. Introduction

The Kepler problem is an ancient problem, solved for the first time by New-
ton and well studied over more than three centuries [2,4,7,10,12]. Newton
showed that the solutions of his equation of motion in Hamiltonian form,

q̇ = p, ṗ = −q/q3,

are planar ellipses traversed according to the area law. What is commonly
called the Kepler problem is a study of the solutions of these equations,
preferably from a geometric point of view and taking symmetry arguments
into account. It might come as a surprise that the past half century we have
still witnessed new insights on the Kepler problem.

A key point in a modern treatment of the Kepler problem in R
n is the

regularization of the collision orbits, which goes back to Moser [11]. The
treatment of Moser relates the Kepler flow for a fixed negative energy level
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to the geodesic flow on the sphere S
n. The method of Moser is geometrically

well motivated. The main calculation to be done is the determination of the
explicit transformation formulas for stereographic projection on the level of
cotangent bundles.

An alternative approach to the regularization, having the advantage of
transforming canonically the whole negative energy part of the phase space
R

2n for the Kepler Hamiltonian into the punctured cotangent bundle of S
n,

was found by Ligon and Schaaf [8]. Unfortunately the paper by Ligon and
Schaaf requires a good deal of computations. Cushman and Duistermaat
have given a simplified treatment of the Ligon–Schaaf regularization map,
but their calculations are still more laborious than one would like [3].

The main novelty of this paper is to show that the Ligon–Schaaf regula-
rization map is almost trivially understood as an adaptation of the Moser
regularization map. For this reason we recall in Section 2 the Moser regulari-
zation, essentially following the original paper by Moser. The Ligon–Schaaf
map is the natural adaptation of the Moser map intertwining the Kepler flow
on the negative energy part P− of the phase space R

2n and the (geodesic)
Delaunay flow on the punctured cotangent bundle T× of the sphere S

n in a
canonical way.

The Kepler problem has hidden symmetry in the sense that the visible
symmetry by the orthogonal group of size n extends to size (n+1). Of course
this hidden symmetry becomes naturally visible on S

n, and all one has to
do is to calculate the pull-back under the Ligon–Schaaf map of all angular
momenta on T×. So our discussion in Section 4 of this hidden symmetry
is based on the (defined) equivariance of the Ligon–Schaaf map for the full
symmetry group. In this way one is naturally led to the components of the
Lenz vector (divided by the square root of −2H) for the extension of Lie
algebras from so(n) to so(n + 1).

All arguments of this paper have natural adaptations from the negative
energy part P− of the phase space to the positive energy part P+ of the phase
space, in which case T× becomes the punctured cotangent bundle of hyper-
bolic space H

n. Details are easily filled in and left to the reader. At another
occasion we hope to discuss the implications of the Ligon–Schaaf regulari-
zation in classical mechanics for the quantum mechanics of the hydrogen
atom [1,6, 13].

After submission of this paper, the recent work of Marle [9] was pointed
out to us. In this paper, the author studies conformally Hamiltonian vector
fields with applications to the Kepler problem. In particular, Theorem 2.4
of this paper gives a more general explanation of what we did for the Kepler
problem.

2. Regularization after Moser

Let us describe the transformation formulas for stereographic projection.
Let n = (0, . . . , 0, 1) be the north pole of the unit sphere S

n in R
n+1, and
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let u = (u1, . . . , un+1) be another point of S
n. Let v = (v1, . . . , vn+1) be a

covector on S
n at u, so that

u �= n, u · u = 1, u · v = 0

are the constraints on u,v in R
n+1. The line through n and u intersects the

hyperplane R
n orthogonal to n in the point x, and let y be a covector on R

n

at x. The map x �→ u is called stereographic projection, and u �→ x inverse
stereographic projection.

Theorem 2.1. The transformation formulas for the inverse stereographic
projection T ∗

S
n → T ∗

R
n, (u,v) �→ (x,y) are given by

xk = uk/(1 − un+1),

yk = vk(1 − un+1) + vn+1uk,

and for the stereographic projection T ∗
R

n → T ∗
S

n, (x,y) �→ (u,v) they
become

uk = 2xk/(x2 + 1), un+1 = (x2 − 1)/(x2 + 1),

vk = (x2 + 1)yk/2 − (x · y)xk, vn+1 = x · y
for k = 1, . . . , n. These transformations are canonical in the sense that the
symplectic forms

∑n
k=1 dyk ∧ dxk and (the restriction of)

∑n+1
k=1 dvk ∧ duk

match.

Proof. Clearly the last coordinate of x = λu + (1 − λ)n vanishes, and so
λ(1 − un+1) = 1. Conversely, u = μx + (1 − μ)n has unit length, and so
μ(x2 + 1) = 2. Hence the transformation formulas between S

n and R
n are

obvious.
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By rotational symmetry we may suppose that n = 1. In that case

x1 = u1/(1 − u2), y1 = v1(1 − u2) + v2u1,

and the canonical one form on T ∗
R becomes

y1dx1 = (v1(1 − u2) + v2u1)(du1/(1 − u2) + u1du2/(1 − u2)2)

= v1du1 + v1u1du2/(1 − u2) + v2u1du1/(1 − u2) + v2u
2
1du2/(1 − u2)2

= v1du1 + v2{−u2du2 + u1du1 + (1 + u2)du2}/(1 − u2)

= v1du1 + v2du2 + v2{u1du1 + u2du2}/(1 − u2)
= v1du1 + v2du2,

as should, using v1u1 + v2u2 = 0, u2
1 + u2

2 = 1 and u1du1 + u2du2 = 0.
For the inverse mapping again suppose n = 1. Then we have

y1x1 = {v1(1 − u2) + v2u1}u1/(1 − u2) = v1u1 + v2(1 + u2) = v2,

using u2
1 + u2

2 = 1 and v1u1 + v2u2 = 0, and therefore

v1 = (y1 − v2u1)/(1 − u2) = y1(x2 + 1)/2 − (y1x1)x1,

as desired, using (1−u2) = 2/(x2+1) and u1/(1−u2) = x1. Since any diffeo-
morphism of manifolds induces a symplectomorphism of cotangent bundles
the theorem follows. �

Corollary 2.1. The invariant metric on S
n transforms to

v2 = (x2 + 1)2y2/4

under stereographic projection.

Proof. Indeed, the relations

vk = (x2 + 1)yk/2 − (x · y)xk, vn+1 = x · y,

for k = 1, . . . , n give

v2 = (x2 + 1)2y2/4 + (x · y)2x2 − (x2 + 1)(x · y)2 + (x · y)2,

and the formula follows. �

Consider the function F (u,v) = v2/2 on the cotangent bundle T ∗
S

n of
the sphere S

n. The trajectories of the Hamiltonian flow of F on the level
hypersurface F = 1/2 in T ∗

S
n project onto great circles on S

n traversed in
arc length time s with period 2π. By the above corollary the trajectories of
the Hamiltonian flow on T ∗

R
n of the function

F (x,y) = (x2 + 1)2y2/8
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are images under stereographic projection of the trajectories of this geodesic
flow on T ∗

S
n. Consider the two related functions

G(x,y) =
√

2F (x,y) − 1 = (x2 + 1)y/2 − 1,

E(x,y) = G(x,y)/y − 1/2 = x2/2 − 1/y

on T ∗
R

n. The Hamiltonian vector fields of F and G on T ∗
R

n coincide on
the level hypersurface F = 1/2 (equivalently G = 0 and E = −1/2), since
the derivative

{r �→
√

2r − 1}′ = {r �→ 1/
√

2r}
is equal to 1 for r = 1/2. Hence we have proved the following regularization
theorem of Moser [11].

Theorem 2.2. On the level hypersurface F = 1/2 the trajectories of
the Hamiltonian flow of the function F (u,v) = v2/2 on T ∗(Sn − {n})
traversed in time s equal to arc length, transform under inverse stereo-
graphic projection to trajectories of the Hamiltonian flow of the function
E(x,y) = x2/2 − 1/y traversed in real time t on the level hypersurface
E = −1/2 with

ds

dt
=

1
y

relating the two time parameters s and t.

If we set x = p and y = −q then (q,p) �→ (x,y) is a canonical transfor-
mation of R

2n, called the geometric Fourier transform, and

H(q,p) = E(x,y) = p2/2 − 1/q

becomes the Kepler Hamiltonian.

Corollary 2.2. The Moser regularization map ΦM is the map from T ∗
R

n

to T ∗(Sn − {n}) defined as the composition of stereographic projection with
the geometric Fourier transform. It is a symplectomorphism and explicitly
given by the formula (q,p) �→ ΦM (q,p) = (u,v) with

u = (2p/(p2 + 1), 2p2/(p2 + 1)− 1), v = (−(p2 + 1)q/2 + (q ·p)p,−q ·p),

as is clear from Theorem 2.1. On the level hypersurface H = −1/2 the Moser
map transforms the Kepler flow with time t to the geodesic flow on S

n−{n}
with arc length time s, with the infinitesimal Kepler equation

ds

dt
=

1
q

relating the two different time parameters.

In this corollary the equivalence of the Kepler problem with the geodesic
flow of the sphere is established only on the energy hypersurface H = −1/2.
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The general case of negative energy H < 0 can be reduced to this case by a
scaling of variables with R+ = {ρ > 0} according to

q �→ ρ2q, p �→ ρ−1p, H �→ ρ−2H, t �→ ρ3t,

and the symplectic form ω =
∑n

k=1 dpk ∧ dqk scales according to ω �→ ρω.
This ends our discussion of the Moser regularization.

3. Regularization after Ligon and Schaaf

Let us fix some notations. The phase space T ∗
R

n of the Kepler problem with
canonical coordinates (q,p) will be denoted by P . Let us denote

P− = {(q,p) ∈ P | q �= 0, H(q,p) < 0},
P−1/2 = {(q,p) ∈ P | q �= 0, H(q,p) = −1/2},

with H(q,p) = p2/2 − 1/q the Kepler Hamiltonian as before. Likewise let
the cotangent bundle T ∗

S
n = {(u,v) ∈ T ∗

R
n+1 | u = 1, u · v = 0} of the

sphere be denoted by T , and put

T× = {(u,v) ∈ T | v �= 0},
T− = {(u,v) ∈ T | u �= n, v �= 0},

T−1/2 = {(u,v) ∈ T | u �= n, v = 1},
for the various submanifolds of T .

Definition 3.1. The Delaunay Hamiltonian H̃ is defined by

H̃(u,v) = − 1
2v2

on the punctured cotangent bundle T× of S
n.

It is clear that the flow of the Delaunay Hamiltonian has a similar scaling
symmetry

u �→ u, v �→ ρv, H̃ �→ ρ−2H̃, t �→ ρ3t

as the Kepler problem, and likewise the symplectic form ω̃ =
∑n+1

k=1 dvk∧duk

scales according to ω̃ �→ ρω̃.

Remark 3.1. The Moser fibration ΠM : P− → T−1/2 is defined by
ΠM (q,p) = (u,v), where

u = (
√−2Hqp, qp2 − 1), v = (−q/q + (q · p)p,−√−2Hq · p).

Note that ΠM is invariant under the action of the scale group R+ on P−.
On the submanifold P−1/2 we have (p2 + 1)/2 = 1/q, and therefore

ΦM(q,p) = ΠM(q,p)

on P−1/2 by a direct comparison with the formula for the Moser map ΦM

in Corollary 2.2. In turn this equality implies that ΠM is indeed a smooth
fibration with fibers the orbits of the scale group R+.
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Definition 3.2. The Ligon–Schaaf regularization map ΦLS : P− → T− is
defined by ΦLS(q,p) = (r, s) with

r = ((cos vn+1)u+(sin vn+1)v), s = ((− sin vn+1)u+(cos vn+1)v)/
√−2H,

with u,v ∈ S
n ⊂ R

n+1 given by

u = (
√−2Hqp, qp2 − 1), v = (−q/q + (q · p)p,−√−2H(q · p))

as the components of the Moser fibration ΠM(q,p) = (u,v).

By definition the Ligon–Schaaf map is equivariant for the action of the
scale group R+ on P− and T×, which in turn is equivalent to Φ∗

LSH̃ = H.
For (u,v) ∈ T−1/2 the vectors u and v form an orthonormal basis in the

plane Ru + Rv. If we define a complex structure on this plane by

iu = v, iv = −u,

then the Ligon–Schaaf map can be written in the compact form

r = eivn+1u, s = eivn+1v/
√−2H.

We claim that for (q,p) ∈ P−1/2 and (u,v), (r, s) ∈ T−1/2 related as above
the following three systems of differential equations

dq
dt

= p,
dp
dt

= − q
q3

,

du
ds

= v,
dv
ds

= −u,

dr
dt

= s,
ds
dt

= −r

are equivalent with time parameters t and s related by ds/dt = 1/q. The
first two of these are equivalent under the Moser map ΦM by Corollary 2.2.
The equivalence with the third one follows from

dr
dt

= i
dvn+1

dt
r + eivn+1

ds

dt

du
ds

= (−p2 + 1/q)s + s/q = (−2H)s = s,

and likewise for s = ir. This shows that the first and the third equation
are equivalent under the Ligon-Schaaf map ΦLS. Using that the Kepler and
the Delaunay Hamiltonians have the same scale symmetry and that ΦLS is
equivariant for the two scale symmetries, it follows that ΦLS intertwines the
Kepler flow on P− and the Delaunay flow on T−.

Since Φ∗
LSH̃ = H it follows that ΦLS : P− → T− is a symplectomorphism.

Indeed ΦLS is obtained from the canonical Moser map ΦM : P → T by a
canonical modification along the ruled surfaces with base the Kepler orbits
in P−1/2 and rulings the scale action. For such a ruled surface S in P− the
form ω|S = dH ∧ dt is mapped under ΦLS to the form ω̃|S̃ = dH̃ ∧ dt on
S̃ = ΦLS(S). This proves the following result of Ligon and Schaaf [8].
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Theorem 3.1. The Ligon-Schaaf regularization map ΦLS : P− → T− is a
symplectomorphism intertwining the Kepler flow on P− with the Delaunay
flow on T− (with respect to the same time parameter t).

The regularization is obtained by the partial compactification T− ↪→ T×.
The incomplete Kepler flow of the collision orbits on P− is regularized under
ΦLS by T− ↪→ T× to the complete Delaunay flow on T×. For this reason the
punctured cotangent bundle T× of S

n is called the Kepler manifold [14]. We
now move on to discuss the symmetry of the Kepler problem.

4. The symmetry group

If we write Lij = qipj − qjpi for the components of angular momentum
L = q∧p on the phase space R

2n, then {Lij , Ljk} = Lki, while {Lij , Lkl} = 0
if #{i, j, k, l} �= 3. These are the commutation relations for the Lie algebra
so(n).

Theorem 4.1. On the negative energy part P− of the phase space put

Li(n+1) = −L(n+1)i = Ki/
√−2H

with Ki the components of the Lenz vector

K = (p2 − 1/q)q − (q · p)p.

If we write Mij = risj − rjsi for the components of the angular momentum
M = r ∧ s on the phase space R

2(n+1), then

Φ∗
LSMij = Lij

for i, j = 1, . . . , n + 1. In particular, {Lij , Ljk} = Lki, and {Lij , Lkl} = 0
if #{i, j, k, l} �= 3, for i, j, k, l = 1, . . . , n + 1. The conclusion is that the
Ligon-Schaaf regularization map

ΦLS : P− → T−

intertwines the two infinitesimal Hamiltonian actions of so(n + 1).

Proof. Using the formula for ΦLS of Definition 3.2, the relation Φ∗
LSMij = Lij

is a rather straightforward calculation.
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Indeed for i, j = 1, . . . , n and Mij = risj − rjsi the expression for Φ∗
LSMij

at (q,p) is equal to

{(cos vn+1)(
√−2Hqpi) + (sin vn+1)(−qi/q + (q · p)pi)}

× {(− sin vn+1)(
√−2Hqpj) + (cos vn+1)(−qj/q + (q · p)pj)}/

√−2H

− {i ↔ j}
= {(cos vn+1 sin vn+1)(−q2pipj)}

√−2H

+ {(cos2 vn+1)(−piqj + q(q · p)pipj) + (sin2 vn+1)(qipj − q(q · p)pipj)}
+ {(cos vn+1 sin vn+1)(−qi/q + (q · p)pi)(−qj/q + (q · p)pj)}/

√−2H

− {i ↔ j}
= {cos2 vn+1(qipj − qjpi) + sin2 vn+1(qipj − qjpi)} = (qipj − qjpi) = Lij

with {i ↔ j} denoting the same expression with i and j interchanged. Of
course this formula is also obvious because our geometric construction of the
Ligon-Schaaf regularization map is equivariant for the action of so(n).

Likewise for i = 1, . . . , n and Mi(n+1) = risn+1−rn+1si the expression for
Φ∗

LSMi(n+1) at (q,p) is equal to

{(cos vn+1)(
√−2Hqpi) + (sin vn+1)(−qi/q + (q · p)pi)}

× {(− sin vn+1)(qp2 − 1) + (cos vn+1)(−
√−2H(q · p))}/√−2H

− {(cos vn+1)(qp2 − 1) + (sin vn+1)(−
√−2H(q · p))}

× {(− sin vn+1)(
√−2Hqpi) + (cos vn+1)(−qi/q + (q · p)pi)}/

√−2H

= {(− cos vn+1 sin vn+1 + cos vn+1 sin vn+1)(qp2 − 1)qpi}
+ {(− sin vn+1 cos vn+1 + sin vn+1 cos vn+1)(q · p)(−qi/q + (q · p)pi)}
+ {(cos2 vn+1 + sin2 vn+1)(2Hq(q · p)pi)}/

√−2H

+ {(− sin2 vn+1 − cos2 vn+1)(qp2 − 1)(−qi/q + (q · p)pi)}/
√−2H

= {2Hq(q · p)pi − (qp2 − 1)(−qi/q + (q · p)pi)}/
√−2H

= {(qp2 − 2)(q · p)pi + (qp2 − 1)qi/q − (qp2 − 1)(q · p)pi}/
√−2H

= {(p2 − 1/q)qi − (q · p)pi}/
√−2H = Ki/

√−2H = Li(n+1),

which proves the theorem. �
Corollary 4.1. On P− the Hamiltonian vector fields of the functions Lij

for i, j = 1, . . . , n + 1 integrate to an incomplete Hamiltonian action of the
rotation group SO(n + 1). Moreover, the Ligon-Schaaf map

ΦLS : P− → T−
intertwines this action with the standard complete Hamiltonian action of
SO(n + 1) on the punctured cotangent bundle T× of S

n. In particular, ΦLS
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intertwines the corresponding moment maps

μ : P− → so(n + 1)∗, μ̃ : T× → so(n + 1)∗

in the sense that μ(q,p) = μ̃(ΦLS(q,p)). In turn this implies that

μ2 = L2 + K2/(−2H) = 1/(−2H),

because μ̃2 = 1/(−2H̃).

The incomplete Hamiltonian action of so(n+1) on P− is regularized under
ΦLS by the partial compactification T− ↪→ T× to a complete Hamiltonian
action of so(n + 1) on T×. The fact that ΦLS intertwines the two moment
maps was the point of departure of Cushman and Duistermaat [3]. The next
corollary is due to Györgyi [5], but on the more refined quantum level it was
obtained before by Pauli in his spectral analysis of the hydrogen atom [13].

Corollary 4.2. On the phase space {(q,p) ∈ P ;q �= 0} of R
n − {0} the

components Ki of the Lenz vector satisfy the Poisson bracket relations

{Lij , Kk} = δikKj − δjkKi, {Ki, Kj} = −2HLij

for i, j, k = 1, . . . , n.

Proof. These Poisson brackets hold on P− by the above theorem, and extend
from P− to {(q,p) ∈ P ;q �= 0} as analytic identities. �

In turn this implies that on the positive energy part P+ of the phase space
the symmetry algebra becomes the Lorentz algebra so(n, 1) rather than the
orthogonal algebra so(n + 1).
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[3] R. H. Cushman and J. J. Duistermaat, A characterization of the Ligon-Schaaf regu-
larization map, Comm. Pure Appl. Math. 50 (1997), 773–787.

[4] V. Guillemin and S. Sternberg, Variations on a theme by Kepler, AMS Colloq. Publ.,
42, 1990.

[5] G. Györgyi, Kepler’s equation, Fock variables, Bacry’s generators and Dirac brackets,
Nuovo Cimento 53A (1968), 717–735.

[6] V. Fock, Zur theorie des Wasserstoffatoms, Z. Phys. 98 (1935), 145–154.

[7] M. van Haandel and G. Heckman, Teaching the Kepler Laws for Freshmen, Math.
Intelligencer 31(2) (2009), 40–44.

[8] T. Ligon and M. Schaaf, On the global symmetry of the classical Kepler problem, Rep.
Math. Phys. 9 (1976), 281–300.

[9] C.-M. Marle, A property of conformally Hamiltonian vector fields; application to the
Kepler problem, preprint, 2011, arXiv:1011.5731.



ON THE REGULARIZATION OF THE KEPLER PROBLEM 473

[10] J. Milnor, On the geometry of the Kepler problem, Amer. Math. Monthly 90(6) (1983),
353–365.

[11] J. Moser, Regularization of Kepler’s problem and the averaging method on a manifold,
Comm. Pure Appl. Math. 23 (1970), 609–636.

[12] I. Newton, The Principia, mathematical principles of natural philosophy, a new trans-
lation by I. B. Cohen and A. Whitman, with a guide to Newton’s Principia by I. B.
Cohen, University of California Press, Berkeley, 1999.
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