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A PRODUCT FORMULA FOR GROMOV–WITTEN
INVARIANTS

Clément Hyvrier

We establish a product formula for Gromov–Witten invariants for
closed relatively semi-positive Hamiltonian fibrations, with connected
fiber, and over any connected symplectic base. Furthermore, we show
that the fibration projection induces a locally trivial (orbi-)fibration
map from the moduli space of pseudo-holomorphic maps with marked
points in the total space of the Hamiltonian fibration to the correspond-
ing moduli space of pseudo-holomorphic maps with marked points in
the base. We use this induced map to recover the product formula
by means of integration. Finally, we give applications to c-splitting and
symplectic uniruledness.
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1. Introduction

We consider rational Gromov–Witten invariants (GW -invariants) of Hamil-
tonian fibrations with closed connected fiber over any closed connected sym-
plectic base. In a symplectic manifold (X,ω) with ω-tame almost complex
structure J , GW -invariants are given by counting the (algebraic) number
of unparameterized J-(pseudo)-holomorphic genus 0 maps with l distinct
marked points, representing a fixed spherical homology class A ∈ H2(X,Z),
and intersecting transversally l given cycles of X at the marked points.
Roughly speaking, if M0,l(X,A, J) denotes the moduli space of unparame-
terized (genus 0) J-holomorphic maps with l markings, (u, x1, . . . , xl), rep-
resenting the class A, and if M1, . . . ,Ml are cycles in X representing given
classes c1, . . . , cl ∈ H∗(X,Q), then these invariants can be seen as the values



A PRODUCT FORMULA FOR GROMOV–WITTEN INVARIANTS 249

of the homomorphism:

〈 〉X0,l,A : (H∗(X,Q))⊗l → Q

c1 ⊗ · · · ⊗ cl �→ evX
l · (M1 × · · · ×Ml),

the intersection pairing · being taken with respect to the evaluation at the
marked points:

evX
l,J : M0,l(X,A, J) → X l, (u, x1, . . . , xl) �→ (u(x1), . . . , u(xn)).

It is well known that when the symplectic manifold is semi-positive the GW -
invariants are generically well-defined Z-valued invariants of the symplectic
manifold, and the classes ci can be chosen in H∗(X) the singular homology
of X modulo torsion (see [17, 21]).

In the case where the Hamiltonian fibration is a product of two symplectic
manifolds, Ruan and Tian [21], and shortly after Kontsevich and Manin [9],
showed that when both the base and the fiber are semi-positive, the GW -
invariants of the total space are given by products of related GW -invariants
in the base and in the fiber, giving rise to splitting of the quantum product.
A priori, we cannot expect for such a splitting to hold in the non-trivial
case as even the cup product may not split. Nevertheless, one may still ask
about the algebraic relations that can be established out of the invariants
of the base, the fiber and the total space. We give such a relation under
some assumptions, in particular when the reference fiber of the Hamiltonian
fibration is semi-positive relative to the total space. We now explain in detail
the setting, our main results and some consequences.

Hamiltonian fibrations. By definition, a symplectic fibration is a smooth
locally trivial fibration π : P → B with symplectic reference fiber (F 2nF , ω)
whose structure group lies in the group of symplectic diffeomorphisms
of the fiber, denoted Symp(F, ω). It follows that each fiber Fb := π−1(b)
is naturally equipped with a symplectic form ωb. A symplectic fibra-
tion is Hamiltonian if the structure group can be reduced to the group
Ham(F, ω) of Hamiltonian diffeomorphisms. Extending results of Guillemin–
Lerman–Sternberg for Symplectic fibrations with simply connected fibers
([5], Theorem 1.4.1), McDuff and Salamon showed the following criterion
for Hamiltonian fibrations:

Theorem 1.1 ([16], Theorem 6.21). A Symplectic fibration as above is
Hamiltonian if and only if:
(H1): P is symplectically trivial over the 1-skeleton B1 of B;
(H2): there exists a connection Horτ ⊂ TP with holonomy in Ham(F, ω),

induced by a unique closed 2-form τ ∈ Ω2(P ) extending the family
{ωb}b∈B, and such that the integration of τnF+1 along the fibers of π
vanishes.
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The closed 2-form is usually referred to as the coupling form. Since B is
assumed to be closed and symplectic, the existence of such a form is sufficient
to give P a symplectic structure compatible with the family {ωb}b∈B by
considering the form

ωP,κ := τ + κπ∗ωB,

where κ > 0 is a real number chosen large enough, so that ωP,κ is non-
degenerate. A simple example of such fibration is the trivial product of the
base with the fiber. A less trivial class of examples is that of Hamiltonian
fibrations over S2. These latter fibrations correspond (up to isomorphism)
to homotopy classes of loops in Ham(F, ω). This direct connection with the
fundamental group of Ham(F, ω) makes these objects particularly interesting
from the point of view of symplectic topology as pointed out by Seidel [22].

Product formula. Let σ ∈ H2(P ; Z) be a spherical homology class such that
σB := π∗σ is non-zero. Also, consider classes in H∗(P ) that are either lying
in the image of ιPF : H∗(F ) → H∗(P ) or in the image of the “shriek” map

π! : H∗(B) → H2nF+∗(P ), α �→ PD−1
P π∗PDB(α).

Explicitly, we will consider classes cBi ∈ H∗(B), cFi ∈ H∗(F ) and cPi ∈
H∗(P ), i = 1, . . . , l, such that the following conditions are satisfied for some
integer 0 ≤ m ≤ l:

(	)

{
cBi = pt, cPi = ιPF (cFi ), for i = 1, . . . ,m,

cFi = [F ], cPi = π!(cBi ), for i = m+ 1, . . . , l.

In this paper, we provide a product-type formula giving the GW -invariant
〈cP1 , . . . , cPl 〉P0,l,σ of P as the product of GW -invariants 〈cB1 , . . . , cBl 〉B0,l,σB

of
B with a term involving GW -invariants of a Hamiltonian fibration over S2.
Such a product formula was suggested in [10].

For this purpose, we equip P with an (almost) complex structure JP

compatible with π and a Hamiltonian connection τ , which means that JP

projects to an ωB-tame almost complex structure JB via dπ, JP preserves the
horizontal distribution Horτ , and JP restricts to an ωb-tame almost complex
structure Jb on TFb. For simplicity, we will say that such JP is fibered. It
follows from this choice of almost complex structure that π induces a map
between moduli spaces of unparameterized pseudo-holomorphic maps:

(1.1) π : M0,l(P, σ, JP ) → M0,l(B, σB, JB), (u,x) �→ (π(u),x).

In fact, the third term in the product formula, that we have not defined yet, is
related to the fibers of this map. Let us describe the fiber of π over (uB,x).
Let C denote the image of the JB-holomorphic map uB representing σB,
and let PC denote the restriction of P along C. Then, PC is a Hamiltonian
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fibration over S2 with coupling form given by the pull-back of τ under the
natural inclusion ιPPC : PC ↪→ P . Moreover, the restriction of JP to PC defines
a fibered almost complex structure JC on PC . Then π−1(uB,x) consists of
unparameterized JC-holomorphic maps in PC with fixed marked points x
representing classes belonging to the set

Bσ := {σ′ ∈ H2(PC ; Z)|ιPPCσ′ = σ},
where ιPPC stands for the induced map in homology. Roughly speaking, the
third term in the product formula is actually a sum overBσ ofGW -invariants
of PC involving the classes ιPCF (cFi ), where C is the image of some map
counted in 〈cB1 , . . . , cBl 〉B0,l,σB

, and where ιPCF denotes the map in homology
induced from the natural inclusion of F into PC . We will provide two proofs
for this formula.

The first proof rests on a transversality result for fibered almost complex
structures. The formula is then obtained by explicitly identifying the curves
entering the definition of the involved GW -invariants. To achieve transver-
sality we will assume that the fiber is semi-positive relative to the total space:
let cv denote the first Chern class of the vertical subbundle ker dπ ⊂ TP
(induced by a family of ωb-tame almost complex structures on Fb); we say
that (F, ω) is semi-positive relative to P if and only if

(		) ∀A ∈ π2(F ) : ω(A) > 0, cv(A) ≥ 3 − 1/2 dimP =⇒ cv(A) ≥ 0,

where A is seen as an element in π2(P ) via the natural inclusion ιPF : F ↪→ P .
Note that P need not be semi-positive, but the fiber must be. We also
require that σB only admits irreducible effective decompositions for some
JB: this means that any stable JB-holomorphic map with l-marked points
representing σB is simple, i.e., admits no multiply covered component or
any two components having the same non-constant image in B. This is in
particular realized by effective primitive classes (see Section 4.1.2).

Theorem A. Let π : P → B be a Hamiltonian fibration with semi-positive
fiber (F, ω) relatively to P . Let σ ∈ H2(P,Z) and suppose σB := π∗(σ) 
= 0
only admits irreducible effective decompositions for some JB. Let cPi , c

B
i , c

F
i

be as in (	). Then, for a generic fibered complex structure the following
equation holds:

〈cP1 , . . . , cPl 〉P0,l,σ = 〈cB1 , . . . , cBl 〉B0,l,σB
·
∑

σ′∈Bσ

〈
ιPCF (cF1 ), . . . , ιPCF (cFl )

〉PC

0,l,σ′
,

where C is a curve counted in 〈cB1 , . . . , cBl 〉B0,l,σB
.

By Gromov’s compactness the above sum is finite. It is even possi-
ble to simplify the expression of the formula by considering equivalence
classes on the preimage π−1∗ (σB) ⊂ H2(P,Z). More precisely, we say that
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σ1, σ2 ∈ π−1∗ (σB) are equivalent if and only if

τ(σ1 − σ2) = 0 = cv(σ1 − σ2).

Let [σ]σB denote the equivalence class of σ in the product formula. Note
that, under the pull-back by ιPPC , any element in π−1∗ (σB) defines a section
class of PC , i.e., a class projecting on [S2] under π∗. Moreover, it is not hard
to see that the preimage of [σ]σB under ιPPC gives rise to an equivalence class
of section classes in PC . If σC denotes this equivalence class then the sum
in the product formula disappears:

(1.2) 〈cP1 , . . . , cPl 〉P0,l,[σ]σB
= 〈cB1 , . . . , cBl 〉B0,l,σB

· 〈ιPCF (cF1 ), . . . , ιPCF (cFl )〉PC0,l,σC
.

Also, let us mention that the case σB = 0 leads to the Parametric GW-
invariants, which are well known [2, 12].

An important issue in the proof of Theorem A is establishing that the
GW -invariants involved are generically and simultaneously well-defined.
More precisely, the problem is to realize generically both moduli spaces
in (1.1) as smooth oriented manifolds together with preserving π. In the
general context of a symplectic manifold (X,ω) it is well known that the
irreducible component M∗

0,l(X,A, J) of M0,l(X,A, J) consisting of simple
maps is actually an oriented open manifold of finite dimension for a generic
choice of ω-tame structure J [17, 19]. Here we cannot directly apply this
result since tame almost complex structures of the total space do not coin-
cide with fibered almost complex structures. Nevertheless, generalizing a
result of McDuff and Salamon in the case of Hamiltonian fibrations over
Riemann surfaces ([17], Theorem 8.3.1) we prove that:

Theorem B. Suppose σB 
= 0. There exists a second category subset, JP,reg,
of fibered almost complex structures such that for every JP ∈ JP,reg

(1) the subset M∗∗
0,l(P, σ, JP ) of M0,l(P, σ, JP ) consisting of simple maps

that project to simple maps under π, and the moduli space M∗
0,l(B, σB,

JB), are open-oriented manifolds.
(2) for any countable set Z of elements in M∗

0,l(B, σB, JB), for every u ∈ Z,
the preimage π−1(u) is an open oriented manifold.

The dimensions of the manifolds in (1) are respectively given by the
indices of the linearizations, DP and DB, of the Cauchy Riemann opera-
tors ∂JP and ∂JB , while the dimension of the moduli space in (2) is given
by the index of Dv, the restriction of DP to vector fields along the curves
that are vertically valued. The proof of Theorem B is based on the relation

π∗ ◦DP = DB ◦ π∗.
Consequently, π induces a submersion of Fredholm systems (see Section 2)
between the Fredholm systems relative to the operators ∂JP and ∂JB , as
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defined in [3]. From this we derive an exact sequence

0→ kerDv → kerDP → kerDB → coker Dv → coker DP → coker DB → 0.

The result then follows by ensuring that the cokernels vanish, at least at
the level of the universal moduli spaces, for example the hypothesis on σB

ensures that the last term of the sequence vanishes. It is worth pointing out
that without this assumption standard transversality may fail a priori, due
to multiple coverings as shown in [18]. The remaining obstructions are dealt
with by perturbing the Hamiltonian connection as in [17], Chapter 8. More
generally, π extends to a map, still denoted π, between the compactifications
M0,l(P, σ, JP ) and M0,l(B, σB, JB) of the moduli spaces. These compact-
ifications are stratified spaces for which the strata can be represented by
stable stratum data S, as pointed out by Kontsevitch, that is, by connected
trees with tails together with an effective decomposition of the represented
second homology class. We can repeat the arguments above for each stra-
tum MSP (P ) mapped to a stratum MSB(B) under π, in order to show that
transversality is generically realized for the irreducible elements in MSP (P )
whenever MSB(B) does not contain reducible elements. Then condition (		)
ensures that the “boundary” of the compactified moduli spaces above, given
by lower strata, has codimension at least 2 with respect to the top stratum
consisting of simple maps.

Once transversality is established, the product formula is obtained along
the following lines. First, using the following commutative diagram of eval-
uation at the marked points maps:

(evd) π−1(uB,x) ��

ev(uB,x)

��

M∗∗
0,l(P, σ, JP )

evPl,JP
��

π �� M∗
0,l(B, σB, JB)

evBl,JB
��

F l
(ιPF )l

�� P l
πl �� Bl

where

ev(uB ,x) : π−1(uB,x) → F l, (u,x) �→ (u(x1), . . . , u(xl)) ∈
l∏

i=1

FuB(xi),

we consider the respective (transverse) intersections of these evaluations with
product cycles, CB ⊂ Bl, CP ⊂ P l and CF ⊂ F l, representing the products
over i = 1, . . . , l of the classes cBi , cPi and cFi in (	). The formula follows
by observing that the intersection of ev(uB ,x) with CF does not depend on
(uB,x) counted in the intersection of evB

l,JB
with CB, which is actually a

consequence of the symplectic triviality of Hamiltonian fibrations over the
1-squeleton of their base (H1).

Remark 1.1. At this point, it is worth mentioning that the restriction to
the genus 0 case is not essential. Although we have not treated the case of
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higher genus curves, all the results should still go through with minor mod-
ifications, except regarding the applications to c-splitting and symplectic
uniruledness below. Another noteworthy observation is that the restrictions
on σB and the relative semipositivity conditions are only of technical order.
It is believed that those ad hoc hypotheses can be avoided by using virtual
perturbations (see [3, 13, 20, 24]), which have been developped in order to
deal with transversality issues for general symplectic manifolds. Removing
these assumptions, is part of a joint work in progress with Shengda Hu.

The second proof of the product formula is more global in essence: it
rests on a better understanding, under some transversality assumptions, of
the structure of the map π. This is explained in more details in the next
paragraph.

Fibration structure. It is natural to study the structure of the map

π : M0,l(P, σ, JP ) → M0,l(B, σB, JB).

In particular, it would be interesting to understand when π is a fibration,
at least above the top stratum of the target space. When this is the case,
we can recover the product formula using integration over the fibers of π.
Assuming the linearized operators involved in the exact sequence above are
all surjective, it follows that the restriction of π to M0,l(P, σ, JP ) is a smooth
submersion onto M0,l(B, σB, JB). However, this map is not proper. This lat-
ter condition is important, as one can easily construct a smooth submersion
that is not proper and which does not induce a fibration structure. To solve
this problem, we consider the fiberwise compactification of π. The proper-
ness issue then “disappears” but at the cost of losing the obvious smooth
structure. Nevertheless, Chen and Li recently showed in the general case
of a symplectic manifold (X,ω), that one can define a differentiable orb-
ifold atlas on M0,l(X,A, J), where the charts are given by gluing maps [3].
There are many variants in the gluing of pseudo-holomorphic spheres pro-
cedure (see [3, 14, 17, 20, 23], among others), which appears naturally in
the GW theory as well as in the Floer theory. The approach followed in [3]
is to use balanced curves in order to define a natural slice for the action
of the group PSL2(C) of reparameterizations of S2, reducing the action of
this latter non-compact group to that of S1. As a consequence, they obtain
gluing maps that are well-defined after quotient by the reparameterizations.
Adapting their ideas to the Hamiltonian fibration case we construct gluing
maps GlP and GlB satisfying

π ◦GlP = GlB ◦ π.
Those maps are constructed under the assumption that JP is split regular
(SR) with respect to σ (see Section 6, introduction). Roughly speaking, this
means that on every stratum of M0,l(P, σ, JP ), mapped to a stratum of
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M0,l(B, σB, JB) under π, the operators in the exact sequence of the preced-
ing paragraph are all surjective. Under the (SR) assumption we obtain the
following result that can be seen as the global geometric incarnation of the
product formula:

Theorem C. The moduli spaces M0,l(P, σ, JP ) and M0,l(B, σB, JB) are
C1-orbifolds, and the map π restricts to a C1 locally trivial fibration (of
C1-orbifolds) above each stratum of M0,l(B, σB, JB). Moreover, the product
formula can be recovered using integration over the fibers of π above the top
stratum of M0,l(B, σB, JB).

Proof. We only show how to recover the product formula assuming the first
assertion of the theorem. The rest of the proof is postponed to Section 6.
In order to simplify notations, set M(P ) := M∗∗

0,l(P, σ, JP ) and M(B) :=
M∗

0,l(B, σB, JB). It actually follows from the split regularity assumption that
the lower strata in M(B), in M(P ), and in π−1(uB,x) for every (uB,x) ∈
M(B), are of codimension at least two (see Section 6, Introduction).

Now, let cPi , cBi and cFi , i = 1, . . . , l, be classes as in (	). We can rep-
resent these classes by submanifolds after multiplying them by well chosen
integers, if necessary. Represent the Poincaré duals of cPi , cBi and cFi , by
differential forms αP

i , αB
i and αF

i , compactly supported in a small-enough
tubular neighborhoods around the submanifolds. Without loss of generality
we can assume that the evaluation maps evP , evB and ev(uB ,x) in (evd),
are respectively transverse to the product cycles CP , CB and CF . Since the
inferior strata of the moduli spaces involved are of codimension at least two,
the pull-backs of the αP

i , αB
i and αF

i , along evP , evB and ev(uB ,x), are also
compactly supported in M(P ), M(B) and in π−1(uB,x). For i = 1, . . . ,m,
let ρi : Ni → F denote a deformation retract associated to a tubular neigh-
borhood Ni of the fiber above cBi = pt. From condition (	) we deduce that

(1.3)

{
αB

i = vol(B), αP
i = π∗vol(B) ∧ ρ∗iαF

i , for i = 1, . . . ,m,
αF

i = 1F , αP
i = π∗(αB

i ), for i = m+ 1, . . . , l,

where 1F stands for the constant function on F equal to 1. Here, we have to
make sure that the support of π∗vol(B) does not strictly contain the support
of ρ∗iα

F
i , but this can be realized by decreasing the support of vol(B) if

necessary. By definition, (see [19]) we have that:

〈cP1 , . . . , cPl 〉P0,l,σ =
∫
M(P )

(evP )∗
(

l∧
i=1

αP
i

)
=
∫
M(B)

π∗(evP )∗
(

l∧
i=1

αP
i

)
,

where π∗ stands for integration along the fibers. Using (1.3), we get

〈cP1 , . . . , cPl 〉P0,l,σ =
∫
M(B)

π∗(evP )∗
(

k∧
i=1

(π∗αB
i ∧ ρ∗iαF

i )) ∧
l∧

i=k+1

π∗αB
i

)
.
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Let evP
i be the projection of evP on the ith component of P l and define

evB
i and ev(uB ,x),i similarly. For i = 1, . . . , l, π ◦ evP

i = evB
i ◦ π, so that

〈cP1 , . . . , cPl 〉P0,l,σ = (−1)α

∫
M(B)

π∗

(
l∧

i=1

π∗(evB
i )∗αB

i ∧
k∧

i=1

(evP
i )∗ρ∗iα

F
i

)
,

where α =
∑l

i=k+1 degαB
i

∑k
i=1 degαF

i is odd (by a simple dimension argu-
ment). Furthermore, since π∗(a ∧ π∗b) = (π∗a) ∧ b for any form a and b, we
finally have:

〈cP1 , . . . , cPl 〉P0,l,σ =
∫
M(B)

(
(evB)∗

l∧
i=1

αB
i

)
∧ π∗
(

k∧
i=1

(evP
i )∗ρ∗iα

F
i

)
,

where the term involving integration over the fibers of π must be a function
ψ on M(B) given by:

ψ(uB,x) =
∫

π−1(uB ,x)
ev∗(uB ,x)

(
k∧

i=1

αF
i

)
=
∫

π−1(uB ,x)
ev∗(uB ,x)

(
l∧

i=1

αF
i

)

=
∑

σ′∈Bσ

〈
ιPCF (cF1 ), . . . , ιPCF (cFl )

〉PC

0,l,σ′
,

where C denotes the image of uB. By lemma (2.3), ψ does not depend on
(uB,x) and we can withdraw it from the integral. This ends the proof. �

An example. We illustrate the results above by giving an example of com-
putation using the product formula. We also describe the corresponding
induced fibration of moduli spaces and show that it is non-trivial.

Let π : P → CP
2 be the Hamiltonian fibration with fiber (F := CP

1, ωFS)
where P is the projectivization of the rank 2 holomorphic vector bundle

π : V := O
CP

2(1) ⊕ C → CP
2.

Let J0 be the standard complex structure on CP
2 that is compatible with

ωFS . Let JP be the integrable structure on P induced by J0, the structure
of complex fibration on V and the holomorphic Hermitian connection on V
(inducing the coupling form here.).

Let h ∈ H2(P,Z) denote the pull-back under π of the positive generator
in H2(CP

2,Z) Poincaré dual to the class L ∈ H2(CP
2,Z) of a line in CP

2.
Let also ξ ∈ H2(P ; Z) be the first Chern class of the dual of the tautological
bundle over P . The following description for the cohomology ring H∗(P ; Z)
is standard (see [1], Chapter IV):

H∗(P ; Z) ∼= Z[h, ξ]
{h3 = 0, ξ2 + hξ = 0} .
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Then, H2(P ; Z) is generated by the duals of the classes h2 and hξ. Let L0 ∈
H2(P,Z) denote the Poincaré dual of h2 + hξ. If π∗ represents integration
along the fibers of π then π∗L0 = L.

The map π induces the projection

π : M(P,L0, JP ) → M(CP
2, L, J0) ∼= (CP

2)∗.

The source moduli space is made of two strata: S0 the top stratum of simple
maps, and S1 the stratum consisting of stable maps having two components,
one being a π∗-stable component (cf Section 4.1.1) representing the class of
the exceptional divisor, PD(hξ), and the other being a π∗-unstable compo-
nent (cf Section 4.1.1) representing the class PD(h2) = [F ]. Observe that
the second stratum contains only irreducible elements.

Lemma 1.1. The fibered complex structure JP is SR for L0.

Proof. First, since L is J0-indecomposable, coker DB vanishes in the exact
sequence of linearized operators. Thus, we have to verify that coker Dv = 0
on every stratum. But, for every u ∈ S0, we have

coker Dv
u = H0,1(CP

1, u∗TP v) = H0,1(CP
1,O

CP
2(1))

∼= H0(CP
1,O(−3)) = 0.

Now consider (u1, u2, y12, y21) ∈ S1, where u1 denotes the π∗-stable compo-
nent, and u2 denotes the π∗-unstable component. Again, we have to check
that coker Dv

u1
and coker Dv

u2
vanish. Moreover, we have to show that for

every line � ∈ (CP
2)∗ the edge evaluation map

ev : π−1(�) ∩ S1 → π−1(b) × π−1(b), (u1, u2, y12, y21) �→ (u1(y12), u1(y21)),

is transverse to the diagonal Δπ−1(b), where b := π(b) and b denotes the
unique intersection point between u1 and u2. Again, for every holomorphic
map representing [F ], coker Dv

u2
can be identified toH0,1(CP

1, TCP
1), which

vanishes, and similarly

coker Dv
u1

= H0,1(CP
1, u∗1TP

v) = H0,1(CP
1,O(−1)) = 0.

Finally, transversality of ev follows since for everyX0 ∈ Tbπ
−1(b) there exists

a holomorphic vector field on CP
1 ∼= π−1(b) with value X0 at b. �

As an example, we compute 〈pt, pt〉P0,2,L0
. Since the homology of the fiber

injects in the homology of the total space, the product formula simplifies to
give:

〈pt, pt〉P0,2,L0
= 〈pt, pt〉CP

2

0,2,L · 〈pt, pt〉P |�
0,2,B,

where � is the line in CP
2 passing through two given points and B is the

Poincaré dual of the restriction of h2+hξ to P |�. Note that the restriction of
P to a line in CP

2 is the projectivization of O
CP

1(1)⊕C, hence is isomorphic

to C̃P
2
, the one point blow-up of CP

2. Then, the class B corresponds to the
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sum of the fiber and the exceptional divisor in the blow up. It follows that
both members of the above product give 1, hence

〈pt, pt〉P0,2,L0
= 1.

Next, we show that π is non-trivial, more precisely that it is a CP
2-

fibration obtained as the projectivization of a non-trivial rank two holomor-
phic bundle over (CP

2)∗. The fibers of π are given by M(C̃P
2
, L0, J), where J

is the complex structure associated to the Hirzebruch surface P(O
CP

1(1)⊕C),
and L0 is the class represented by the zero section. Furthermore,

M∗(C̃P
2
, L0, J) ∼= H0(CP

1,O
CP

1(1)) ∼= C 〈u, v〉 ,
where [u : v] stands for the homogeneous coordinates on CP

1. The Gromov
closure then corresponds to adding the line at infinity, so that we have
M(C̃P

2
, L0, J) = CP

2. Now, consider the incidence variety:

W :=
{
(p, �) ∈ CP 2 × (CP

2)∗ | p ∈ �
}
,

and let π1, π2 denote the projections on the first and second factors. Note
that (W,π2) is the projectivization of O(CP

2)∗(−1) ⊕ C. Consider the direct
image sheaf over (CP

2)∗,

R := π2∗π
∗
1OCP

2(1).

whose germ at � ∈ (CP
2)∗ is given by

H0(π−1
2 (�), O

CP
1(1)|π−1

2 (�))
∼= H0(CP

1,O
CP

1(1)).

Hence R = S0. Let D be a line in (CP
2)∗. Then π−1

2 (D) can be identified to

C̃P
2
, where the blown-up point is given by the intersection of all the lines

generated by D. In fact,

π−1
2 (D) ∼= D+ × CP

1 �D− × CP
1

(λ, [u : v]) ∼ (λ−1, [λu : v]), λ 
= 0
,

where D+ and D− respectively denote the complements of [0 : 1] and [1 : 0]
in CP

1. Hence, the restriction of R to D is the direct sum of O
CP

1(−1) with
C, so that π is non-trivial.

Applications. In 1997, Seidel defined in [22] a representation of the
space of Hamiltonian loops of a given symplectic manifold in the automor-
phism group of the corresponding quantum homology. Lalonde, McDuff and
Polterovich have shown, under the relative semi-positivity assumption, that
the rational cohomology of the total space splits as a module for any Hamil-
tonian fibration over S2 [11]. McDuff removed the semi-positivity assump-
tion using virtual techniques [15]. In general, we say that a fibration is
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rationally c-split if

H∗(P ; Q) ∼= H∗(B; Q) ⊗H∗(F ; Q)

as modules. This splitting is realized when ιPF : F ↪→P induces an injection
in rational homology, and if, in addition, the second page of the Leray–Serre
spectral sequence splits. More generally, Lalonde and McDuff conjectured
that every Hamiltonian fibration verifies the c-splitting property [10]. They
showed that this splitting property holds for a large panel of Hamiltonian
fibrations, in particular for Hamiltonian fibrations over CP

n. Below we pro-
vide an alternative proof that Hamiltonian fibrations over CP

n with relative
semi-positive fiber are c-split, using the product formula and the invertibility
of Seidel’s morphism [11, 22].

Another consequence is the symplectic uniruledness of Hamiltonian fibra-
tions over rationally connected bases. As defined in [6], a symplectic man-
ifold (X,ω) is (symplectically) uniruled if there is a non-vanishing GW -
invariant with at least one point as a constraint. In other words, if there
exists A ∈ H2(X,Z) and homology classes c2, . . . , cl ∈ H∗(X) such that:

〈pt, c2, c3, . . . , cl〉X0,l,A 
= 0.

A symplectic manifold is rationally connected if there is a non-zero GW -
invariant involving two point insertions [6], i.e., the equation above is still
true with c2 = pt. In summary:

Corollary. Let π : P → B be a Hamiltonian fibration. Assume B is ratio-
nally connected with respect to a class σB ∈ H2(B; Z) verifying the hypothesis
of Theorem B. Then, P is c-split and symplectically uniruled.

Proof. Let C be the image of a map counted in 〈pt, pt, cB3 , . . . , cBl 〉B0,l,σB

= 0.

As already mentioned, PC is a Hamiltonian fibration over S2, and by a
result of Lalonde, McDuff and Polterovich, [11] (Corollary 4.C.), for every
a ∈ H∗(F ) there is an equivalence class σ′ of section classes in PC , as well
as an element b ∈ H∗(F ), such that:

0 
= 〈ιPCF (a), ιPCF (b)〉PC0,2,σ′ = 〈ιPCF (a), ιPCF (b), ιPCF ([F ]), . . . , ιPCF ([F ])〉PC0,l,σ′ ,

where the last equality is a consequence of the Divisor axiom ([17], Sec-
tion 7.5.). Applying the product formula, as given in (1.2), we conclude
that:

(1.4) 〈ιPF (a), ιPF (b), π−1(cB3 ), . . . , π−1(cBl )〉P
0,l,ιPPC

(σ)

= 0.

Hence, by taking a = pt we obtain that P is uniruled. Now, suppose π is
not c-split. Then there exists a ∈ H∗(F ; Z) in the kernel of ιPF . Therefore,
the GW -invariants having ιPF (a) as an entry, must vanish. But this would
contradict (1.4). �
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The proof of this corollary indicates that unless we have a good knowledge
of Seidel’s morphism the number of point insertions should a priori decrease.
Still, as a result, every Hamiltonian fibration over (CP

n, ωFS) is c-split and
uniruled, where ωFS is the standard Kähler form on the complex projective
space. The same applies for Hamiltonian fibrations over (S2×S2, ω⊕ω) since
in that case there is only one curve representing the diagonal and passing
through two points.

The paper is organized as follows. Section 1, introduces the basic ingre-
dients needed. We also define a particular affine connection on P , whose
torsion is given by the symplectic curvature associated to the coupling form.
In Section 2, we describe the linearization of the Cauchy–Riemann problem
associated to the fibered almost complex structures. It is shown that the
linearization is compatible with the projection π. Then we prove the struc-
ture theorems in Section 4, ensuring the GW -invariants are well defined. In
Section 5, we give the proof of the product formula. Section 6, is devoted to
showing the locally trivial differentiable (orbi-)fibration structure of π.

2. The framework

In this section, we set the basic notions that will be needed in the rest of the
paper. We recall that symplectic and Hamiltonian fibrations are classified
by BSymp(F, ωF) and BHam(F, ωF), respectively. Again, for b ∈ B, let ωb

be the induced symplectic form on the fiber Fb := π−1(b). For the sake of
clarity, we begin by recalling the notions of Hamiltonian connections and
coupling form. This exposition follows [5] (Chapter 1) and [16] (Chapter 6),
where the proofs of all the claims can be found.

2.1. Hamiltonian connections and coupling form. Consider the ver-
tical subbundle, Vert ⊂ TP , over P , whose fiber at each point, p ∈ P , is
given by the subspace Vertp := ker dπ(p). A connection on the fibration,
π : P → B, is defined by a splitting of TpP for each p ∈ P :

TpP = Hor(p) ⊕ Vertp,

where Hor(p) is called the horizontal plane at p. The notations, Xh and Xv,
will refer to the horizontal and vertical parts of a vector field X on P with
respect to the above splitting. Also, given a vector field X on B, we will
denote by X its horizontal lift to TP . Now, let R denote the the symplectic
curvature associated to the connection. This is the 2-form on B with values
in Vert such that, for v and w two vector fields on B,

R(v, w)(p) := [v, w]v(p), p ∈ P.

Any closed extension 2-form τ of ωF defines a connection with horizontal
planes:

Horτ (p) := {v ∈ TpP | τ(v, w) = 0 ∀w ∈ Vertp}.
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In fact, any form τ ′ ∈ Ω2(P ) such that ker(τ ′ − τ) is in Vert defines the
same horizontal plane field. Nevertheless, a specific choice can be made by
requiring that the integration of τn+1 over the fibers of P is zero. Such τ is
called coupling form associated to the connection and its values on pairs of
horizontal vectors is determined by the curvature of the connection:

−d(τ(p)(v, w)) := ι(R(dπ(p)v, dπ(p)w)(p))ωπ(p)(p).

This results from the fact that the holonomy of the connection is Hamilton-
ian.

For transversality purposes we will need to allow the connection to vary.
For b ∈ B, let C∞

0 (Fb) denote the space of smooth functions on Fb having
zero mean value. We will consider Hamiltonian deformations of the coupling
form τ . By this we mean exact deformations,

τH := τ − dH̃,

where H̃ is a section in C∞(π∗T ∗B), i.e., H̃p is a cotangent vector in Tπ(p)B
and it satisfies the property that for fixed b ∈ B and X ∈ TbB the function
Hb,X(p) := H̃p(X) belongs to C∞

0 (Fb). The subset of C∞(π∗T ∗B) having
this property will be denoted by H. By definition, τH is a closed extension
2-form of ωF, and one verifies that its associated horizontal distribution is
given by:

HorτH (p) = {v −X
H̃p(v)

(p) | v ∈ Horτ (p)}, p ∈ P,

where X
H̃p(v)

denotes the (unique) Hamiltonian vector field on Fπ(p) induced

by the function H̃p(v).

Remark 2.1. Since we are working with functions having zero mean value,
τH is nothing else but the coupling form associated to HorτH . Also, observe
that the symplectic curvature changes under exact deformation.

2.2. Almost complex structures. An almost complex structure J on a
symplectic manifold, (F, ω), is a smooth section of the bundle of endomor-
phisms of the tangent space of F such that:

∀p ∈ F, (J(p))2 = −idTpF .

Let J (F ) denote the set of almost complex structures on F and let
JF ≡ J (F, ω) be the subset of J (F ) consisting of ω-tame almost com-
plex structures, i.e., such that ω(·, J ·) is positive definite. A choice of such
a J gives TF the structure of a complex fiber bundle. Let cTF

1 ∈ H2(F,Z)
denote the corresponding first Chern class. Since JF is contractible and non-
empty ([16], Chapter 2), this class is well defined and does not depend on
our choice of compatible almost complex structure. Let π : P → (B,ωB) be
a Hamiltonian fibration with fiber (F, ω) and coupling form τ .
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Definition 2.1. An almost complex structure JP ∈ J (P ) is compatible with
π and τ , or fibered, if and only if there exists JB ∈ J (B,ωB) such that:

• dπ ◦ JP = JB ◦ dπ,
• Jb := JP |Fb ∈ J (Fb, ωb) for all b ∈ B,
• JP preserves the horizontal distribution induced by τ .

We denote by J (P, τ, π) the set of such almost complex structures.

Each fibered almost complex structure determines a family {Jb}b∈B of
ωb-tame almost complex structures. Let J V ≡ J V (P, π, ω) denote the set
of almost complex structures of the vertical subbundle, which are ωb-tame
on each fiber Fb. Also, let cv ∈ H2(P,Z) be the corresponding first Chern
class. Conversely, for any J ∈ J V and JB ∈ JB, there exists a unique
fibered structure JP extending J and defined as the horizontal lift of JB

on the horizontal distribution. Furthermore, when deforming the coupling
form using H ∈ H, the unique extension of J that projects on JB and that
preserves the distribution induced by τH is given by:

JH
P (p)(v) = JP (p)(v) + J(p)XHπ(p)(π∗pv) −XHπ(p)(JB(π(p))π∗pv), p ∈ P,

where v ∈ TpP . Let JP ≡ J (P, π) denote the union of the J (P, π, τH) over
all deformations τH of a given coupling form τ . We have:

Lemma 2.1. The space JP is parameterized by the product JB ×J V ×H.

The above isomorphism is given by the choice of τ . In fact, the dependence
is on the factor H corresponding to affine space of Hamiltonian connections.
The choice of τ simply fixes the origin.

Remark 2.2. Note that, for any family {Jb}b∈B ∈ J V and any given JB,
we can find a positive κ ∈ R such that JP is ωP -tame for ωP = τ + κπ∗ωB.

2.3. A specific affine connection. Fix a coupling form τ . We define an
affine connection on TP extending the vertical Levi–Civita (L–C) connection
introduced in [17] (Chapter 8) and lifting the L–C connection on TB. This
construction will be needed in order to relate the linearization of the Cauchy–
Riemann associated to JP = (JB, J,H) ∈ JP , to the linearization of the
Cauchy–Riemann operator associated to JB (see Section 2). First, let gJP
be the Hermitian metric on P defined as

gJP := gJ ⊕ π∗gJB ,

relatively to the splitting TP = Vert ⊕ HorτH , where

gJB :=
1
2
(ωB(., JB.) − ωB(JB., .)),

and gJ := {gJb}b∈B is the analogous family of Hermitian metrics on Vert.
Let ∇B denote the L–C connection on TB relatively to gJB . Also, set ∇F to
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be the L–C connection on TFb, with b ∈ B, relatively to gJb . For any vector
fields X and Y on P , set

∇XY := [Xh, Y v]v + ∇F
Xv
Y v + [Xv, Y h]h + (∇B

π∗Xhπ∗Y h).

This operation is clearly bilinear in X and Y . In fact, the sum of the
first two terms corresponds to the vertical L–C connection, ∇v, which is
the unique connection on Vert induced by the Hamiltonian connection and
which restricts to the L–C connection on F . The remaining part is what
is needed to extend this vertical connection to an affine connection on P
lifting the L–C connection on B, which torsion T is given by the symplectic
curvature:

T (X,Y ) = −R(X,Y ) = [Xh, Y h]v, X, Y ∈ X (TP ).

We show below that ∇ is indeed a connection. Since ∇v is a connection,
it suffices to show that for f ∈ C∞(P ) and ξ ∈ Horτ , and any w ∈ TP :

∇wfξ = (w(f))(ξ) + f∇wξ, ∇fwξ = f∇wξ.

Suppose that w is vertical. Then, by definition:

∇wfξ = [w, fξ]h = f [w, ξ]h + w(f)ξ.

Analogously, we have [fw, ξ] = f [w, ξ] − ξ(f)w, implying that

[fw, ξ]h = f [w, ξ]h

since w is vertical. Now, suppose that w is horizontal. Let αt, t ∈ (−ε, ε) be
the flow of w starting at p, and let PB

t (π∗pwp) denote the parallel transport
along the projected curve π(αt)(p). Then,

(∇wfξ)p =
d

dt

∣∣∣∣
t=0

(f(αt(p))PB
t (π∗pwp)π∗αt(p)ξ)

h
p

= df(p)wξ + f(p)(∇wξ)p,

where the first equality is given by linearity of the parallel transport in B.
We further have that

∇fwξ =
d

dt

∣∣∣∣
t=0

(PB
t (π∗pf(p)wp)π∗αt(p)ξ)

h
p =

d

dt

∣∣∣∣
t=0

(PB
t (π∗pwp)π∗αψ(t)(p)

ξ)h
p

for some reparameterization ψ(t) of the interval, so that finally f∇wξ.

Remark 2.3. Note that ∇v may not preserve the metric gJ along hori-
zontal directions, whereas ∇̃v = ∇v − 1

2J(∇vJ) does ([17], Lemma 8.3.6).
Furthermore, given any vector fields w, ξ1 and ξ2 in TP , one can show that
(∇wg)(ξ1, ξ2) coincides with (∇whg)(ξv

1 , ξ
v
2). It follows that the JP -preserving

connection ∇̃ := ∇− 1
2JP (∇JP ) preserves gJP .
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Let exp stand for both the exponential maps with respect to ∇ and
∇B. The following straightforward identities will be useful in the gluing
section:

Lemma 2.2. For p ∈ P , X ∈ TpP and q ∈ P in the injective radius of
expp, we have

(2.1) π(exppX) = expπ(p) π∗pX, π∗p exp−1
p (q) = exp−1

π(p)(π(q)).

2.4. Curve independence. From (H1) in the characterization of Hamil-
tonian fibrations we deduce the following lemma, which plays a crucial part
in the proof of the product formula:

Lemma 2.3. Let π : P → B be a Hamiltonian fibration as above. Assume we
have u1, u2 ∈ C∞(S2, B) such that [u1(S2)] = [u2(S2)]. Then the restricted
bundles P |u1

and P |u2
are isomorphic as Hamiltonian bundles.

Proof. If B is simply connected then it follows directly from Hurewicz iso-
morphism between π2(B) and H2(B,Z). Assume B is not simply-connected.
As Ham(F, ω) is connected, any classifying map for P , say f , factorizes up
to homotopy through a map f ′ : B/B1 → BHam(F, ω). In other words, if
πB1 denotes the projection from B to B/B1, the maps f and f ′ ◦ πB1 are
homotopic. Let P ′ := (f ′)∗EHam(F, ω) and consider

u′1 := πB1 ◦ u1, u′2 := πB1 ◦ u2.

These two maps represent the same homology class πB1∗ (σB) ∈ H2(B/B1; Z),
so that u′1 and u′2 are homotopic and:

P |u1
∼= (u′1)

∗P ′ ∼= (u′2)
∗P ′ ∼= P |u2

. �

3. The Cauchy–Riemann problem in Hamiltonian fibrations

Let j0 denote the complex structure on S2 = C∪{∞} inherited from the mul-
tiplication by i :=

√−1. In a general symplectic manifold (X,ω) with ω-tame
almost complex structure J , a rational J-holomorphic map is a smooth map,
u : S2 → X, satisfying the Cauchy–Riemann equation,

∂Ju :=
1
2
(du+ J ◦ du ◦ j0) = 0.

The set of all such solutions representing a given class A ∈ H2(X,Z),

M̃(X,A, J) :=
{
u ∈ C∞(S2, X)|∂Ju = 0, [u(S2)] = A

}
,

is the moduli space of parameterized J-holomorphic maps representing A.
Consider the Fréchet space,

BX(A) :=
{
u ∈ C∞(S2, X)|[u(S2)] = A

}
,



A PRODUCT FORMULA FOR GROMOV–WITTEN INVARIANTS 265

and the space

EX(A, J) =
⊔

u∈BX(A)

EX,u(J) :=
⊔

u∈BX(A)

C∞(Λ0,1
J (S2, u∗TX)).

The obvious projection from EX(A, J) to BX(A) defines a locally trivial
bundle between Fréchet spaces. Then, ∂J is a section of this bundle and
M̃(X,A, J) is the corresponding zero set. The linearized operator DX

u of
∂J at u ∈ M̃(X,A, J) is defined as the differential of ∂J at u composed
with the projection on the fiber EX,u(J). To give a meaning to this vertical
projection outside of the zero section, we consider the Hermitian connection
on EX(A, J),

∇̃X := ∇X − 1/2(J(∇XJ)),

where ∇X is the L–C connection on X with respect to the metric gJ . Set
XX,u := C∞(S2, u∗TX). Then,

DX
u : XX,u → EX,u(J),

ξ �→ ∇̃X
ξ ∂J(u) = (∇X

du)0,1ξ − 1
2
J(u)(∇X

ξ J)(∂Ju),

where (∇X)0,1 is the J-anti-linear part of ∇X . It is well known that DX
u is

Fredholm for u ∈ M̃(X,A, J). Moreover, if ∂J is transversal to the zero sec-
tion, then the moduli space is a smooth finite-dimensional oriented manifold
with dimension given by the index of DX (cf [17], Theorem 3.1.5):

dimM̃(X,A, J) = Ind(DX) = 2nX + 2cTX
1 (A).

Now, let π : P → B be a Hamiltonian fibration with coupling form τ ,
let JP be a fibered complex structure relatively to τ , and let σ ∈ H2(P,Z).
The connection ∇ we constructed induces a splitting of the tangent space
of EP (σ, JP ) at all points and projection to the fiber direction can again be
defined. Hence, the linearization DP

u of ∂JP can be defined for all u ∈ BP (σ).
Note that ∇ is not Levi–Civita since its torsion is given by the symplectic
curvature. This is what gives rise to the extra curvature term in the following
expression for DP

u :

Lemma 3.1. Let u ∈ BP (σ) and ξ ∈ C∞(S2, u∗TP ). Then,

DP
u ξ = (∇du)0,1ξ − 1

2
JP (u)(∇ξJP )(∂JP u) +R0,1(duh, ξh),

where ∇0,1 and R0,1 stand for the JP anti-linear parts of ∇ and R.

Remark 3.1. When ξ is vertically valued, the curvature term disappears
and we recover the vertical linearized operator introduced by McDuff and
Salamon ([17], Chapter 8). In the rest of the paper we will designate by Dv

the restriction of DP to vertically valued vector fields.
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3.1. Splitting of Fredholm systems. Since we consider fibered almost
complex structures on P , the projection π naturally induces a map,

π : M̃(P, σ, JP ) → M̃(B, σB, JB), u �→ π(u),

where σB := π∗σ. As we will see, π induces a submersion between the
Fredholm system (BP (σ), EP (σ, JP ), ∂JP ) and (BB(σB), EB(σB, JB), ∂JB ).
We recall the notion of Fredholm system as given in [3], Section 14.2.

Definition 3.1. A Fredholm system of index d is a triple (B, E , s) such that:
(F1) E is the total space of a Banach orbifold bundle over a Banach orbifold

B, with fiber Ex over x ∈ B,
(F2) s : B −→ E is a section such that, for all x ∈ s−1(0), the linearization

Lx : TxB → Ex of s at x, is Fredholm of index d.
When, in addition, s is proper, we say that the system is compact.

We call the set, s−1(0), the moduli space of the system. The use of orb-
ifolds in the definition above is due to the presence of non-simple maps in
the concrete problem of Cauchy–Riemann Fredholm system. This will be
relevant in Section 6.

Example 3.1. Let (X,ω) be a general symplectic manifold with A ∈
H2(X,Z) and ω-tame almost complex structure J . Fix an integer p > 2. For
u ∈ BX(A), we respectively equip XX,u and EX,u(J) with W 1,p (Sobolev)
and Lp norms (relatively to the metric gJ and a fixed volume form on S2).
Explicitly, given ξ ∈ XX,u and η ∈ EX,u(J):

‖ξ‖W 1,p =
(∫

S2

(|ξ|pgJ + |∇ξ|pgJ )dvolS2

) 1
p

, ‖η‖Lp =
(∫

S2

|ξ|pgJdvolS2

) 1
p

.

We denote by X 1,p
X,u and Ep

X,u(J) the completed vector spaces with respect to
these norms, and by B1,p

X (A) and Ep
X(A, J) the corresponding completions

of BX(A) and EX(A, J). Under these completions DX
u is Fredholm, and the

triple

(B1,p
X (A), Ep

X(A, J), ∂J)

satisfies conditions (F1) and (F2). This Fredholm system will in general not
be compact.

Next, we define the following natural notion of morphism between two
Fredholm systems (B, E , s) and (B′, E ′, s′).

Definition 3.2. A map Π := (π, π) : (B, E , s) → (B′, E ′, s′) between Fred-
holm systems is a Banach orbifold vector bundle morphism, i.e.,

π : B → B′, π : E → E ′,

such that
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(i) s′ ◦ π = π ◦ s,
(ii) L′

π(x) ◦ dπ(x) = dπ(x, 0) ◦ Lx, for every x ∈ s−1(0).

We say that Π is a submersion if, furthermore, dπ and dπ are surjective.

When Π is a submersion we directly extract the following exact sequence:

(3.1) kerL′′
x � kerLx → kerL′

π(x) → coker L′′
x → coker Lx � coker L′

π(x).

where x ∈ s−1(0) and L′′
x : ker dπ → ker dπ is the restriction of Lx to

ker dπ(x). This exact sequence is an instance of the cohomology long exact
sequence of 2-step complexes determined by L′′, L and L′. From exactness
of this sequence we deduce splitting at the level of operator indices, i.e., for
every x ∈ s−1(0):

Ind(Lx) = Ind(L′
π(x)) + Ind(L′′

x).

Obviously, if both L′′
x and L′

π(x) are unobstructed (i.e., their cokernels
vanish), then Lx is also unobstructed. As a result, kerLx is isomorphic to
kerL′′

x ⊕ kerL′
π(x) up to a choice of a section from kerL′

π(x) to kerLx.

Definition 3.3. A submersion Π between Fredholm systems is a splitting
if the sequence (3.1) is obstruction free, i.e., if for all x ∈ s−1(0):

coker L′′
x = coker Lx = coker L′

π(x) = 0.

3.2. Splitting of Fredholm systems for Hamiltonian fibrations.
Here, we show that a Hamiltonian fibration π : P → B with coupling form τ
induces a submersion between the Fredholm systems (BP (σ), EP (σ, JP ), ∂JP )
and (BB(σB), EB(σB, JB), ∂JB ). In fact, π induces the maps:

π : BP (σ) → BB(σB), f �→ π ◦ f,
and

π : EP (σ, JP ) −→ EB(σB, JB), η �→ π∗(η).
That π induces a submersion between Fredholm systems can be summarized
as follows:

Lemma 3.2. The following diagrams are commutative:

EP (σ, JP ) π �� EB(σB, JB)

BP (σ)

∂JP

��

π �� BB(σB)

∂JB

��
EP,u(JP )

dπ(u,0) �� EB,π(u)(JB)

XP,u
dπ(u) ��

Du

��

XB,π(u)

DB
u

��

Proof. For the left hand-side diagram, commutativity follows from the fact
that JP is fibered. Thus, π maps (∂JP )−1(0) into (∂JB )−1(0). We prove that
the second diagram commutes. First, note that dπ and dπ are surjective
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since we can use the Hamiltonian connection to lift vector fields on B to
vector fields on P . Next, we show that for every ξ ∈ X (u∗TP ):

π∗Duξ = DB
π◦uπ∗ξ.

This is a consequence of the following three identities: let ξ and X be vector
fields on P and let p ∈ P , then

(i) π∗[ξv, JPX
h] = JBπ∗[ξv, Xh],

(ii) π∗(∇ξJP )pX = (∇B
π∗ξJB)π(p)(π∗X),

(iii) π∗(∇0,1
du ξ) = (∇B

π∗du)0,1π∗ξ − π∗[(∂JP (u))h, ξv]h.

Assuming these are verified we obtain that

π∗Duξ = (∇B
d(π◦u))

0,1π∗ξ−π∗[(∂JP (u))h, ξv]h− 1
2JB(π◦u)(∇B

π∗ξJB)(π∗∂JP u),

since ∇0,1
du ξ

v and R0,1(du, ξ) are vertically valued. Moreover, since π∗∂JP u =
∂JBuB it only remains to show that:

[(∂JP (u))h, ξv]hu(z) = 0 ∀z ∈ S2.

If (∂JP u)(z)
h 
= 0 for some z, consider the horizontal liftX of (∂JB (π(u)))(z),

which is defined on T (π−1(u(z))) and agrees with (∂JP u)(z)
h at u(z). Then,

[(∂JP (u))h, ξv]u(z) = [X, ξv]u(z),

where the right hand-side vanishes since X is constant along vertical direc-
tions.

Now, equality (i) follows by definition of the bracket, by holomorphicity
of the projection, and since the flow of a vertical vector field starting at a
point p remains in the fiber above π(p). Equality (ii) is just a consequence
of (i) since this latter is equivalent to

[ξv, JPX
h]h = JP [ξv, Xh]h,

which by definition of ∇ is the same as:

∇ξv(JPX
h) = JP∇ξv(Xh).

Hence, (∇ξvJP )(Xh) = 0, which combined with the fact that the connection
is vertically valued when its two entries are in Vert, gives us the second
equation.

For (iii) we have that:

∇0,1
du ξ =

1
2
(∇ξdu+ JP (u)∇ξ(du ◦ j0)) −R0,1(du, ξ).
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Hence, by definition of the connection and because the curvature is vertically
valued, we get

2π∗(∇0,1
du ξ) = π∗∇ξdu+ JB(π(u))π∗∇ξ(du ◦ j0)

= ∇B
π∗ξd(π ◦ u) + π∗[ξv, (du)h]h + JB(π(u))∇B

π∗ξd(π ◦ u) ◦ j0
+ JB(π(u))π∗[ξv, (du ◦ j0)h]h

= ∇B
d(π◦u)π∗ξ + JB(π(u))∇B

d(π◦u)◦j0π∗ξ

+ π∗[ξv, (du)h + JP (u)(du ◦ j0)h]h

= 2(∇B
d(π◦u))

0,1π∗ξ + π∗[ξv, 2(∂JP (u))h]h,

where the third equality is due to (i) and the fact that ∇B is torsion free. The
last follows since JP preserves the horizontal distribution and the vertical
subbundle. �

The symplectic connection on P induces the splittings:

EP,u = Γ(Λ0,1
JP

(S2, u∗TP h)) ⊕ Γ(Λ0,1
JP

(S2, u∗TP v)) =: Eh
P,u(JP ) ⊕ Ev

P,u(JP )

and
XP,u = Γ(S2, u∗TP h) ⊕ Γ(S2, u∗TP v) = X h

P,u ⊕X v
P,u.

In this splitting, DP
u takes the following matrix form:

(3.2)
(

(DB
π(u))

h 0
Lu Dv

u

)

where Lu is linear and given by:

(3.3) Lu : X h
P,u −→ Ev

P,u, ξ �→ −1
2
J(u)(∇ξJ)(∂JP u)

v +R0,1(duh, ξ).

Thus, applying the diagram (3.1), we obtain the exact sequence:

kerDv
u � kerDP

u → kerDB
π(u) → coker Dv

u → coker DP
u � coker DB

π(u)

(3.4)

where the connectant is given by the restriction of Lu to the kernel of DB
π(u).

In the next section we will show that, for generic fibered almost complex
structure, the last two terms of this exact sequence vanish. We also show
that, generically, the induced projection between the moduli spaces is a sub-
mersion along countably many fibers of this projection, i.e., the fourth term
vanishes on countably many fibers. In fact, this will be proved by estab-
lishing that the projection of the Hamiltonian fibration induces a splitting
of Fredholm system when we allow the fibered almost complex structure to
vary as well.
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4. Structure theorems

Let M̃0,l(P, σ, JP ) be the moduli space of parameterized JP -holomorphic
maps with l marked points representing σ. This space consists of tuples,

(u, x1, . . . , xl) ∈ M̃(P, σ, JP ) × (S2)l,

where the points x1, . . . , xl ∈ S2 are pairwise distinct. The group G :=
PSL2(C) of reparameterizations of S2 acts (diagonally) on this moduli
space. The quotient of M̃0,l(P, σ, JP ) under this action is usually not com-
pact. Still, its “Gromov’s compactification”, M0,l(P, σ, JP ), is a stratified
space consisting of stable holomorphic maps [7, 17, 21]. Concretely, the
stratification is given by the combinatorial-type of the labeled connected trees
with tails modeling the stable maps. When these strata are automorphism
free they can be given a manifold structure for a generic choice of fibered
almost complex structure. After giving the description of the stable holo-
morphic maps in Hamiltonian fibrations, we show that the latter structure
theorem holds compatibly with the projection π. This is the content of The-
orem B’ which is a slight extension of Theorem B. We conclude by observ-
ing that changing of generic almost complex structure induces a cobordism
between the corresponding moduli spaces.

4.1. Stable holomorphic maps and Hamiltonian fibrations. In order
to fix notations and terminology we begin by introducing, first, the combina-
torics needed to describe stable holomorphic maps, and second, the moduli
space of stable pseudo-holomorphic maps.

4.1.1. Labeled graphs. This exposition is mostly taken from [4]. Nev-
ertheless, emphasis is put on how the combinatorics change when given
a homomorphism of semi-groups. This will be particularly relevant when
describing how the combinatorial-type of a pseudo-holomorphic stable map
in P changes when projected to B under π.

Let S be a graph with tails; let V denote its set of vertices, let E denote
its set of edges, and let T denote its set of tails. In order to indicate that
there is an edge between the v and the w vertices of S, we will use the
notation vEw. The genus g(S) of the graph is the Euler number of S, i.e.,

g(S) = |V | − |E| + 1.

If all the connected components of S have genus 0 we say that it is a forest ;
if, furthermore, S is connected we say that it is a tree. In the rest of the
paper we will only consider forests. We will use the notation C to denote
the set of connected components of S.

To describe the combinatorics of the graph it is convenient to see the tails
as half-edges and the edges as two half-edges that are attached together.
Let Fl denote the set of half-edges of S. This set comes with a natural map,
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pr : Fl → V , assigning to a half-edge the vertex it is attached to. Hence,
Flv := pr−1(v) gives the set of valences at v ∈ V . We set

|v| := #(pr−1(v)).

The incidence relations between the vertices of S are encoded using an invo-
lution � : Fl → Fl. More precisely, E corresponds to the 2-elements orbits
of � while the fixed points of � give T . The graph S is determined uniquely
by the tuple (V,Fl; pr, �) and we write S = (V,Fl; pr, �). The subgraph
({v},Flv; pr|Flv

, id) is called the star of S at v. Note that S can be obtained
from its stars by gluing them according to the involution ρ; see Figure 1
below: in that picture � fixes ai and bi, i = 1, 2, and sends c1 to c2.

Given an Abelian semi-group B, a B-labeling of S is simply a map β :
V → B. We denote by (S, β) the corresponding labeled graph. A B-labeling
β induces a B-labeling of C:

βC : C → B, βC(c) :=
∑
v∈c

β(v).

For example, when each vertex of the graph corresponds to a Riemann sur-
face, as is the case for the stable maps, we can consider the genus-labeling
h : V → N assigning to each vertex the genus of the corresponding Riemann
surface. Since we are only dealing with genus 0 stable maps, the genus-
labeling will always be trivial.

Next, we define a partial order on graphs. For this purpose we introduce
the following notion of composition of graphs: the composition S ′′ := (S ′ ⇒
S) of the graph S ′ with the graph S is the graph obtained by replacing
the vertices in S by the connected components C ′ of S ′. Concretely, one
replaces each star at a vertex of S by a connected component of S ′; this is
illustrated in Figure 1. Composition is realizable if and only if there are set
isomorphisms φ : T ′ → Fl and ψ : C ′ → V such that ψ ◦prC′ = pr◦φ, where
prC′ : T ′ → C ′ is the map assigning to a tail the connected component it is
attached to. If such isomorphisms exist, we say that S ′ and S are composable.
It is not hard to see that S ′′ is given by (V ′,Fl′; pr′, �′′) where �′′ coincides
with �′ on edges of S ′ and coincides with � otherwise (using the identity
φ ◦ �′′ = � ◦ φ on tails of S ′).

Example 4.1. In Figure 1, the isomorphisms φ and ψ are given as follows:
ψ(v′i) = vi, φ(a′i) = ai, φ(b′i) = bi and φ(c′i) = ci, where i = 1, 2.

Labeled graphs are also composable: let (S, β) and (S ′, β′) be labeled
graphs such that S ′ is composable with S, and let π : B′ → B be a homo-
morphism of semi-groups. The graphs are π-composable if β = π ◦ βC′ .

There are two natural possibilities of labeling for the resulting graph S ′′,
namely β′′ := π◦β′ or β′. The π-composition is the B-labeled graph (S ′′, β′′),
while the labeled composition is the B′-labeled graph (S ′′, β′).
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Figure 1. Composition of graphs.

The partial ordering ≺ is now defined as follows: S ′′ ≺ S if and only if
there exists a graph S ′ such that S ′′ = (S ′ ⇒ S). This inequality can also be
understood in terms of contractions: S is obtained from S ′′ by contracting
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some subgraph of S ′′. The components of this subgraph are called contracted
components. This contraction procedure is not well-defined. For example, the
graph with one vertex and no half-edge can be obtained in two different ways
from the graph with two vertices, v1 and v2 say, and no half-edge: we can
either contract v1 or v2. In fact, the contraction procedure is determined up
to a choice of section of the composition of graphs. We explain this in more
details.

The composition of graphs induces surjective maps γ : V ′′ → V and
γFl : Fl′′ → Fl via the isomorphisms φ : T ′ → Fl and ψ : C ′ → V . A
section of the composition is a pair of right inverses, ι : V → V ′′ and
ιFl : Fl → Fl′′, such that ι ◦ pr = pr′′ ◦ ιFl. In other words the section sends
a star of S to a star of S ′′. If the graphs are labeled, we further require that
β′′ ◦ ι = π ◦ β′ ◦ ι = β. In that case, we say that (ι, ιFl) is a labeled section.
Note that a section always exists while a labeled one may not.

Now, let (S ′′, β′) be a labeled composition of (S ′, β′) with (S, β), and let
(ι, ιFl) be a labeled section. The image of S under the section is a subgraph
Γ = (V,Fl; pr, �Γ) of S ′′, where �Γ ≡ � whenever �′′◦ = ι ◦ �, and otherwise
�Γ = id. Then, the contracted components are by definition the components
of the complement (S ′′\Γ, β′|S′′\Γ). In this situation, we will say that (S, β)
is the contraction of (S ′′, β′).

In Figure 1, the black spots in the graph of S ′′ represent the image under
a section of the vertices of S. The contracted components, there are four
of them, are the complement of the stars at the black vertices; hence they
are given by the connected chains of white vertices together with their half-
edges.

Finally, we introduce the notion of stability of graphs. This will be par-
ticularly relevant in the case the graphs are represented by stable maps. Let
S be a forest. A vertex v ∈ V is said to be stable if |v| ≥ 3. The forest S
is said to be stable if all its vertices are stable. Given a B-labeling β on S
we say that a vertex v ∈ V is B-stable if either β(v) 
= 0 or v is stable. The
labeled graph (S, β) is B-stable when all its vertices are B-stable. In this
language, a {0}-stable labeled graph is simply a stable graph.

Observe that stability depends on the given labeling. For instance, if we
have a B′-labeled stable tree (S ′′, β′) and a homomorphism π : B′ → B
of semi-groups, the induced B-labeled graph (S ′′, π ◦ β′) may not be stable
(since π may not be injective). If it is notB-stable, we may try to stabilize the
tree by inductively contracting all the unstable vertices until the remaining
vertices are all B-stable. By contraction of an unstable vertex v ∈ V ′′ of S ′′
we mean the following. First, we delete the star at v, possibly creating one
or two tails (since |v| ≤ 2). If v has no edge, then the tree S ′′ disappears. If
v has one edge and no tail, then we also delete the created tail. If v has an
edge and a tail, then you do not delete the new tail created on its neighbor.
If v has two edges, we replace the deleted vertex by an edge obtained from
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gluing together the two created tails. This operation is called elementary
contraction. At the end of the inductive procedure, we either end up with a
stable tree or with one vertex with less than two tails implying that there
were less than two tails in S ′′ to begin with. The reason for this is that
elementary contractions preserve connectedness of the graph and do not
change the number of tails unless S ′′ had less than two tails to begin with.
This is essentially the content of the first statement of the following standard
lemma:

Lemma 4.1. Let π : B′ → B be a morphism of semi-groups. Suppose
(S ′′, β′) is a stable B′-labeled tree, then we have one of the following: (1)
there exist a stable tree (S, β) and a stable forest (S ′, β′) such that (S ′′, π◦β′)
is their π-composition; (2) S ′′ has no more than two tails. Moreover, in case
(1), there is a natural labeled section of the composition.

Proof. the tree S is obtained from the construction in the paragraph preced-
ing the lemma. The labeling β is simply the restriction of π◦β′ to the vertices
of S ′′ remaining after the stabilization procedure. Also, from the construc-
tion of (S, β) we have natural inclusions ι : V ↪→ V ′′ and ιFl : Fl ↪→ Fl′′.
These inclusions provide the desired labeled section in the last statement.

Now, suppose (S, β) is stable. We describe the forest (S ′, β′). By construc-
tion, S ′ has the same set of vertices, the same set of half-edges and the same
vertex assignment map as S ′′. More formally, S ′ = (V ′′,Fl′′; pr′′, �′). The
involution �′ remains to be described. First, observe that �′ coincides with
�′′ on every edge of S ′, since any edge of S ′ is also an edge of S ′′. Finally,
we set �′(f) = f on each tail f of S ′, since each tail of S ′ must be a fixed
point of the involution. �

The natural section mentioned in the proof will be called π-section.

Definition 4.1. Let π : B′ → B be a homomorphism of semi-groups. We
say that the tree (S, β) above is the π-stabilization of (S ′′, β′) and we denote
it Sπ(S ′′, β′). The vertices in S are called π-stable, and the contracted com-
ponents are called π-unstable.

Let (S, β) = Sπ(S ′′, β′). The vertices in the image of the section are said
to be B-stable. Now, let c be one of the contracted components in S ′′. Then
c is a tree with at most 2 tails. A tail of c is called exterior if it is also a tail
of S ′′. Otherwise, it is called interior. In the case c has 1 interior tail, we say
that c is a (π-)contracted branch. In the case c has two interior tails, we say
that c is a (π-)connecting branch. For a connecting branch there is a unique
path of vertices connecting the 2 tails. This path forms a connecting chain.

Example 4.2. Consider Figure 1 above. Let β be the {0}-labeling on S,
and let β′ be a Z2-labeling on S ′ defined by β′ ≡ 1(mod2). Obviously,
β = π ◦ β′ for any morphism π : Z2 → {0}. Note that (S ′′, β′) is stable but
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(S ′′, β) is not. In fact, (S, β) is the π-stabilization of (S ′′, β′). The contracted
component given by the white vertex lying between the two black vertices
is a π-connecting branch. The other three contracted components define
π-contracted branches.

4.1.2. Moduli space of stable maps. The discussion below is taken from
[17], Chapter 5, and [21], where the proofs of all the claims can be found.
Denote by Mg,l the Deligne–Mumford moduli space of stable curves with
genus g and l-marked points. We shall only consider the case g = 0. Points
in M0,l are given by isomorphism classes of elements,

j ≡ (Σ, j,x := (x1, . . . , xl)),

where (Σ, j) is a nodal Riemann surface of arithmetic genus 0 with no self-
intersection, together with l pairwise disjoint marked points on Σ denoted x,
which are disjoint from the nodes. Furthermore, each component of Σ has at
least three special points (i.e., marked points or nodes). Two pointed nodal
curves, (Σ, j,x) and (Σ′, j′,x′), are isomorphic if there is a diffeomorphism
ϕ : Σ → Σ′ satisfying:

ϕ∗j′ = j, and ϕ(xi) = x′i.

We denote by Aut(Σ, j,x) the automorphisms of (Σ, j,x), i.e., the subset
of diffeomorphisms of nodal surfaces, ϕ : Σ → Σ, such that ϕ∗j = j and
ϕ(x) = x. This group is invariant under isomorphism of nodal curves. Also,
it is standard that the elements of M0,l are automorphism free.

Let M0,l(X,A, J) denote the compactified moduli space of stable J-holo-
morphic maps from (nodal) curves of genus 0 with l marked points into
the symplectic manifold X, representing the class A ∈ H2(X,Z). Points
in M0,l(X,A, J) are given by isomorphism classes of parameterized stable
pseudo-holomorphic maps (j, u) ≡ ((Σ, j,x), u), where (Σ, j,x) is a Riemann
nodal curve of genus 0 with l marked points (not necessarily stable), and
u : Σ → X is (j, J)-holomorphic and such that each component on which
u is constant has at least three special points. We say that (j, u) is iso-
morphic to (j′, u′) if there is an isomorphism of pointed nodal curve, ϕ,
between j and j′ such that ϕ∗u = u′. Let Aut(j, u) denote the correspond-
ing automorphism group. It is well known that stability implies finiteness
of the automorphism groups. Moreover, if the map u is reduced, or simple
in the sense that (j, u) has no ramified component or any two component
having the same non-constant image in X, then Aut(j, u) = id; when the
map u has only one component, this notion of simple map coincides with
the notion of somewhere injective map meaning that there exists a point
z0 ∈ S2 such that du(z0) is injective and u−1(u(z0)) = z0. It is well known
that any stable pseudo-holomorphic map can be reduced to a simple stable
map. The reduction process however changes the homology class of the map
([17], Proposition 6.1.2.).
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The moduli spaces M0,l and M0,l(X,A, J) are stratified, with strata
labeled by stable labeled trees of genus 0 called stable stratum data of the
strata, or combinatorial type. For a tree S = (V,Fl; pr, �), the set V corre-
sponds to the components of (Σ, j), while Fl corresponds to the set of special
points on the curve. For M0,l(X,A, J) we have a H2(X,Z)-labeling giving
the homology class represented by the image of each component in X. Note
that M0,l and M0,l(X,A, J) coincide when X = pt and A = 0. A strata
with stratum data S will be denoted MS or MS(X, J), and M∗

S(X, J) will
denote the subset of MS(X, J) consisting of simple stable maps. Further-
more, the partial order ≺ on labeled graphs induces inclusions of strata in
the sense that MS′ ⊂ MS if and only if S ′ ≺ S, and similarly for MS(X, J).
Note that there are finitely many strata in the compactified moduli space
since for fixed l and A, the set of possible combinatorial types for genus 0
stable map with l markings representing A is finite.

As we are only considering genus 0 stable maps, we can in fact fix
the complex structure on each component of the nodal surface to be the
standard one. Let M̃S(X, J) denote the moduli space of parameterized
stable J-holomorphic maps (Σ, u,x) representing S, and let GS be the
reparameterization group of the domain (Σ,x). The stratum MS(X, J) is
then identified to the quotient of M̃S(X, J) under the (proper) action of
GS . We describe it for the reader’s convenience. First, note that a sta-
ble map, (Σ, u,x) ∈ M̃S(X, J), is determined by a triple, (u,y,x), where
y := {yvv′}vEv′ for v, v′ ∈ V , is the data given by the nodal points in Σ. Let
Σv denote the component of Σ corresponding to v ∈ V , and let uv be the
restriction of u to Σv. The group GS consists of pairs ({ϕv}v∈V , γ), where
γ ∈ Aut(S) is a tree-with-tails automorphism, and ϕv : Σv → Σγ(v) is an
element of PSL2(C). Then, the action of GS on M̃S(X, J) is given by

({ϕv}, γ) · (u,y,x) :=
({uv ◦ ϕ−1

v }, {ϕv(yvv′)}vEv′ , {ϕp(xk)(xk)}k∈{1,...,l}
)
.

Before carrying out the description of stable JP -holomorphic maps in
a Hamiltonian fibration π : P → B, we first make sure that we have the
appropriate energy bounds in order to apply Gromov’s compactness ([7]
Chapter V, [17] Theorem 5.5.5, [21] Proposition 3.1.).

4.1.3. Energy identities. Suppose JP is a fibered structure obtained from
a connection τ , an element JB ∈ JB and a family J ∈ J V , and let gJP be
the corresponding split metric on P . For a smooth map u : S2 → P , we
define its total energy to be its Dirichlet norm with respect to gJP :

E(u) :=
1
2

∫
S2

‖du‖2
gJP

dvolS2 .
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Since gJP is split, E(u) can be written as the sum,

1
2

∫
S2

‖d(π(u))‖2
gJB

dvolS2 +
1
2

∫
S2

‖(du)v‖2
gJ
dvolS2 := EB(π(u)) + Evert(u),

where EB(π(u)) is the energy of uB := π(u) (with respect to JB), and
Evert(u) is the vertical energy. When u is JP -holomorphic, it turns out that:

EB(uB) =
∫

S2

u∗BωB, and Evert(u) =
∫

S2

u∗τ +
∫

S2

R(u)dvolS2 ,

where the second identity is obtained since:

τ(du, JPdu) = ω(duv, Jduv) −R(duh, JPdu
h).

Consider the Hofer norm of the symplectic curvature,

‖R‖H :=
∫

B

(
max
p∈Fb

R(p) − min
p∈Fb

R(p)
)
ωnB

B ,

which is bounded by compactness of P . We obtain the upper bound:

Lemma 4.2. For every JP -holomorphic map u:

(4.1) E(u) ≤
∫

S2

u∗τ + ‖R‖H +
∫

S2

u∗BωB.

Applying Gromov’s compactness, we conclude that any sequence of simple
JP -holomorphic map representing σ must converge (up to taking a sub-
sequence) to a stable JP -holomorphic map. From the upper bound 4.1 and
the stability condition for stable maps, we deduce the following result that
is analogous to Lemma 4.5 in [21]:

Lemma 4.3. Let Dσ
0,l denote the set of possible combinatorial types for

genus 0 stable map with l markings representing σ. Then |Dσ
0,l| <∞.

4.1.4. Forgetful maps and Hamiltonian fibrations. The natural map,
πpt : X → pt, induces the map πpt∗ : H2(X,Z) → {0} on the labeling
groups. We denote by Sπpt∗ the corresponding πpt∗-stabilization map on
labeled graphs defined in Definition 4.1. The forgetful map is the map:

πpt : M0,l(X,A) → M0,l, πpt(j, u) = jst,

where jst denotes the stabilization of j, that is jst is obtained by contracting
the unstable components recursively. It is well known that, when restricted
to strata, the forgetful map defines maps:

πSpt : MS(X) → MSπpt∗ (S).

This procedure can be generalized to any Hamiltonian fibration π :
P → B with coupling form τ . Again, the moduli spaces of stable pseudo-
holomorphic maps in P and B are stratified, with strata labeled by stable
labeled trees. Note that π induces a map π∗ : H2(P,Z) → H2(B,Z) between
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the labeling groups. Let JP be a (π, τ) compatible almost complex structure
on P projecting on JB. Given a stable stratum data SP for JP -holomorphic
maps in P representing σ ∈ H2(P,Z), we have that SB := Sπ∗(SP ) is a
stable stratum data for M0,l(B, π∗(σ), JB), and we have a π-forgetful map:

πSP : MSP (P, JP ) → MSB (B, JB), (j, u) → (jst,π, uB := π(u)
)
,

where jst,π is the Riemann nodal surface consisting of the components deter-
mined by the π∗-section of the π∗-stabilization of labeled graphs (which has
combinatorial type Sπ∗(SP )), and uB restricts to the π∗-stable components.
We further have a reparameterization-group-equivariant map:

πSP : M̃SP (P, JP ) → M̃SB(P, JB), (u,y,x) �→ (uB,yB := yst,π,x)

lifting πSP . Note that, a priori, πSP may not respect simplicity of pseudo-
holomorphic stable maps (e.g., by sending a simple JP -holomorphic map to a
multiply covered JB-holomorphic map). This has dramatic effects regarding
transversality within the range of fibered almost complex structures. For
each stable stratum data SP , we will consequently restrict our attention
to the subset, M∗∗

SP (P, JP ), of simple stable elements in MSP (P, JP ) lying
in the preimage of M∗

SB(B, JB) under πSP . In particular, we denote by
(π−1

SP (uB))∗ the set of simple parameterized stable pseudo-holomorphic maps

lying in the fiber of πSP above uB ∈ M̃∗
SB (B, JB), and we use the notation

(π−1
SP (uB))∗ to denote the corresponding quotient under reparameterizations.

4.2. Transversality on every strata. We begin by recalling some stan-
dard notations and facts concerning transversality for a symplectic manifold
(X,ω). Then, we apply it to Hamiltonian fibrations. Finally, we formulate
the corresponding cobordism invariance.

4.2.1. The non-fibered case. Let SX = (V,Fl; pr, �) be a stable stratum
data for M0,l(X,A, J) with homological labeling β. For every v ∈ V , let
σv := β(v), and set

M̃∗(X,β,JX) :=
{

(u := {uv}v∈V , J)|J ∈ JX and uv ∈ M̃∗(X,σv, J)
}
.

This defines a subset of

B1,p
X (β,JX) :=

∏
v∈V

B1,p
X (σv) × JX .

We describe M̃∗
SX (X, J) as a subset of M̃∗(X,β,JX) × I(SX), where the

incidental subvariety I(SX) is the subset of tuples

(y,x) := ({yvv′}vEv′ , x1, . . . , xl) ∈ (S2)2|E| × (S2)|V |
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such that for every v ∈ V the points, yvv′ with vEv′, and xm with pr(xm) =
v, are disjoint. First, to each edge of the graph SX we associate a copy of the
diagonal ΔX ⊂ X2 and set the edge diagonal ΔE ⊂ X2|E| to be the product
of these diagonals over the set E of all edges. We have a natural map

evE : M̃∗(X,β,JX) × I(SX) → (X)2|E|,

called universal edge evaluation map, assigning to each pair (u, J,y,x) the
corresponding “evaluation at the nodes”:

u(y) := {(uv(yvv′), uv′(yv′v))}vEv′ .

The preimage of ΔE under evE is the (parameterized) universal moduli space
denoted M̃∗

SX (X,JX). Then, it is easy to see that

M̃∗
SX (X, J) = (pJX )−1(J) ∩ M̃∗

SX (X,JX),

where pJX denotes the projection from M̃∗(X,β,JX) × I(SX) to JX . The
standard transversality theorem asserts the following:

Theorem 4.1 ([17] Theorem 6.2.6, [21] Theorem 4.7). There is
a subset JX,reg(SX) of second category in JX , such that for each J ∈
JX,reg(SX) the moduli space M∗

SX (X, J) is a smooth oriented manifold of
real dimension:

dim(M∗
SX (X, J)) = 2n+ 2

∑
v∈V

cTX
1 (σv) + 2l − 2|E| − 6.

The set JX,reg(SX) of regular ω-tame almost complex structure for SX is
explicitly given by the following conditions:

(i) for every v ∈ V , for every u ∈ M̃∗(X,σv, J), the linearization DX
u of

∂J at u is surjective.
(ii) the restriction of evE to M̃∗

SX (X, J) is transversal to ΔE .

It follows from (i) that for regular J the moduli spaces M̃∗(X,σv, J) are
naturally oriented manifolds of dimension Ind(DX) = 2n+ 2cTX

1 (σv). Point
(ii) then implies that M̃∗

SX (X, J) is a smooth oriented manifold. Since the
6(|E|+1)-dimensional groupGSX acts freely and properly by orientation pre-
serving diffeomorphisms on this latter manifold, it follows that M∗

SX (X, J)
is a smooth oriented manifold of the stated dimension.

We briefly sketch the idea of proof for the genericity of JX,reg(SX). We
refer to [17] (Chapters 3 and 6) for the details. The main idea is to show
that the universal moduli space is a separable Banach manifold and that pJX
is a Fredholm map between separable Banach manifolds in order to apply
Sard–Smale. Of course, this does not apply straighforwardly here since, for
instance, JX is not Banach. Instead, we consider the set J r

X of ω-tame
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almost complex structure of class Cr with r ≥ 2. Now, set

Ep,r
X (β) :=

⊔
(u,J)∈B1,p

X (β,J r
X)

(⊕
v∈V

Ep
X,uv

(J)

)
.

By a standard argument Ep,r
X (β) is a locally trivial Cr−1 Banach fibration

over B1,p
X (β,J r

X). This Banach fibration admits the section

sX : (u, J) �→ ∂J(u),

and clearly M̃∗(X,β,J r
X) is a subset of s−1

X (0). Moreover, the linearization
D̃X

(u,J) of sX at (u, J) is given by:

D̃X
(u,J) :

⊕
v∈V

X 1,p
X,uv

⊕ TJJ −→
⊕
v∈V

Ep
X,uv

(J)(4.2)

(ξ, Y ) �→ DX
u ξ +

1
2
Y.(du).j0.

One can further show that this operator is onto for every (u, J). It fol-
lows that M̃∗(X,β,J r

X) is a separable Banach manifold. One concludes
that M̃∗(X,J r

X) is a Banach manifold by showing that the edge evalua-
tion map evE is transversal to ΔE . This is done recursively on the set of all
labeled forest, the induction argument being made on the number of edges of
the forests. Finally, a simple computation shows that pJ r

X is Fredholm with
the same kernel and cokernel as the linearized operator D̃X . Thus, by Sard-
Smale (when r is big enough) one obtains a generic subset J r

X,reg(SX) ⊂ J r
X ,

which in fact coincides with the regularizing set defined above, but with Cr

elements only. One concludes in the C∞ case by an argument due to Taubes
(see [17], Chapter 3, Proof of Theorem 3.1.5).

4.2.2. The Hamiltonian fibration case. Let π : P → B be a Hamilton-
ian fibration with coupling form τ . We fix some notations before reformu-
lating Theorem B and giving its proof.

Fix a stable stratum data SP = (V,Fl; pr, �) with homological labeling
βP , and set SB = Sπ∗(SP ) = (VB,FlB; prB, �B) with corresponding labeling
βB. Let E and EB denote the corresponding set of edges. We will assume
below that the homomorphism β′B := π∗ ◦ βP is non-zero, thus forcing βB

to be non-zero. Set σv := βP (v).
Let M̃∗∗(P, βP ,JP ) be the restriction of M̃∗(P, βP ,JP ) to simple maps

having simple projection under π and let

M̃∗∗
SP (P,JP ) := ev−1

E (ΔE)

be the corresponding universal moduli space. Similarly to the general
case, we say that JP ∈ JP,reg(SP ) if and only if: (i) ∀v ∈ V, ∀u ∈
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M̃∗∗(P, σv, JP ), the operator DP
u is onto; (ii) the restriction of evE to

M̃∗∗
SP (P, J) is transversal to ΔE .
We have a natural map

ΠSP : M̃∗∗(P, βP ,JP ) × I(SP ) → M̃∗(B, βB,JB) × I(SB)

(u, JP ,y,x) �→ (uB, JB,yB,x),

induced from π and the projection p1 : JP → JB. In fact, the restriction of
ΠSP to M̃∗∗

SP (P,JP ) induces a map between universal moduli spaces:

π̃SP := πSP × p1 : M̃∗∗
SP (P,JP ) → M̃∗

SB(B,JB).

Since the edge evaluation maps commute with π̃SP and the projection from
P 2|E| to B2|EB |, it follows easily that if JP is regular for SP then JB is
regular for SB.

Now fix a regular JB. Also, let p23 : JP → J V × H denote the obvious
projection. Note that

(π−1
SP (uB))∗ = (p23 ◦ pJP )−1(J,H) ∩ Π−1

SP (uB, JB) ∩ ev−1
E (ΔE ∩ F 2|E|).

A pair (J,H) ∈ J V ×H turning this intersection into an oriented manifold is
said to be fiber regularizing. More precisely, a pair (J,H) is fiber regularizing
for (π−1

SP (uB))∗ if for every (u ≡ {uv}v∈V ,y,x) ∈ (π−1
SP (uB))∗ the following

conditions are satisfied:
(a) ∀v ∈ V, ∀uv ∈ M̃∗∗(P, σv, JP ), the operator Dv

(uv ,JP ) is onto;

(b) the restriction of evE to (π−1
SP (uB))∗ is transversal to ΔE ∩ F 2|E|.

We will denote by JHreg(uB, JB,SP ) the set of fiber regularizing pairs for
(π−1

SP (uB))∗. It follows from (a), (b), and the exact sequence (3.4), that for
a regularizing pair (J,H), the set π−1

SP (uB)∗ is a smooth oriented manifold
with dimension:

dim(π−1
SP (uB)∗) = dimM̃∗∗

SP (P, JP ) − dimM̃∗
SB(B, JB).

Since we are only considering vertical deformations of the maps, the dimen-
sion of the reparameterizations is 6(|E| − |EB|), thus giving after quotient:

dim(π−1
SP (uB))∗ = 2nF + 2

∑
v∈V

cv(σv) − 2|E| + 2|EB|.

We give the proof of the following extension of Theorem B to any strata,
which can be seen as a mild extension to the Hamiltonian fibration case of
Theorem 4.1.

Theorem B’. Let SP and SB be as above.
(1) JP,reg(SP ) is of second category in JP .
(2) For any JB ∈ JB,reg(SB) and any uB ∈ M∗

SB(B, JB) the set of regu-
larizing pairs JHreg(uB, JB,SP ) is of second category in J V ×H.
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Proof. The notations used here are the same as the one introduced in
Section 4.2.1. Following the guideline given in the preceding section, we show
that

π̃SP : M̃∗∗
SP (P,J r

P ) → M̃∗
SB(B,J r

B), r ≥ 2,

defines a submersion between separated Cr−1 Banach submanifolds of
B1,p

P (βP ,J r
P ) and B1,p

B (βB,J r
B). By the discussion in Section 4.2.1, we already

know that M̃∗
SB(B,J r

B) is a Banach manifold. We will then proceed as fol-
lows:

(I) we show that M̃∗∗(P, βP ,J r
P ) is a Banach manifold and that the

restriction of the natural map,

p := πSP × p1 : B1,p
P (βP ,J r

P ) → B1,p
B (βB,J r

B), (u, JP ) �→ (π(u), JB),

to this product moduli space is a smooth submersion onto the moduli
space M̃∗(B, βB,J r

B).
(II) Assuming evE is transversal to ΔE , we show that π̃SP is a submersion.

(III) We show that for every labeled forest SP with l-tails, the restric-
tion of devE to ker dΠSP is transversal to the subspace TΔE |TFE .
This implies that evE is transversal to ΔE for any labeled forest
SP since evEB is transversal to ΔEB for every labeled forest. Hence,
M̃∗∗

SP (P,J r
P ) is a Banach manifold.

The rest of the proof is verbatim the same as in the non-fibered situation
and we omit it.

Proof of (I). First, by a standard argument ([8] Lemme 2.3.2, which is a
simple adaptation of Proposition 3.2.1 in [17] to the fibered case) involving
the use of both the connection induced by τH and the L–C connection on
TB, the sets Ep,r

P (βP ) and Ep,r
B (βB) are locally trivial Cr−1 Banach fibra-

tions over B1,p
P (βP ,J r

P ) and B1,p
B (βB,J r

B), which can be locally trivialized
compatibly with p. Let sP and sB be the corresponding Cauchy-Riemann
sections. The linearization D̃B

(uB ,JB) of sB at (uB, JB) is given by (4.2), while

the linearization D̃P
(u,JP ) of sP at (u, JP ) is given by:

D̃P
(u,JP ) :

⊕
v∈V

X 1,p
P,uv

⊕ TJPJP →
⊕
v∈V

Ep
P,uv

(JP )

(ξ, Y v, Y, f) �→ Duξ +
1
2
(Y.dπ(u).j0)h

+
1
2
Y v.(du)v.j0 +X0,1

f(du).

Let p be the fibration map corresponding to the projection p:

p : Ep,r(βP ) −→ Ep,r
B (βB), (η, JP ) �→ (dπ(η), JB).



A PRODUCT FORMULA FOR GROMOV–WITTEN INVARIANTS 283

By definition, p◦sP = sB ◦p. Furthermore, from Lemma 3.2 and since X0,1
f(du)

and Y v.(du)v.j0 are vertically valued, we deduce that:

dp ◦ D̃P
(u,JP ) = D̃B

(π(u),JB) ◦ dp.
The maps dp and dp being both surjective, the pair (p, p) defines a submer-
sion of Fredholm systems, and we end up having the exact sequence:

0→ ker D̃v → ker D̃P → ker D̃B → coker D̃v → coker D̃P → coker D̃B → 0,

where D̃v denotes the vertical operator associated to D̃P .
To prove the claim, we show that the pair (p, p) defines a splitting when

we restrict sP to M̃∗∗(P, βP ,J r
P ) and sB to M̃∗(B, βB,J r

B). It is enough
to prove this when the tree structure of SP is preserved under Sπ∗ . Let
V0 denote the subset of V on which β′B vanishes, and denote by V+ its
complement in V . Since D̃B is onto for every (uB, JB) ∈ M̃∗(B, βB,J r

B), it
suffices to show that the vertical operator D̃v is surjective at every points of
M̃∗∗(P, βP ,J r

P ). Note that D̃v is closed and suppose it is not dense. Then,
by Hahn–Banach we would have a non-zero element:

{ηv}v∈V ∈
⊕
v∈V

Lq(Λ0,1(S2, u∗vTP
v)),

1
p

+
1
q

= 1,

such that each ηv is of class W 1,p, is in the cokernel of Dv
uv , and verifies:

0 =
∫

S2

⎛
⎝∑

v∈V+

〈
1
2
Y v.(duv)v.j0 +X0,1

f(duv)
, ηv

〉

+
∑
v∈V0

〈
1
2
Y v.(duv)v.j0, ηv

〉⎞⎠ dvolS2 .

Next, we show that we can find Y v and f such that all the components in
the sum must be strictly positive unless all the ηv are identically zero. Let
Z(uv) denote the set of non-injective points of uv and consider the subset
in S2:

X(uv) := Z(uv) ∪
⋃

v′∈V+,v′ �=v

u−1
v (uv′(S2)) ∪

⋃
v′∈V0,v′ �=v

u−1
v (uv′(S2)).

Since we consider simple maps, the complement of this set is open dense in
S2. Let xv be a point of the complement of X(uv). Then, there is a neigh-
borhood V of xv, which is embedded via uv into a neighborhood Uv of u(xv)
in P and which does not intersect the image of any other uv′ . Now assume
v ∈ V+. From transitivity of the action of Hamiltonian diffeomorphisms on
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the manifold, we can find a function f ∈ THH = H supported in Uv such
that: ∫

S2

〈
X0,1

f(duv)
, ηv

〉
dvolS2 > 0.

When v’s in V0, we can also find an element Y v ∈ TJJ vert supported in Uv

and such that ∫
S2

〈
1
2
Y v.(duv)v.j0, ηi

〉
dvolS2 > 0.

The neighborhoods Uv can be chosen small enough so that they are pairwise
non-intersecting. Set Y v|uv = 0 for v ∈ V+ and f |uv = 0 for v ∈ V0. Then
Y v and f are well-defined on the whole manifold P , which implies that all
the ηv’s are vanishing. This ends the proof of the first claim.

Proof of (II). Assume evE is transversal to ΔE when SP is any labeled
forest. Furthermore, suppose that the graph structure of SP is preserved
under Sπ∗ . This is enough since we can always place ourselves in this situa-
tion by adding marked points in the fiber components so that they are all
equipped with at least three special points. This procedure does not alter
the transversality for evE as the latter does not depend on the infinitesimal
movement of the marked points. Let S+

P be the stable stratum data resulting
from adding the marked points and consider the map

ForP : M̃∗∗
S+
P
(P,JP ) → M̃∗∗

SP (P,JP )

that forgets the k added marked points together with stabilizing the resulting
map. Define ForB in a similar way. Then:

ForB ◦ π̃SP = π̃SP ◦ ForP .

Clearly ForP is a submersion. It is not hard to see that ForB is also a
submersion. Moreover, using an adaptation to the fibered case of Lemma
3.4.7 in [17], one can show that π̃SP is also submersion [8].

Proof of (III). The proof proceeds by induction on the number of edges of
the labeled forests SP . When the forest has no edge the assertion is vacuous.
Suppose it is true for forests with at most N edges and suppose SP is a forest
with N +1 edges. Pick any edge given by the pair (yvv′ , yv′v), cut it out and
replace it by the two new marked points yvv′ and yv′v. This procedure gives
a new forest S ′

P with two more tails, which satisfies the induction hypothesis
and such that the sets I(SP ) and I(S ′

P ) coincide. Let E′ denote the set of
edges of S ′

P . Then evE′ is transversal to ΔE′ so that M̃∗∗
S′
P
(P,J r

P ) is a Banach
manifold. Consider the evaluation

evvv′ : M̃∗∗
S′
P
(P,J r

P ) → P × P, (u,y,x, JP ) �→ (uv(yvv′), uv′(yv′v)).

We prove that evvv′ is transversal to the diagonal ΔP ⊂ P × P . Assume
that π preserves the tree structure of S ′

P (if not we can add marked points).
Let evB

vv′ be the analog of evvv′ , but in the case of the base B. It is known
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that evB
vv′ is transversal to ΔB ⊂ B ×B at every point of M̃∗

Sπ∗ (S′
P )(B,J r

B)
([17], Proposition 6.2.8). Furthermore,

evB
vv′ ◦ π̃S′

P
= (π × π) ◦ evvv′ ,

Since both π × π and π̃ are submersions it suffices to check that:

∀ũ ∈ M̃∗∗
S′
P
(P,JP ), coker devvv′(ũ)|ker dπ̃(ũ) = 0.

By the symmetry arising from quotienting TF ⊕ TF by TΔF, it suffices to
show that the restriction of devvv′(ũ) to V surjects onto Tuv(yvv′ )F × {0}.
But:

W =
{

({ξv}, 0, 0, 0, Y v, f) ∈ TũM̃∗∗
S′
P
(P,J r

P ) | ξv ∈W 1,p(u∗vTP
v), ∀v ∈ V

}
.

Hence, by definition of evvv′ :

devvv′(ũ)({ξv}, 0, 0, 0, Y v, f) = (ξv(yvv′), ξv′(yv′v)).

Now let (v, 0) ∈ Tuv(yvv′ )F × {0} and suppose the i component is not ghost,
i.e., is not constant. Then choose any ξv ∈ X 1,p,v

P,uv
such that ξv(yvv′) = v.

Adapting Lemma 3.4.7 in [17] to the present situation, we can find Y v

or f supported in a small enough neighborhood in P (such that it does
not intersect the image of any other component) and a vector field ζ ∈
W 1,p(u∗vTP v) such that: ζ(yvv′) = 0 for vEv′, and (ξv − ζ, 0, Y v, 0) or (ξv −
ζ, 0, 0, f) lies in ker D̃(uv ,JP ). Then set

ξv′ = 0 ∀v′ 
= v.

If uv is ghost, then consider Vgh(v) the vertices of the largest subtree in S ′
P

containing v ∈ V and consisting only of ghost components. For all k ∈ Vgh(v)
we must have ξv = w. Consider now all the elements k ∈ V \Vgh(v) such that
there exists v′ ∈ Vgh(v) for which kEv′ and write this set as K. All these
components have a point in commun in the image of the stable map, namely
uv(Σv) = uv(yvv′). Then, for every m ∈ K choose any ξm ∈ X 1,p,v

P,um
such that

ξm(ymv′) = w. Applying the argument used in the non-ghost case to all the
components indexed by K we find vertically valued vector fields {ζm}m∈K

such that

ζ(ymv′) = 0 when mEj,m ∈ K and v′ ∈ Vgh(v),

and such that, for all m ∈ K, either (ξm − ζ, 0, Y v, 0) or (ξm − ζ, 0, 0, f)
lies in the kernel of D̃(um,JP ). Finally, set ξv′ ≡ 0 for every component not
indexed by K � Vgh(v). �
Remark 4.1. In the above proof it is essential that we allow the connection
to vary. In particular, such perturbations enable us to avoid horizontal JP -
holomorphic maps, i.e., maps u such that Im(du) ⊂ Hor for which the index
of Dv

u is negative (see [17], Remark 8.3.2.).
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4.2.3. Cobordisms. We end this section by stating the invariance of the
moduli spaces under changes of the regular structures. Let SP be a stable
stratum data and let SB be its projection. Given two regular structures J0

P

and J1
P in JP,reg(SP ), we designate by JP (J0

P , J
1
P ) the set of paths {Js

P }
in JP , s ∈ [0, 1], with endpoints J0

P and J1
P . Similarly define JB(J0

B, J
1
B)

for pairs J0
B and J1

B in JB,reg(SB). For elements γ ∈ JP (J0
P , J

1
P ) and γB ∈

JB(J0
B, J

1
B) we set:

W̃∗∗
SP (P, {Js

P }) := γ∗M̃∗∗
SP (P,JP ) and W̃∗

SB (B, {Js
B}) := γ∗BM̃∗

SB (B,JB).

It is not hard to see that if γ is transversal to pJP , and respectively γB is
transversal to pJB , the quotient under GSP and GSB of the above pullbacks
are then oriented manifolds with boundaries and with dimensions:

dim(M∗∗
SP (P, J0

P )) + 1 and dim(M∗∗
SB(B, J0

B)) + 1.

In such case, we say that the paths are regular and denote by

JP,reg(SP , J
0
P , J

1
P ) and JB,reg(SB, J

0
B, J

1
B)

the set of such regular paths. Note that a regular path γ in JP projects to
a regular path γB := p1(γ) in JB.

For fixed JB ∈ JB,reg(SB) and uB ∈ M̃∗
SB (B, JB), and for pairs (J,H)0

and (J,H)1 in JHreg(uB, JB,SP ), let JH((J,H)0, (J,H)1) denote the set
of paths in J V ×H with endpoints (J,H)0 and (J,H)1. For any such path
γ, set

W̃∗∗
SP (π−1(uB), JB, {(J,H)s}) := γ∗(π̃)−1(uB, JB).

If γ is transversal to the restriction of p23 ◦ pJP to the fiber (π̃)−1(uB, JB),
then the quotient under GSP of the corresponding pullback is an oriented
manifold with boundary, of dimension

dim(π−1(uB) ∩M∗∗(P, J0
P )) + 1.

In such case, we say that γ is regular and the set of regular paths is denoted
by JHreg(uB, JB,SP , (J,H)0, (J,H)1).

Proposition 4.1. The sets JP,reg(SP , J
0
P , J

1
P ), JB,reg(SB, J

0
B, J

1
B) and

JHreg(uB, JB,SP , (J,H)0, (J,H)1) are of second category.

5. The product formula

In this section we establish the product formula. Before doing so, we recall
the definition of GW invariant for a semi-positive symplectic manifold
(X,ω). For a detailed exposition of the following standard facts, we refer
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to [17] or [21]. Let A ∈ H2(X,Z), and consider the l-pointed evaluation
map:

evX
l,J : M∗

0,l(X,A, J) → X l, (u, x1, . . . , xl) �→ (u(x1), . . . , u(xl)).

This defines a dim(M∗
0,l(X,A, J))-pseudo-cycle of X l for every J ∈ JX,reg ⊂

JX where

(5.1) JX,reg :=
⋂

S∈DA0,l

JX,reg(S).

Note that JX,reg is of second category since DA
0,l is finite. Moreover, JX,reg

depends on ω.
We recall that a d-dimensional pseudo-cycle in a manifold X is a pair

(M,f) where M is an oriented manifold of dimension d and f : M → X is a
smooth map such that the closure f(M) is compact and such that its omega-
limit Ωf is of codimension at least 2 inX. Given classes cX1 , . . . , c

X
l ∈ H∗(X),

it is possible to represent them by pseudo-cycles (M1, f1), . . . , (Ml, fl) in X,
of respective dimensions dimMi := deg(cXi ). We can further assume that
these cycles are in general position and such that evX

l,J is strongly transverse
to the product cycle

C := (M1, f1) × · · · × (Ml, fl).

Then, the corresponding GW invariant is the algebraic number of isolated
points in the preimage of C under evX

l,J

〈cX1 , . . . , cXl 〉X,J
0,l,σ := evX

l,J .C,
which is set to be 0 unless:

2n(1 − l) + 2cTX
1 (σ) + 2l − 6 +

l∑
i=0

deg(cXi ) = 0.

This number only depends on the bordism class of the pseudo-cycles
involved. In particular, it does not depend on the regular almost complex
structure, which we will drop from the notations.

Now, let π : P → B be a Hamiltonian fibration with coupling form τ ,
and let ιPF denote the inclusion of F in P . Consider σ ∈ H2(P,Z) with
σB = π∗σ 
= 0. Let (uB,x) be an element of M∗

0,l(B, σB, JB). According
to diagram (evd) in the Introduction, the product formula is obtained by
considering the (respective) intersections of ev(uB ,x), evB

l,JB
, and evP

l,JP
, with

the product pseudo-cycles:

(CF , fF ) :=
l∏

i=1

(MF
i , f

F
i ), (CB, fB) :=

l∏
i=1

(MB
i , f

B
i )
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and

(CP , fP ) :=
l∏

i=1

(MP
i , f

P
i ),

where, (MF
i , f

F
i ), (MB

i , f
B
i ) and (MP

i , f
P
i ), respectively represent torsion

free homology classes, cFi , cBi and cPi , verifying condition (	). In particular,{
(MB

i , f
B
i ) = (pt, fB

i ), for i = 1, . . . ,m,
(MF

i , f
F
i ) = (F, idF), for i = m+ 1, . . . , l.

Furthermore, a d-dimensional pseudo-cycle (M,f) in the fiber F of P defines
a d-dimensional pseudo-cycle (M, ιPF ◦ f) in the total space. Similarly, any
d-dimensional pseudo-cycle (M,f) in B defines a d + dimF pseudo-cycle
(f∗P, f) in P , where f stands for the bundle map associated to f . These
operations actually preserve the bordism classes. We conclude that:

(MP
i , f

P
i ) =

{
(MF

i , ι
P
F (fF

i )), if i = 1, . . . ,m,

((fB
i )∗P, fB

i ), otherwise.

Regarding orientations of the product pseudo-cycles, the exact sequence,

0 −→ dfF (TCF)
(ιPF )l−→ dfP (TCP ) πl−→ dfB(TCB) −→ 0,

gives:
det dfP (TCP ) ∼= det dfB(TCB) ⊗ det dfF (TCF).

Therefore, if we choose the cycles (CB, f
B) and (CF, f

F ) to be positively
oriented the cycle (CP , f

P ) must also be positively oriented. Now, assume
the evaluations are pseudo-cycles and that strong transversality with the
product cycles is achieved. Then (evB

l )−1(fB) is a finite set {(uB,α,xα)}α∈A

of isolated simple l-pointed JB-holomorphic maps. For each α let ιPF,α denote
the embedding of F l into F l

uB,α(xα). Also, in order to simplify notations set

evα := ev(uB,α,xα), fF
α := ιPF,α ◦ fF ,

and write:

nα := evα.f
F
α , nB := evB

l .f
B and nP := evP

l .f
P .

It follows easily from a dimensional argument that nP is necessarily zero if
and only if either nα or nB is necessarily zero. In the notations above the
product formula now reads:

(PF) ∀α ∈ A, nP = nαnB.

We will prove this relation, and then prove the Corollary in the last sub-
section, Before doing so, we make sure that the evaluation maps are simulta-
neously pseudo-cycles that remain in the same bordism class under change
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of regularizing almost complex structure. This will give meaning to all the
numbers in (PF).

5.1. Evaluation maps as pseudo-cycles. We begin by fixing some nota-
tions. Define JB,reg ⊂ JB and JP,reg ⊂ JP as in (5.1). These sets are of
second category. For JB ∈ JB,reg and uB ∈ M∗(B, σB, JB), we set

JHreg(uB, JB) :=
⋂

{SP |Sπ∗ (SP )=StopB }
JHreg(uB, JB,SP ),

where Stop
B denotes the top stable stratum data for M(B, σB, JB), i.e., the

stratum having only one vertex as a tree structure. By Theorem B’, this set
is also of second category. Furthermore, for fixed JB we say that the class
σB ∈ H2(B,Z) only admits irreducible effective decompositions with respect
to JB if every stratum MSB(B, JB) is only made of irreducible elements.
This condition is in particular realized by primitive classes, e.g., the class
of a line in CP

n or the diagonal in S2 × S2 with the standard product
complex structure. Let Jirr(σB) denote the subset of JB with respect to
which σB admits only irreducible effective decompositions. Then Jirr(σB) is
open in J (B,ωB). Nevertheless, nothing guarantees that it is non-empty.
In the theorem below, the restriction to Jirr(σB) is essential in order to
avoid simple stable maps having a reducible projection. We show that all
the evaluation maps in the above diagram are pseudo-cycles.

Theorem 5.1. Assume (		) and that Jirr(σB) 
= ∅. Then:

(i) For every JP ∈ JP,reg with JB ∈ Jirr(σB), the evaluation maps, evB
l,JB

and evP
l,JP

, are pseudo-cycles. Moreover, changing the regular structure
along a regular path induces a bordism between the relevant evaluation
maps, as long as the almost complex structure on B varies in a con-
nected component of Jirr(σB).

(ii) Fix a regular structure JB, and let (uB,x) ∈ M∗
0,l(B, JB, σB). Then,

for any element in JHreg(uB, JB), the couple (π−1(uB,x), ev(uB ,x)) is
a pseudo-cycle that remains in the same bordism class, under change
of regularizing pair along regular paths.

Proof. We only show the first statement, the proof of the second being sim-
ilar. Fix JP ≡ (JB, J,H) ∈ JP,reg. Hence JB ∈ JB,reg and therefore evB

l,JB
is

a pseudo-cycle ([17], Theorem 6.6.1). By Lemma 4.3, there are only finitely
many stable stratum data SP representing geometric limits of curves in
M∗∗

0,l(P, σ, JP ). Hence, by Gromov’s compactness

ΩevPl,JP
⊂
⋃
SP
evP

l,JP
(M∗∗

SP (P, JP )),
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where the union is taken over all reduced stratum data. Let βred
P denote

the homological labeling associated to a reduction Sred
P of SP . Let V red

+

denote the set of π-stable components in Sred
P and let V red

0 denote the set of
π-unstable components in Sred

P . Since σB only admits irreducible decompo-
sitions, only π-unstable components of SP are contracted in the reduction
process. Therefore, there exist integers mv > 0 for all v ∈ V red

0 such that:

σ =
∑

v∈V red
+

βred
P (v) +

∑
v∈V red

0

mvβ
red
P (v).

Condition (		) further implies that cv(βred
P (v)) > 0 for every v ∈ V red

0 , and
we conclude that

dimM∗∗
Sred
P

(P, JP ) ≤ dimM∗∗
0,l(P, σ, JP ) − 2,

for every stratum reduction. Hence, evP
l,JP

is a pseudo-cycle. The indepen-
dence statement is shown as follows. Let J t

P be a regular path of fibered
almost complex structures between regular fibered structures projecting
on a path in JB,reg(J0

B, J
1
B) ∩ Jirr(σB), where J0

B, J
1
B lie in the same con-

nected component of Jirr(σB). Then, any Gromov limit of a sequence in
W∗∗

0,l(P, σ, {J t
P }) is such that its non-trivial roots are irreducible, while its

fiber components may actually be reducible. Arguing exactly as above, the
lower strata in W∗∗

0,l(P, σ, {J t
P }) have codimension at least 2 in P . Thus,

evP
l,{JtP } : W∗∗

0,l(P, σ, {J t
P }) → P l

is a pseudo-cycle inducing a bordism between evP
l,J0
P

and evP
l,J1
P
. �

Remark 5.1. Note that in this context we do not need to impose any semi-
positivity assumption on B due to the specific decomposability hypothesis
imposed on σB. Note also that if σB is undecomposable, we can drop the
restriction on Jirr(σB).

5.2. Proof of Theorem A. We begin by proving that all the terms in (PF)
are well-defined. From Theorem 5.1 and since Jirr(σB) 
= ∅, the evaluation
maps evB

l and evP
l generically define pseudo-cycles. Choose (generically)

the cycles (MB
i , f

B
i ) so that evB

l is strongly transverse to (CB, f
B). Then

(evB
l )−1(fB) is finite and, as already mentioned, the corresponding GW-

invariant nB only depends on the bordism classes of (MB
i , f

B
i ), and on the

connected components of Jirr(σB) ∩ JB,reg. Thus,

(evB
l )−1(fB) = {(uB,α,xα)|α ∈ A},

is finite, and for every α∈A the map evα also defines a pseudo-cycle for
generic fiber regularizing pairs. Consequently, (F l, fF

α ) is a pseudo-cycle of
F l

uB(xα) for every α ∈ A. Since A is finite, we can furthermore choose the
cycles (MF

i , f
F
i ) such that evα is transversal to fF

α for every α∈A. This,
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together with the fact that evB
l is transversal to fB, implies that evP

l is
transversal to fP . The independence of nα and nP with respect to the choice
of regularizing triple follows from Theorem 5.1.

Next, we prove (PF). Let Cα ⊂ B denote the image of uB,α, let PCα be
the restriction of P to Cα, and let ια : PCα ↪→ P and ιPCαF : F ↪→ PCα denote
the natural inclusions. Consider the subset of section classes in PCα

Bα
σ = {σ′ ∈ H2(PCα ,Z)|(ια)∗σ′ = σ}.

Then,

(5.2) nα =
∑

σ′∈Bα
σ

〈ιPCαF (cF1 ), . . . , ιPCαF (cFl )〉PCα0,l,σ′ .

Indeed, let JPCα
denote the restriction of JP to PCα , then ια naturally

induces an identification:

ια :
⊔

σ′∈Bα
σ

M(PCα , JPCα
, σ′) → π−1(uB,α,xα),

which is an orientation preserving diffeomorphism when restricted to any
stratum. Furthermore, by simplicity of uB,α the l marked points are nat-
urally identified to the 2l-dimensional manifold M∗

0,l(Cα, [Cα]). We obtain
the following diagram:⊔

σ′∈Bα
σ
M∗(PCα , σ

′) ��

ev
PCα
xα

��

⊔
σ′∈Bα

σ
M∗

0,l(PCα , σ
′) π ��

ev
PCα
l

��

M∗
0,l(Cα, [Cα])

evCαl
��

F l
(ι
PCα
F )l

�� P l
Cα

πl �� C l
α

where the complex structures are omitted in order to simplify notations. By
definition, evPCα

xα is the composition of evα with ια hence is a pseudo-cycle for
generic fiber regularizing parameters. Using the above diagram we conclude
that evPCα

l is generically a pseudo-cycle. Then, equation (5.2) follows since
there is only one positively oriented curve in M∗

0,l(Cα, [Cα]) intersecting
transversally l points at the l-marked points (giving 〈pt, . . . , pt〉Cα0,l,[Cα] = 1).

Now, consider the sign functions εP , εB, and εα, respectively associated
to the curves counted in nP , nB and nα. We have to make sure that the
signs of the counted curves are given compatibly with πl, i.e., that:

∀α ∈ A, εP = εB × εα.

However, this is the case since for every fiber regularizing pair we have the
exact sequence:

0 → Tu

(
π−1(uB,α,xα)

)→ T(ια(u),xα)M∗∗
0,l(P, σ)

→ T(uB,α,xα)M∗
0,l(B, σB) → 0.
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Consequently:

nP =
∑
α∈A

∑
{u∈ev−1

α (fFα )}
εP (ια(u))

=
∑
α∈A

⎛
⎝εB(uB,α,xα)

∑
{u∈ev−1

α (fFα )}
εPCα ,xα(u)

⎞
⎠ ,

which, by Lemma 2.3, coincides with nα0nB for any α0 ∈ A. �

6. Gluing and fibration of moduli spaces

The aim of this section is to show that, under some circumstances, π
defines a locally trivial differentiable orbi-fibration above the top stratum of
M0,l(B, σB, JB), with σB 
= 0. We start with the following simple observa-
tion. From the transversality theorem the restriction of πSP to M∗∗(P, σ, JP )
is generically a smooth submersion onto M∗(B, σB, JB) over countably
many points. It is natural to ask if there exists a fibered JP with respect to
which the latter map is everywhere regular. For fixed JB and J , we say that
H ∈ H is parametric if Dv

u is surjective for every u ∈ M∗∗(P, σ, JP ). From
exactness of (3.4) π is a smooth submersion for parametric H. As a result,
if we assume that σ is an undecomposable effective class projecting onto a
non-trivial undecomposable class in B and that H is parametric, then πSP is
a locally trivial fibration (Indeed, since σ is undecomposable, M∗∗(P, σ, JP )
is compact so that πSP is proper, as desired).

Remark 6.1. The set of parametric H’s may be empty. Consider the
(CP

1, ωFS)-fibration,

π : E := P(O
CP

2(−2) ⊕ C) −→ (CP
2, ωFS).

Denote by L the homology class of a line in CP
2, and let L0 ∈ H2(E,Z)

be the class such that L = π∗(L0) and L0 ∩ [F ] = [pt], where [F ] stands for
the class of a fiber in E. If u is a holomorphic curve in E representing L0,
the fibration u∗TE is isomorphic to the direct sum of O

CP
1(2), O

CP
1(1) and

O
CP

1(−2). A straightforward computation then shows that the index of the
vertical linearized operator must be −2, hence there are no parametric H.

We will make the following assumption on the fibered structure JP

throughout this section:

Split Regularity Assumption (SR). For every stable stratum data
SP for pseudo-holomorphic maps in P representing σ, for every u ∈
M̃SP (P, JP ):

• the operators Dv
u and DB

π(u) are surjective;
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• the edge evaluation maps evB and evπSP (u) are transversal to the cor-
responding diagonals.

This implies that for every u ∈ MSP (P, JP ) the operator DP
u is surjective,

and evP is transverse to the associated diagonal (see Section 3). By a stan-
dard argument the quotient spaces MSP (P, JP ), MSB(B, JB), and the fiber
of πSP over πSP (u), are smooth orbifolds. Furthermore, the commutativity
π∗ ◦DP

u = DB
πSP (u) ◦ π∗ implies that these orbifold structures can be chosen

compatibly with πSP . We will drop the almost complex structures from the
notations since it is understood that we made a choice here.

Under the split regularity assumption, we will prove Theorem C. Namely,

Theorem 6.1. Under hypothesis (SR), the moduli spaces M0,l(P, σ) and
M0,l(B, σB) are C1-orbifolds, and the maps πSP extend to a map

π : M0,l(P, σ) → M0,l(B, σB),

which restricts to a C1 locally trivial fibration (of orbifolds) above each strata
of M0,l(B, σB).

The main idea of the proof is to construct gluing maps compatibly with
the projections πSP . We explain this. In general, a gluing map will refer to a
map GlSP with values in M0,l(P, σ) and with domain the complement L∗

SP
of the zero-section of an orbibundle of complex vector spaces (the gluing
parameters) LSP over MSP (P ). In the fibered context, under hypothesis
(SR), we will construct gluing maps GlSP : L∗

SP → M0,l(P, σ) and GlSB :
L∗
SB → M0,l(B, σB) such that:

π ◦GlSP = GlSB ◦ πSP ,
where πSP : LSP → LSB is an appropriate orbibundle map. More pre-
cisely, let UP ⊂ MSP (P ) and UB ⊂ MSB(B) be proper open subsets
such that πSP (UP ) = UB. For εB a positive real, let LSB ,εB denote the εB-
neighborhood of the zero-section in LSB , and let LSB ,εB ,UB be the restriction
of LSB ,εB to UB. Define LSP ,εP ,UP similarly. We will prove the following:

Theorem 6.2. For small enough positive constants εP and εB, there are
(C1)-diffeomorphisms:

GlSP : L∗
SP ,εP ,UP

→ M0,l(P, σ), GlSB : L∗
SB ,εB ,UB

→ M0,l(B, σB)

such that:
π ◦GlSP = GlSB ◦ πSP .

The gluing maps in Theorem 6.2 will provide C1-differentiable atlases on
the moduli spaces involved, giving the desired extension π. The fibration
structure statement then follows easily since each πSP is a submersion (in
the topology induced by the gluing maps). This implies that when restricted
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to a given strata of M0,l(B, σB), the projection π is a proper surjective
differentiable submersion, hence we have a locally trivial fibration.

This section is divided in three parts. The first two parts deal with the
gluing procedure. The first part, Section 6.1, is expository following Chen
and Li’s work [3]. In the second part, Section 6.2, we give the proof of
Theorem 6.2. The proof is an adaptation to the fibered case, of Chen and
Li’s work, presenting no major difficulty. Finally, we prove Theorem 6.1 in
Section 6.3: namely, we show that gluing maps provide differentiable atlases
on the moduli spaces compatibly with the projections πSP .

6.1. Gluing in the non-fibered case: B = pt. We give the gluing pro-
cedure in M0,l(X,A) with (X,ω) a general symplectic manifold. This will
be our guideline when considering more general base. We start by gluing in
M0,l. We follow standard approaches in the literature such as [3, 17, 20, 23],
among others.

6.1.1. Gluing for nodal curves. Let S := (V,Fl; pr, �) be a stable stra-
tum data for M0,l, and let j ≡ (Σ, j,x) ∈ MS . For v ∈ V , let Σv denote
the corresponding (irreducible) component, and for f ∈ Fl, denote by zf the
corresponding special point on Σv. By definition each Σv is stable. Then, up
to isometry, there exists a unique isometric action of a Fuchsian group Γ on
the hyperbolic half plane H with respect to which:

Σv \ {zf |pr(f) = v} ∼= H/Γ .

The induced metric belongs to the conformal class given by the complex
structure on Σv. If D ⊂ H denotes a Dirichlet region of Γ, then each zf
corresponds to a vertex at infinity, and we can choose the fundamental region
D such that zf corresponds to infinity with edges x ≡ 0 and x ≡ 1. It is well
known that given a real b > 1, the horocycle at zf ,

{x+ iy ∈ H|2πy > b}/ 〈z �→ z + 1〉,
defines a neighborhood of zf , which can be identified to a punctured disc
D∗(e1−b) ⊂ C via the map z �→ e2πiz+1. We have such neighborhoods for
each zf , and we denote them D∗

f (rf ), with small rf > 0. Now, D∗
f (rf ) is

conformally equivalent to a cylinder with negative end :

(−∞, ln rf ] × R/2πZ ∼= D∗
f (rf ) : (s, t) �→ es+it

or with positive end :

[− ln rf ,+∞) × R/2πZ ∼= D∗
f (rf ) : (s, t) �→ e−s−it.

Let ef,f ′ be an edge of S between the vertices v := pr(f) and v′ := pr(f ′).
For a complex number

(6.1) ρvv′ := e−Rvv′+iθvv′ ≡ rvv′eiθvv′ , θ ∈ [0, 2π),
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such that |ρvv′ | < min{rf , rf ′}, we can glue the components Σv and Σv′ at
zf and zf ′ as follows. Put positive (resp. negative) cylindrical coordinates
on D∗

f (rf ) (resp. D∗
f ′(rf ′) and identify the annuli:

[−Rvv′/2 − 1,−Rvv′/2 + 1] × R/2πZ
∼=→ [Rvv′/2 − 1, Rvv′/2 + 1] × R/2πZ,

(s, t) �→ (s+Rvv′ , t+ θvv′).

This gives the patching procedure between Af := D∗
f (rf )\D∗

f (e−Rvv′ ) and
Af ′ := D∗

f ′(rf ′)\D∗
f ′(e−Rvv′ ). The resulting curve Σρvv′ (f, f

′) has a natural
complex structure and is the gluing of j at ef,f ′ with parameter ρvv′ .

Note that ρvv′ can be naturally identified to an element of

Cvv′ := Tyvv′Σv ⊗ Tyv′vΣv′ ∼= C, vEv′.

Denote by Cj the direct sum of the Cvv′ over all edges in S, and by Bε the
ball of radius ε at the origin of Cj. Then, for small enough ε > 0, the gluing
gives a map:

glj : Bε ⊂ Cj → M0,l, ρ �→ jρ ≡ Σρ.

which coincides with the identity map when ρ ≡ 0. Note that glj is Aut(j)-
equivariant (for the linear action of Aut(j) on Cj), and it follows from sta-
bility of the curve that glj is injective. Taking the union over MS of the Cj

actually defines an orbibundle

pS : LS → MS .

Let LS,ε denote the restriction to an ε neighborhood of the zero section, and
let L∗

S be LS with the zero section removed. Given a proper open subset
U ⊂ MS , there exists ε > 0, depending on U , such that the above gluing
map extends to a diffeomorphism:

glS : L∗
S,ε,U := L∗

S,ε

∣∣
U
→ M0,l, (j, ρ) �→ glj(ρ).

More generally, given two stable stratum data such that S ≺ S ′, there
exists a subbundle LS,S′ of LS with fibers identified to C

|E′|−|E|, |E′| being
the number of edges in S ′, as well as gluing maps (defined on proper open
subsets):

glS,S′ : L∗
S,S′,ε → MS .

When S is unstable, one can still define LS over MS , as well as a gluing
map glS , but glS is injective and a local diffeomorphism if and only if S is
stable.

6.1.2. Gluing stable components. Let SX := (V,Fl; pr, �) be a stable
stratum data. Here we assume that the forgetful map S := Sπpt∗ (SX) and
SX have the same tree structure. Then πSXpt coincides with the forgetting-
the-map map:

FX : MSX (X) → MS , (u, j) �→ j.
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Let LSX denote the orbibundle F∗
XLS over MSX (X). In local coordinates,

an element in LSX is given by a triple (u, j, ρ). Consider the bundle map:

πpt
SX : LSX → LS , (u, j, ρ) �→ (j, ρ).

The gluing consists in constructing, compatibly with πpt
SX , a J-holomorphic

map with domain glS(j, ρ) out of any (u, j, ρ). More precisely, the following
holds:

Theorem 6.3 ([3] Theorem 12.1, [17] Theorem 10.1.2, [20] Theorem
3.34). For every proper subset UX ⊂ MSX (X), there exists a constant,
εX > 0, and a diffeomorphism:

GlSX : L∗
SX ,εX ,UX

→ M0,l(X,A), (u, j, ρ) �→ GlSX (u, j, ρ),

such that

(6.2) πpt ◦GlSX = glS ◦ πpt
SX .

Proof. We give a sketched proof of this theorem that serves as a guiding
principle when gluing pseudo-holomorphic curves. This is done in several
steps.

Step 1: pregluing. Here, we construct an approximatively J-holomorphic
smooth map out of (u, j, ρ) ∈ L∗

SX . For v ∈ V , let uv : Σv → X denote the
corresponding component of u. Also, for an edge ef,f ′ of SX with pr(f) = v
and pr(f ′) = v′, let yv,v′ denote the corresponding node on Σ. Let ρvv′ ∈ C

∗,
defined by (6.1), denote the gluing parameter associated to yv,v′ . Further-
more, let β : R → [0, 1] denote a smooth cut-off function with uniformly
bounded derivative, |β′(r)| ≤ 2, such that β(r) = 0 if r ≤ 1 and β(r) = 1
for r ≥ 2. The pregluing of (u, j) with parameter ρ is the smooth map,

uρ ≡ pglX(u, j, ρ) : Σρ → X,

defined as follows: for each v ∈ V , for every v′ ∈ V such that vEv′,

uρ(z) :=

⎧⎪⎨
⎪⎩
pvv′ := uv(yv,v′) = uv′(yv,v′), if z ∈ Df (r1/4

vv′ )\Df (r3/4
vv′ ),

exppvv′ (β(|z|/r1/4
vv′ )(exp−1

pvv′ uv(z))), if z ∈ Df (2r1/4
vv′ )\Df (r1/4

vv′ ),
exppvv′ (β(r3/4

vv′ /|z|)(exp−1
pvv′ uv′(ρ/z))), if z ∈ Df (r3/4

vv′ )\Df (r3/4
vv′ /2)

and uρ(z) coincides with uv(z) away from the annuli above. Here, we need
to assume ρ small enough, so that the discs Df (4r1/4

vv′ ) are sent under uv in
a normal neighborhood of pvv′ . Note that the mapping pglX is continuous
with respect to ρ.

Estimates from the pregluing. The following estimates are all standard and
their proofs can be found in [3] (Section 10) or in [17] (Section 10.3 and the
proof of Lemma 10.6.3). The first estimate tells that uρ is approximately
J-holomorphic. The second gives a quadratic estimate ensuring existence
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and unicity of the gluing map. Finally, the third is needed to derive that the
constructed gluing map is a local diffeomorphism.

Lemma 6.1. Let p> 2 an integer, and UX a proper open subset of MSX (X).
There is a uniform (with respect to ρ) constant cX such that for every (u, j) ∈
UX :

(6.3) ‖duρ‖L∞ ≤ cX , ‖∂Juρ‖Lp ≤ cX |ρ|1/2p.

Consequently, there is a uniform constant cX1 such that

(6.4) ‖NX
uρ(ξ1) −NX

uρ(ξ2)‖Lp ≤ cX1 (‖ξ1‖W 1,p + ‖ξ2‖W 1,p)‖ξ1 − ξ2‖W 1,p ,

where NX
u denotes the non-linear part in the Taylor expansion of ∂J at u:

NX
u (ξ) = ∂J expu ξ − ∂Ju−DX

u ξ, ξ ∈W 1,p(u∗TX).

Finally, let ut := {(uvt, uv′t)}vEv′, t ∈ [0, υ) be a path in B1,p
X , with

ζ ≡ {(ζv, ζv′)}vEv′ :=
d

dt

∣∣∣∣
t=0

ut.

Let uρ,t denote the corresponding path of preglued curves and set ζρ :=
d
dt

∣∣
t=0

uρ,t. There is a uniform constant c̃X such that

(6.5) ‖ζρ‖W 1,p ≤ c̃X‖ζ‖W 1,p , ‖DX
uρ,0ζρ‖Lp ≤ ‖DX

u0
ζ‖Lp + c̃X |ρ|1/2p‖ζ‖C1 .

In particular, if ut is a path of holomorphic curves, i.e., if ζ is in the kernel
of DX

u0
, the first term of the right handside of the second inequality vanishes.

Step 2: Right inverses. The gluing operation will give a holomorphic map
with domain Σρ obtained by perturbing the preglued map in directions that
are transverse to the kernel of DX

uρ , i.e., lying in the image of a uniformly
bounded family QX

uρ of right inverses for DX
uρ . Below we sketch the proof of

the following:

Proposition 6.1 ([17], Proposition 10.5.1). Let p > 2 and UX as before.
There exists a uniformly bounded family QX

uρ of right inverses for DX
uρ, i.e.,

there is a uniform constant cX such that for every (j, u) ∈ UX :

(6.6) ‖QX
uρη‖W 1,p ≤ cX‖η‖Lp .

Proof. First, one constructs an interpolation wρ := {uv,ρ : Σv → X}{v∈V }
between u and uρ as follows: for v ∈ V ,

uv,ρ :=

{
uρ(z), if z ∈ Σv\

⋃
{v′|vEv′}Df (r1/4

vv′ ),
uv(yv,v′) = pvv′ , otherwise.

where f is the half-edge in pr−1(v) associated to the edge between v and
v′. As as ρ goes to 0, the “flattened” map uv,ρ converges to uv in W 1,p

norm. Thus, DX
uv,ρ converges to DX

uv in the operator norm, and since DX
uv is
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surjective then DX
uv,ρ also is. As a result, DX

wρ
is surjective. Therefore, DX

wρ

has right inverse QX
wρ

, which can be chosen uniquely by requiring that its
image lies in the L2-orthogonal complement of kerDX

wρ
. Moreover, QX

wρ
is

uniformly bounded. Next, we construct a quasi-right inverse RX
uρ for DX

uρ

out of QX
wρ

, defined by

(6.7) RX
uρ : Ep

X,uρ
→ X 1,p

X,uρ
, η �→ Γ ◦QX

wρ ◦ Λ(η).

We give the definitions of Λ and Γ. For vEv′, with corresponding edge
ef,f ′ , recall that Σρ(f, f ′) is obtained by patching together the annuli Af

and Af ′ . Consider the circles in Σρ corresponding to the circles

{−Rvv′/2} × R/2πZ ∼= {Rvv′/2} × R/2πZ,

and let C be the union of all these circles. Consider the biholomorphism
(onto its image),

πρ : Σρ\C → Σ,
defined as the identity map outside the annuli Af,f ′ :=Af ∼Af ′ and
given by:

πρ(zf , zf ′) :=

{
zf , if |zf | > |zf ′ |,
zf ′ , if |zf ′ | > |zf |.

Observe that

uρ :=

{
wρ ◦ πρ, on Σρ\C,
uv(yvv′) = uv′(yv′v) = pvv′ , on C.

Now set

Λ : Lp(Λ0,1
J (Σρ, u

∗
ρTX)) → Lp(Λ0,1

J (Σ, w∗
ρTX)),

η �→
{

(π∗ρ)−1η, on Im(πρ),
0, otherwise.

Next, we define Γ. Set ξv,v′ := ξ(yv,v′) and βrvv′ (z) := β(4 log |z|/ log rvv′),
where β is a cut-off function as before. Then Γ is an interpolation between
ξv and ξv′ :

Γ : W 1,p(w∗
ρTX) →W 1,p(u∗ρTX), ξ := {ξv}v∈V �→ ξρ,

where

ξρ =

{
ξv(zf ) + βrvv′ (zf )(ξv′(zf ′) − ξv,v′), when |zf ′ | ≤ |zf | ≤ |rvv′ |1/4,

ξρ = ξ(z) otherwise.

It follows from the estimates (6.8) in Lemma 6.2 below that the maps are
DX

uρR
X
uρ is invertible for small enough gluing parameters. Consequently,

QX
uρ := RX

uρ(D
X
uρR

X
uρ)

−1
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is the unique right inverse for DX
uρ having the same image as RX

uρ . �
Right inverses estimates. The first estimate below gives the invertibility of
DX

uρR
X
uρ . The second estimates how the right inverses QX

uρ vary along a path
in B1,p

X of preglued maps, which is needed to show that the gluing map is a
local diffeomorphism. For detailed proofs we refer to Proposition 10.5.1 and
Lemma 10.6.2 in [17].

Lemma 6.2. Let p > 2. The operator RX
uρ depends smoothly on (j, u) and

there are constants CX and C̃X independent of ρ, such that:

(6.8) ‖DX
uρR

X
uρη − η‖Lp ≤ CX

| log |ρ||1−1/p
‖η‖Lp , ‖RX

uρη‖W 1,p ≤ C̃X

2
‖η‖Lp .

Moreover, let {ut}t∈[0,υ) be a path of stable maps, with ζ := d
dt

∣∣
t=0

ut. Let
{uρ,t}t∈[0,υ) be the corresponding path of preglued maps, with uρ,0 := uρ.
there is a uniform constant cX such that

(6.9)
∥∥∥∥ ddt
∣∣∣∣
t=0

QX
uρ,t

∥∥∥∥ ≤ cX‖ζ‖W 1,p .

Proof. We only give the proof of estimate (6.9).

d

dt

∣∣∣∣
t=0

QX
uρ,t =

(
d

dt

∣∣∣∣
t=0

RX
uρ,t

)
(DX

uρR
X
uρ)

−1 +RX
uρ

d

dt

∣∣∣∣
t=0

(DX
uρ,tR

X
uρ,t)

−1.

On the one hand,∥∥∥∥ ddt
∣∣∣∣
t=0

RX
uρ,t

∥∥∥∥ =
∥∥∥∥Γ
(
d

dt

∣∣∣∣
t=0

QX
wt

)
Λ
∥∥∥∥ ≤M‖ζ‖W 1,p

since ‖ d
dt

∣∣
t=0

QX
wρ,t‖ is bounded above by C‖ζ‖W 1,p for some positive con-

stant C (see [17], Lemma 10.6.2). On the other hand,

(DX
uρR

X
uρ)

d

dt

∣∣∣∣
t=0

(DX
uρ,tR

X
uρ,t)

−1

= −(DX
uρR

X
uρ)

−1

(
d

dt

∣∣∣∣
t=0

DX
uρ,tR

X
uρ +DX

uρ

d

dt

∣∣∣∣
t=0

RX
uρ,t

)
.

But the norm of derivative of DX
uρ,t is bounded and the estimate follows. �

Step 3: the gluing map GlSX . Let UX be a proper open subset of MSX (X).
For δX ∈ R

+, let BδX (0) denote the δX -neighborhood around the 0-section
in Ep

X(J). Also, let BδX ,uρ(0) denote the corresponding ball in Ep
X,uρ

(J).
Then, for each (u, j, ρ) we can find a unique element

(6.10) fX(u, j, ρ) ∈ BδX ,uρ(0) ⊂ Lp(Λ0,1
J (S2, u∗ρTX))

verifying:

(6.11) ∂J(expuρ Q
X
uρ(f

X(u, j, ρ))) = 0.
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The gluing map is then defined by

GlSX : L∗
SX ,εX ,UX

→ M0,l(X,A),(6.12)

(u, j, ρ) �→ (jρ, expuρ Q
X
uρ(f

X(u, j, ρ))),

for some positive constant εX given by the Implicit Function Theorem below.
Note that we directly have the commutativity (6.2). Moreover, in reality,
the gluing map is defined on local uniformizing system for LSX ,εX ,UX , but
since SX and S are stable, the gluing is invariant under Aut(j), hence well-
defined after quotient by the reparameterizations. Existence and unicity of
fX(u, j, ρ) are given by the following standard parametric version of the
implicit function theorem (Theorem 9.5 in [3], Theorem 3.5.2 in [17]).

Implicit Function Theorem. Let p > 2 and let cX1 denote the positive
constant in (6.4). There is a constant εX such that, for every (u, j, ρ) ∈
LSX ,εX ,UX we have a uniform positive constants δX , εX1 and cX2 , verifying:

‖∂Juρ‖Lp ≤ εX1 , ‖QX
uρ‖ ≤ cX2 , εX1 < δX/4, εX1 < (8cX1 (cX2 )2)−1,

and we have a map,

fX : LSX ,εX ,UX → BδX (0),

which is continuous in the ρ coordinate and smooth in the (u, j) coordinate,
such that fX(u, j, ρ) is the unique solution to (6.11). Furthermore,

‖fX(u, j, ρ)‖Lp < 2εX1 .

Proof. The constants εX1 and cX1 are given by the estimates in Lemma 6.1,
while cX2 is given by Proposition 6.6. Consider the Fredholm fibered map:

FX : (pglX)∗TBX → Ep
X(J),

((u, j, ρ), ξ) �→ FX
(u,j,ρ)(ξ) := Φ−1

X,uρ
(ξ)∂jρ,J(expuρ ξ)

where ΦX is the parallel transport induced by the Hermitian connection
induced from the L–C connection ∇TX with respect to gJ . When ξ = 0, this
map coincides with ∂jρ,Juρ so that

DFX
(u,j,ρ)(0)(ξ) = DX

uρξ.

For every x := (u, j, ρ) ∈ LSX ,εX ,UX , we want to find fX(x) in Ep
X,x(J) such

that FX(QX
x f

X(x)) = 0, in other words such that

0 = FX
x (0) + fX(x) +NX

x (QX
x f

X(x)),

where NX
x is the non-linear term of the expansion of FX

x around ξ ≡ 0.
Consider the family of operators

Hx : Ep
X,x(J) → Ep

X,x(J), η → −FX
x (0) −NX

x (QX
x η).
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We have

‖Hx(η)‖Lp ≤ ‖FX
x (0)‖Lp + ‖NX

x (QX
x η)‖Lp ≤ εX1 + cX1 (cX2 )2‖η‖2

Lp ,

so that H maps the ball BδX (0) into itself whenever εX1 + cX1 (cX2 )2δ2X ≤ δX .
This is realized when εX1 < δX/4 and 4cX1 (cX2 )2εX1 < 1/2. Furthermore,

‖Hx(η1) −Hx(η2)‖Lp = ‖NX
x (QX

x η1) −NX
x (QX

x η2)‖Lp

≤ 2cX1 (cX2 )2δX‖η1 − η2‖Lp

< ‖η1 − η2‖Lp .

Thus, H is a contraction map so that existence and uniqueness follow. One
can further show that the map H defines a contraction from B2εX1

(0) to
itself when 4cX1 (cX2 )2εX1 < 1/2. This gives the estimate ‖fX(x)‖Lp < 2εX1 .
Smoothness of fX with respect to (j, u) follows from implicit function the-
orem since DFX

x is an isomorphism from QX(Ep
X(J)) to Ep

X(J). �

Next, we prove that GlSX is a local diffeomorphism. We will in fact show
that for every fixed (j, ρ), the gluing map GlSX (., j, ρ) is a local diffeomor-
phism. Then the statement follows since, as the gluing map glS is a local
diffeomorphism by our stability assumption, we can treat the pairs (j, ρ)
as actual parameters (cf [3] Section 12, [20] Section 3). Without loss of
generality we can assume that UX is the preimage under FX of a neighbor-
hood of j0 ∈ MS . Fix (j, ρ), and let uρ0 be the pregluing with parameter
ρ of some u0 in the preimage of j. Let W be an open neighborhood of 0 in
W 1,p(S2, u∗ρTX). Also, let U1 be the image of UX∩F−1

X (j) under pglX(., j, ρ).
Decompose GlSX (., j, ρ) as follows:

U1

1×fXj,ρ−→ U1 ×BδX (0) Φ−→W
expuρ0−→ M0,l(P ),

where Φ(uρ, η) := ξρ + QX
uρη, where expuρ0

ξρ = uρ, and where fX
j,ρ(u) :=

fX(u, j, ρ). Also, for any path uρt starting at uρ0 , with derivative ξ at t = 0,
differentiating the equation

0 = ∂Juρt + fX(uρt) +NX
uρt

(QX
uρt
fX(uρt)),

and using the estimates proved so far, one obtains the estimate:∥∥∥∥dfX

dξ

∥∥∥∥
Lp
< Cr1/2p‖ξ‖W 1,p .

This ensures that for small enough gluing parameter, the differential of
the gluing map is well defined. Therefore, it suffices to check that Φ
is a diffeomorphism. To prove this, we identify W 1,p(S2, u∗ρ0

TX) with
kerDX

uρ0
⊕ Lp(S2, u∗ρ0

TX) via the map

ξ �→ ((Id−QX
uρ0
DX

uρ0
)ξ,DX

uρ0
ξ),
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and then rewrite Φ as

Φ(uρ, η) = ((Id−QX
uρ0
DX

uρ0
)(ξuρ +QX

uρη), D
X
uρ0

(ξρ +QX
uρη)).

Then, DXΦ(uρ,η) = Id+K(uρ,η) where

K(uρ,η)(ξ, ζ) =

⎛
⎜⎜⎜⎝

(Id−QX
uρ0
DX

uρ0
)
(
ξ +

dQXuρ
dξ η

)
− ξ (Id−QX

uρ0
DX

uρ0
)QX

uρζ

DX
uρ0

(
ξ +

dQXuρ
dξ η

)
(QX

uρ0
DX

uρ0
− Id)ζ

⎞
⎟⎟⎟⎠.

Hence, we deduce from Corollary 6.1 and Lemma 6.9, that for proper subset
U ′

1 ⊂ U1, and for δ1 < δX , the operator DXΦ(uρ,η) is invertible for any
(uρ, η) ∈ U ′ ×Bδ1(0), and that

‖DXΦ(uρ,η)‖ ≤ 2.

For the injectivity of Φ, let N(ξρ, η) be the non-linear part in the expansion
of Φ(uρ, η) around (uρ0 , 0). Then,

NX(ξρ, η) = ((Id−QX
uρ0
DX

uρ0
)QX

uρη,D
X
uρ0
QX

uρη − η).

Assume that Φ(uρ1 , η1) = Φ(uρ2 , η2), for (uρ1 , η1) 
= (uρ2 , η2). Then

‖DXΦ(uρ0 ,0)(ξρ1 − ξρ2 , η1 − η2)‖Lp = ‖NX(ξρ1 , η2) −NX(ξρ2 , η2)‖Lp .

But, by standard arguments the right handside is bounded above by

C(‖(ξρ1 , η1)‖W 1,p + ‖(ξρ2 , η2)‖W 1,p)‖(ξρ1 − ξρ2 , η1 − η2)‖W 1,p

for some positive constant C. Since ‖(ξρ1 −ξρ2 , η1−η2)‖W 1,p > 0 by assump-
tion, we have

0 < ‖DXΦ(uρ0 ,0)‖Lp ≤ C(‖(ξρ1 , η1)‖W 1,p + ‖(ξρ2 , η2)‖W 1,p),

which is impossible for small enough (ξρi , ηi), i = 1, 2. �

As such, the construction above still applies when the domain is not sta-
ble, but the obtained gluing maps are only defined at the level of param-
eterized maps, i.e., before quotienting by Aut(j), even though these maps
are Aut(u, j) equivariant. The reason is that so far we have parameterized
our gluing maps according to the gluing for the domains, but the gluing for
nodal surfaces is neither injective, nor a local diffeomorphism in the unstable
case. Therefore, we cannot treat the gluing parameters ρ as parameters. The
problem is to find a slice for the action of the group of reparameterizations
of the domain.
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6.1.3. Gluing unstable components. Let (u, j) ∈ MSX (X), and let v ∈
V be a πpt∗-unstable component. Note that |v| > 2 is possible. Following
Chen-Li [3], we describe the notion of balanced component when |v| ≤ 2.
For the commodity of the readers, we furnish the details below, as it will
be generalized to the case of general base B. Let tr ∼= C ⊂ G denote the
subgroup of translations, and let m ∼= C

∗ ⊂ G denote the subgroup acting
on S2 = C∪ {∞} by complex multiplication. Then, the semi direct product
G := t � m acts on C by

(m, t) ∈ G, (t,m) · z := m(z − t).

(1) Balanced maps. First assume |v| = 2. Up to the action of m, the com-
ponent v can be parameterized by CP

1 with special points 0 = [1 : 0] and
∞ = [0 : 1]. Identify Σv\{∞} with C. The parameterization is balanced if:

(6.13)
1
2

∫
|z|≤1

‖du‖2dvolS2 = �,

where � denotes the minimal energy of a non-constant pseudo-holomorphic
map in X. Next, when |v| = 1, up to the action of G, the component v can
be parameterized by CP

1 such that the special point is ∞. Identify Σv\{∞}
with C. The parameterization is balanced if (6.13) holds and if the center of
energy of u is 0: ∫

z‖du‖2dvolS2 = 0, where z ∈ C.

We will say that u is centered if it is the case. The πpt∗-unstable component
Σv with balanced parameterization is called a balanced component. Recall
that the reparameterizations of a πpt∗-stable component is of finite order.
Here, the reparameterizations of a balanced component is given by S1. Note
that the neighborhoods of the special points in a balanced parameterization
for Σv can be put in standard cylindrical coordinates: for ∞

[0,∞) × R/2πZ ∼= D∗(r∞) : (s, t) �→ es+it,

while for 0
(−∞, 0] × R/2πZ ∼= D∗(r0) : (s, t) �→ es+it.

To each unbalanced map uv : Σv → X smoothly corresponds a unique
element φb

X(uv) ∈ G consisting of the pair of translation and real dilation
such that: the center of energy of

(6.14) ub
v := uv ◦ (φb

X(uv))

is zero; half the total energy of ub
v lies in the unit disc around zero. Let

M̃b
0,i(X,Av), i = 1, 2, denote the sets of balanced J-holomorphic maps rep-

resenting Av with one and two marked points. The map uv �→ ub
v sends an
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orbit of G to an S1 orbit where S1 acts by rotations around the origin, hence
we have the following natural identifications:

M0,i(X,A) ∼= M̃b
0,i(X,A)

/
S1, i = 1, 2.

More generally, we say that (u, j) ∈ M̃SX (X) is balanced if each of πpt∗-
unstable component v with |v| ≤ 2 is balanced. Let M̃b

SX (X) denote the
subset of all balanced stable maps, and call it moduli space of balanced
J-holomorphic maps for SX . On M̃b

SX (X) the action of the reparameteri-
zations reduces to the action of AutX

red:

(6.15) AutX
red

∼= (S1)|Vb| × Aut(SX).

where Vb ⊂ V denotes the subset of πpt∗-unstable components v with |v| ≤ 2.
From the discussion above we have the identification:

(6.16) MSX (X) = M̃b
SX (X)

/
AutX

red.

Next we define the gluing maps for balanced curves.

(2) Gluing balanced maps. Let S := Sπpt∗ (SX). Set Su := FX(SX), and let
M̃Su denote the set of parameterized nodal curves having Su as stratum
data. Let L̃Su be the corresponding fiber bundle of gluing parameters. Also,
let L̃SX denote the bundle F∗

XL̃Su over M̃SX (X), and let L̃b
SX denote its

restriction to M̃b
SX (X). The forgetful map πSPpt induces a map:

(6.17) πpt
SX : L̃b

SX → L̃S , (u, j, ρ) �→ (πSXpt (u, j), ρst),

where ρst leaves unchanged the gluing parameters between πpt∗-stable com-
ponents, forgets about all the gluing parameters of components lying in
contracted branch and sends the gluing parameters of a connecting branch
to the product of the parameters of the corresponding connecting chain.

Note that the group AutX
red acts naturally by rotations on L̃b

SX . Since we
consider balanced parameterizations, ρst is invariant under the reparameter-
izations of j, and πpt

SX is well defined after quotient:

πpt
SX : Lb

SX := L̃SX
/

AutX
red → LS .

Now, by hypothesis (SR), for any element of M̃b
SX (X), the linearization

of the Cauchy–Riemann operator is surjective. It follows from Theorem 6.3
that for any proper open subset UX of M̃b

SX (X), that we may choose to be
AutX

red-invariant, there exists εX > 0 and a map

G̃l
b

SX : L̃b∗
SX ,εX ,UX

→ M̃0,l(X,A).
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This map is AutX
red-equivariant, thus the gluing map is well-defined after the

quotient by the action:

GlbSX : L̃b∗
SX ,εX ,UX

/
AutX

red → M̃0,l(X,A).

Note that the domain of GlbSX (u, j, ρ) is glSu(j, ρ). Since Su is not stable,
glSu is not injective nor a local diffeomorphism and ρ cannot be treated as
a parameter anymore. Moreover, note that for l ≥ 3, this gluing map takes
value in M0,l(X,A), while for l < 3, one needs to make sure that the image
of the gluing gives a slice for the action of the automorphisms of S2 with
less than three marked points.

Theorem 6.4 (Chen–Li [3], Theorems 12.2 and 12.10). GlbSX is a
local C1-diffeomorphism. Furthermore,

(6.18) πSXpt ◦GlbSX = glS ◦ πpt
SX .

Proof. The gluing among π∗-unstable components is divided into two cases:
(1) the gluing between a balanced component and a stable component; (2)
the gluing between two balanced components. Let Σv and Σv′ be the two
components to be glued at the edge ef,f ′ . We may write

Σv = (S2, zf ≡ 0, {xk}k=1,...,m) and Σv′ = (S2, zf ′ ≡ ∞, {x′k}k=1,...,m′).

Then (1) and (2) can be deduced from: (a) Σv is π∗-stable while Σv′ is not,
m ≥ 3 and m′ = 0; (b) both components are π∗-unstable and m = m′ = 0.

Case (a). For simplicity we forget about the marked points on Σv. Let Vzf
denote a neighborhood of zf , then glSu sends the neighborhood Vzf ×C

∗ of j
to (S2,∞). Let Ñu0×Vρ0 denote a neighborhood of (u0, ρ0) in M̃SX (X)×C

∗
j ,

in local coordinates for L̃SX . We want to define a gluing map:

Gl :
Ñu0 × Vρ0

G → M0,l(X,A).

By choosing a proper slice for the action of G we can construct a well-defined
gluing map, namely GlbSX , locally given by:

GlbSX : Nu0,j × Vzf × Vρ0 → M0,l(X,A),

where Nu0,j stands for an S1 slice in M̃b
SX (X) ∩ F−1

X (j) around u0. To see
that this map is a local diffeomorphism, we compare it to a gluing map
already encountered. To do this, use the identification of m with Vρ0 to
obtain a new map:

Gl1 :
Ñu0

t
× {ρ0} → M0,l(X,A).

Next, add two marked points on the second component, {0} and {1}, in
order to stabilize, and let SX(2) denote the corresponding stratum data.
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Then Ñu0 can be written as a product of Vzf with a neighborhood Nu0,zf of
u0 in F−1

X (j)∩M̃SX(2)(X). Then, we use the natural identification between t
and Vzf in order to obtain a gluing map Gl′1 defined on Nu0,zf ×{zf}×{ρ0},
which we know is a diffeomorphism. This map is in fact C1-close to GlbSX so
that GlbSX is a local diffeomorphism.

Case (b). We may assume that zf = 0 and zf ′ = ∞ in the balanced
parameterizations. This time Σv = (S2, 0) and Σv′ = (S2,∞). Furthermore,

Aut(Σ) = G1 × G2 = (t1 � m1) × (t2 � m2).

Again, Aut(Σ) acts on C
∗
εX

, and we set Autvv′(Σ) to be the normal sub-
group that fixes the gluing parameters under this action. Hence, Autvv′(Σ)
is isomorphic to t1 × t2 × C

∗
1, where C

∗
1 := Δ−1(1) and

Δ : m1 × m2 → m, (m1,m2) �→ m1m2.

The complementary of C
∗
1 in m1 × m2 is denoted by C

∗
2 and is naturally

identified with C
∗
εX

. The map GlbSX comes from a map on M̃SX (X) locally
given by:

G̃lSX : Uu0 × Vρ0 → M̃0,0(X,A),

where Uu0 denotes a G1 × G2-invariant neighborhood of u0 ∈ M̃SX (X), and
Vρ0 is a neighborhood of ρ0 ∈ C

∗
εX

. The map GlbSX is obtained by choosing
an appropriate slice for the action of Aut(Σ) once we restrict ourselves to
balanced maps. Quotienting by the automorphism group we get a map

GlSX :
Uu0 × Vρ0

G1 × G2
→ M̃0,0(X,A),

which we would like to take values in M̃0,0(X,A)/Aut(S2). Using the iden-
tification between Vρ0 and a neighborhood of the identity in C

∗
2 we get a

new map:

GlSX ,1 :
Uu0

Autvv′(Σ)
× {ρ0} → M̃0,0(X,A)

Aut(S2)
,

which is a well-defined local diffeomorphism close to GlbSX . That this map is
indeed well-defined follows since Autvv′(Σ) and Aut(S2) are locally diffeo-
morphic around the identity.

Proof of (6.18). First consider a contracted branch. It is connected to a
unique π∗-stable component. The subgraph is a tree with a distinguished
root that is attached to the π∗-stable component. We can parameterize each
component Σv of the branch by CP

1, such that the special point closest to
the root is given by ∞ = [0 : 1]. By gluing from the farthest component to
the closest, it suffices to consider the case of only one component attached
to a root. But in that case, the glued surface jρ is isomorphic to the domain
of the root component for every small enough ρ, so that the forgetful map
takes the corresponding glued maps to the same point.
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Now consider a connecting branch. Observe that we can treat the com-
ponents that are not in the connecting chain in the same way as the the
components of a contracted branch. Therefore we only consider the case
where the connecting branch coincides with the connecting chain. This chain
is connected to exactly two π∗-stable components. The subgraph is a tree
with two distinguished components, a root and a top that are attached
to π∗-stable components. We can parameterize each component Σv of the
branch by CP

1, such that the special point that is the closest to the root is
given by ∞ = [0 : 1], and the point that is farthest is given by 0 = [1 : 0].
Let k denote the number of components of the connecting chain. By adding
one marked point, say {1}, on every component of the chain, the resulting
nodal Riemmann surface j′ becomes stable. Then for every ρ, the gluing Σρ

is obtained from Σ′
ρ by forgetting the added marked points. Note that each

such choice of point {1} fixes one gluing parameter on each component of
the chain. For ρ = (ρ1, . . . , ρk+1), starting from the top, we can fix all gluing
parameter to a fixed small ρ0, except for the gluing parameter associated to
the root and the π∗-stable component, which is given by ρ̃ the product of
all the ρi’s. Now, Σ′

ρ and Σst
ρ̃ are isomorphic since they are both realized by

gluing on a cylinder of length
∑

log |ρi|. �
6.2. Gluing for general B. It is completely parallel to the special case
B = pt treated above. We mainly point out the differences. Let SP :=
(VP ,FlP ; prP , �P ) be a stable stratum data for M0,l(P, σ), and let SB :=
(VB,FlB; prB, �B) be its image under Sπ∗ . Also let S denote the image of
SP (or SB) under the forgetful map.

6.2.1. Pregluing. Let (u, j) be a JP -holomorphic stable map in P , repre-
senting the stratum data SP . We show that the pregluing of (u, j) projects
under π to the pregluing of (π(u), j) with same gluing parameter:

Lemma 6.3. For every (u, j) stable map, and gluing parameter ρ:

π(uρ) ≡ π(pglP (u, j)) = pglB(π(u), j) ≡ π(u)ρ.

Proof. Assume for simplicity in the notations that |V | = 2 with elements v
and v′, and let ef,f ′ be the corresponding edge. Set

ξv(z) := exp−1
pvv′ uv(z), ξv′(z) := exp−1

pvv′ uv′(ρvv′/z),

and let β+ and β− respectively denote the functions β(|z|/r1/4
vv′ ) and

β(r3/4
vv′ /|z|). From (2.1) we deduce that on Σv,

π(uρ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

π(uv), if z ∈ Σv\Df (2r1/4
vv′ ),

π(pvv′) = π(uv(yv,v′)) = π(uv′(yv,v′)), if z ∈ Df (r1/4
vv′ )\Df (r3/4

vv′ ),
expπ(pvv′ )(β

+π∗pvv′ ξv(z)
+β−π∗pvv′ ξv′(z)), otherwise.
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We can rewrite this last expression as follows:

expπ(pvv′ )

(
β+ exp−1

π(pvv′ )
(π(uv(z))) + β− exp−1

π(pvv′ )
(π(uv′(ρvv′/z)))

)
,

so that π(uρ) coincides with the pregluing π(u)ρ. �
Remark 6.2. The map obtained is not the pregluing of the stabilized map
π(u, j). If u is only made of π∗-stable components, these two pregluings
coincide. Furthermore, uρ may not necessarily lie in the restriction P |π(u),
e.g if u has only one π∗-stable component u0. Nevertheless, we will see that
the glued map projects to π(u0).

Let p > 2 and let (j, u) ∈ M̃SP (P ). Here are some estimates that follow
directly from Lemma 6.1 in the B = pt case. From (6.3) there are uniform
positive constants cB and cv such that: ‖duv

ρ‖L∞ ≤ cv, ‖dπ(u)ρ‖L∞ ≤ cB,
and:

‖(∂JP uρ)v‖Lp ≤ cv|ρ|1/2p, ‖∂JBπ(u)ρ‖Lp ≤ cB|ρ|1/2p.

Moreover, by definition of gJP :

‖duρ‖Lp ≤ ‖duB,ρ‖Lp + ‖duv
ρ‖Lp ,

hence there is a positive uniform constant cP such that:

(6.19) ‖duρ‖L∞ ≤ cP , ‖∂JP uρ‖Lp ≤ cP |ρ|1/2p.

Also, from (6.4) there is a uniform positive constant cP1 such that:

(6.20) ‖NP
uρ(ξ1) −NP

uρ(ξ2)‖Lp ≤ cP1 (‖ξ1‖W 1,p + ‖ξ2‖W 1,p)‖ξ1 − ξ2‖W 1,p .

Furthermore, from (6.5), if ut := {(uvt, uv′t)}vEv′ , t ∈ [0, υ) is a a path in
B1,p

P , with ζ := d
dt

∣∣
t=0

ut, and if uρ,t is the corresponding path of preglued
with ζρ := d

dt

∣∣
t=0

uρ,t, there are uniform constants c̃P and c̃B such that
c̃B ≤ c̃P and

(6.21) ‖ζρ‖W 1,p ≤ c̃P ‖ζ‖W 1,p , ‖DP
uρ,0ζρ‖Lp ≤ ‖DP

u0
ζ‖Lp + c̃P |ρ|1/2p‖ζ‖C1

and

‖π∗ζρ‖W 1,p ≤ c̃B‖π∗ζ‖W 1,p ,

‖DB
π(uρ,0)π∗ζρ‖Lp ≤ ‖DB

π(u0)
π∗ζ‖Lp + c̃B|ρ|1/2p‖ζ‖C1 .

6.2.2. Right inverses. We give the description of right inverses for DP
u ,

which are induced by right inverses for Dv
u and right inverses for DB

π(u). By
assumption, DB

π(u) and Dv
u are surjective and we can therefore consider their

unique L2-orthogonal right inverses, QB
π(u) and Qv

u, with respect to gJB and
gJ . Set

(6.22) QP
u :=

(
(QB

π(u))
h 0

L′
u Qv

u

)
.
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From the matrix expression (3.2) for DP
u , we get

DP
u ◦QP

u := DP
u ◦
(

(QB
π(u))

h 0
L′

u Qv
u

)
=
(

Id 0
Lu ◦ (QB

π(u))
h +Dv

u ◦ L′
u Id

)
,

where L is given by (3.3). Thus QP
u is a right inverse, if L′ : (EP )h

u → (XP )v
u

verifies
Lu ◦ (QB

π(u))
h +Dv

u ◦ L′
u = 0.

A natural choice for L′ is L′ = −Qv ◦ L ◦ (QB)h.

Remark 6.3. By definition, Lu is bounded. Namely, ‖Lu‖ ≤ C ′′ for some
constant C ′′ depending on ‖J‖C1 , ‖du‖L∞ , and ‖R‖H .

The following is immediate.

Lemma 6.4. Let QP
u be a right inverse for DP

u and suppose QB
π(u) and Qv

u

are as above. Then L′
u is uniquely determined by (6.22) and the requirement

that QP
u has for image the L2-orthogonal complement of kerDP

u . In this case,

L′ = −Qv
u ◦ L ◦ (QB

π(u))
h.

In particular if ‖QB
π(u)‖ < Ch and ‖Qv

u‖ < Cv, for some positive constants
Cv and Ch depending on ‖du‖L∞, then ‖L′‖ < ChC ′′Cv.

Remark 6.4. The L2-orthogonal complementarity condition is a commod-
ity assumption. The lemma above still holds for different choices of right
inverses as long as we ask that the image of QP is given by the images of
QB and Qv.

Let p> 2, and let (j, u)∈M̃SP (P ). From Assumption (SR), Lemma 6.2
and Proposition 6.1, we have uniform constants, cB and cv, and right inverses
QB

π(u)ρ
and Qv

uρ for DB
π(u)ρ

and Dv
uρ such that:

(6.23) ‖QB
π(u)ρ

η‖W 1,p ≤ cB‖η‖Lp , ‖Qv
uρη‖W 1,p ≤ cv‖η‖Lp .

Similarly to Proposition 6.1 we have:

Proposition 6.2. There exists a constant cP independent of ρ and right
inverse QP for DP such that for (u, j) ∈ MSP (P ):

(6.24) QP
uρ :=

(
(QB

π(u)ρ
)h 0

−Qv
uρ ◦ Luρ ◦ (QB

π(u)ρ
)h Qv

uρ

)

and such that

(6.25) ‖QP
uρη‖W 1,p ≤ cP ‖η‖Lp .
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Proof. The right inverses QB
π(u)ρ

and Qv
uρ are obtained from quasi-inverses

RB
π(u)ρ

for DB
π(u)ρ

, and Rv
uρ for Dv

uρ , constructed as in (6.7). From these we
construct a quasi-inverse for DP

uρ :

RP
uρ : Ep

P,uρ
≡ Ep,h

P,uρ
⊕ Ep,v

P,uρ
→ X 1,p

P,uρ
≡ X 1,p,h

P,uρ
⊕X 1,p,v

P,uρ

(ηh, ηv) �→ ((RB
π(u)ρ

π∗ηh)h + LR
uρη

h, Rv
uρη

v).

In fact,

(6.26) RP
uρ := Γ ◦QP

wρ
◦ Λ.

where, wρ, Λ and Γ, are defined as in the B = pt case. Note that Γ and Λ
preserve the splitting induced by the Hamiltonian connection on TP , hence
they have the following matrix representation

Λ ≡
(

Λh 0
0 Λv

)
Γ ≡
(

Γh 0
0 Γv

)
.

It follows from the matrix form of QP
wρ that

RP
uρ =

(
Γh(QB

π(wρ)
)hΛh 0

−ΓvQv
wρ
Lwρ(QB

π(wρ)
)hΛh ΓvQv

wρ
Λv

)
≡
(
Rh

uρ 0
LR

uρ Rv
uρ

)
,

we end up with the desired expression for RP
uρ . Note that RB ≡ dπ ◦Rh. We

show that RP is bounded and that DP
uρR

P
uρ is invertible for small enough

gluing parameters:

‖DP
uρR

P
uρη − η‖Lp ≤ CP

| log |ρ||1−1/p
‖η‖Lp , ‖RP

uρη‖W 1,p ≤ C̃P

2
‖η‖Lp ,

for uniform constants CP and C̃P . But from Lemma 6.2, there are uniform
constants, CB, C̃B, Cv and C̃v, such that:

‖DB
uB,ρ

RB
uB,ρ

η − η‖Lp ≤ CB

| log |ρ||1−1/p
‖η‖Lp , ‖RB

uB,ρ
η‖W 1,p ≤ C̃B

2
‖η‖Lp

and

‖Dv
uρR

v
uρη − η‖Lp ≤ Cv

| log |ρ||1−1/p
‖η‖Lp , ‖Rv

uρη‖W 1,p ≤ C̃v

2
‖η‖Lp .

Set ξρ =RP
uρη. Suppose without loss of generality that |V | = 2, and let

V = {v, v′} with edge ef,f ′ . Outside the patched annuli Df (r1/4
vv′ )\Df (r3/4

vv′ ),
we have that ξρ = ξ = QP

wρη and uρ = wρ, which implies that DP
uρξρ = η.

Therefore, the desired estimate for RP
uρ is trivially realized on this part of the

curve. Then, it suffices to understand what happens on Df (r1/4
vv′ )\Df (r1/2

vv′ ).
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In that region uρ and wρ are constant with value pvv′ . Hence, DP
uρ , D

P
uv,ρ

and DP
uv′,ρ , coincide with the standard Cauchy–Riemann operator:(

(∂JB(π(pvv′ )))
h 0

0 ∂Jπ(pvv′ )

)
.

Furthermore, LR
uρ must vanish since Lwρ vanishes pointwise. Then, the result

follows from the estimations of RB and Rv: the first estimate in (6.26)
is obtained by choosing CP ≥ max(CB, Cv), and the second by taking
C̃P ≥ max(C̃B, C̃v). Hence, DP

uρR
P
uρ is invertible for small enough gluing

parameters and we set:

QP
uρ := RP

uρ(D
P
uρR

P
uρ)

−1.

Now DP
uρR

P
uρ is of the following form:

DR :=
(

DhRh 0
LDPRP DvRv

)
,

where
LDPRP ,uρ = LuρR

h
uρ −DvΓvQv

wρLwρ(Q
B
π(w)ρ

)hΛh.

Furthermore,

(DPRP )−1 :=
(

(DhRh)−1 0
L(DPRP )−1 := (DvRv)−1LDR(DhRh)−1 (DvRv)−1

)
.

Since all the operators involved are lower triangular, we must have that

QP
uρ :=

(
(QB

π(u)ρ
)h 0

L′′
uρ Qv

uρ

)
.

We identify L′′
uρ . To simplify notations we will omit the uρ subscripts and we

will set (DB)h = Dh. Again, Lwρ vanishes in the region Df (r1/4
vv′ )\Df (r3/4

vv′ ),
so that the image of Lwρ must lie in the image of Λv. Now, this latter map
is injective, therefore

LR = −Rv(Λv)−1Lwρ(Q
B
π(w)ρ

)hΛh.

A simple computation then gives:

L′′ = LR(DhRh)−1 +RvL(DPRP )−1 = −QvLRh(DhRh)−1 = −QvL(QB)h.

�
Finally, let {ut}t∈[0,υ) be a path in B1,p

P , where ζ := d
dt

∣∣
t=0

ut. Let
{uρ,t}t∈[0,υ) be the corresponding path of preglued curves, with uρ,0 =: uρ.
There are uniform constants cB and cP such that:

(6.27)
∥∥∥∥ ddt
∣∣∣∣
t=0

QB
π(uρ,t)

∥∥∥∥ ≤ cB‖π∗ζ‖W 1,p ,

∥∥∥∥ ddt
∣∣∣∣
t=0

QP
uρ,t

∥∥∥∥ ≤ cP ‖ζ‖W 1,p .
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6.2.3. Gluing stable components. We assume here that both Sπ∗ and
πSPpt preserves the tree structure of SP . Then πSPpt ≡ FP , πSBpt ≡ FB and

πSP : MSP (P ) → MSB(B), (u, j) �→ (uB := π(u), j).

This induces a map between orbibundles:

πSP : LSP := F∗
PLS → LSB := F∗

BLS (u, j, ρ) �→ (π(u), j, ρ).

Let UP ⊂ MSP (P ) and UB ⊂ MSB(B) be proper open subsets such
that πSP (UP ) = UB. To simplify the exposition, we assume that the maps
involved do not have automorphism. If not so, the gluing maps GlSP and
GlSB obtained below are actually defined on local uniformizing systems for
neighborhoods WP and WB around the stable (holomorphic) maps (u, j)
and (π(u), j), which are compatible with the projection πSP .

From Theorem 6.3 there exists a positive constant εB, and a diffeomor-
phism

GlSB : L∗
SB ,εB ,UB

→ M0,l(B, σB), (uB, j, ρ) �→ GlSP (uB, j, ρ).

Similarly to Theorem 6.3 we have:

Theorem 6.5. For small enough positive constant εP , there is a diffeomor-
phism:

GlSP : L∗
SP ,εP ,UP

→ M0,l(P, σ), (u, j, ρ) �→ GlSP (u, j, ρ),

such that:

(6.28) π ◦GlSP = GlSB ◦ πSP .
Proof. First, recall that for (π(u), j, ρ) ∈ L∗

SB ,εB ,UB
,

GlSB(π(u), j, ρ) = (jρ, expπ(u)ρ Q
B
π(u)ρ

(fB(π(u), j, ρ))),

where fB is as in (6.10):

fB(π(u), j, ρ) ∈ BδB ,π(u)ρ(0) ⊂ Lp(Λ0,1
J (S2, π(u)∗ρTB))

for a positive (uniform) constant δB given by the Implicit Function Theorem.
From the estimates (6.19), (6.20), (6.25), Implicit Function Theorem applies
here, and there are uniform constants εP and δP , and a map

fP : LSP ,εP ,UP → BδP (0)
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such that
fP (u, j, ρ) ∈ BδP ,uρ(0) ⊂ Lp(Λ0,1

J (S2, u∗ρTP ))

is the unique solution to ∂JP (expuρ Q
P
uρ(f

P (u, j, ρ))) = 0. Then the gluing
map GlSP is defined by

GlSP (u, j, ρ) = (jρ, expuρ Q
P
uρ(f

P (u, j, ρ))).

The proof that this is a local diffeomorphism is verbatim the proof of
Theorem 6.3 using the estimates (6.21) and (6.27).

Next we show (6.28). We begin by showing that

dπ ◦ fP = fB ◦ πSP .
By Lemma 6.3, π(uρ) = π(u)ρ. Let ξP denote QP

uρf
P (u, j, ρ). Then,

π(expuρ(ξ
P )) = expπ(u)ρ dπ(ξP ).

Since ξP is the unique solution to ∂JP expuρ(ξ
P ) = 0, we deduce that

∂JB expπ(u)ρ dπ(ξP ) = 0.

Moreover,

ξB := dπ(ξP ) = dπ(QP
uρf

P (u, j, ρ)) = QB
π(u)ρ

dπ(fP (u, j, ρ)),

implying that ξB is in the image of QB
uB,ρ

, so that dπ(fP (u, j, ρ)) is in the
image of fB (by the implicit function theorem and choosing δP smaller than
δB). Finally,

π(GlSP (u, j, ρ)) = π(expuρ Q
P
uρf

P (u, j, ρ))

= expπ(u)ρ(dπ(Quρf
P (u, j, ρ)))

= expπ(u)ρ(Q
B
π(u)ρ

fB(π(u), j, ρ))

= GlSB (π(u), j, ρ).

�

6.2.4. Gluing: the unstable case. Let (u, j) ∈ MSP (P ), and let v ∈ VP

be a π∗-unstable component. Again, |v| > 2 is possible. Generalizing the
approach in [3], we describe the notion of balanced component when |v| ≤ 2.
(1) Balanced maps. First assume |v| = 2. In this case uv : Σv → P can

be parameterized by CP
1 with special points 0 = [1 : 0] and ∞ = [0 : 1].

Identify Σv\{∞} with C. If π(uv) is non-constant, we say that uv is balanced
if it is horizontally balanced, i.e., if π(uv) is balanced in the sense of (6.13).
On the other hand, if π(uv) is constant, we say that uv is balanced if it is
vertically balanced, i.e., if half the vertical energy (�v) of uv is contained in
the unit disc around 0.

Next, when |v| = 1, Σv can be parameterized by CP
1 with special point

∞ = [0 : 1]. Identify Σv\{∞} with C. If π(uv) is not constant, uv is balanced
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if it is horizontally balanced, as in the |v| = 2 case, and if uv is horizontally
centered, i.e., if the center of energy of π(uv) is zero. If π(uv) is constant, we
say that uv is balanced if it is vertically balanced as above and if vertically
centered, i.e., if the mean value for ‖duv

v‖2
gJP

is zero.

For i = 1, 2, let M̃b,h
0,i (P, σv), resp. M̃b,v

0,i (P, σv), denote the set of horizon-
tally, resp. vertically, balanced JP -holomorphic maps with i = 1 or 2 marked
point representing σv. In order to simplify notations, M̃b

0,i(P, σv) will desig-
nate the set of (vertically and horizontally) balanced JP -holomorphic maps
with i marked point. When π∗σv 
= 0, the projection π naturally induces a
map:

(6.29) π : M̃b
0,1(P, σv) = M̃b,h

0,i (P, σv) → M̃b
0,i(B, π∗σv).

As in the B = pt case, there is a natural smooth surjective map between the
moduli space of holomorphic maps to the moduli space of balanced maps,
uv �→ ub

v, where ub
v is given by (6.14), and it is not hard to see that

(6.30) π(uv)b = π(ub
v) if π∗σv 
= 0.

We conclude that

M0,i(P, σv) ∼= M̃b
0,i(P, σv)

/
S1, i = 1, 2,

and when π∗σ 
= 0, the map π in (6.29) descends to the (expected) map:

π : M0,i(P, σv) → M0,i(B, π∗σv), i = 1, 2.

Finally, we say that (u, j) ∈ M̃SP (P ) is balanced if each of its π∗-unstable
components uv with |v| ≤ 2 is balanced. The corresponding moduli space of
balanced JP -holomorphic maps is denoted M̃b

SP (P ). Similarly to (6.16), we
have a natural identification,

MSP (P ) = M̃b
SP (P )

/
AutP

red,

where AutP
red denotes the group of reparameterizations acting on M̃b

SP (P )
(see (6.15)). Observe that the projection πSP restricts to an AutP

red, AutB
red

equivariant map
πSP : M̃b

SP (P ) → M̃b
SB(B).

and descends to πSP : MSP (P ) → MSB (B) after quotienting by the repa-
rameterizations.

Remark 6.5. Let P denote the bundle (S2 × S2, ω0 + ω0) over the base
B := (S2, ω0), where ω0 denotes the Fubini–Study form on S2. Here, π rep-
resents the projection to the first factor, JP is the product complex structure.
Consider the holomorphic section u(z) = (z, z + b). A simple computation
shows that π(u) is balanced (the map z �→ az + b is balanced if and only
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if |a| = 1 and b = 0). In addition, one sees that u(z − b) is vertically bal-
anced. Note that if we had adopted the definition for balanced maps in P
with respect to the energy density ‖du‖2

gJP
, the mapping (6.29) would not

necessarily exist. Indeed, the map u(z − b/2) is balanced in this sense, but
projects to z − b/2 which is not balanced.

Finally, had we defined a balanced map in P as being both horizontally
and vertically balanced, the compatibility (6.30) may not be realized. For
example, consider the maps u(z) = (z, az), for a ∈ R

+, with a 
= 1. Then
the center of energy of u is 0, so that it is horizontally balanced. However,
the map is not vertically balanced, and if �

h denotes the energy of the
projection π(u), then the energy of u in the unit disc around 0 is given by
�

h + π(1 − 1
1+a2 ), which gives � if and only if a = 1.

(2) Gluing of balanced maps and compatibility. Let Su
B and Su respectively

denote the projections of SP under π∗ and FP . These stratum data are not
stable here. Note that Su

B and SP have the same tree structure but the
homological data for Su

B are the projection of the homological data for SP

under π∗.
Let L̃SP and L̃SB denote the bundles of gluing parameters over the bal-

anced moduli spaces M̃b
SP (P ) and M̃b

SB (B) obtained by pull-backing L̃Su
under FP and FB, respectively. Consider the bundle map lifting πSP :

πSP : L̃SP → L̃SB , (u, j, ρ) �→ (πSP (u, j), ρst),

where ρst denotes the stabilization of ρ with respect to π∗ this time (see
(6.17)). This map descends to a well-defined map:

πSP : LSP := L̃SP
/

AutP
red → LSB := L̃SB

/
AutB

red.

Let UP ⊂ MSP (P ) and UB ⊂ MSB (B) be proper open subsets such that
πSP (UP ) = UB. From the discussion in Section 6.1.3, we have a gluing map,

GlbSP : L̃∗
SP ,εP ,UP

/
AutP

red → M0,l(P, σ),

and a gluing map GlbSB above UB defined similarly. We prove the following
generalization of Theorem 6.4:

Theorem 6.6. The gluing maps GlbSP and GlbSB are local diffeomorphisms
such that

(6.31) π ◦GlbSP = GlbSB ◦ πSP .
Proof. The diffeomorphism issue follows directly from Theorem 6.4. The
compatibility (6.31) is obtained as follows. Let M̃b

SuB(B) denote the image

of M̃b
SP (P ) under π: (u, j) �→ (π(u), j). Note that the parameterization of

the domain π(u) comes from the parameterization of the domain of u, which
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is fixed up to an S1-action. Now, let L̃b
SuB denote the pull-back of L̃Su under

the forgetting-the-map map. Then, by assumption (SR), we can construct

a gluing map G̃l
b

SuB with value in M̃0,l(B, JB), and domain a neighborhood

of the zero section in L̃SuB restricted to π(UP ). This map is equivariant with
respect to the balanced maps automorphisms, but since Su

B is not stable, it

is not a local diffeomorphism nor injective. Nevertheless, G̃l
b

SuB still verifies
the compatibility:

π ◦ G̃lbSP = G̃l
b

SuB ◦ π.
Again, the problem is localized in the contracted branches and the connect-
ing branches.

Contracted branch. Set (uB, jB) := πSP (u, j). As in Theorem (6.4), for
every ρ the glued surface jρ is isomorphic to jB, i.e., to the domain of the

π∗-stable component. Therefore, uB and G̃l
b

SP (u, j, ρ) have the same domain.
Fix ρ0 with small radius. We show that

G̃l
b

SuB (π(u), j, ρ0) = (uB, jB).

By definition, the pregluing of (π(u), j, ρ0) coincides with π(u) except on
disc with radius determined by ρ0 on which

π(u)ρ0(z) ≡ pglB(π(u), j, ρ0)(z) = expπ(p∞)

(
β(z/ρ1/4

0 ) exp−1
π(p∞)(π(u0(z))

)
,

p∞ being the image under u of the point of the root identified to ∞. Set

ξ := exp−1
π(p∞)(π(u0(z))) and βρ0 := β(z/ρ1/4

0 ).

Then, G̃lSuB (π(u), j, ρ0) coincides with uB ≡ expπ(u)ρ0
((1 − βρ0)ξ).

Connecting branch. As in Theorem (6.4), we can assume the contract-
ing branch is a connecting chain. By adding k-marked point, one for each
component of the connecting branch, π(u) becomes stable. Let j′ denote the
conformal structure resulting from this operation. Let M̃b

SuB(k)(B) denote
the stabilization by adding k-marked points. We have a gluing map

G̃lSuB(k) : L̃∗
SuB(k) ≡ F∗

BL̃FB(SuB(k)) → M̃0,l+k(B, σB).

By definition of the gluing, and since the components of π(u) coming from
the connecting branch are constant, the maps

G̃lSuB(k)(π(u), j′, ρ) and G̃l
b

SuB (π(u), j, ρ)

coincide for every ρ and any choice of balanced parameterization on the
domain Σ of j (here the Aut(j)-equivariance of GlSuB is needed). Note that
jρ is obtained from j′ρ by forgetting the added marked points. We compare
the gluing of (π(u), j′) with that of (uB, jB) := πSP (u, j). Note that (uB, jB)
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is the image of (π(u), j′) via the map that forgets the added marked points
and stabilizes. The fiber over (uB, jB) corresponds to the set of all possible
reparameterizations for j′, since uB and π(u) have same image. Thus, it
suffices to identify the gluings of the corresponding domains but this follows
from Theorem 6.4. Finally,

π ◦ G̃lSP (u, j, ρ) = G̃lSuB (π(u), j, ρ)

= G̃lSuB(k)(π(u), j′, ρ) = G̃lSB (uB, jB, ρst)

= G̃lSB ◦ πSP (u, j, ρ).

�
From now on, we will always assume that gluing maps are obtained by

considering balanced maps, and we will drop the b indices from the notations
for the gluing maps.

6.2.5. Gluing maps between strata. One can generalize the preceding
discussions and introduce gluing maps between different stable strata. Let
SX and S ′

X be stable stratum data for M0,l(X,A), such that SX ≺ S ′
X . Let

S and S ′ denote their projections under FX , and consider the bundles LS,S′

and LSX ,S′
X

:= F∗
XLS,S′ . For a proper open subset UX of MSX (X) there

exists a positive constant εX and a diffeomorphism:

GlSX ,S′
X

: L∗
SX ,S′

X ,εX ,UX
→ MS′

X
(X),

which coincides with the identity on the zero section. Also, from the def-
inition of LSX ,S′

X
, a point of LSX is locally given by a tuple (u, j, ρ1, ρ2)

where (u, j, ρ1) ∈ LSX ,S′
X

and where ρ2 accounts for the remaining gluing
parameters. Therefore, GlSX ,S′

X
induces a map

LSX → LS′
X
, (u, j, ρ1, ρ2) �→ (GlSX ,S′

X
(u, j, ρ1), ρ2).

It follows that LSX coincides with the pullbacks Gl∗SX ,S′
X
LS′

X
. Suppose now

we have a third stratum data S ′′
X such that S ′

X ≺ S ′′
X . Since GlSX ,S′

X
is a

local diffeomorphism, we can define a new gluing map:

Gl′S′
X ,S′′

X
:= GlSX ,S′′

X
◦Gl−1

SX ,S′
X

: L∗
S′
X ,S′′

X ,εX ,Im(GlSX,S′
X

) → MS′
X

(X),

extending the identity map on the zero section. This new gluing does not
necessarily coincide with GlS′

X ,S′′
X

. The equality would mean that the gluing
procedure is associative, which is a priori not true due to the numerous
choices made along the gluing construction (in particular the independence
with respect to the choice of right inverses). Nevertheless we can see that
these maps are close, in the C∞ sense, which is enough to give the moduli
spaces the structure of smooth orbifolds, as we will see in the next Section.

Now, consider the Hamiltonian Fibration case π : P → B. Let SP and S ′
P

be stable stratum data for M0,l(P, σ) such that SP ≺ S ′
P , and let SB and
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S ′
B be their corresponding projections via Sπ∗ . We see that SB ≺ S ′

B. By
the discussion above, for UP and UB proper open subsets of MSP (P ) and
MSB(B) such that πSP (UP ) = UB, we do have gluing maps GlSB ,S′

B
and

GlSP ,S′
P

such that:

GlSB ,S′
B
◦ πSP

∣∣
LSP ,S′

P

= πS′
P
◦GlSP ,S′

P
.

Suppose now we have a third stratum data S ′′
P projecting on S ′′

B and such
that S ′

P ≺ S ′′
P . Then we also have the commutativity:

Gl′S′
B ,S′′

B
◦ πS′

P

∣∣∣
LS′

P
,S′′
P

= πS′′
P
◦Gl′S′

P ,S′′
P
.

6.3. Fibration of moduli spaces: proof of Theorem C. Following [3],
Section 13.2, we show below how the compactified moduli spaces can be
given the structure of a differentiable orbifolds compatibly with the πSP . As
observed at the beginning of Section 3, this will imply Theorem 6.1.

6.3.1. Charts data and admissible gluing maps. Consider a Fredholm
system (B, E , s) with moduli space M = s−1(0), modeled on maps. Assume
that the linearization Lx0 at x0 ∈ M is surjective. Then, a standard con-
struction gives a local coordinate chart around x0. Such a chart is given by
a triple (U, φ, f) where:

(i) U is a submanifold of a neighborhood Vx0 of zero in Tx0B (which we
identify to a neighborhood Vx0 of x0 in B via the exponential map);

(ii) φ : U ×Bδ → V ′
x0

is a diffeomorphism where Bδ ⊂ Ex0 is an open ball,
V ′

x0
is a neighborhood of 0 in Vx0 ;

(iii) f is a smooth section f : U → Bδ;
with the property that

Ψ : U
1×f−→ U ×Bδ

φ−→ V ′
x0

is a diffeomorphism from U onto V ′
x0

∩ M. Here x0 serves as a reference
point. More generally, fix x0 ∈ B, which may not belong to M, and let
Vx0 ⊂ B be a neighborhood of x0.

Definition 6.1. A triple (U, φ,Ψ), or (U, φ, f), verifying conditions (i), (ii)
and (iii) above, is a called chart data for M.

Remark 6.6. It immediately follows from the definition that the triples
(UP , f

P , GlSP ) and (UB, f
B, GlSB) give charts data for both M0,l(P ) and

M0,l(B). Moreover, these charts are compatible with π.

In fact, one can construct chart data for MSP (P ) from pairs, QP :=
(UP , Q

P ), where UP is a smooth submanifold of B1,p
SP , and where

QP := {QP
u |u ∈ UP }
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is a smooth UP -family of right inverses for DP
u . In order to do so, we assume

the following conditions (that we actually met when constructing the gluing
maps):

Assumption 6.1.
• for every u ∈ UP ,

‖du‖Lp ≤ CP and ‖∂JP u‖Lp ≤ εP ,

• for all ξ ∈ TuUP , ∥∥∥∥ ddξ ∂JP u

∥∥∥∥
Lp

≤ εP ‖ξ‖W 1,p ,

• the family QP
u is Lipschitz continuous for the constant CP and for all

u ∈ UP :
‖QP

u ‖ ≤ CP ,

the constants CP and εP being such that CP εP � 1, with εP small.

The chart data are then given as follows. Fix u0 ∈ UP , and let W be a
neighborhood of 0 in Tu0B1,p

SP . Denote by UP , the lift (around u0) of UP in
W via exp−1

u0
. Then set

φP : UP × Ep
P,u0

(SP ) → X 1,p
P,u0

, (ξ, η) �→ ξ +QP
u0
η.

From the assumptions above, there is a unique smooth map fP : UP → Bδ,
around u0, such that

∂JP expu0
φP (ξ, fP (ξ)) = 0.

By reducing δ and the neighborhoods involved, we further have that φP is
diffeomorphic, hence (UP , φP , f

P ) is a chart data for MSP (P ).

Remark 6.7. Regarding compatibility of the coordinate charts one needs to
be careful, as pointed out in Section 3 [20]. In fact, the C∞ compatibility is
ensured if we restrict our attention to smooth stable maps, which is sufficient
to study pseudo-holomorphic stable maps (by elliptic regularity).

From the data QP , we can furthermore define another type of gluing map.
We explain this. Suppose that (UP , φP , f

P ) is a chart data for a proper
subset ŨP of MSP (P ), i.e., ŨP is the image of the diffeomorphism: ΨP :=
φP ◦ (1 × fP ). By further reducing UP if necessary, we can find a pair

Q′
P = (U ′

P := pgl(Ψ−1
P (ŨP )), Q′)

where Q′ is a family of right inverses for the elements in U ′
P constructed from

the original family of right inverses QP . These data provide a new gluing
map defined by the composition:

GlQP : L∗
SP
∣∣
ŨP

−→ Ψ∗
P L∗

SP
∣∣
UP

Gl−→ M0,l(P, σ).
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Following the terminology used in [3] (Definition 11.1), we say that GlQP
is admissible. Moreover, if UP ⊂ MSP (P ), we say that GlQP is of type-1,
otherwise we say that it is of type-2. In particular, the gluing map GlSP
constructed directly from ŨP is admissible and of type-1.

Using gluing maps we introduce a topology basis on M0,l(P, σ): an open
neighborhood of (u, j) ∈ M0,l(P, σ) will be the image of some gluing map
GlSP previously constructed. Hence, a neighborhood is given by charts data
of the type (LSP ,εP ,UP , GlSP ). By a standard argument these charts are C0

compatible ([3] Theorem 11.2), hence they indeed define a topology basis
on M0,l(P, σ) .

That these charts are C0 compatible is proved by comparing any admis-
sible gluing map GlQP arising from a chart data QP for a proper subset
ŨP ⊂ MSP (P ), with the type-1 gluing map GlSP on ŨP . Concretely one
shows that for small enough ρ, the map (GlSP )−1GlQP is close to the identity
map, hence continuous. Thus, the moduli space M0,l(P, σ) has the structure
of an orbifold in the topology given by the gluing maps.

The differentiable (C1) orbifold structure is given by the two lemmas
in the next subsection. In these two lemmas we prove more. Namely, we
construct differentiable atlases on M0,l(P, σ) and M0,l(B, σB) compatibly
with π.

6.3.2. Structure of orbi-bundle. Consider the fibration context. We
begin by the following observation. Let QP := (UP , Q

P ) projecting onto
QB := (UB, Q

B) in the sense that πSP (UP ) = UB and QP is of the matrix
form (6.22). Also, suppose that both pairs satisfy the assumption (6.1),
and that they generate charts data, (UP , φP , f

P ) and (UB, φB, f
B), for

some proper open subsets, ŨP ⊂ MSP (P ) and ŨB ⊂ MSB(B), such that
πSP (ŨP ) = ŨB. Then, repeating the arguments in the gluing map section
we obtain that

π ◦GlQP = GlQB ◦ πSP .

This implies that the orbifold structures on the compactified moduli spaces
are defined compatibly with π, which is continuous, open and surjective,
in the topology of the gluing maps. We now construct C1 atlases on both
M0,l(P, σ) and M0,l(B, σB) compatibly with π. In order to do so we intro-
duce stratum-coverings.

Definition 6.2 ([3], Definition 13.2). A strata-covering of M0,l(P, σ)
consists in pairs (UP , εSP ) for each stratum data SP such that:

• UP is a proper open subset in MSP (P ),
• there exists a well-defined gluing map GlSP with domain LSP ,εSP ,UP ,
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• letting WSP be the image GlSP (LSP ,εSP ,UP ), we have that for any two
(effective) stratum data SP and S ′

P :

WSP ∩WS′
P

= ∅ iff SP ≺ S ′

P , or S ′
P ≺ SP ,

• the family {WSP }Dσ,JP0,l

yields an open covering of M0,l(P, σ).

Lemma 6.5. There exists strata-coverings (UP , εSP ) and (UB, εSB) for
M0,l(P, σ) and M0,l(B, σB), such that πSP (UP ) = UB.

Proof. The proof is an induction on the stratum data in DB := DσB ,JB
0,l and

DP := Dσ,JP
0,l . Let SB,0 be the set of lowest strata in DB. For SB in SB,0 set

UB = MSB(B). Since SB is minimal UB is compact and there exists εSB and
a gluing map GlSB defined on the restriction of L∗

SB ,εSB
to UB. Furthermore,

the minimal strata are isolated and for each SB ∈ SB,0 we can choose a small
enough εB so that the resulting gluing neighborhoods never intersect. Now
let SP,0,0,SB be the set of lowest strata in DP∩S−1

π∗ (SB), where SB is minimal.
For any SP ∈ SP,0,0,SB set UP = MSP (P ). Argumenting as above, there is
εSP and GlSP , with domain L∗

SP ,εSP ,UP
, such that π ◦ GlSP = GlSB ◦ πSP .

Once again, we can choose the εSP such that WSP ∩WS′
P

= ∅, for any two
strata in SP,0,0,SB .

Define inductively SB,k as being the set of minimal strata in DB\SB,k−1,
and SP,k,mk

as being the set of minimal strata in DP ∩S−1
π∗ (SB,k)\SP,k,mk−1.

Suppose that each pairs (UB, εSB ) and (UP , εSP ), for SB ∈ SB,n and SP ∈
SP,n,mn with n ≤ k − 1 and mn ≤ mk − 1, have been chosen so that the
induction holds. Set

WSB ,S′
B

:= GlSB ,S′
B
(LSB ,S′

B ,εSB ,UB).

Then, for S ′
B ∈ SB,k we can choose a proper open subset U ′

B such that
{WSB ,S′

B
|SB ≺ S ′

B} ∪ U ′
B, is a covering for MS′

B
(B). Furthermore, there

is εS′
B

and a gluing map

GlS′
B

: L∗
S′
B ,εS′

B
,U ′
B
→ M0,l(B, σB),

and we can make sure that for all S ′
B ∈SB,k and SB ∈ ⊔k

i=0 SB,i, the inter-
section WS′

B
∩WSB is empty unless SB ≺ S ′

B (by choosing smaller εS′
B

and
εSB if necessary).

Since the gluings commute with the projection, it suffices to fix SB ∈ SB,k,
and to apply the arguments given for k = 0 to the elements of SP,k,mk,SB :=
SP,k,mk

∩ S−1
π∗ (SB). Set

WSP ,S′
P

:= GlSP ,S′
P
(LSP ,S′

P ,εSP ,UP ),

where S ′
P projects onto SB. Note thatWSP ,S′

P
also projects ontoWπ(SB),π(S′

B).
We can choose US′

P
such that {WSP ,S′

P
|SP ≺S ′

P }∪U ′
P , covers MS′

P
(P ), and
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for a well-chosen εS′
P

we have a map GlS′
P

whose image does not intersect
the neighborhoods obtained so far unless it comes from a stratum SP such
that SP ≺ S ′

P . �

A strata-covering gives an atlas. If the transition functions were to be
smooth we would directly have a smooth orbifold structure on the consid-
ered moduli spaces. However, this may be hard to show and even not true in
full generality. Instead, we show as in [3], Section 13.2, that for each stratum
data there are charts GlSB such that the composition GlSB ◦Gl−1

SB ,S′
B

is differ-
entiable for every S ′

B ≺ SB, which provides, not canonically, a differentiable
atlas.

Lemma 6.6. There are strata-coverings (UP , εSP ) and (UB, εSB), and gluing
maps, GlSP and GlSB , compatible with πSP , such that for every stratum data
SP and SB, the maps GlSP and GlSB coincide with any other gluing maps

Gl′SP = GlS′
P
◦Gl−1

S′
P ,SP and Gl′SB = GlS′

B
◦Gl−1

S′
B ,SB ,

where S ′
P ≺ SP and S ′

B ≺ SB.

Proof. The proof is again by induction. Let SB,k and SP,k,mk
as in lemma

6.5. We see that the result holds for SB,0 and SP,0,0. Suppose it is true for
all SB ∈ SB,n and SP ∈ SP,n,mn such that n ≤ k − 1 and mn ≤ mk − 1.
Let SB ∈ SB,k and set WSB := ∪S′

B≺SBWS′
B ,SB . Let Gl′SB(S ′

B) be the gluing
map induced by S ′

B ≺ SB. Recall that this map is defined above WS′
B ,SB .

We must show that

(6.32) Gl′SB(S ′
B) = Gl′SB(S ′′

B),

on WS′
B ,SB ∩WS′′

B ,SB . But this latter intersection is non-empty if and only if
S ′′

B ≺ S ′
B. But from the induction, Gl′S′

B
(S ′′

B) = GlS′
B

on WS′′
B ,S′

B
∩U ′

B. Thus

Gl′SB(S ′′
B) = GlS′′

B
◦Gl−1

S′′
B ,SB

= GlS′′
B
◦Gl−1

S′′
B ,S′

B
◦GlS′′

B ,S′
B
◦Gl−1

S′′
B ,SB

= GlS′
B
◦GlS′′

B ,S′
B
◦Gl−1

S′′
B ,SB ,

giving (6.32). As a result, we obtain a gluing map Gl′SB defined on WSB .
Now, given a gluing map Gl′′SB on UB, we derive a third map GlSB , which is
obtained as an interpolation betweenGl′SB andGl′′SB using a cut-off function.
This ends the induction for M0,l(B, σB).

We explain in details how to interpolate Gl′SB and Gl′′SB . By definition
Gl′SB(S ′

B) is of type-2 with domain:

WS′
B ,SB = GlS′

B ,SB (LS′
B ,SB ,εS′

B
,U ′
B
) ≡WS′

B ,SB (εS′
B
).
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For admissible GlS′
B ,SB , the associated chart data are given by the triple

(V := pgl(LS′
B ,SB ,εS′

B

), φ, F ) where:

F : V → MSB(B), (uB,ρ, jρ) �→ expuB,ρ Q
B
uB,ρ

fSB (uB, j, ρ).

Consider a function

ν : LFB(S′
B),FB(SB),εS′

B

→ R, ν(j, ρ) �→
{

0 si |ρ| ≤ 0.5εS′
B
,

1 si |ρ| ≥ 0.75εS′
B
.

We now “glue” the domains of the chart data for Gl′′SB and Gl′SB(S ′
B), i.e.,

we glue UB and V . The new domain

V ′ := Im
(
expuB,ρ

(
ν(j, ρ)QB

uB,ρ
fSB (uB, j, ρ)

))
,

coincides with V for |ρ| ≤ 0.5εS′
B
, and with US′

B
when |ρ| ≥ 0.75εS′

B
. We can

make sure that the pair, (V ′, {QB
uB

|uB ∈ V ′}), satisfies hypothesis (6.1) since
V ′ is a uniform deformation between V and UB (ν does not depend on uB).
Denote by GlSB the gluing map arising from the pair (V ′, {QB

uB
|uB ∈ V ′}).

Then, GlSB coincides with Gl′SB(S ′
B) on V ∩V ′ =WS′

B ,SB (0.5εS′
B
), and with

Gl′′SB on UB ∩ V ′. In particular, this map extends to UB\WS′
B ,SB (εS′

B
).

Regarding M0,l(P, σ) we proceed similarly. Fixing SB ∈ SB,k, and apply-
ing the same arguments as above to the elements SP ∈ SP,k,mk,SB , ends
the proof. �
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