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BERGMAN APPROXIMATIONS OF HARMONIC MAPS
INTO THE SPACE OF KÄHLER METRICS

ON TORIC VARIETIES

Yanir A. Rubinstein and Steve Zelditch

We generalize the results of Song–Zelditch on geodesics in spaces
of Kähler metrics on toric varieties to harmonic maps of any compact
Riemannian manifold with boundary into the space of Kähler met-
rics on a toric variety. We show that the harmonic map equation can
always be solved and that such maps may be approximated in the
C2 topology by harmonic maps into the spaces of Bergman metrics. In
particular, Wess–Zumino–Witten (WZW) maps, or equivalently solu-
tions of a homogeneous Monge–Ampère equation on the product of the
manifold with a Riemann surface with S1 boundary admit such approx-
imations. We also show that the Eells–Sampson flow on the space of
Kähler potentials is transformed to the usual heat flow on the space
of symplectic potentials under the Legendre transform, and hence it
exists for all time and converges.
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1. Introduction

Our main purpose in this article is to prove that the Dirichlet problem for
a harmonic map ϕ : N → H(T ) of any compact Riemannian manifold with
boundary N into the infinite-dimensional space H(T ) of toric Kähler metrics

239
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on a smooth projective toric variety (M, ω) admits a smooth solution that
may be approximated in C2(N ×M) by a special sequence of harmonic maps
ϕk : N → Bk(T ) ⊂ H(T ) into the finite-dimensional subspaces of Bergman
(or Fubini–Study) metrics induced from projective embeddings. As a special
case, we show that the WZW (Wess–Zumino–Witten) equation, or equiva-
lently the homogeneous complex Monge–Ampère equation (HCMA) on the
product of the manifold with a Riemann surface with S1 boundary, admits
such a solution as well as such approximations. This generalizes previous
work of Song–Zelditch in the case of geodesics, i.e., where N = [0, 1].

Before stating our results, we briefly recall the background to our problem.
Let (M, ω) be a compact closed Kähler manifold of dimension m with inte-
gral Kähler form and let (L, h0) → M be an ample Hermitian holomorphic
line bundle with ωh0 = ω satisfying [ω] = c1(L), where ωh0 = −

√
−1
2π ∂∂̄ log h0

is the curvature (1, 1)-form of h0. Any other hermitian metric on L may
be expressed as hϕ = e−ϕh0, with ϕ a smooth function on M . Following
Mabuchi [17], Semmes [23] and Donaldson [10] one may regard the space

(1.1) Hω :=
{
ϕ ∈ C∞(M) : ωϕ = ω +

√
−1∂∂̄ϕ > 0

}

of potentials of Kähler metrics in a fixed cohomology class as an infinite-
dimensional symmetric space dual to the group of Hamiltonian diffeomor-
phisms Ham(M, ω). We will henceforth usually identify Hω with the space
of Hermitian metrics on L of positive curvature

H := { h : h = h0e−ϕ, ϕ ∈ Hω}.

The symmetric space Riemannian metric gL2 is defined by

(1.2) gL2(ζ, η)ϕ :=
1
V

∫

M
ζη ωm

ϕ , ϕ ∈ Hω, ζ, η ∈ TϕHω
∼= C∞(M).

A basic idea, considered by Yau, Tian and Donaldson, is to approxi-
mate transcendental objects defined on H by algebraic objects defined
on the finite-dimensional symmetric spaces Bk of Bergman (or Fubini–
Study) metrics on L. To define them, we use the following notation:
H0(M, Lk) is the space of holomorphic sections of the kth power Lk → M ,
dk + 1 = dimH0(M, Lk) and BH0(M, Lk) is the manifold of all bases s =
{s0, . . . , sdk

} of H0(M, Lk). A basis s determines a Bergman metric

(1.3) hs := (ι�shFS)1/k =
h0

(∑dk
j=0 |sj(z)|2

hk
0

)1/k
,

as the pullback of the Fubini–Study metric hFS on the hyperplane bundle
O(1) → P

dk under the Kodaira embedding

(1.4) ιs : M → P
dk , z → [s0(z), . . . , sdk

(z)].
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The space of all Bergman metrics defined by BH0(M, Lk) is denoted by

(1.5) Bk = {hs, s ∈ BH0(M, Lk)}.

We may identify the space Bk with the symmetric space GL(dk+1, C)/U(dk+
1) since GL(dk + 1, C) acts transitively on the set of bases, while ι�shFS is
unchanged if we replace the basis s by a unitary change of basis.

A natural question is: to what extent can the geometry of H be approxi-
mated by that of the spaces Bk of “algebro-geometric” metrics? At the most
basic level of individual points, it follows by the Tian Asymptotic Isometry
Theorem [28] and its subsequent refinements [7, 29] that a metric h ∈ H
can be approximated in a canonical way by a sequence of Bergman metrics
hk. The geometry of a Riemannian manifold is reflected to a large extent
by its geodesics and more generally by the specification of the harmonic
maps into it, involving the analysis of certain nonlinear elliptic PDE. In
this article we describe how these PDE can be solved (Proposition 3.1),
and furthermore how solutions to these PDE on H can be approximated
in an algebro-geometric manner by a sequence of solutions to PDE on Bk,
in the setting of a toric variety (Theorem 1.1). The consideration of har-
monic maps into H is a notion going back to Semmes [22], and our article
is also partly inspired by his work and draws upon several of his ideas. In
line with Semmes thought, a further motivation we have in mind is to inter-
pret the second variation for the Legendre transform in convex analysis in
the framework of the space of Kähler metrics (Theorem 3.1, Corollary 3.1
and equation (3.16)). Another motivation for our work is the special case of
the WZW equation, that in this context is a homogeneous Monge–Ampère
equation and goes back to Semmes [23] and Donaldson [10], and will be
described in detail below (Corollary 1.1).

We will need the canonical sequence of harmonic maps mentioned above
to state our results, so we recall how it is constructed. First, observe that
Bk is isomorphic to the symmetric space Ik of Hermitian inner products on
H0(M, Lk), the correspondence being that a basis is identified with an inner
product for which the basis is Hermitian orthonormal. Define the maps

(1.6) Hilbk : H → Ik

by the rule that a Hermitian metric h ∈ H induces the metrics hk on Lk

and the inner products on H0(M, Lk),

(1.7) ‖s‖2
Hilbk(h) :=

1
V

∫

M
|s(z)|2hk(kωh)m,

where V =
∫
M ωm

h . An inner product I = ( · , · ) on H0(M, Lk) determines an
I-orthonormal basis s = sI of H0(M, Lk), an associated Kodaira embedding
(1.4), as well as a Bergman metric given by

(1.8) FSk(I) := hsI
.
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Tian’s asymptotic isometry theorem then states that FSk ◦ Hilbk(h) → h in
the C∞(M) topology with complete asymptotic expansions [7, 28, 29].

The question was then raised [2, 11, 19] whether geodesics of H could
be well approximated by the one-parameter subgroup geodesics of Bk.
Geodesics of H are given by solutions of

(1.9) ϕ̈ − 1
2 |∇ϕ̇|2 = 0, ϕ(0, · ) = ϕ0, ϕ(1, · ) = ϕ1, ϕ0, ϕ1 ∈ H,

where ϕ is considered as a map from [0, 1] to H, or equivalently as a function
on [0, 1] × M . Phong–Sturm studied this problem in depth and proved that
a sequence of geodesics in Bk converges weakly (almost everywhere) to a
prescribed geodesic of H [19]. Song–Zelditch proved that the same sequence
converges in C2([0, 1]×M) when the manifold is toric and one restricts to the
torus-invariant metrics [25, 26], and Berndtsson used a different argument
to prove that geodesics in H can be C0-approximated by geodesics in spaces
of Bergman metrics induced by embeddings by sections of Lk ⊗ KM , where
KM is the canonical bundle of M [4]. In addition, Phong–Sturm and Song–
Zelditch proved approximation results for geodesic rays constructed from
test configurations [20, 27].

A harmonic map between two Riemannian manifolds (N, f) and (Ñ , f̃)
is a critical point of the energy functional

E(a) =
∫

N
|da|2

f⊗a�f̃
dVN,f ,

on the space of smooth maps a from N to Ñ [13]. Note that this notion may
also be defined when the target manifold (Ñ , f̃) is an infinite-dimensional
weakly Riemannian manifold. When the target is taken to be (H, gL2), the
energy functional takes the form

(1.10) E(ϕ) =
∫

N
|dϕ|2dVN,f =

∫

N×M
fab ∂ϕ

∂ya

∂ϕ

∂yb
ωn

ϕ ∧ dVN,f .

Definition 1.1. By a smooth map ϕ from N to H we mean a function
ϕ ∈ C∞(N × M) such that ϕ(q, ·) ∈ H, for each q ∈ N . A harmonic map
from a Riemannian manifold (N, f) into (H, gL2) is a smooth map from N to
H that is a critical point of (1.10).

The problem we study in this article is whether higher dimensional har-
monic maps of general compact Riemannian manifolds N with boundary
∂N into H admit similar kinds of “algebro-geometric” approximations. For
maps into the space of toric Kähler metrics on toric manifolds, we obtain an
affirmative solution at the same level of precision as in the case of geodesics
studied by Song–Zelditch.

To describe our results, let us define our setting more precisely. We recall
that a toric variety M of complex dimension m carries the holomorphic
action of a complex torus (C�)m with an open dense orbit. We let T = (S1)m
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be the associated real torus. Objects associated to M are called toric if they
are invariant with respect to T . We let ω denote a toric integral Kähler form
on M , and let L be an ample line bundle with [ω] = c1(L). We then define
the space of toric Hermitian metrics on L,

(1.11) H(T ) = {h ∈ H : t�h = h, ∀t ∈ T}.

This is a flat submanifold of H. As before we will frequently identify an
element of H(T ) with the corresponding element of Hω. Moreover, we will
often identify an element with the local Kähler potential defined on the open
orbit of the complex torus; see Section 3. We also denote by Bk(T ) ⊂ Bk

the subspace of Bergman metrics defined by T -invariant inner products, or
equivalently by T -equivariant embeddings. Any such embedding is induced
by the basis of toric monomials {χα}α∈kP∩Zm of H0(M, Lk), where P denotes
the moment polytope associated to the action, and kP denotes its dilation by
a factor of k. Finally, let (N, f) be a compact oriented Riemannian manifold
with smooth boundary, let G(y, q) denote the positive Dirichlet Green kernel
for the Laplacian ΔN := ΔN,f (see Section 3), and let dV∂N,f denote the
induced measure on ∂N from the restriction of the Riemannian volume form
dVN,f from N to ∂N . The main result of this article is:

Theorem 1.1. Let (M, L, ω) be a polarized toric Kähler manifold, and let
(N, f) be a compact oriented smooth Riemannian manifold with smooth
boundary ∂N . Let ψ : ∂N → H(T ) denote a fixed smooth map. There
exists a harmonic map ϕ : N → H(T ) with ϕ|∂N = ψ and harmonic maps
ϕk : N → Bk(T ) with ϕk|∂N = FSk ◦ Hilbk(ψ), given on the open orbit by

ϕk(y, z) =
1
k

log
∑

α∈kP∩Zm

|χα(z)|2
hk
0

(1.12)

× exp
(∫

∂N
∂νqG(y, q) log ||χα||2

hk
ψ(q)

dV∂N,f (q)
)

,

and one has

lim
k→∞

ϕk = ϕ,

in the C2(N × M) topology. In fact, for each ε ∈ (0, 1/3) there exists
C = C(ε) > 0 independent of k such that

‖ϕk − ϕ‖C2(N×M) ≤ Ck−1/3+ε.

A motivating special case is the unit disc N = D := {z ∈ C : |z| ≤ 1}. It
has been the subject of intensive studies (e.g., [8, 9, 12]). Then the map ϕ
corresponds to certain foliations by holomorphic discs arising from a solu-
tion of a certain HCMA equation. To describe this case, let π2 : D × M → M
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denote the projection onto the second factor and consider the HCMA equa-
tion,

(π�
2ω +

√
−1∂∂̄ϕ)n+1 = 0 on D × M,(1.13)

(π�ω +
√

−1∂∂̄ϕ)|{t}×M > 0, ∀ t ∈ D,(1.14)

ϕ = ψ on ∂D × M.(1.15)

One may show that this HCMA is the Euler–Lagrange equation of an
infinite-dimensional version of a WZW model, given by the energy func-
tional

EWZW
σ (b) =

1
2

∫

D
|∇b|2 +

∫

Z
θ,

on the space of maps b ∈ C∞(D, GC/G), where σ : ∂D → GC/G is a fixed
map σ [10]. The Lie bracket of G determines a three-form θ and Z is any
cochain with boundary b(D) − b0(D) for some fixed reference map b0 with
the same boundary conditions ψ. The Euler–Lagrange equations for this
functional are the WZW equations

(1.16) d�d b + [b�
∂

∂q
, b�

∂

∂s
] = 0,

in Euclidean coordinates q +
√

−1s ∈ D, and where d� maps sections of
T �D ⊗ b�TGC/G to sections of b�TGC/G. Finally, when G and GC/G
are replaced by Ham(M, ω) and H, the Christoffel symbols are given by
Γ(ζ, η)|ϕ = −1

2gϕ(∇ζ,∇η) (see Lemma 3.1), and the WZW equation is

ϕqq + ϕss − 1
2
|∇ϕq|2 − 1

2
|∇ϕs|2 + {ϕq, ϕs}ωϕ = 0.

It is a perturbation of the usual harmonic map equation by a Poisson
bracket term. Coming back to the toric situation and restricting to the
space of torus-invariant Kähler potentials H(T ) ⊆ H the functions ϕq and
ϕs are commuting Hamiltonians and hence the WZW equation reduces
to the harmonic map equation. The finite-dimensional WZW equation on
GL(dk + 1, C)/U(dk + 1) may be written similarly

T−1Tqq + T−1Tss − (T−1Tq)2 − (T−1Ts)2 +
√

−1[T−1Tq, T
−1Ts] = 0.

Torus invariance then corresponds to restriction to diagonal matrices and
again the last term vanishes and the equation reduces to the harmonic map
equation. The curvature of H comes from the Poisson bracket and when we
restrict to the flat subspace H(T ) the noncommutativity disappears.

In the case of the unit disc, the normal derivative of the Green kernel is
the Poisson kernel, whose restriction to D × ∂D takes the form

P (re
√

−1θ, e
√

−1γ) = Pr(θ − γ) = − 1
2π

1 − r2

1 − 2r cos(θ − γ) + r2
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(our convention is that the Green function be nonnegative, as explained
in Section 3). Then we have the following more explicit statement of
Theorem 1.1:

Corollary 1.1. Let (M, L, ω) be a polarized toric Kähler manifold. Let ϕ
be a solution of the HCMA equation (1.13)–(1.15) with ψ : S1 → H(T ) a
smooth map, and let ϕk : D → Bk(T ) be given on the open orbit by

ϕk

(
re

√
−1γ , z

)
=

1
k

log
∑

α∈kP∩Zm

|χα(z)|2
hk
0

× exp
(∫

∂D
Pr(θ − γ) log ‖χα‖2

hk
ψ(θ)

dθ

)
.

Then limk→∞ ϕk = ϕ in the C2(D × M) topology.

The proof of Theorem 1.1 builds upon the machinery developed by Song–
Zelditch for the study of geodesics in H(T ). In the geodesic case, i.e., N =
[0, 1], the approximating Bergman Kähler potentials take the form
(1.17)

ϕk(t, z) =
1
k

log
∑

α∈kP∩Zm

|χα(z)|2
hk
0

e
−(1−t) log ‖χα‖2

Hilbk(h0)−t log ‖χα‖2
Hilbk(h1) .

We see that the straight line segment in the case N = [0, 1] is replaced by
the harmonic extension of the boundary L2 norming constants in the gen-
eral case. Aside from justifying the general formula, we need to modify the
estimates to apply to harmonic functions on N rather than linear functions
on [0, 1]. Using the localization lemma and the asymptotics of the peak val-
ues proved in [26] (which we recall in Section 2), the uniform convergence
in C2 reduces to a verification of orders of amplitudes where the analysis is
carried out separately in the interior of the polytope and near its boundary.
Since many details are similar to the geodesic case, we concentrate here only
on the novel features and the reader of Section 5 would benefit from some
familiarity with [26]. The reader is also referred to [21, Chapter 3], where
the results of the present article appear with greater detail.

Let us make note of one more relation between the geodesic segment prob-
lem and the harmonic mapping problem. In both cases a key aspect of the
toric situation is that the Legendre transform linearizes the harmonic map
equation. This was known previously for geodesics [10, 15, 23] (see also
[26] for a simple proof), but is observed for the first time here for general
harmonic maps. We refer the reader to Section 3 where we also observe a
generalization (3.16) of a well-known formula from convex analysis and show
that the Eells–Sampson harmonic map flow is Legendre transformed to the
usual heat flow. This fact is quite a remarkable property of the toric situa-
tion and does not hold for general variational problems. It follows that one
can explicitly solve the WZW and harmonic map equations in terms of the
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associated symplectic potentials. We make crucial use of this in proving the
convergence of the Bergman harmonic maps, and it is the reason why we do
not founder amid regularity problems as in the general projective case. Our
results give the first proof of convergence for higher dimensional harmonic
maps into spaces of Kähler metrics. We hope to discuss in a separate article
convergence results for WZW maps on general projective manifolds.

2. Background results

We begin by recalling some basic facts regarding toric varieties relevant to
our setting. We refer the reader to [6, 21, 24, 26] for more details.

We will work with coordinates on the open dense orbit of the complex
torus given by z = eρ/2+

√
−1θ, with ρ, θ ∈ R

m × (S1)m. The real torus
T ∼= (S1)m acts in a Hamiltonian fashion with respect to ω. The image
of its moment map μ is a Delzant polytope P ⊂ R

m. Let x denote the
Euclidean coordinate on P . The polytope is given by P = {x ∈ R

m : lr(x) :=
〈x, vr〉 − λr ≤ 0, r = 1, . . . , d} where vr is an outward pointing normal to
the rth (m−1)-dimensional face of P (also called a facet) and is a primitive
element of the lattice Z

m.
The toric monomials {χα(z) := zα}α∈kP∩Zm are an orthogonal basis of

H0(M, Lk) with respect to any element of Bk(T ). Hence a toric inner prod-
uct, equivalently a point in Bk(T ), is completely determined by the L2 norms
(up to kn/V ), or norming constants, of the toric monomials:

Qhk(α) := ‖χα‖2
hk =

∫

(C∗)m

|zα|2e−kϕdVh.

Unlike in the Introduction here we let h = e−ϕ with ϕ a local Kähler poten-
tial on the open orbit (that does not extend globally). Define the normalized
norms of the monomials

Phk(α, z) :=
|χα(z)|2

hk

‖χα‖2
hk

,

and their peak values

(2.1) Phk(α) :=
|χα

(
μ−1

hk

(
α
k

))
|2
hk

‖χα‖2
hk

.

In order to complete the proof of Theorem 1.1 we will need some of the
tools developed by Song–Zelditch, that we now recall. First, an asymptotic
expression for Phk(α) for families of toric Bergman metrics. This expression
is sensitive to the distance of α/k to the boundary of the polytope. Recall
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that the kth Bargmann–Fock model on (C,
√

−1dz ∧ dz̄) is given by the
holomorphic functions that are L2 with respect to the Hermitian metric
hk

BF = e−k|z|2 and a basis is given by all monomials zα with α ∈ Z+. One
may compute that

(2.2) Phk
BF

(α) = ke−α αα

α!
.

Let δk = k−2/3. Denote by Fδk
(x) = {r : lr(x) < δk} the index set for

those facets to which x is k−2/3-close, and let δ�
k(x) denote the cardinality

of this set. Set

Gϕ(x) :=
(
δϕ(x) · Πj 	∈Fδk(x) lj(x)

)−1
,

where δϕ(x) is defined in (3.6) below and put

PBF,δk
(α) := Πj∈Fδk(x)Phk

BF
(αj).

These two terms are the far and near contributions to the asymptotics of
the peak values Phk(α):

Lemma 2.1. (See [26, Propositions 6.1, 6.6].) Let δk = k−2/3. Let {ht}t∈K

be a family of metrics with K compact. Then there exist C > 0 independent
of t such that

(2.3) Phk
t
(α) = Ck

1
2

(
m−δ�

k(α
k )

)√
Gϕ

(α

k

)
PBF,δk

(α

k

) (
1 + Rk

(α

k
, ht

))
,

where Rk = O
(
k− 1

3

)
. This expansion is uniform in t and may be differenti-

ated twice to give for j = 1, 2 and for some amplitudes Sj of order zero the
expansion

( ∂

∂t

)j
Phk

t
(α) = Cmk

1
2

(
m−δ�

k(α
k )

)√
Gϕ

(α

k

)
PBF,δk

(α

k

)
(2.4)

×
(
Sj(t, α, k) + Rk

(α

k
, ht

))
.

Second, recall the following asymptotic localization of sums result:

Lemma 2.2. (See [26, Lemma 1.1].) Let Bk(y, α) : kP ∩Z
m → C be a family

of lattice point functions satisfying |Bk(y, α)| ≤ C0k
M for some C0, M ≥ 0.

Fix δ ∈ (0, 1/2). Then there exists C > 0 such that
∑

kP∩Zm

Bk(y, α)Phk
y
(α, z) =

∑

α:| α
k

−μy(z)|≤kδ− 1
2

Bk(y, α)Phk
y
(α, z) + O(k−C).
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3. Legendre transform to harmonic functions and Legendre
duality of geometric flows

Over the open orbit of M , a toric Kähler potential may be identified with a
convex function on R

m, ϕ = ϕ(ρ) in the logarithmic coordinates of Section 2.
By abuse of notation we will frequently identify H(T ) with the local torus-
invariant Kähler potentials defined on the open orbit. The gradient of ϕ(ρ) =
ϕ(eρ) is a one-to-one map, identified with the moment map μ, whose image
closure is P . The Legendre transform appeared in the context of symplectic
toric manifolds in the work of Guillemin [16] and this tool lies at the heart
of this section (some of our work in this section is also directly related to
work of Semmes [22]). It takes Kähler potentials ϕ on the open orbit to
symplectic potentials Lϕ = uϕ, that are defined as convex functions on
P with logarithmic singularities on ∂P , and relates the moment map, local
symplectic potential uϕ(x) = uϕ(μ(ρ)) and local Kähler potential as follows:

uϕ(x) = 〈x, 2 log μ−1(x)〉 − ϕ(μ−1(x))(3.1)

= 〈x, (∇ϕ)−1(x)〉 − ϕ
(
(∇ϕ)−1(x)

)
.

In addition

(3.2) (∇ϕ)−1(x) = ∇u(x)

and

(3.3) (∇2ϕ)−1|(∇ϕ)−1(x) = ∇2u|x.

Any symplectic potential u can be written as u0 + f , with respect to the
canonical potential

(3.4) u0(x) =
d∑

k=1

lk(x) log lk(x)

introduced by Guillemin, with f smooth up to the boundary [16]. Just as for
Kähler potentials we may define the space of global symplectic potentials:

(3.5) LH(T ) = { F ∈ C∞(P ) : u0 + F = Lϕ with ϕ ∈ H(T )}.

We will sometimes, by abuse of notation, identify elements of this space with
their local symplectic potentials in the same manner as with H(T ) itself.

Letting Gϕ(x) = ∇2uϕ(x) we have the following formula of Abreu:

(3.6) detG−1
ϕ = δϕ(x) · Πd

r=1lr(x),

for some positive smooth function δϕ [1].
Let n = dimR N and denote by y1, . . . , yn local coordinates over some

coordinate patch U ⊂ N . We assume that N is oriented as a manifold
with boundary, i.e., that the orientation on ∂N is the one induced from N .
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Recall that there always exists a Dirichlet Green function G(y, q) ∈ C∞(N ×
N \ diag(N)) for the Laplacian ΔN := ΔN,f on such a manifold [3, 14]. If
v ∈ C∞(∂N), the equations

ΔNw = 0 on N

w = v on ∂N

have a unique smooth solution

(3.7) w( · ) = −
∫

∂N
v(q)∂ν(q)G( · , q) dV∂N,f (q)

(our convention will be that G(y, q) is positive in the interior and vanishes
when q is in the boundary), with ν(q) = νi(q) ∂

∂yi |q an outward unit normal to
∂N in N (coming from a Riemannian splitting TN |∂N = T∂N ⊕N∂N , where
N∂N is the normal bundle to ∂N in N), and where we let ∂ν(q)G(y, q) :=
ν(q)G(y, q) ≤ 0 be the normal derivative with respect to the second
argument.

Let Γc
ab denote the Christoffel symbols of (N, f) with respect to local

coordinates y1, . . . , yn. Recall the following expression for the Christoffel
symbols of (H, gL2). Our proof is a slight variation on those in [5, 10].

Lemma 3.1. For every e, f ∈ TϕH we have Γ(e, f)|ϕ = −1
2gϕ(∇e,∇f).

Proof. Recall that the proof of the Koszul formula for the Levi–Civita con-
nection of a finite-dimensional manifold [18, p. 122], carries over to infinite
dimensions to show that if a Levi–Civita connection exists it is unique.
Regard the functions c, e, f as constant vector fields on H and let D denote
the Levi–Civita connection of gL2 . Therefore the corresponding brackets
vanish and we have

(3.8) 2gL2(Dce, f)|ϕ = c gL2(e, f) − f gL2(e, c) + e gL2(f, c).

Since

c gL2(e, f) =
d

dt

∣
∣
∣
0

1
V

∫

M
ef(ω + t

√
−1∂∂̄c)n =

1
V

∫

M
efΔϕc ωn,

we have

2gL2(Dce, f)|ϕ =
1
V

∫

M
(efΔϕc − ceΔϕf + fcΔϕe) ωn(3.9)

=
1
V

∫

M
(efΔϕc − fΔϕ(ce) + eΔϕ(fc)) ωn

= − 1
V

∫

M
gϕ(∇c,∇e)f ωn.
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It follows that
Dce = −1

2
gϕ(∇c,∇e).

Finally, this expression is symmetric hence D is torsion free, and it is also
compatible with gL2 since f gL2(c, e) = gL2(Dfc, e) + g(c, Dfe) is just

1
V

∫

M
ecΔωϕfωn =

1
V

∫

M
ec

1
2
Δgϕfωn = − 1

V

∫

M

1
2
(e∇f ·∇c+ c∇f ·∇e)ωn.

�

Several authors observed previously that the Legendre transform lin-
earizes the geodesic equation, so that a geodesic ϕt with endpoints ϕ0, ϕ1 is
given by ϕt = L(Lϕ0 + t(Lϕ1 − Lϕ0)) [10, 15, 23]. We now observe that
under the Legendre transform, a harmonic map into H(T ) is mapped to a
family of symplectic potentials that are harmonic functions in the N vari-
ables. The key point is that the Legendre transform eliminates the Christoffel
symbols in a variational sense.

Proposition 3.1. Let ψ : ∂N → H(T ) be a smooth map. There exists
a unique harmonic map ϕ from N to H(T ) that agrees with ψ on ∂N .
Moreover, ϕ = Lu where u ∈ C∞(N × P \∂P ) satisfies ΔNu = 0 and
u|∂N = Lψ.

By ΔNu = 0 we mean that for each p ∈ P\∂P the function u(p) ∈ C∞(N)
satisfies ΔNu(p) = 0 in N \∂N .

Proof. The proof of the one-dimensional case [26, Proposition 2.1] carries
over with minor changes. Indeed, harmonic maps into H(T ) are stationary
points of the functional

(3.10) E(ϕ) =
∫

N
|dϕ|2dVN,f =

∫

N×M
fab ∂ϕ

∂ya

∂ϕ

∂yb
ωn

ϕ ∧ dVN,f .

First, considering a variation of (3.1) at ρ = ρ(x) = (∇ϕ)−1(x) yields

∂u

∂ya

∣
∣
∣
x

=
du

dya

∣
∣
∣
x

=
n∑

j=1

xj
∂ρj

∂ya
− ∂ϕ

∂ya

∣
∣
∣
ρ
−

n∑

j=1

∂ϕ

∂ρj

∂ρj

∂ya
= − ∂ϕ

∂ya

∣
∣
∣
ρ
,

since ∇ϕ(ρ) = x.
Next, torus invariance allows us to integrate instead over the polytope

and we have using (3.2) and (3.3) that

(∇ϕ)�(ωn
ϕ) = (∇ϕ)�

(
(det ∇2ϕ) dρ1 ∧ dθ1 ∧ · · · ∧ dρm ∧ dθm

)
(3.11)

= (∇u)−1
�

(
(det ∇2ϕ) dρ1 ∧ dθ1 ∧ · · · ∧ dρm ∧ dθm

)

= (∇u)�
(
(det ∇2ϕ) dρ1 ∧ dθ1 ∧ · · · ∧ dρm ∧ dθm

)

= (det∇2ϕ)(det ∇2u) dx1 ∧ · · · ∧ dxn = dx.
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This means that the metric gL2 is pushed forward to the “Euclidean” metric
on LH(T ). Therefore the functional E(ϕ) equals

(3.12)
∫

N×P
fab ∂u

∂ya

∂u

∂yb
dx ∧ dVN,f =

∫

N
|du|2dVN,f ,

which is equal to the energy of the map u : N → LH(T ). Since the target
space is now flat with vanishing Christoffel symbols the Euler–Lagrange
equation is ΔNu = 0.

Finally, note that since u(q) = Lψ(q) is convex for each q ∈ ∂N it is
also convex in the interior of N : Observe that from (3.7) it follows that the
Hessian of u (in the P variables, namely x) for every y ∈ N is given by

∇2u(y, x) = −
∫

∂N
∇2u(q, x)∂ν(q)G(y, q)dV∂N,f (q),

and since −∂ν(q)G(y, q) ≥ 0(see the paragraph after (3.7)) it follows that
∇2u(y, x) is therefore a positive-definite matrix. Therefore ϕ := L−1u is in
H(T ) and solves the harmonic map equation with boundary values ψ, as
required. �

The Eells–Sampson harmonic map heat flow [13] on the space of smooth
maps from (N, f) to (H(T ), gL2) is given by

(3.13) ∂tϕ = fab∂ya∂ybϕ − fabΓc
ab∂ycϕ − 1

2
fabg(∇∂yaϕ, ∇∂ybϕ),

while the heat flow on the space of symplectic potentials LH(T ) is given by

(3.14) ∂tu = ΔNu.

Note that equations (3.13) and (3.14) hold without change for the global
Kähler and symplectic potentials, respectively.

We record the following result although we will not make use of it for the
proof of the main theorem.

Theorem 3.1. Under the Legendre transform the Eells–Sampson harmonic
map flow (3.13) on the space of Kähler potentials H(T ) is mapped to the
heat flow (3.14) on the space of symplectic potentials LH(T ).

Proof. As above, taking a variation of (3.1) yields

(3.15)
∂u

∂t

∣
∣
∣
x

= −∂ϕ

∂t

∣
∣
∣
ρ(x)

.

Intuitively, the equality of the energy functionals (3.10) and (3.12) then
suggests that their Euler–Lagrange equations should coincide, however up
to a sign, coming from the fact that an infinitesimal variation δψ(ρ) in
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one corresponds to an infinitesimal variation −δψ(x) in the second. More
precisely, we have

(3.16) −ΔNu = fab∂ya∂ybϕ − fabΓc
ab∂ycϕ − 1

2fabg(∇∂yaϕ, ∇∂ybϕ).

To demonstrate (3.16), recall first the following formula for the second vari-
ation of the Legendre duals of a family of convex functions (parametrized by
t, say) that have the same gradient image, that follows by taking a variation
of (3.1) and using (3.2):

∂2u

∂t2

∣
∣
∣
x

= −∂2ϕ

∂t2

∣
∣
∣
(∇ϕ)−1(x)

−
n∑

j=1

∂2ϕ

∂t∂ρj

∂((∇ϕ)−1(x))j

∂t
(3.17)

= −∂2ϕ

∂t2

∣
∣
∣
(∇ϕ)−1(x)

−
n∑

j=1

∂2ϕ

∂t∂ρj

∂(∂u/∂xj)
∂t

= −∂2ϕ

∂t2

∣
∣
∣
(∇ϕ)−1(x)

− 〈∇(∂ϕ/∂t)|(∇ϕ)−1(x),∇(∂u/∂t)|x〉,

or more succinctly

(3.18) −ϕ̈ = ü + 〈∇ϕ̇, ∇u̇〉.
Now, the terms that are linear in the first derivatives on each side of (3.16)
are equal to each other by the first variation formula for the Legendre trans-
form (3.15). Next, fix y ∈ N and choose coordinates on N for which fab = δab

at y ∈ N . Then (3.18) gives

−∂ya∂yau = ∂ya∂ybϕ + 〈∇∂yau, ∇∂yaϕ〉.
But now

∂xj (∂yau(x)) = −∂xj (∂yaϕ(ρ)) = −∂ρk
∂yaϕ · ∂xjρk = −∂ρk

∂yaϕ · ∂xj (∇u)k.

Therefore using (3.3) and the fact that gϕ is represented in coordinates on the
open orbit by ∇2ϕ we see that (3.16) holds. Thus, the Legendre transform
sends solutions of (3.13) to solutions of (3.14). �

In general, one does not expect the Euler–Lagrange equations of two equal
functionals defined on two different spaces to transform to each other. In our
situation this does happen and in essence is due to the fact that the Legendre
transform eliminates the Christoffel symbols not only in a variational sense
but pointwise.

Observe that equation (3.16) generalizes the well-known formula (3.18)
from convex analysis for the second variation of a family of convex functions
on R

m parametrized by (R, dx) that have the same gradient image. The
factor 1

2 in our formula comes from the conventions we used to relate the
Riemannian and Kähler metrics.

It is not a priori clear that the nonlinear flow (3.13) exists for all time and
converges, despite the fact that the target is formally nonpositively curved.
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However this is certainly the case for the linear heat flow (3.14). As an
immediate corollary of Theorem 3.1 we have:

Corollary 3.1. The Eells–Sampson harmonic map flow (3.13) on the space
of Kähler potentials H(T ) exists for all time and converges exponentially
fast to the harmonic map given by Proposition 3.1.

4. The approximating sequence

Given a harmonic map ϕ : N → H(T ) we now define the purported approx-
imating sequence of harmonic maps ϕk : N → Bk(T ). First, given a family
of toric Kähler metrics ψ parametrized by ∂N we ‘project’ the family point-
wise by FSk ◦ Hilbk onto Bk(T ) to obtain a family of toric Bergman metrics
parameterized by ∂N . Each of these metrics is determined by its L2 norming
constants, hence by the diagonal matrices

diag(Qhk
ψ(q)

(α))α∈kP∩Zm , q ∈ ∂N.

For each α, we solve the boundary problem

Δλα(y) = 0, y ∈ N,

λα = log Qhk
ψ(q)

(α), q ∈ ∂N.

We then map back to Bk via FSk to obtain the family

ϕk(y, z) =
1
k

log
∑

α∈kP∩Zm

e−λα(y)|χα(z)|2
hk
0

∈ Bk(T )

of harmonic maps alluded to in Theorem 1.1. This may be written somewhat
more explicitly in terms of the Green kernel:

ϕk(y, z) =
1
k

log
∑

α∈kP∩Zm

|χα(z)|2
hk
0

× exp
( ∫

∂N
∂ν(q)G(y, q) log ||χα||2hψ(q)

dV∂N,f (q)
)
.

Our first aim is to prove the C0 convergence by showing

ϕk(y, z) − ϕ(y, z)(4.1)

=
1
k

log
∑

α∈kP∩Zm

|χα(z)|2
hk

ϕ(y)

× exp
( ∫

∂N
∂ν(q)G(y, q) log ‖χα‖2

hψ(q)
dV∂N,f (q)

)
=O( log k

k ).

We begin by rewriting the sum in a convenient way.
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Put

(4.2) Rk(y, α) := exp
(

−
∫

∂N
∂ν(q)G(y, q) log

Qhk
ϕ(y)

(α)

Qhk
ψ(q)

(α)
dV∂N,f (q)

)
.

Then proving (4.1) is equivalent to proving

(4.3)
1
k

log
∑

α∈kP∩Zm

Rk(y, α)Phk
ϕ(y)

(α, z) = O(log k/k).

Put uy := uϕ(y) = u(y, ·), for y ∈ N . In light of the results in the geodesic
case [26] we expect the asymptote of Rk to be the following:

R∞(y, x) := exp
(

−1
2

∫

∂N
∂ν(q)G(y, q) log

det ∇2uy(x)
det ∇2uq(x)

dV∂N,f (q)
)

.

Note that by (3.6) we have

R∞(y, x) = exp
(

−1
2

∫

∂N
∂ν(q)G(y, q) log

δψ(q)(x)
δϕ(y)(x)

dV∂N,f (q)
)

,

and therefore R∞ ∈ C∞(N × P ) (up to the boundary).
In light of Lemma 2.1 it will be useful to express the ratio Rk in terms of

the functions Phk(α) (2.1) in the following form:

Lemma 4.1. One has

Rk(y, α) = exp

(

−
∫

∂N
∂ν(q)G(y, q) log

Phk
ψ(q)

(α)

Phk
ϕ(y)

(α)
dV∂N,f (q)

)

.

Proof. By definition,

Rk(y, α) = exp

(∫

∂N
∂ν(q)G(y, q) log

Qhk
ψ(q)

(α)

Qhk
ϕ(y)

(α)
dV∂N,f (q)

)

.

Specializing (3.1) to the lattice point α we have

uϕ(α) = 〈α, 2 log μ−1(α)〉 − ϕ(μ−1(α)),

implying that

(4.4) log Qhk(α)Phk(α) = ku(α/k).

Since u is harmonic in y it follows that

log Qhk
ϕ(y)

(α)Phk
ϕ(y)

(α) = −
∫

∂N
∂ν(q)G(y, q) log Qhk

ψ(q)
(α)Phk

ψ(q)
(α)dV∂N,f (q),

which together with the definition concludes the proof. �
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5. Proof of Theorem 1.1

Recall that the standard elliptic regularity theory applies to the operator
ΔN [3, 14]. Namely, if w ∈ C∞(N) satisfies ΔNw = 0 on N\∂N , and w = v
on ∂N , there exists C = C(N, f) such that the Schauder estimates hold:

(5.1) ‖w‖C2,1/2(N) ≤ C(‖w‖C0(N) + ‖v‖C2,1/2(∂N)).

Moreover, the maximum principle implies that ‖w‖C0(N) ≤ ‖v‖C0(∂N), and
so the estimates are only in terms of ‖v‖C2,1/2(∂N).

First, we need the following asymptotic regularity for the coefficients
Rk(y, α).

Lemma 5.1. There exists a positive constant C > 0 such that for all k, y, α
one has

(5.2) 1/C < Rk(y, α) < C.

Moreover, one has

(5.3) Rk(y, α) − R∞(y, α/k) = O(k− 1
3 )

uniformly in (y, α), and log Rk(y, α) is uniformly bounded in C2(N).

Proof. The Bargmann–Fock terms in (2.3) depend only on the geometry of
P and not on y ∈ N and so are cancelled in the ratio Rk(y, α). Therefore,
by Lemma 4.1,

log Rk(y, α) =
∫

∂N
−∂ν(q)G(y, q) log Phk

ψ(q)
dV∂N,f (q) − log Phk

ϕ(y)

=
1
2

∫

∂N
−∂ν(q)G(y, q) log

(
Gψ(q)

(α

k

))
dV∂N,f (q)

− 1
2

log
(
Gϕ(y)

(α

k

))

+
∫

∂N
−∂ν(q)G(y, q) log

(
1 + Rk

(α

k
, hψ(q)

))
dV∂N,f (q)

− log
(
1 + Rk

(α

k
, hϕ(y)

))
.

The first two terms simplify to

1
2

∫

∂N
−∂ν(q)G(y, q) log

δϕ(y)
(

α
k

)

δψ(q)
(

α
k

)dV∂N,f (q) = log R∞(y, α/k),

and so the Schauder estimates (5.1) together with Lemma 2.1 imply equation
(5.3) and hence also the uniform estimate (5.2) (indeed, Lemma 2.1 shows
the fourth term is O

(
k− 1

3

)
while the third term is a harmonic function on

N which is of order O
(
k− 1

3

)
on ∂N).
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We now turn to prove the higher derivative estimates. A first derivative
of the fourth term yields, according to (2.4),

S1(y, α, k) + Rk

(
α
k , hϕ(y)

)

1 + Rk

(
α
k , hϕ(y)

) ,

and this is uniformly bounded according to Lemma 2.1. In a similar fashion
it follows that second derivatives are uniformly bounded as well. Finally, the
Schauder estimates (5.1) may be invoked again for the third term and these
will be uniform since the same argument as for the fourth term implies that
‖ log

(
1 + Rk

(
α
k , hψ(q)

))
‖C2(∂N) is uniformly bounded. �

Note that estimate (5.2) immediately implies the C0 convergence of ϕk

to ϕ with remainder as in (4.1) since we have an asymptotic expansion for
the Szegő kernel that to first order equals

(5.4) Πhk
ϕ(y)

(z, z) =
∑

α∈kP∩Zm

Phk
ϕ(y)

(α, z) = 1 + O(k−1).

We now turn to showing C1 and C2 convergence. In other words, our aim
is now to show that the C2(N × M) norm of the left-hand side of (4.3) is
still O(kδ− 1

3 ). In order to prove these estimates it is crucial to make use of
some cancellations. These can be understood as follows. When one replaces
all the coefficients Rk(y, α) by a constant, one reduces to the case of a
zero-dimensional map, or equivalently to the known asymptotic expansion
of the Szegő kernel that may be differentiated any number of times with
a small error. Now there are two cases. When a coefficient Rk(y, α) or a
derivative thereof only multiplies a normalized monomial Phk

ϕ(y)
(α, z) it is

enough to use the uniform estimates given by Lemma 5.1 and one does
not need to keep track of error terms. However, as is usually the case, if the
coefficient Rk(y, α) or a derivative thereof multiplies another term that itself
depends on k, one needs to keep track of the remainder of order O

(
k− 1

3

)

given by Lemma 5.1. When such an error is introduced we simultaneously
apply Lemma 2.2 to localize to those lattice points satisfying |α| ≤ k

1
2+δ.

Remembering the overall factor of 1
k one then estimates the remainders thus

introduced.
Let us now consider derivatives solely in the M -directions. A derivative

of (4.3) in the ρj directions amounts to multiplying each coefficient in the
sum (4.3) by a factor of

k
(
(∇ϕy)(z) − α

k

)

j
= k

(
μy(z) − α

k

)

j

(recall that the moment map μy is the gradient of the open orbit Kähler
potential ϕ(eρ)).
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Namely, in the interior of P one has

∂

∂ρj
(ϕk − ϕ)(y, z) =

1
k

∑
α∈kP∩Zm k(μy(z) − α

k )Rk(y, α)Phk
ϕ(y)

(α)
∑

α∈kP∩Zm Rk(y, α)Phk
ϕ(y)

(α, z)
.

The factor of k is cancelled by the overall factor of 1
k and the coefficients

Rk(y, α) are uniformly bounded due to (5.2). Thus by Lemma 2.2 one may
restrict to those α such that |μy(z) − α

k | ≤ kδ− 1
2 (introducing an error

O(k−M ) for some large M > 0). It follows then that

(5.5)
∂

∂ρj
(ϕk − ϕ)(y, z) = O

(
kδ− 1

2

)
.

Near the boundary of P one performs the same computation but with respect
to the slice-orbit coordinates (the same remark applies to all the computa-
tions in this Section). Note that the argument reduced to the one in [26,
Section 7.2], once we had (5.2).

Next, we consider second derivatives in the M -directions. Symmetrizing
sums (see [26, Section 8]) one obtains in the interior of P ,

∂2

∂ρi∂ρj
(ϕk − ϕ)(y, z) = −∂2ϕ(y, z)

∂ρi∂ρj

+
1
k

1
2
∑

α,β∈kP∩Zm(αi − βi)(αj − βj)Rk(y, α)

×Rk(y, β)Phk
ϕ(y)

(α, z)Phk
ϕ(y)

(β, z)
( ∑

α∈kP∩Zm Rk(y, α)Phk
ϕ(y)

(α, z)
)2 .

Equation (5.3) allows to reduce the computations to those in the case
N = [0, 1]: After localizing (keeping only those α that are O

(
k

1
2+δ

)
-close

to kμy(z)) we have the estimate 1
k (αi − βi)(αj − βj) = O(k2δ). We then

replace the coefficients Rk(y, α) by the uniform constant (independent of
α) R∞(y, μy(z)) at the price of an overall error O(k2δ− 1

3 ). But now what
is left is then precisely cancelled by −∂2ϕ(y,z)

∂ρi∂ρj
(up to an error of O(k−2))

due to the complete asymptotics of the Szegő kernel of a single metric. To
prove this last claim, we consider the situation of a family of Szegő ker-
nels parametrized by a compact manifold N , corresponding to the family
of Hermitian metrics hy, y ∈ N . In the toric situation this may be written
explicitly as

Πk(z, z) := Πhk
y
(z, z) =

∑

α∈kP∩Zm

|χα(z)|2
hk

y

Qhk
y
(α)

=
∑

α∈kP∩Zm

e〈α,ρ〉−kϕy

Qhk
y
(α)

.
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Set

Π̃k(z, z) :=
∑

α∈kP∩Zm

e〈α,ρ〉

Qhk
y
(α)

.

Then, 1
k log Πhk

y
(z, z) = O(k−2) has a complete asymptotic expansion, and

a first space derivative gives
(5.6)
∂ϕ(y, z)

∂ρj
=

∂

∂ρj

1
k

log Π̃k(z, z)+O(k−2) =
1
k
(Π̃k(z, z))−1

∑

α∈kP∩Zm

αj
e〈α,ρ〉

Qhk
y
(α)

.

Similarly a second space derivative takes the form

∂2ϕ(y, z)
∂ρi∂ρj

+ O(k−2)(5.7)

=
1
k
(Π̃k(z, z))−2

[ ∑

α∈kP∩Zm

αiαj
e〈α,ρ〉

Qhk
y
(α)

∑

β∈kP∩Zm

e〈β,ρ〉

Qhk
y
(β)

−
∑

α∈kP∩Zm

αi
e〈α,ρ〉

Qhk
y
(α)

∑

β∈kP∩Zm

βj
e〈β,ρ〉

Qhk
y
(β)

]

=
(Π̃k(z, z))−2

k

1
2

∑

α,β∈kP∩Zm

(αi − βi)(αj − βj)
e〈α+β,ρ〉

Qhk
y
(α)Qhk

y
(β)

(by symmetrizing sums). But now multiplying numerators and denominators
throughout by e−kϕy(z) the right-hand side becomes

(Πk(z, z))−2

k

1
2

∑

α,β∈kP∩Zm

(αi − βi)(αj − βj)Phk
ϕ(y)

(α, z)Phk
ϕ(y)

(β, z)

Since Πk(z, z) =
∑

Phk
ϕ(y)

, this proves our original claim, and hence the
convergence of the second space derivatives:

(5.8)
∂2

∂ρi∂ρj
(ϕk − ϕ)(y, z) = O(k2δ− 1

3 ).

Therefore it remains to consider derivatives that also involve the N -
directions.

We consider first one derivative in the N -directions. One has
∂

∂ya
(ϕk − ϕ)(y, z)(5.9)

= − ∂ϕ

∂ya
+

1
k

∑
α∈kP∩Zm Rk(y, α)

e〈α,ρ〉

Qhk(y)(α)
∂ya log

Rk(y, α)
Qhk(y)(α)

∑
α∈kP∩Zm Rk(y, α)

e〈α,ρ〉

Qhk(y)(α)

.
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Since the asymptotic expansion (5.4) can be differentiated and is uniform
over compact families [7, 29] we have

O(k−2) =
1
k

∂

∂ya
log Πhk

ϕ(y)
(z, z)(5.10)

= − ∂ϕ

∂ya
+

1
k

∑
α∈kP∩Zm

e〈α,ρ〉

Q
hk(y)(α)∂ya log 1

Q
hk(y)(α)

∑
α∈kP∩Zm

e〈α,ρ〉
Q

hk(y)(α)

.

First note that the term

1
k

∑
α∈kP∩Zm Rk(y, α) e〈α,ρ〉

Q
hk(y)(α)∂ya log Rk(y, α)

∑
α∈kP∩Zm

e〈α,ρ〉
Q

hk(y)(α)

is of order O(k−1) by Lemma 5.1. Thus, we are left with the task of com-
paring the last term of (5.10) with

1
k

∑
α∈kP∩Zm Rk(y, α) e〈α,ρ〉

Q
hk(y)(α)∂ya log 1

Q
hk(y)(α)

∑
α∈kP∩Zm Rk(y, α) e〈α,ρ〉

Q
hk(y)(α)

.

We now localize the sums about the image of the moment map using Lemma
2.2 introducing negligible errors (of arbitrarily high order O(k−M )). Then
we use Lemma 5.1 to replace each occurrence of Rk(y, α) by R∞(y, μy(z))
plus an error of order O(k−1/3) (the error comes both from (5.3) and the
fact that we Taylor expand R∞(y, μy(z)) about R∞(y, α/k) and use the
fact that since we localized the sum we have |μy(z) − α/k| = O(kδ−1/2)).
In the terms involving R∞(y, μy(z)) the factors of R∞(y, μy(z)) actu-
ally cancel and so cancel with the last term of (5.10) after localizing the
latter.

It remains to show that the error term overall contributes O(k−1/3) to
the sum (5.9) (here we assume that δ ∈ (0, 1

6)). To that end, because of the
factor of 1/k it is enough to show that there exists a uniform constant C > 0
independent of k such that

(5.11) |∂ya log Qhk(y)(α)| ≤ Ck.

Recall that the duality (4.4) of Lemma 4.1 implies

(5.12) ∂ya log Qhk
ϕ(y)

(α) = k∂yauy(α/k) − ∂ya log Phk
ϕ(y)

(α).
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The second term of the right-hand side is uniformly bounded by applying (2.4).
To evaluate the first term recall that

(5.13) uy = −
∫

∂N
uq∂ν(q)G(y, q)dV∂N,f (q), y ∈ N.

In terms of canonical symplectic potential u0 of (3.4) one may write uy =
u0 + fy for some globally smooth function fy ∈ LH(T ) on P and thus we
have

(5.14) ∂yauy = ∂yafy = −∂ya

∫

∂N
fq∂ν(q)G(y, q)dV∂N,f (q), y ∈ N.

This is uniformly bounded according to the Schauder estimates. Combining
the above estimate (5.11) follows.

In sum we have shown that (assuming δ ∈ (0, 1
6))

(5.15)
∂

∂ya
(ϕk − ϕ)(y, z) = O(k−1/3),

which concludes the case of a single N -derivative.
We now consider the case of mixed second derivatives. We will always

assume α, β ∈ kP ∩ Z
n and so omit that from the summation notation in

what follows. To simplify the notation further we will fix a point (y, z) ∈
N × M and use the following abbreviations:

∂a := ∂ya =
∂

∂ya
, ∂ab := ∂ya∂yb =

∂2

∂ya∂yb
,

Rα := Rk(y, α), Qα := Qhk
ϕ(y)

(α), Pα := Phk
ϕ(y)

(α), P̃α :=
e〈α,ρ〉

Qhk(y)(α)
.

Symmetrizing sums again, it follows that

∂2

∂ya∂ρj
(ϕk − ϕ)(y, z)(5.16)

= −∂2ϕ(y, z)
∂ya∂ρj

+
1
k

1
2
∑

α,β(αj − βj) ∂
∂ya log

(
Rα

Qα

Qβ

Rβ

)

RαRβP̃αP̃β
( ∑

α RαP̃α

)2 .

Localizing sums exchanges the term (αj − βj) for O(k
1
2+δ) up to an error of

O(k−M ) for some large M > 0. By applying Lemma 5.1 the term

1
k

1
2
∑

α,β(αj − βj) ∂
∂ya log

(
Rα

Rβ

)
RαRβP̃αP̃β

( ∑
α RαP̃α

)2
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is O(kδ−1/2). As before, we now replace the coefficients Rk in (5.16) for
the lattice points α that remain (near μy(z)) by the uniform constant
R∞(y, μy(z)) plus an error of order O(k−1/3). Any term that does not multi-
ply log Qβ

Qα
is of order O(kδ−1/2), or smaller, by using Lemma 5.1. Now there

are two kinds of terms left to estimate. The first involve ∂a log Qβ

Qα
with all Rk

replaced by R∞(y, μy(z)). Then the coefficients R∞(y, μy(z)) cancel out and
we are left with the Szegő kernel approximation of ∂2ϕ(y,z)

∂ya∂ρj (up to O(k−2))

and this cancels with −∂2ϕ(y,z)
∂ya∂ρj appearing in (5.16). The second type of con-

tributions comes from error terms of order O(k−1/3) multiplying ∂a log Qβ

Qα
.

By using (5.12) we may express log Qβ

Qα
in terms of the global symplectic

potentials and using in addition the fact that α and β are localized to a
neighborhood of size comparable to k1/2+δ about kμy(z) we obtain

∣
∣
∣∂a log

(Qβ

Qα

) ∣
∣
∣ ≤ C + k|∂afy(β/k) − ∂afy(α/k)|(5.17)

≤ C + kC1|(α − β)/k| = O(k
1
2+δ),

where C1 is the Lipschitz constant of the smooth function ∂afy (as a function
of N). By the maximum principle C1 is uniformly bounded in terms of
the boundary data (i.e., FSk ◦ Hilbk(ψ)) since ∂afy is in fact harmonic in
the N -variables. Taking into account the terms αj −βj = O(kδ−1/2) and the
overall factor of 1/k this then implies that the second type of contributions
are of order O(k2δ−1/3).

Note that the symmetrization of the sums was crucial here. In sum,

(5.18)
∂2

∂ya∂ρj
(ϕk − ϕ)(y, z) = O(k2δ− 1

3 ).

Finally, we consider the case of two derivatives in the N -directions. This
case is somewhat more involved than the previous ones and unlike in the
case N = [0, 1] we also need to consider mixed N -derivatives. We have

∂ab(ϕk − ϕ)(y, z) = −∂abϕ(5.19)

+
1
k

∑
α,β RαP̃αRβP̃β ·

[
∂ab log

(
Rα

Qα

)

+1
2∂a log

(
Rα

Qα

Qβ

Rβ

)
∂b log

(
Rα

Qα

Qβ

Rβ

) ]

( ∑
α RαP̃α

)−2 .

We rewrite this as

∂ab(ϕk − ϕ)(y, z) = −∂abϕ + A + B + C,
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where

A =
1
k

∑
α,β RαP̃αRβP̃β ·

[
∂ab log

(
1

Qα

)
+ 1

2∂a log
(

Qβ

Qα

)
∂b log

(
Qβ

Qα

)]

( ∑
α RαP̃α

)−2 ,

(5.20)

B =
1
k

∑
α,β RαP̃αRβP̃β ·

[
∂ab log (Rα) +

1
2
∂a log

(
Rα

Rβ

)
∂b log

(
Rα

Rβ

)]

( ∑
α RαP̃α

)−2 ,

(5.21)

C =
1
k

∑
α,β RαP̃αRβP̃β ·

[
∂a log

Rα

Rβ
∂b log

Qβ

Qα

]

( ∑
α RαP̃α

)−2 .

(5.22)

By differentiating (5.4) we obtain similarly (analogously to the computations
leading to (5.7)),

O(k−2) = −∂abϕ

(5.23)

+
1
k

∑
α,β P̃αP̃β ·

[
∂ab log

(
1

Qα

)
+

1
2
∂a log

(Qβ

Qα

)
∂b log

(Qβ

Qα

)]

( ∑
α P̃α

)−2 .

We now localize the sums to a ball of radius k
1
2+δ about kμy(z) introducing

a negligible remainder/error and replace the two occurrences of Rγ outside
of the square brackets in (5.19) as well as in the denominator by the lattice-
point-independent constant R∞(y, μy(z)) (in what follows, we refer to this
operation as “replacement”) introducing an error of order O(k− 1

3 ) for each
replacement. First, observe that the replacement in the denominator is neg-
ligible. What remains to be checked is that the overall error introduced by
replacements elsewhere is of order O(k2δ− 1

3 ).
In the term A these replacements introduce a term that is cancelled by

substituting the expression for −∂abϕ given by (5.23) into (5.19). In addition
we introduce error terms. Let εγ := Rγ − R∞(μy(z)) = O(k− 1

3 ) for each
lattice point γ in a localized sum. The highest order remainders are terms
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of the form 1
k εγ · (B1 + B2 + B3) where

B1 := B1,1 + B1,2 := ∂ab log
(

1
Qα

)
+

1
2
∂a log

(Qβ

Qα

)
∂b log

(Qβ

Qα

)
,

B2 := ∂ab log Rα +
1
2
∂a log

(
Rα

Rβ

)
∂b log

(
Rα

Rβ

)
,

B3 := ∂a log
(

Rα

Rβ

)
∂b log

(Qβ

Qα

)
.

The errors introduced in the replacements in the term A are of the form
1
k εγB1. The errors introduced in the replacements of the terms B and C are
1
k εγB2 and 1

k εγB3, respectively.
First, 1

k εγB2 = O(k− 4
3 ) by Lemma 5.1. To bound B1 and B3 we will

use estimate (5.17) for the derivatives of the norming constants Qα. First,
it gives directly that 1

k εγB3 = O(kδ−5/6). Second, by squaring (5.17) we
also obtain 1

k εγB1,2 = O(k2δ− 1
3 ). Finally, the maximum principle also gives,

similarly to the argument proving (5.11), that
∣
∣
∣∂ab log Qα

∣
∣
∣ ≤ C + k|∂abfy(α/k)| ≤ C2k,

and thus 1
k εγB1,1 = O(k− 1

3 ). Altogether we have shown that all the
remainders introduced by the replacements are of order O(k2δ− 1

3 ) for some
δ ∈ (0, 1/6).

Hence we have shown that

∂ab(ϕk − ϕ)(y, z) = O(k2δ− 1
3 ),

and this, together with estimates (5.5), (5.8), (5.15), and (5.18), concludes
the proof of Theorem 1.1.
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264 Y.A. RUBINSTEIN AND S. ZELDITCH

[7] D. Catlin, The Bergman Kernel and a Theorem of Tian, in ‘Analysis and geometry
in several complex variables’ (G. Komatsu et al., eds.), 1–23, Birkhäuser, Basel, 1999.
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