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FOLD-FORMS FOR FOUR-FOLDS

Ana Cannas da Silva

This paper explains an application of Gromov’s h-principle to prove
the existence, on any orientable four-manifold, of a folded symplectic
form. That is a closed two-form which is symplectic except on a sepa-
rating hypersurface where the form singularities are like the pullback
of a symplectic form by a folding map. We use the h-principle for fold-
ing maps (a theorem of Eliashberg) and the h-principle for symplectic
forms on open manifolds (a theorem of Gromov) to show that, for ori-
entable even-dimensional manifolds, the existence of a stable almost
complex structure is necessary and sufficient to warrant the existence
of a folded symplectic form.

1. Introduction

One says that a differential problem satisfies the h-principle if any formal
solution (i.e., a solution for the associated algebraic problem) is homotopic to
a genuine (i.e., differential) solution. Therefore, when the h-principle holds,
one may concentrate on a purely topological question in order to prove the
existence of a differential solution.

Differential problems are equations, inequalities or, more generally, rela-
tions [13] involving derivatives of maps. The following are examples of prob-
lems known to satisfy the h-principle: existence of immersions in strictly
positive codimension (theorems of Whitney [30], Nash [24], Kuiper [16],
Smale [26], Hirsch [14] and Poénaru [25]), existence of symplectic forms
on open manifolds (theorem of Gromov [12], who built the general machin-
ery of the h-principle as an obstruction theory for the sheaves of germs of
maps) and existence of maps whose only singularities are folds (theorem of
Eliashberg [6, 7]).

This paper explains an application of the h-principle to prove the exis-
tence, on any compact orientable four-manifold, of a folded symplectic
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form, that is, a closed two-form with only fold singularities as defined
below. According to the h-principle philosophy, this proof is divided in two
steps:

(1) show that the h-principle holds for this problem, and
(2) show that a formal solution exists.

For the first step, the basic ingredients are the h-principle for maps whose
only singularities are folds [6, 7] and the h-principle for symplectic forms
on open manifolds [12]. This combination is a shortcut based on an idea
contained in a book by Eliashberg and Mishachev [9]. We thus avoid dealing
with the h-principle in its generality.

Here is the flavor of Eliashberg’s result. Let Z be a hypersurface in a
manifold M , that is, a codimension 1 embedded submanifold (this is the
meaning of hypersurface throughout this paper). A map f : M → N between
manifolds of the same dimension is called a Z-immersion (or said to fold
along the submanifold Z) if it is regular (i.e., its derivative is invertible) on
M \ Z, and if near any p ∈ Z and near its image f(p) there are coordinates
centered at those points where f becomes

(x1, x2, . . . , xn) �−→ (x2
1, x2, . . . , xn).

A homomorphism F : TM → TN between tangent bundles is called a
Z-monomorphism, if it is injective on T (M \ Z) and on TZ, and if there
exists a fiber involution τ : T → T on a tubular neighborhood T of Z whose
set of fixed points is Z and such that F ◦dτ = F . The differential df : TM →
TN of a Z-immersion is a Z-monomorphism. Eliashberg [6] proved that, if
every connected component of M \ Z is open, then any Z-monomorphism
TM → TN is homotopic (within Z-monomorphisms TM → TN) to the
differential of a Z-immersion. In the language of [13], the theorem says
that, when M \ Z is open, Z-immersions satisfy the (everywhere C0-dense)
h-principle; a Z-monomorphism is then called a formal solution. For the
present application, we require a more general statement [7] dealing with
foliated target manifolds.

A folded symplectic form on a 2n-dimensional manifold M is a closed two-
form ω which is nondegenerate except on a hypersurface Z called the folding
hypersurface where, centered at every point p ∈ Z, there are coordinates for
M adapted to Z where the form ω becomes

x1dx1 ∧ dx2 + dx3 ∧ dx4 + · · · + dx2n−1 ∧ dx2n.

The pullback of a symplectic form by a Z-immersion is a folded symplectic
form with folding hypersurface Z.
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A formal solution for the problem of existence of a folded symplec-
tic form turns out to be a stable almost complex structure. Let M be
a 2n-dimensional manifold with a structure of complex vector bundle on
TM ⊕ R

2, where R
2 denotes the trivial rank 2 real vector bundle over M .

We will show that M admits folded symplectic forms.
Here is how Gromov’s theorem comes in. We embed M as level zero in

M × R. The given stable almost complex structure on M yields a complex
hyperplane field on M×R and hence an almost complex structure on M×R

2.
Since this manifold is open, Gromov’s application of the h-principle [12]
guarantees the existence of a symplectic form on M × R

2 inducing almost
complex structures in the same homotopy class as the given one. Since M ×
R sits here as a codimension one submanifold, the restriction ω0 of the
symplectic form to this submanifold has maximal rank, i.e., has exactly a
one-dimensional kernel at every point. Let L be the one-dimensional foliation
determined by the kernel L of ω0. The projection of ω0 to T (M × R)/L
is well-defined and nondegenerate. Suppose that we could immerse M in
M×R in a good way, meaning that locally the composition of that immersion
with the projection to the local leaf space of L is a Z-immersion, for some
hypersurface Z in M . Since this leaf space is symplectic, by pullback we
would obtain a folded symplectic form on M . Hence, we concentrate on
deforming the initial embedding at level zero into a good immersion in order
to prove:

Theorem A. Let M be a 2n-dimensional manifold with a stable almost
complex structure J . Then M admits a folded symplectic form consistent
with J in any degree 2 cohomology class.

The notion of consistency is explained in Section 2. The existence of a
stable almost complex structure is a necessary condition for the existence of a
folded symplectic form on an orientable manifold (see Section 2). Theorem A
is then saying that it is also sufficient. This contrasts with the case of a
(honest) symplectic form, for whose existence an almost complex structure
is necessary, but only sufficient if the manifold is open [12]. The sphere
S6 is a trivial example (thanks to Stokes’ theorem) and CP

2#CP
2#CP

2 is
an important example (thanks to Seiberg–Witten invariants [28]) of almost
complex manifolds without any symplectic form.

To produce a formal solution for four-manifolds is easily accomplished.
Hirzebruch and Hopf [15] showed that the integral Stiefel–Whitney class
W3 vanishes for any compact orientable four-manifold, or, in other words,
such manifolds always have stable almost complex structures. (This is the
same reason why such manifolds are spin-c [17, Theorem D.2].) Since we are
in the stable range, it is enough to add a trivial R

2 bundle to TM for this to
admit a structure of complex vector bundle. All this is also true when M is
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not compact [11, Section 5.7]. We thus obtain the following relevant special
case of Theorem A:

Theorem B. Let M be an orientable four-manifold. Then M admits a folded
symplectic form consistent with any given stable almost complex structure
and in any degree 2 cohomology class.

In higher dimensions, there are plenty of orientable manifolds that have
no stable almost complex structures (S1 × SU(3)/SO(3), for instance [17]),
and hence cannot have folded symplectic forms. The condition W3(M) = 0
is necessary and sufficient in dimensions 6 (since the next obstruction W7
vanishes for dimensional reasons) and 8 (where Massey [20] proved that W7
always vanishes). According to [4, 29], until 1998 it was still not known
general necessary and sufficient conditions (in terms of invariants such as
characteristic classes and the cohomology ring) for the existence of a stable
almost complex structure on manifolds of dimension ≥10.

As for the contents of this paper: Section 2 reviews folded symplectic
manifolds and some folded tangent bundles associated to them; Section 3
describes the application of Gromov’s theorem to guarantee a symplectic
form starting from a structure of complex vector bundle; Section 4 proves the
existence of an isomorphism between a folded tangent bundle and a suitable
complex vector bundle; Section 5 describes the application of Eliashberg’s
theorem to produce folded symplectic forms; and Section 6 contains the
conclusion of the proof of Theorems A and B.

2. Folded symplectic manifolds

Let M be an oriented manifold of dimension 2n, and let ω be a closed
two-form on M . The highest wedge power ωn is a section of the (trivial)
orientation bundle ∧2nT ∗M .

Definition. A folded symplectic form is a closed two-form ω such that
ωn intersects the 0-section of ∧2nT ∗M transversally, and such that ı∗ω has
maximal rank everywhere, where ı : Z ↪→ M is the inclusion of the zero-
locus, Z, of ωn.

By transversality, Z is a codimension-1 submanifold of M , called the fold-
ing hypersurface. A folded symplectic manifold is a pair (M, ω) where ω is
a folded symplectic form on M . The folding hypersurface Z of a folded
symplectic manifold (M, ω) separates M into the regions M+ and M−,
where the form matches or is opposite to the given orientation, respectively.
Hence, Z has a co-orientation depending on ω and on the choice of orien-
tation on M . (The notion of folded symplectic form extends to arbitrary
even-dimensional manifolds, not necessarily orientable, but we will not deal
with those in this paper.)
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The Darboux theorem for folded symplectic forms states that, if (M, ω)
is a folded symplectic manifold and p is any point on the folding hyper-
surface Z, then there is a coordinate chart (U , x1, . . . , x2n) centered at p
such that on U

ω = x1dx1 ∧ dx2 + dx3 ∧ dx4 + . . . + dx2n−1 ∧ dx2n and Z ∩ U = {x1 = 0}.

This follows, for instance, from a folded analog of Moser’s trick [3].
Doubles of symplectic manifolds with ω-convex [8] (or ω-concave) bound-

ary are easy examples of manifolds with folded symplectic forms. Simplest
instances are the spheres S2n, where a folded symplectic form is obtained
by pulling back the standard symplectic form on R

2n via the folding map
S2n → D2n.

Starting in dimension 4, folded symplectic forms are not generic in the
set of closed two-forms. Let M be a (compact) oriented four-manifold, and
let ω be a closed two-form on M . If γ is a given volume form on M , then
ω ∧ω = fγ for some f ∈ C∞(M). A generic ω [18] is never 0, has rank 2 on
a (compact) codimension-1 submanifold, Z, and is nondegenerate elsewhere.
The hypersurface Z is the 0-locus of f . Its complement M \Z is the disjoint
union of the sets M+ = {f > 0} where ω matches the given orientation
and M− = {f < 0} where ω induces the opposite orientation. For ω to be
folded symplectic, we would need that TZ and the rank 2 bundle over Z
given by ker ω intersect transversally as subbundles of TM |Z . Yet generi-
cally ω is not folded symplectic, since its restriction to Z vanishes along some
codimension-2 submanifold C (a union of circles), where ker ω is contained
in TZ [18]. Although a generic two-form on a three-manifold vanishes only
at isolated points, here the three-manifold already depends on the two-form.
Moreover, generically there are isolated parabolic points on those lines (cir-
cles), where the tangent space to those lines is contained in ker ω. There
is at least one continuous family of inequivalent neighborhoods of parabolic
points [1, 10].

Now let M be an m-dimensional manifold with a separating hypersurface
Z. For instance, M could be an oriented manifold equipped with a folded
symplectic form, and Z its folding hypersurface.

The complement M \ Z is the disjoint union of open sets M+ and M−.
Over Z, the tangent bundle has a trivial line subbundle V , spanned by a
vector field transverse to Z pointing from M− to M+. The quotient TM/V
is isomorphic to TZ, so that TM |Z 
 TZ ⊕ V .

Definition. The Z-tangent bundle of M is the rank m real vector bundle
ZTM over M obtained by gluing TM |M\M− to TM |M\M+ by the constant
diagonal map Id ⊕ (−1) : Z → GL(TZ ⊕ V ).
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There are analytic and algebraic approaches to ZTM , which enhance its
geometry [3]. From its definition it follows that:

Lemma 2.1. Let M be an m-dimensional manifold with a separating hyper-
surface Z. Then there is an isomorphism of real vector bundles

TM ⊕ R 
 ZTM ⊕ R.

A complex structure on a vector bundle E over a manifold M is a bundle
homomorphism J : E → E such that J2 = −Id. If E is an orientable rank
2m vector bundle, the existence of a complex structure on E is equivalent to
the existence of a section of the associated (SO(2m)/U(m))-bundle. A stable
complex structure on a vector bundle E over M is an equivalence class of
complex structures on the vector bundles E ⊕ R

k (k ∈ Z
+
0 ), two complex

structures, J1 on E⊕R
k1 and J2 on E⊕R

k2 , being equivalent when there exist
m1, m2 ∈ Z

+
0 such that ((E⊕R

k1)⊕C
m1 , J1⊕ i) and ((E⊕R

k2)⊕C
m2 , J2⊕ i)

are isomorphic complex vector bundles. A stable almost complex structure
on M is a stable complex structure on TM .

The Z-tangent bundle for the folding hypersurface Z of a folded symplec-
tic form ω has a canonical complex structure J0 [3] consistent with ω. We
say that a folded symplectic form ω is consistent with a stable almost com-
plex structure on M if (ZTM ⊕ C, J0 ⊕ i) belongs to the given equivalence
class of complex structures on TM ⊕ R

2k, k ∈ Z
+
0 .

3. First instance of the h-principle

Let M be a 2n-dimensional manifold with a stable almost complex structure.
The homotopy groups Πq(SO(2m)/U(m)) are isomorphic for fixed q and
variable m such that q < 2m − 1 (this is the so-called stable range [19]).
Hence, if there exists a complex structure on TM ⊕ R

2k, then there exists a
complex structure on TM ⊕ R

2.
Let J be a complex structure on TM ⊕ R

2. Let

i : M ↪→ M × R and π : M × R � M
p �→ (p, 0) (p, t) �→ p

be the embedding at level zero, and the projection to the first factor. By
pullback, i induces an isomorphism in cohomology.

Via the identification T (M × R) 
 π∗(TM) ⊕ R, the structure J induces
a structure of complex vector bundle, still called J , on T (M × R) ⊕ R 

π∗(TM) ⊕ C. Then the complex subbundle

H0 = T (M × R) ∩ J(T (M × R)) ⊂ T (M × R) ⊕ R

is a complex hyperplane field over M × R. Let ω1 be a two-form of maximal
rank in M × R compatible with J , that is,

ω1(u, v) = g(Ju, v) , ∀u, v ∈ H0 , and ω1(u, ·) = 0 , ∀u ∈ H⊥
0 ,
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for some riemannian metric g on TM × R, where H⊥
0 denotes the ortho-

complement of H0 with respect to g. A regular homotopy of 2 two-forms of
maximal rank is a homotopy within two-forms of maximal rank.

Lemma 3.2. Let M be a manifold with a structure J of complex vector
bundle on TM⊕R

2. Then there exists in M×R a closed two-form of maximal
rank in any degree 2 cohomology class, which is regularly homotopic to any
two-form of maximal rank compatible with J .

This is an immediate consequence of the following proposition which was
originally proved by McDuff [21]. The proof below is taken from Eliashberg-
Mishachev [9]. We reproduce it since this result is not as widely known as
the other applications of the h-principle and since the idea in this proof is
crucial for the present paper’s strategy. The key to this proof is Gromov’s
theorem [12] saying that, for every degree 2 cohomology class on any open
manifold, any nondegenerate two-form is regularly homotopic to a sym-
plectic form in that class; moreover, if two symplectic forms are regularly
homotopic, then they are homotopic within symplectic forms. Recall that a
manifold is open if there are no closed manifolds (i.e., compact and without
boundary) among its connected components.

Proposition ([21]). For any two-form of maximal rank on an odd-
dimensional manifold and any degree 2 cohomology class, there exists a
closed two-form of maximal rank in that class which is regularly homotopic
to the given form.

Proof. Let ω1 be a two-form of maximal rank on a (2n + 1)-dimensional
manifold N and let α be a degree 2 cohomology class in N . By homotopy,
the projection to the first factor π : N × R → N induces an isomorphism in
cohomology.

If N is orientable, then ω1 extends in a homotopically unique way compat-
ible with orientations to a nondegenerate two-form, ω2, in N ×R. Gromov’s
result [12] cited above guarantees the existence, in the class π∗α, of a homo-
topically unique symplectic form ω3 in N ×R regularly homotopic to ω2. The
restriction of ω3 to the zero level M is a closed two-form of maximal rank.

If N is not orientable, we replace N × R in the previous argument by the
total space of the real line bundle given by the kernel of ω1. �

4. Vector bundle isomorphism

Let ω̃ be a closed two-form of maximal rank in M ×R, and let L be the line
field on M ×R given by the kernel of ω̃ at each point. By orientability of M ,
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the line bundle L is trivializable. Let L be the one-dimensional foliation
corresponding to L. Choose a complementary hyperplane field H so that
T (M × R) 
 H ⊕ L.

Let Z0 be a separating hypersurface in M with a coorientation. Since by
Lemma 2.1 we have that

Z0TM ⊕ R 
 TM ⊕ R 
 i∗(H ⊕ L),

the restriction i∗H is stably isomorphic to Z0TM . The Stiefel–Whitney
classes are stable invariants, and the mod 2 reduction of the Euler class of
an orientable rank m real vector bundle E coincides with the mth Stiefel–
Whitney class of E (see, for instance, [23]). Therefore, the Euler numbers
(i.e., the evaluations of the Euler classes over the fundamental homology
class) of i∗H and of Z0TM differ by an even integer, let us say

χ(i∗H) = χ(Z0TM) + 2k.

If two stably isomorphic orientable rank 2n real vector bundles over an
2n-dimensional connected manifold have the same Euler number, then they
are isomorphic. This was contained in the work of Dold and Whitney when
the base is a four-manifold [5]. In general, this follows from observing in the
diagram

S2n ↪→ SO/SO(2n)
↗ ↓

M2n ⇒ BSO(2n)
↘ ↓

BSO

that the fiber SO/SO(2n) of BSO(2n) → BSO is (2n − 1)-connected, that
[M2n, S2n] 
 Z where the homotopy type is detected by the degree, and that
the pullback of the Euler class to S2n is nontrivial (since S2n → BSO(2n) is
the classifying map for TS2n).

Consider the following operation on rank m real vector bundles over
m-dimensional manifolds. If E is such a bundle and Dm is a small disk in the
base manifold M , let E	TSm be the bundle obtained by gluing E|M\Int Dm

to the trivial bundle R
m over Dm by the characteristic map of TSm, i.e.,

by the map Sm−1 → SO(m) which characterizes the tangent bundle of Sm

as the gluing over the equator of northern and southern trivial bundles [27,
Section 18.1]. For an integer k, the bundle E	kTSm is built analogously by
taking the kth power of the characteristic map of Sm. By counting with
orientations the vanishing points of a section transverse to zero, we see that
E	kTSm has Euler characteristic χ(E) + 2k. We conclude that

i∗H 
 Z0TM	kTS2n.
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For k positive, let Z be the union of Z0 with k homologically trivial spheres
Sn contained in the negative part of M \Z0 with respect to the given coorien-
tation. For k negative, define Z similarly but with the spheres in the positive
part of M \Z0. It follows from the computations in [6, Section 3.9] that i∗H
and ZTM have the same Euler number, and hence are isomorphic. It is
possible to start from the empty hypersurface, in which case a coorientation
is not defined. Yet the same argument holds by taking Z to be a union of
spheres (as many as half of the absolute value of the difference of the Euler
numbers of TM and of i∗H) whose coorientation is determined by the sign
of k above. We have thus proved the following:

Lemma 4.3. Let H be a coorientable hyperplane field in M × R and i :
M ↪→ M × R the inclusion at level zero. The restriction i∗H is isomorphic
to ZTM , where Z is a separating hypersurface as described in the previous
paragraph.

5. Second instance of the h-principle

Throughout this section, let M be an m-dimensional manifold with a hyper-
surface Z, and let N be an (m + 1)-dimensional manifold with a one-
dimensional foliation L. The following notions are due to Eliashberg [7].

Definition. A map f : M → N is a Z-immersion relative to L, if near
any point p ∈ M \Z there are coordinates y1, . . . , ym+1 in N adapted to the
foliation (i.e. each leaf is a level set of the first m coordinates) where the
induced map to each level set of ym+1 is regular, and if near any p ∈ Z and
near its image there are coordinates centered at those points and adapted
to the foliation where f becomes

(x1, x2, . . . , xm) �−→ (x2
1, x2, . . . , xm, 0).

In the adapted coordinates xi, the hypersurface Z is given by x1 = 0.
Loosely speaking, a Z-immersion relative to L is a Z-immersion to the leaf
space of L. The definition extends to higher-dimensional foliations whose
codimension is equal to the dimension of M .

Lemma 5.4. Let ω̃ be a closed two-form of maximal rank in N whose ker-
nel is the tangent space to the leaves of L. If f : M → N is a Z-immersion
relative to L, then f∗ω̃ is a folded symplectic form on M with folding hyper-
surface Z.

The reason is simply that the form ω̃ induces a symplectic form in the
local leaf spaces and that the composition of f with the local quotient maps
is a Z-immersion.
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Proof. Let p ∈ M . There is a neighborhood U of f(p) where we have a
trivialization U 
 FU × LU , given in local coordinates centered at f(p) by
(x1, . . . , xm+1) �→ ((x1, . . . , xm), xm+1), the set FU being a leaf space (say the
level zero of xm+1), and LU a typical leaf (say the level zero of (x1, . . . , xm)).
The restriction of ω̃ to FU is a symplectic form, ωU . The composition gU :
f−1(U) → FU of f with the projection to FU is a (Z ∩ U)-immersion, so
that g∗

UωU is a folded symplectic form with folding hypersurface Z ∩ U . The
result follows from the fact that f∗ω̃ on f−1(U) coincides with g∗

UωU . �

We now turn to the formal analog of a Z-immersion.

Definition. A bundle map F : TM → TN is a Z-monomorphism relative
to L, if F |T (M\Z) is transverse to L, and if each p ∈ Z admits a neighborhood
U where F |TU is the differential of some (Z ∩ U)-immersion relative to L.

The following lemma is a direct consequence of Eliashberg’s result in
[7, Section 6.3], where he extends to the case of foliations the result described
in the introduction.

Lemma 5.5. Let N = M × R be equipped with a decomposition TN 

H⊕L, where L is a line field, and let L be the corresponding one-dimensional
foliation. Let the hypersurface Z be such that every connected component of
M \Z is open. Then, for every Z-monomorphism F : TM → TN relative to
L, there exists a Z-immersion f : M → N relative to L whose differential
df is homotopic to F through Z-monomorphisms relative to L.

Part of the work to prove Theorem A consists in showing a (general) proce-
dure to deform by homotopy a weaker bundle map into a Z-monomorphism
relative to L. The weaker map is of the following type:

Definition. A bundle map F : TM → TN 
 H ⊕L is a Z-monomorphism
relative to L, if πL ◦ F |T (M\Z) and πL ◦ F |TZ are fiberwise injective,
πL : TN → H being the projection along L, and if there is a tubular
neighborhood T of Z in M , with a fiber involution τ : T → T whose set of
fixed points is Z, where F ◦ dτ = F .

6. Conclusion of the proof

Let M be a compact 2n-dimensional manifold with a stable almost complex
structure J . Then J is representable by a structure of complex vector bundle
on TM ⊕ R

2, and any two such representatives are isomorphic, by Bott
periodicity [2]. Let N = M × R and denote still by J an induced structure
of complex vector bundle on TN ⊕ R as in Section 3.
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By Lemma 3.2, there exists on N , in any degree 2 cohomology class, a
closed two-form ω̃ of maximal rank compatible with J . Let ω̃ be such a form
and let L be the line field given by its kernel, with associated foliation L.

By Lemma 5.4, the existence of a folded symplectic form on M with some
folding hypersurface Z is guaranteed by the existence of a Z-immersion f :
M → N relative to L. We will seek such a Z-immersion which is homotopic
to the embedding at level zero i : M ↪→ N , so that f∗ = i∗ in cohomology.
If M is connected and Z is nonempty, then M \ Z is open.

By Lemma 5.5, in order to produce a Z-immersion f relative to L for M\Z
open, it suffices to show that there exists a Z-monomorphism F : TM → TN
relative to L. So that f is homotopic to i, we search for an F covering a
map M → N homotopic to i.

By Lemma 4.3, we have a vector bundle isomorphism F0 : ZTM → i∗H
for some hypersurface Z, which may be chosen so that each connected com-
ponent of M \ Z is open.

The map F0 may be translated into a fiberwise injective bundle map F1 :
ZTM → H covering the immersion i : M → N . This map guarantees the
existence of a (canonically unique up to homotopy) almost Z-monomorphism
F2 : TM → H ⊕ L relative to L, still covering i, defined by the following
recipe:

Choose a trivial line bundle V over Z spanned by a vector field on M
transverse to Z pointing from M− to M+. The quotient ZTM/V is isomor-
phic to TZ, so that ZTM |Z 
 TZ⊕V . We obtain TM by gluing ZTM |M\M−

to ZTM |M\M+ by the constant diagonal map Id⊕ (−1) : Z → GL(TZ ⊕V ).
Using this recovery of TM from ZTM , we may define F2 equal to F1 ⊕ 0
outside a tubular neighborhood T of Z in M , and on T set

F2(u ⊕ v) = F1(u ⊕ ψv) ⊕ 0,

with respect to the decomposition ZTM |T 
 π∗(TZ) ⊕ π∗V , where π :
T → Z is the tubular projection, and ψ : T → [0, 1] is equal to 1 outside
a narrower tubular neighborhood of Z and vanishes exactly over Z. By
choosing ψ symmetric with respect to an involution τ : T → T whose set of
fixed points is Z, we obtain F2 invariant under τ .

For each p ∈ Z, choose a connected neighborhood U whose image i(U) is
contained in a connected trivialization NU 
 FU ×LU of the foliation L, the
set FU being a local leaf space and LU a leaf segment. Let πU : NU → FU
be the projection to the first factor. The composition F2,U = dπU ◦ F2|U :
TU → TFU is a (Z ∩ U)-monomorphism.

TNU
F2 ↗ ↓dπU

TU F2,U−→ TFU
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By Eliashberg [6, Section 2.2], the composition F2,U is homotopic, through
(Z ∩ U)-monomorphisms, to the differential dgU of a Z-immersion gU : U →
FU . Moreover, if over a closed subset W ⊂ U , the composition F2,U was
already the differential of a map, then there is a homotopy which is constant
on W. Let Gt : TU → TFU , 1 ≤ t ≤ 2, be a homotopy such that G1 = dgU
and G2 = F2,U .

Choose a (Z ∩ U)-immersion g̃U : U → NU relative to L such that
πU ◦ g̃U = gU . We can always pick a g̃U extending a sensible preassigned
lift over a closed subset W of U .

By the covering homotopy property for the fibering TNU → TFU , there is
a lifted homotopy ˜Gt : TU → TNU , 1 ≤ t ≤ 2, through Z-monomorphisms
relative to L such that ˜G1 = dg̃U and dπU ◦ ˜Gt = Gt for all t. If Gt was
constant on a closed subset W, then we may choose ˜Gt also constant on W.

TNU
˜Gt ↗ ↓dπU

TU Gt−→ TFU

Since dπU ◦ ˜G2 = G2 = F2,U = dπU ◦F2, the difference ˜G2−F2 takes values in
L = ker dπU . By fiberwise homotopy, we may deform the vertical component
of ˜G2 to make it equal to F2. Without loss of generality, we hence assume
that ˜Gt also satisfies ˜G2 = F2, and that all maps are invariant with respect
to the same involution τ .

Take a riemannian metric symmetric with respect to τ . For a point p ∈ Z,
choose spherical neighborhoods U1 and U2 in T , consisting of points at a
riemannian distance less than ε and 4ε from p, with ε > 0 small enough for
the exponential map to be injective and for the closure of U2 to be contained
in the neighborhood U above. Choose a smooth function ρ : U2 → [1, 2]
satisfying ρ(q) = 2 if the distance from p to q is greater than 3ε, and ρ(q) = 1
if the distance from p to q is less than 2ε. Define F3 : TM → TN by

F3 =

⎧

⎪

⎨

⎪

⎩

F2 on M \ U2,
˜Gρ(q) over points q ∈ U2 \ U1,

dg̃U on U1.

Then F3 is a Z-monomorphism with respect to L whose restriction to U1 is
the differential of a (Z ∩ U1)-immersion relative to L.

Since Z is compact, take a subcover of Z in M by a finite number of
the U1’s. Apply iteratively the construction of the previous paragraph to an
ordering of the U1’s, starting first from F2 and then from its replacements
F3, etc. At each stage, the homotopy should be taken constant over the
closure W of the previous U1’s.
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We have thus concluded the proof of Theorem A in the compact case by
showing the existence of a Z-monomorphism relative to L covering a map
homotopic to i.

Remark. If M is a compact oriented two-dimensional manifold, folded
symplectic forms on M are generic two-forms. The cohomology class of a two-
form is determined by its total integral. The isomorphism classes of complex
structures on TM⊕R

2 are determined by the Euler number, which is an even
integer. By changing Z as in Section 4, any even number may be obtained
as Euler number for ZTM , thus fitting any given stable complex structure.
Let ω be a two-form which vanishes transversally on an appropriate Z. By
changing the values of ω over M \ Z, any real number may be obtained as
total integral of ω. Hence, Theorem A holds easily (and not interestingly)
for compact two-manifolds.

For the noncompact case, a statement stronger than Theorem A is true.
If a 2n-dimensional manifold M is orientable, connected, not compact and
TM ⊕R

2 has a complex structure, then M has an almost complex structure
because it retracts to a (2n−1)-dimensional cell complex [22, Theorem 8.1]
and Πq(SO(2n)/U(n)) 
 Πq(SO(2n + 2)/U(n + 1)) for q ≤ 2n − 2. By
Gromov’s theorem [12], M admits a compatible symplectic form in any
degree 2 cohomology class.

Let E be a rank 2m oriented real bundle over M . The condition W3(E) =
0 ensures the existence over the three-skeleton of M of a section for the asso-
ciated (SO(2m)/U(m))-bundle. By Bott’s periodicity, Πq(SO(6)/U(3)) = 0
for q < 5. Therefore, the Hirzebruch–Hopf fact [15] that W3(M) = 0 for any
orientable four-manifold asserts the existence of a stable complex structure
on any such manifold.
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ble) 20 (1970), 95–178.

[19] W. Massey, Obstructions to the existence of almost complex structures, Bull. Amer.
Math. Soc. 67 (1961), 559–564.

[20] W. Massey, On the Stiefel–Whitney classes of a manifold, II, Proc. Amer. Math. Soc.
13 (1962), 938–942.

[21] D. McDuff, Applications of convex integration to symplectic and contact geometry,
Ann. Inst. Fourier (Grenoble) 37 (1987), 107–133.

[22] J. Milnor, Lectures on the h-Cobordism theorem, notes by L. Siebenmann and
J. Sondow, Princeton University Press, Princeton, NJ, 1965.

[23] J. Milnor and J. Stasheff, Characteristic classes, Annals of Math. Stud. 76, Princeton
University Press, Princeton, NJ, 1974.

[24] J. Nash, C1 isometric imbeddings, Ann. Math. (2) 60 (1954), 383–396.
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