
JOURNAL OF
SYMPLECTIC GEOMETRY
Volume 8, Number 1, 95–118, 2010

COISOTROPIC SUBMANIFOLDS, LEAF-WISE FIXED
POINTS, AND PRESYMPLECTIC EMBEDDINGS

Fabian Ziltener

Let (M, ω) be a geometrically bounded symplectic manifold, N ⊆
M a closed, regular (i.e., “fibering”) coisotropic submanifold, and ϕ :
M → M a Hamiltonian diffeomorphism. The main result of this article
is that the number of leaf-wise fixed points of ϕ is bounded below
by the sum of the Z2-Betti numbers of N , provided that the Hofer
distance between ϕ and the identity is small enough and the pair (N, ϕ)
is non-degenerate. The bound is optimal if there exists a Z2-perfect
Morse function on N . A version of the Arnol’d–Givental conjecture for
coisotropic submanifolds is also discussed. As an application, I prove a
presymplectic non-embedding result.
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1. Main results

1.1. Leaf-wise fixed points. Let (M, ω) be a symplectic manifold. We
denote by Ham(M, ω) the group of Hamiltonian diffeomorphisms (generated
by time-dependent functions with arbitrary support). Let ϕ ∈ Ham(M, ω)
and N ⊆ M be a coisotropic submanifold. For x ∈ N we denote by
Nx := Nω

x ⊆ N the isotropic leaf through x. A leaf-wise fixed point of
ϕ is by definition a point x ∈ N such that ϕ(x) ∈ Nx. We denote by
Fix(ϕ, N) := Fix(ϕ, N, ω) the set of such points. The first main result of
this article addresses the following question:

Question A. Provided that ϕ is close to the identity in a suitable sense,
what lower bound on the number

∣
∣Fix(ϕ, N)

∣
∣ is there?

Note that if N = M then Nx = {x}, for every x ∈ N , and hence Fix(ϕ, N)
is the set Fix(ϕ) of ordinary fixed points of ϕ. In the other extreme case
where dim N = dimM/2, the submanifold N is Lagrangian, and we have
Fix(ϕ, N) = N ∩ϕ−1(N), provided that N is connected. In order to state the
first main result, we denote by A(M, ω, N) the minimal area of (M, ω, N)
(see (2.6) below) and by d := dM,ω the Hofer distance. We call N regular
iff its isotropic leaf relation is a closed subset and a submanifold of N × N .
Assuming that N is closed (i.e., compact and without boundary), this means
that there exists a manifold structure on the set Nω of isotropic leaves of N
such that the canonical projection πN : N → Nω is a smooth (locally trivial)
fiber bundle. For the definitions of (geometric) boundedness of (M, ω) and
non-degeneracy for (N, ϕ) see Section 2. The former is a mild condition on
(M, ω), and the latter naturally generalizes the usual non-degeneracy in the
cases N = M and dimN = dimM/2. For each topological space X and
integer i we denote by bi(X) := dimHi(X, Z2) the ith Betti number of X
with coefficients in Z2.

Theorem 1.1. Let (M, ω) be a (geometrically) bounded symplectic manifold
and N ⊆ M a closed, regular coisotropic submanifold. Then there exists a
constant C ∈ (0,∞] such that C ≥ A(M, ω, N) and the following holds. If



COISOTROPIC SUBMANIFOLDS AND LEAF-WISE FIXED POINTS 97

ϕ ∈ Ham(M, ω) is such that (N, ϕ) is non-degenerate and d(ϕ, id) < C then

(1.1)
∣
∣Fix(ϕ, N)

∣
∣ ≥

dim N∑

i=0

bi(N)

If codim N �= 0, 1, dim M/2 then this theorem appears to be the first
result implying that

∣
∣Fix(ϕ, N)

∣
∣ ≥ 2, without assuming that ϕ is C1-close

to the identity. It generalizes a result for the case dim N = dimM/2, which
is due to Chekanov [Ch]. The bound (1.1) is sharp, provided that there
exists a Z2-perfect Morse function on N , see Theorem 1.2 below.

Examples. A large class of examples of regular coisotropic submanifolds
is given as follows. Let (M, ω) be a symplectic manifold and G a compact,
connected Lie group with Lie algebra g. We fix a Hamiltonian action of G on
M and an (equivariant) moment map μ : M → g∗. Assume that μ is proper
and the action of G on N := μ−1(0) ⊆ M is free. Then N is a closed, regular
coisotropic submanifold. As a concrete example, let 0 < k ≤ n be integers,
and consider M := C

k×n with the standard symplectic structure ω := ω0 and
the action of the unitary group G := U(k) on C

k×n by multiplication from
the left. A moment map for this action is given by μ(Θ) := i

2(1−ΘΘ∗), and
N = μ−1(0) is the Stiefel manifold V (k, n). The triple (M, ω, N) satisfies the
hypotheses in Theorem 1.1. Furthermore, we have A

(

C
k×n, ω0, V (k, n)

)

= π

(see Proposition 1.3 below), and
∑dim V (k,n)

i=0 bi(V (k, n)) = 2k. (The latter
follows for example from [GHV, Theorem I, p. 224], and the fact that the
integral cohomology of V (k, n) is torsion-free.) Let ϕ ∈ Ham(Ck×n, ω0) be
such that (V (k, n), ϕ) is non-degenerate and d(ϕ, id) < π. Then Theorem
1.1 implies that

∣
∣Fix(ϕ, V (k, n))

∣
∣ ≥ 2k.

By Theorem 1.2 below this bound is sharp, since there exists a Z2-perfect
Morse function on V (k, n). (See [TT], the remarks after Ex. 3.14 on p. 197
and the definition of tautness on p. 182.) In this example, the condition C ≥
A(M, ω, N) in Theorem 1.1 is also sharp, in the sense that the conclusion
of the theorem is wrong if we choose C > π, see Proposition 1.3. Note that
in the case k = 1 we obtain an improvement of a result by Hofer [Ho,
Proposition 1.4]. That result states that Fix(ϕ, S2n−1) �= ∅, provided that
dc(ϕ, id) ≤ π. Here dc denotes the compactly supported Hofer distance.

Another family of examples of regular coisotropic submanifolds arises as
follows. Let (X, σ) be a closed symplectic manifold, π : E → X a closed
smooth fiber bundle and H ⊆ TE a horizontal subbundle. We define V ∗E
to be the vertical cotangent bundle of E. Its fiber over a point e ∈ E is
T ∗

e Eπ(e). We denote the zero-section of this bundle by N . Furthermore, we
define a closed two-form on V ∗E as follows. We denote by πX : V ∗E → X
the canonical projection, by ωcan the canonical symplectic form on T ∗E and
by prH

e : TeE → TeEπ(e) the linear projection along the subspace He ⊆ TeE,



98 F. ZILTENER

for e ∈ E. We define

ιH : V ∗E → T ∗E, ιH(e, α) :=
(

e, α ◦ prH
e

)

, Ωσ,H := π∗
Xσ + ι∗Hωcan.

Then Ωσ,H is a closed two-form on V ∗E. Furthermore, by Proposition 3.2 in
[Ma], there exists an open neighborhood M of the zero-section N ⊆ V ∗E
on which Ωσ,H is non-degenerate. We fix such an M . Then the submanifold
N ⊆ M is regular coisotropic (see Proposition A.2 below). Assume now
that the base manifold X is symplectically aspherical, i.e.,

∫

S2 u∗σ = 0, for
every u ∈ C∞(S2, X). Then A(M, Ωσ,H , N) = ∞ (see again Proposition A.2
below). So in this case the only possible constant C as in Theorem 1.1 is ∞,
and hence the condition d(ϕ, id) < C is vacuous.

1.2. Idea of proof of Theorem 1.1. Assume that the hypotheses of The-
orem 1.1 are satisfied. The strategy of the proof is to find a Lagrangian
embedding of N into a suitable symplectic manifold, and then apply the
Main Theorem in [Ch]. Since N is regular, the set of isotropic leaves Nω

carries canonical smooth and symplectic structures AN,ω and ωN . We define

M̃ := M × Nω, ω̃ := ω ⊕ (−ωN ),(1.2)

ιN : N → M̃, ιN (x) := (x, Nx), Ñ := ιN (N).(1.3)

Then ιN is an embedding of N into M̃ that is Lagrangian with respect to
the symplectic form ω̃ on M̃ (see Lemma 3.2 below). In order to satisfy the
hypotheses of Chekanov’s result, the inequality A(M, ω, N) ≤ A(M̃, ω̃, Ñ)
is crucial. It follows from Key Lemma 3.4 below. The idea of its proof is that
given a smooth map ũ = (v, w′) : D → M̃ = M × Nω such that ũ(S1) ⊆ Ñ ,
we may lift w′ to a map w : [0, 1]×S1 → N and concatenate this with v. We
thus obtain a map u : D → M with boundary on an isotropic leaf, satisfying
∫

u∗ω =
∫

ũ∗ω̃. The method described here generalizes a standard way of
reducing the case dim N = dimM to the Lagrangian case, see e.g., [Fl].

1.3. Discussion of optimality. Let M be a manifold and f : M → R

a Morse function. We denote by Crit f ⊆ M the set of critical points of
f . Recall that f is called Z2-perfect iff |Crit f | =

∑dim M
i=0 bi(M). The next

result implies that the estimate (1.1) is sharp if there exists a Z2-perfect
Morse function on the coisotropic submanifold N . It actually shows that in
this case (1.1) is sharp, even if the condition d(ϕ, id) < C is replaced by
the much stronger condition that ϕ is C1-close to the identity. We denote
by Hamc(M, ω) the group of Hamiltonian diffeomorphisms generated by
compactly supported time-dependent functions.

Theorem 1.2. Let (M, ω) be a symplectic manifold, N ⊆ M a closed regular
coisotropic submanifold, f : N → R a Morse function and U ⊆ Hamc(M, ω)
a C1-neighborhood of id. Then there exists ϕ ∈ U such that (N, ϕ) is non-
degenerate and Fix(ϕ, N) = Crit f .
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The proof of this result relies on a normal form theorem for a neighbor-
hood of N , due to Marle, and on the fact that fast almost periodic orbits of
a vector field are constant. It also uses an estimate for the distance between
the initial and the end point of a path x in a foliation, assuming that these
points lie in the same leaf, and that x is tangent to a given horizontal dis-
tribution.

Examples of manifolds admitting a Z2-perfect Morse function are compact
symmetric spaces that admit a symmetric embedding into Euclidian space
(e.g., Grassmannians, see [DV, Theorem 1.2, Example 1, p. 7.]), symplectic
manifolds that admit a Hamiltonian S1-action whose fixed points are iso-
lated (see [GGK, Theorem p. 22]), and simply connected closed manifolds
of dimension at least 6, whose homology with Z-coefficients is torsion-free
(see [An, Theorem 4.2.4(ii)]).

The next result shows that for M := C
k×n, ω := ω0 and the Stiefel mani-

fold N := V (k, n) the condition C ≥ A(M, ω, N) in Theorem 1.1 is sharp.

Proposition 1.3. We have A
(

C
k×n, ω0, V (k, n)

)

= π. Furthermore, for
every C > π there exists ϕ ∈ Hamc(Ck×n, ω0) such that dc(ϕ, id) < C and
ϕ(V (k, n)) ∩ V (k, n) = ∅.

1.4. Arnol’d–Givental conjecture (AGC) for coisotropic submani-
folds. Recall that a map from a set to itself is called an involution iff apply-
ing it twice yields the identity. Furthermore, a diffeomorphism ψ from a
symplectic manifold (M, ω) to itself is called anti-symplectic iff ψ∗ω = −ω.
The following conjecture naturally generalizes the usual (Lagrangian) AGC,
which corresponds to the case in which M1 is a point. (See for example [Fr],
where it is assumed that M is compact.)

Conjecture. Let (Mi, ωi), i = 1, 2 be symplectic manifolds, with M1 closed,
and let L ⊆ M2 be a closed Lagrangian submanifold. Consider the product
M := M1 × M2 with the symplectic structure ω := ω1 ⊕ ω2, and let N :=
M1×L. Assume that there exists an anti-symplectic involution ψ : M2 → M2
such that Fix(ψ) = L. Let ϕ ∈ Ham(M, ω) be such that the pair (N, ϕ) is
non-degenerate. Then inequality (1.1) holds.

Proposition 1.4. If the Lagrangian AGC is true then the same holds for
the above Conjecture.

1.5. An application. We say that a presymplectic manifold (M ′, ω′) (see
Section 2) embeds into a presymplectic manifold (M, ω) iff there exists an
embedding ψ : M ′ → M such that ψ∗ω = ω′. The following question gener-
alizes the symplectic and Lagrangian embedding problems.

Question B. Given two presymplectic manifolds, does one of them embed
into the other one?
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Note that in the case dim M ′ +corank ω′ > dim M +corank ω there does
not even exist any immersion ψ : M ′ → M satisfying ψ∗ω = ω′. The next
result is concerned with the “critical case” in which “>” is replaced by “=”
above. It is a consequence of Theorem 1.1. A presymplectic manifold (M, ω)
is called regular iff its isotropic leaf relation is a closed subset of M ×M and
a submanifold.

Corollary 1.5. Let (M, ω) be a bounded and aspherical symplectic mani-
fold, and (M ′, ω′) a closed, regular presymplectic manifold of corank dim M−
dim M ′. Assume that every compact subset of M can be displaced in a Hamil-
tonian way, and that M ′ has a simply connected isotropic leaf. Then (M ′, ω′)
does not embed into (M, ω).

Examples. As an example, let (X, σ) and (X ′, σ′) be symplectic manifolds,
the former bounded and aspherical and the latter closed. Let F be a closed
simply connected manifold. Assume that dimX + 2 = dimX ′ + 2 dimF .
Then the hypotheses of Corollary 1.5 are satisfied with

M := X × R
2, ω := σ ⊕ ω0, M ′ := X ′ × F, ω′ := σ′ ⊕ 0.

As a more specific example, let (X ′, σ′) be a closed aspherical symplectic
manifold, and k ≥ 2 and 0 ≤ 	 ≤ k be integers. We define

(M, ω) :=
(

X ′ × R
2(k−�) × R

�, σ′ ⊕ ω0 ⊕ 0
)

, (M ′, ω′) :=
(

X ′ × Sk, σ′ ⊕ 0
)

.

Then (M ′, ω′) does not embed into (M, ω). To see this, observe that every
embedding of (M ′, ω′) into (M, ω) gives rise to an embedding of (M ′, ω′)
into

(

X ′ × R
2k, σ′ ⊕ ω0

)

, by composition with the canonical inclusion M →
X ′ × R

2k. Hence the statement follows from Corollary 1.5.
However, in this example there exists an embedding ψ : M ′ → M such

that ψ∗[ω] = [ω′], provided that 	 < k. We may for example choose any
embedding ι : Sk → R

2(k−�) × R
� and define ψ := idX′ × ι. Furthermore, if

	 = 0 then there exists an immersion ψ : M ′ → M satisfying ψ∗ω = ω′. To
see this, note that the Whitney map

f : Sk ⊆ R × R
k → R

2k ∼= C
k, f(a, x) := (1 + ai)x

is a Lagrangian immersion (see [ACL, Example I.4.3, p. 17.]). The map
ψ := idX′ × f has the desired properties.

1.6. Further research. A further direction of research is to replace the
condition d(ϕ, id) < C by a suitable monotonicity assumption. This requires
a definition of a Maslov map for the triple (M, ω, N). In a forthcoming article
[Zi2] I give such a definition.

1.7. Related results. In the extreme cases N = M and dimN = dimM/2
Question A has been investigated a lot. For some references, see for example
[MS, Sec. 9.1., p. 277] and [Gin, Sec. 1.1. p. 112]. If (M, ω) is a closed
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symplectic manifold, and ϕ ∈ Ham(M, ω) is such that every x ∈ Fix(ϕ) is
non-degenerate then Arnol’d [Ar] conjectured that |Fix(ϕ)| ≥ |Crit f | for
every Morse function f : M → R.

The general coisotropic case was first considered by Moser. He proved
that

∣
∣Fix(ϕ, N)

∣
∣ ≥ 2 if M is simply connected, ω is exact and dC1

(ϕ, id) is
sufficiently small, see the theorem on p. 19 in [Mos]. (In fact, he showed
that

∣
∣Fix(ϕ, N)

∣
∣ is bounded below by the Lusternik-Schnirelmann category

of N , see Proposition 5, p. 31 in [Mos].) Banyaga [Ba] removed the simply
connectedness and exactness conditions. Because of the C1-closeness condi-
tion these are local results. Global results were first obtained by Ekeland and
Hofer [EH, Ho]. For N a closed connected hypersurface in R

2n of restricted
contact type they gave several criteria under which Fix(ϕ, N) �= ∅, allowing
for interesting cases in which dC1

(ϕ, id) is big. For example, in Theorem 1.6
in [Ho] it is assumed that the compactly supported Hofer distance dc(ϕ, id)
is bounded above by the Ekeland–Hofer capacity cEH(N). Recall here that
a coisotropic submanifold N ⊆ M of codimension k is said to be of con-
tact type iff there exist one-forms α1, . . . , αk on N such that dαi = ω, for
i = 1, . . . , k, and α1 ∧ · · · ∧αk ∧ω|n−k

N does not vanish anywhere on N . Here
ω|N denotes the pullback of ω under the inclusion of N into M . N is said
to be of restricted contact type iff the αi’s extend to global primitives of ω.
Dragnev [Dr, Theorem 1.3] proved a similar result for general codimension
of N , replacing cEH(N) by the Floer Hofer capacity of N , and assuming that
N is only of contact type.

Generalizing in another direction, Ginzburg proved a version of Hofer’s
result for subcritical Stein manifolds, replacing cEH by some homological
capacity chom (see [Gin, Theorem 2.9, p. 122]). This result in turn was
recently extended by Gürel [Gü] to the coisotropic case (with chom replaced
by some constant depending on N). For general codimension of N , Ginzburg
observed that Fix(ϕ, N) �= ∅ if the isotropic foliation of N is a fibration (i.e.,
N is regular) and “ϕ is not far from id in a suitable sense”, see [Gin, Example
1.3, p. 113]. His argument is based on the fact that in this case the leaf
relation is a Lagrangian submanifold of the product M × M , equipped with
the symplectic form ω ⊕ (−ω). Lately, Albers and Frauenfelder proved that
Fix(ϕ, N) �= ∅, if (M, ω) is convex at infinity, N ⊆ M is a closed hypersurface
of restricted contact type, and dc(ϕ, id) < A(M, ω, N). If in addition the
Rabinowitz action functional of the Hamiltonian function generating ϕ is
Morse, then they showed that

∣
∣Fix(ϕ, N)

∣
∣ ≥

∑

ibi(N) (see Theorems A
and B in [AF]). A problem related to Question A is to find a lower bound
on the displacement energy of a coisotropic submanifold. Recent work on
this problem other than the one already mentioned has been carried out by
Kerman [Ke].

Note that regularity of N and the contact-type condition do not imply
each other. For example, every Lagrangian submanifold is regular. However,



102 F. ZILTENER

if N is a closed connected Lagrangian submanifold of contact type then it
is a torus, see for example [Gin, Example 2.2 (iv), p. 118]. On the other
hand, consider (M, ω) := (C2, ω0), fix an irrational number a > 0, and
define H : C

2 → R by H(z, w) := |z|2 + |w|2/a. Then the ellipsoid N :=
H−1(1) ⊆ M is a hypersurface of restricted contact type, since the region
bounded by N is convex. However, the only compact isotropic leaves are the
circles

{

(z, 0)
∣
∣ |z|2 = 1

}

and
{

(0, w)
∣
∣ |w|2 = a

}

. (The leaves are the integral
curves of the Hamiltonian vector field of H.) Hence N is not regular. Note
that “restricted contact type” is a global condition on (M, ω, N), whereas
regularity is a condition only on (N, ω|N ).

If N is of restricted contact type then it is stable (see Definition 2.1
p. 117 in [Gin]). Regularity and stability can be seen as “dual” conditions
in the following sense. Namely, (N, ω|N ) is regular if and only if it fibers into
isotropic submanifolds, whereas it is stable if and only if some neighborhood
of N fibers as a family of coisotropic submanifolds containing N , see [Gin,
Proposition 2.6, p. 120]. Note also that Ginzburg constructed a closed hyper-
surface N ⊆ R

2n without any closed characteristic, see [Gin, Example 7.2,
p. 158]. It follows that N is not regular and A(R2n, ω0, N) = ∞. By the
latter the conclusion of Theorem 1.1 fails. Furthermore, work in progress
by Gürel shows that there exists a closed hypersurface N ⊆ R

2n such that
A(R2n, ω0, N) = ∞, and for every ε > 0 there exists ϕ ∈ Ham(M, ω) sat-
isfying Fix(ϕ, N) = ∅ and dc(ϕ, id) < ε. This shows that one may not
completely drop the regularity or stability condition on N if one wants to
prove existence of a leaf-wise fixed point.

Let now M, ω, M ′ and ω′ be as in the hypothesis of Corollary 1.5. Assume
that (M, ω) is the product of some bounded symplectic manifold with
(R2, ω0) and that M ′ is simply connected. Then the statement of the corol-
lary follows from the comments after Example 2.2.8. on pp. 288 and 289
in [ALP], using Proposition A.1 and Lemma A.5 below. Like the proof of
Corollary 1.5, that argument is based on the fact that the image of the map
ιN defined in (1.3) is a Lagrangian submanifold of M × Nω. However, since
it does not involve the Key Lemma 3.4, the assumption that M ′ is simply
connected is needed there. On the other hand, if ω is exact then the state-
ment of Corollary 1.5 can be deduced from Example 1.7, p. 115 in [Gin],
using again Proposition A.1 and Lemma A.5. Furthermore, if the presym-
plectic manifold (M ′, ω′) is stable then a similar non-embedding result can
be deduced from Theorem 2.7(ii), p. 121 in [Gin].
1.8. Organization of the article. Section 2 contains some background on
foliations, presymplectic manifolds, coisotropic submanifolds and leaf-wise
fixed points. In this section, the linear holonomy of a foliation along a path
in a leaf, and based on this, non-degeneracy of a pair (N, ϕ), are defined. In
Section 3 Chekanov’s theorem is restated (Theorem 3.1), and the relevant
properties of M̃, ω̃, ιN and Ñ (as in (1.2), (1.3)) are established (Lemmas



COISOTROPIC SUBMANIFOLDS AND LEAF-WISE FIXED POINTS 103

3.2 and 3.4). Based on this, the main results are proven in Section 4. The
Appendix contains some auxiliary results.

2. Background

2.1. Notation, manifolds. We denote by D, S1 ⊆ R
2 the closed unit disk

and the unit circle, and for r > 0 by Br and B̄r ⊆ R
2 the open and closed

balls of radius r. Let M be a set. By a smooth structure on M we mean
a maximal smooth (C∞) atlas A of charts ϕ : U ⊆ M → R

n. (Hence
M does not have any boundary.) We denote by C∞

c (M, R) the space of
compactly supported smooth functions on M . We call (M, A) a manifold
iff the topology on M induced by A is Hausdorff and second countable.
Submanifolds of M are by definition embedded. If M is equipped with a
Riemannian metric then we denote by | · |, 	 and d the induced norm on
TxM (for x ∈ M) and length and distance functions.

2.2. Foliations, regularity and linear holonomy. Let M be a manifold
and F a foliation on M , i.e., a maximal atlas of foliation charts. We denote
by TF ⊆ TM and NF := TM/TF the tangent and normal bundles of F ,
by prF : TM → NF the canonical projection, by Fx ⊆ M the leaf through
a point x ∈ M and by RF :=

{

(x, y) ∈ M × M
∣
∣ y ∈ Fx

}

the leaf relation.
For x ∈ M we write TxF := (TF)x and NxF := (NF)x. We call F regular
iff RF is a closed subset and submanifold of M × M . We call a distribution
H ⊆ TM (F-)horizontal iff for every x ∈ M we have TxM = Hx ⊕ TxF .
Let F be a leaf of F , a ≤ b and x ∈ C∞([a, b], F ). For the definition of
non-degeneracy of a pair (N, ϕ) as in Section 1 we need the notion of linear
holonomy of F along x. This is a linear map holFx : Nx(a)F → Nx(b)F , whose
definition is based on the following result.

Proposition 2.1. Let M, F , F, a, b and x be as above, N a manifold and
y0 ∈ N . Then the following statements hold:

(a) For every linear map T : Ty0N → Tx(a)M there exists a map u ∈
C∞([a, b] × N, M) such that

u(·, y0) = x, ∂tu(t, y) ∈ Tu(t,y)F , ∀t ∈ [a, b], y ∈ N,(2.1)

d(u(a, ·))(y0) = T.(2.2)

(b) Let u, u′ ∈ C∞([a, b] × N, M) be maps satisfying (2.1), such that

(2.3) prFd(u(a, ·))(y0) = prFd(u′(a, ·))(y0).

Then prFd(u(b, ·))(y0) = prFd(u′(b, ·))(y0).

This result is proved in the Appendix. We define N := Nx(a)F and y0 :=
0, and we canonically identify T0

(

Nx(a)F
)

= Nx(a)F . We choose a linear
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map T : Nx(a)F → Tx(a)M , such that prFT = idNx(a)F , and a map u ∈
C∞(

[a, b] × Nx(a)F , M
)

such that (2.1) and (2.2) hold. We define

holFx := prFd(u(b, ·))(0) : Nx(a)F(= T0(Nx(a)F)) → Nx(b)F .

It follows from Proposition 2.1 that this map is well defined. It can be
viewed as the linearization of the holonomy of a foliation as defined for
example in Sec. 2.1 in the book [MM]. For a given Riemannian metric on
M , holFx corresponds to the holonomy of a Bott connection (as defined, e.g.,
in Lemma 6.1.5. in [CC]) along x.

2.3. Presymplectic manifolds and symplectic quotients. By a
presymplectic vector space we mean a real vector space V together with
a skew-symmetric bilinear form ω. Let (V, ω) be such a pair. For every lin-
ear subspace W ⊆ V we denote by Wω :=

{

v ∈ V
∣
∣ ω(v, w) = 0, ∀w ∈ W

}

its ω-complement. We define corank ω := dimV ω. A presymplectic struc-
ture on a manifold M is a closed two-form ω on M , such that corank ωx

does not depend on x ∈ M . This number is called the corank of ω. Let
(M, ω) be a presymplectic manifold. The isotropic distribution TMω =
{

(x, v)
∣
∣ x ∈ M, v ∈ TxMω

}

⊆ TM is involutive. Hence by Frobenius’ theo-
rem it induces a foliation Fω on M . We denote by Mω the set of its leaves.
We call (M, ω) regular iff Fω is regular. In this case there are canonical
smooth and symplectic structures AM,ω (see Lemma A.5) and ωM on Mω,
and the triple

(

Mω,AM,ω, ωM

)

is called the symplectic quotient of (M, ω).
Let H ⊆ TM be an (ω-)horizontal distribution (i.e., H is Fω-horizontal).
This gives rise to a closed two-form Ωω,H on (TMω)∗, as follows. We denote
by π : (TMω)∗ → M the canonical projection, and by ωcan the canonical
symplectic form on T ∗M . For x ∈ M we denote by prH

x : TxM → TxMω the
projection along Hx ⊆ TxM . We define

(2.4)
ιH : (TMω)∗ → T ∗M, ιH(x, α) :=

(

x, α ◦ prH
x

)

, Ωω,H := π∗ω + ι∗Hωcan.

By a result by Marle there exists an open neighborhood of the zero section
on which Ωω,H is non-degenerate, see Proposition 3.2 in [Ma].

2.4. Coisotropic submanifolds, leaf-wise fixed points and non-
degeneracy. Let (M, ω) be a presymplectic manifold and N ⊆ M a
coisotropic submanifold. We call N regular iff the presymplectic manifold
(N, ω|N ) is regular. Recall that Nω denotes the set of isotropic leaves of N .
We define the action spectrum and the minimal area of (M, ω, N) as

S(M, ω, N) :=
{∫

D

u∗ω
∣
∣ u ∈ C∞(D, M) : ∃F ∈ Nω : u(S1) ⊆ F

}

,(2.5)

A(M, ω, N) := inf
(

S(M, ω, N) ∩ (0,∞)
)

∈ [0,∞].(2.6)
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Furthermore, we denote holω,N := holF
ω
. Assume now that ω is symplectic,

and let ϕ be a diffeomorphism of M . We call (N, ϕ, ω) (or simply (N, ϕ))
non-degenerate iff the following holds. For x0 ∈ N we denote by prx0

:
Tx0N → Tx0N/(Tx0N)ω the canonical projection. Let F ⊆ N be an isotropic
leaf, and x ∈ C∞([0, 1], F ) a path. Assume that ϕ(x(0)) = x(1), and let
v ∈ Tx(0)N ∩ Tx(0)ϕ

−1(N) be a vector. Then v �= 0 implies that

(2.7) holω,N
x prx(0)v �= prx(1)dϕ(x(0))v.

In the case N = M this condition means that for every x0 ∈ Fix(ϕ), 1 is not
an eigenvalue of dϕ(x0). Furthermore, in the case in which N is Lagrangian
the condition means that for every connected component N ′ ⊆ N we have
N ′ � ϕ(N ′), i.e., N ′ and ϕ(N ′) intersect transversely.

2.5. Geometric boundedness. We call a symplectic manifold (M, ω)
(geometrically) bounded iff there exists an ω-compatible almost complex
structure J on M such that the metric ω(·, J ·) is complete with bounded
sectional curvature and injectivity radius bounded away from 0. Examples
are closed symplectic manifolds, cotangent bundles of closed manifolds and
symplectic vector spaces.

3. Reduction to the Lagrangian case

The proof of Theorem 1.1 is based on the following result:

Theorem 3.1. Let (M, ω) be a bounded symplectic manifold and L ⊆ M a
closed Lagrangian submanifold. Then there exists a constant C ∈ (0,∞] such
that C ≥ A(M, ω, L) (see (2.6)) and the following holds. If ϕ ∈ Ham(M, ω)
satisfies d(ϕ, id) < C, and ϕ(L) � L, then

|L ∩ ϕ(L)| ≥
∑

i
bi(L).

Proof. This follows from the Main Theorem in [Ch] by an elementary argu-
ment. �

Let now (M, ω) be a symplectic manifold and N ⊆ M a coisotropic sub-
manifold. Recall that πN : N → Nω denotes the canonical projection. We
abbreviate π := πN . We define M̃ := M × Nω, and ιN and Ñ as in (1.3).
For a map ϕ : M → M we define

(3.1) ϕ̃ := ϕ × idNω : M̃ → M̃.

Assume that N is regular. We equip Nω with the canonical smooth and
symplectic structures AN,ω and ωN . Furthermore, we define ω̃ := ω⊕(−ωN ).
This is a symplectic form on M̃ .

Lemma 3.2. Let (M, ω) be a symplectic manifold, and N ⊆ M a connected
coisotropic submanifold.
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(a) For every map ϕ : M → M we have ϕ̃ ◦ ιN (Fix(ϕ, N)) = Ñ ∩ ϕ̃(Ñ).
Assume now also that N is regular. Then:

(b) The map ιN is a Lagrangian embedding with respect to ω̃.
(c) If ϕ : M → M is a diffeomorphism then the pair (N, ϕ) is non-

degenerate if and only ϕ̃(Ñ) � Ñ .

For the proof of Lemma 3.2 we need the following.

Lemma 3.3. Let (M, ω) be a symplectic manifold, N ⊆ M a regular
coisotropic submanifold, ϕ : M → M a diffeomorphism, F ⊆ N a leaf
and x ∈ C∞([0, 1], F ) a path. Assume that x(1) = ϕ ◦ x(0), and let
v ∈ Tx(0)N ∩ Tx(0)ϕ

−1(N). Then (2.7) is equivalent to π∗ϕ∗v �= π∗v.

Proof of Lemma 3.3. We fix y ∈ N . By Lemma A.5(b) below we have
ker dπ(y) = TyN

ω. Hence we may define

Φy : (TyN)ω = TyN/TyN
ω → TNy(Nω), Φy(w + TyN

ω) := dπ(y)w.

This is an isomorphism. Furthermore, Φypry = dπ(y), where pry : TyN →
(TyN)ω denotes the canonical projection. Hence Lemma A.5(f) below
implies that dπ(x(0)) = Φx(1)holω,N

x prx(0). It follows that (π∗ϕ∗ − π∗)v =
Φx(1)

(

prx(1)ϕ∗−holω,N
x prx(0)

)

v. Since Φx(1) is an isomorphism, the statement
of Lemma 3.3 follows. �
Proof of Lemma 3.2. Statements (a) and (b) follow directly from the defini-
tions. We prove (c). Assume that x ∈ Fix(ϕ, N) and denote x̃ := (ϕ(x), Nx).
Note that by assertion (a) we have x̃ ∈ Ñ ∩ ϕ̃(Ñ).

Claim 1. Ñ and ϕ̃(Ñ) intersect transversely at x̃ if and only if

0 �= v ∈ TxN ∩ Txϕ−1(N) =⇒ π∗ϕ∗v �= π∗v.

Proof of Claim 1. For y ∈ N we have

(3.2) TιN (y)Ñ = ιN ∗TyN =
{

(v, π∗v)
∣
∣ v ∈ TyN

}

.

Setting y := x, it follows that

(3.3) Tx̃ϕ̃(Ñ) = ϕ̃∗ιN ∗TxN =
{

(ϕ∗v, π∗v)
∣
∣ v ∈ TxN

}

.

On the other hand, since x ∈ Fix(ϕ, N), we have ιN ◦ ϕ(x) = ϕ̃ ◦ ιN (x) = x̃.
Therefore, applying (3.2) with y := ϕ(x), and combining with (3.3), we
obtain

Tx̃Ñ ∩ Tx̃ϕ̃(Ñ) =
{(

ϕ∗v, π∗v
) ∣
∣ v ∈ TxN, ϕ∗v ∈ Tϕ(x)N, π∗ϕ∗v = π∗v

}

.

Claim 1 follows from this. �
Assume now that (N, ϕ) is non-degenerate. Let x̃0 ∈ Ñ ∩ ϕ̃(Ñ). By

assertion (a) there exists x0 ∈ Fix(ϕ, N) such that (ϕ(x0), Nx0) = x̃0. We
choose a path x ∈ C∞([0, 1], Nx0) such that x(0) = x0 and x(1) = ϕ(x0).
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If 0 �= v ∈ Tx0N ∩ Tx0ϕ
−1(N) then by (2.7) and Lemma 3.3 we have

π∗ϕ∗v �= π∗v. Therefore by Claim 1 with x replaced by x0 the manifolds
ϕ̃(Ñ) and Ñ intersect transversely at x̃0. It follows that ϕ̃(Ñ) � Ñ .

Conversely, assume that ϕ̃(Ñ) � Ñ . Let F ⊆ N be a leaf, and x ∈
C∞([0, 1], F ) a path, and assume that x(1) = ϕ◦x(0), and 0 �= v ∈ Tx(0)N ∩
Tx(0)ϕ

−1(N). By Claim 1 we obtain π∗ϕ∗v �= π∗v. Therefore, by Lemma 3.3
the inequality (2.7) is satisfied. It follows that (N, ϕ) is non-degenerate. This
proves (c) and completes the proof of Lemma 3.2. �

Lemma 3.4 (Key Lemma). Let (M, ω) be a symplectic manifold, N ⊆ M

a closed, regular coisotropic submanifold, and let M̃, ω̃ and Ñ be defined as
in (1.2), (1.3). Then A(M, ω, N) = A(M̃, ω̃, Ñ).

Proof of Lemma 3.4. Let u ∈ C∞(D, M) be a map such that there exists a
leaf F ⊆ N satisfying u(S1) ⊆ F . Then the map ũ : D → M̃ = M × Nω

defined by ũ(z) := (u(z), Nu(1)), satisfies ũ(S1) ⊆ Ñ and
∫

D
ũ∗ω̃ =

∫

D
u∗ω.

It follows that S(M, ω, N) ⊆ S(M̃, ω̃, Ñ).
To show the opposite inclusion, let ũ = (v, w′) ∈ C∞(D, M̃) be a map

such that ũ(S1) ⊆ Ñ . We choose a smooth map ρ : [0, 1] → [0, 1] such that

ρ(1/2) = 1, ρ(r) = r, ∀r ∈ [0, 1/4], ρ(r) = 1 − r, ∀r ∈ [3/4, 1],

ρ′(r) > 0, ∀r ∈ (1/4, 1/2), ρ′(r) < 0, ∀r ∈ (3/4, 1),

and all derivatives of ρ vanish at 1/2. We define ϕ : D → D by ϕ(rz) := ρ(r)z,
for r ∈ [0, 1] and z ∈ S1.

Claim 1. There exists an extension u ∈ C∞(D, M) of v ◦ ϕ|B̄1/2
such that

for every z ∈ B̄1 \ B1/2, we have u(z) ∈ N and π ◦ u(z) = w′ ◦ ϕ(z).

Proof of Claim 1. We define f ′ : [0, 1] × S1 → Nω by f ′(t, z) := w′(tz). For
every z ∈ S1 we have by assumption ũ(z) ∈ Ñ , i.e., π ◦ v(z) = w′(z) =
f ′(1, z). Hence f ′ is a smooth homotopy in Nω, ending at the map π ◦ v|S1 .
Since N is closed and the projection π : N → Nω is a submersion, results
by Ehresmann imply that there exists f ∈ C∞([0, 1] × S1, N) such that
π ◦ f = f ′ and f(1, ·) = v|S1 . (See [Eh], the proposition on p. 31 and the
second proposition on p. 35.) We define u : D → M by u(z) := v ◦ ϕ(z), if
|z| ≤ 1/2, and u(z) := f

(

ρ(|z|), z/|z|
)

, if 1/2 < |z| ≤ 1. This map has the
required properties. This proves Claim 1. �

We choose a map u as in Claim 1. Then u(S1) is contained in the leaf w′(0).
Furthermore, since ϕ restricts to an orientation preserving diffeomorphism
from B1/2 onto B1, we have

∫

B1/2
u∗ω =

∫

D
v∗ω. Furthermore, on D \ B1/2,

we have u∗ω = u∗π∗ωN = (π ◦ u)∗ωN = ϕ∗w′∗ωN . Since ϕ restricts to an
orientation reversing diffeomorphism from B1 \ B̄1/2 onto B1 \{0}, it follows
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that
∫

D\B1/2
u∗ω = −

∫

D
w′∗ωN . We obtain

∫

D
u∗ω =

∫

D
(v∗ω − w′∗ωN ) =

∫

D
ũ∗ω̃. It follows that S(M̃, ω̃, Ñ) ⊆ S(M, ω, N). The statement of Lemma

3.4 follows. �

4. Proofs of the main results

Proof of Theorem 1.1. Let M, ω and N be as in the hypothesis of this the-
orem. Without loss of generality we may assume that N is connected. Since
N is regular, the symplectic quotient

(

Nω,AN,ω, ωN

)

of (N, ω|N ) is well
defined. We define M̃, ω̃ and Ñ as in (1.2), (1.3). Since N is closed, Nω is
closed. By a straightforward argument the product of two bounded sym-
plectic manifolds is bounded, hence (M̃, ω̃) =

(

M × Nω, ω ⊕ (−ωN )
)

is
bounded. Furthermore, by Lemma 3.2(b) Ñ ⊆ M̃ is a Lagrangian sub-
manifold. It is closed since N is closed. Therefore, we may apply The-
orem 3.1 with M, ω replaced by M̃, ω̃, and L := Ñ , to obtain a con-
stant C as in the assertion of that theorem. By Lemma 3.4 this constant
has the required property C ≥ A(M, ω, N). Let now ϕ ∈ Ham(M, ω) be
such that (N, ϕ) is non-degenerate and d(ϕ, idM ) < C. We define ϕ̃ as in
(3.1). Then d

˜M,ω̃(ϕ̃, id
˜M

) ≤ dM,ω(ϕ, idM ) < C, and Lemma 3.2(c) implies
that ϕ̃(Ñ) � Ñ . Therefore, by the conclusion of Theorem 3.1, we have
∣
∣
(

Ñ ∩ ϕ̃(Ñ)
)∣
∣ ≥

∑

ibi(Ñ). Parts (a) and (b) of Lemma 3.2 imply that
∣
∣Fix(ϕ, N)

∣
∣ =

∣
∣
(

Ñ ∩ ϕ̃(Ñ)
)∣
∣ and bi(Ñ) = bi(N), for every i = 0, . . . ,dim N .

Inequality (1.1) follows. This proves Theorem 1.1. �

Proof of Theorem 1.2.

Claim 1. Assume that the statement of the theorem holds if there exists a
closed presymplectic manifold (M ′, ω′) and an ω′-horizontal distribution H ⊆
TM ′ such that N is the zero-section of (TM ′ω′

)∗, M is an open neighborhood
of N and ω = Ωω′,H (see (2.4)). Then it holds in general.

Proof. This follows from Marle’s local normal form theorem, see 4.5.
Théorème on p. 79 in [Ma]. �

Let M, ω, N, f and U be as in the hypothesis of Theorem 1.2, and assume
that there exist (M ′, ω′) and H as in Claim 1. We identify M ′ with N ,
and denote by π : (TNω)∗ → N the canonical projection. We choose a
Riemannian metric g on M . Let x, y ∈ M . For a linear map T : TxM → TyM
we define |T |op := max

{

|Tv|
∣
∣ v ∈ TxM : |v| = 1

}

, and for a bilinear map
b : TxM × TxM → R we define |b| := max

{

|b(v, w)|
∣
∣ v, w ∈ TxM, |v| =

|w| = 1
}

. We choose ρ ∈ C∞
c (M, R) such that ρ = 1 in a neighborhood of

N . We define F := ρ · (f ◦π) : M → R, and denote by ϕt
F the time-t-map of

F , for t ∈ R. A short argument shows that Crit f ⊆ Fix(ϕt
F , N), for t ∈ R.
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Claim 2. There exists a number t1 > 0 such that for every t ∈ (0, t1], we
have Fix(ϕt

F , N) ⊆ Crit f .

Proof of Claim 2. Using Lemma A.6 below, it suffices to prove that there
exists a constant C such that for every t ∈ [0,∞), and x0 ∈ Fix(ϕt

F , N),
we have d(x0, ϕ

t
F (x0)) ≤ C

( ∫ t
0

∣
∣XF ◦ ϕs

F (x0)
∣
∣ds

)2. To see this, we apply
Proposition A.4 below with M, g replaced by N and the restriction of g to N ,
and F the isotropic foliation of N . We choose a constant C ′ := C as in that
proposition. Let t ∈ [0,∞) and x0 ∈ Fix(ϕt

F , N). We define x : [0, t] → N
by x(s) := π ◦ϕs

F (x0). It follows from an elementary calculation that ẋ(s) ∈
Hx(s), for every s ∈ [0, t]. Furthermore, x(t) = ϕt

F (x0) ∈ Nx(0). Hence the
conditions of Proposition A.4 are satisfied. It follows that d(x0, ϕ

t
F (x0)) ≤

C ′( ∫ t
0 |ẋ|ds

)2. Existence of a constant C as required follows. This proves
Claim 2. �

We choose t1 as in Claim 2. Since F has compact support, there exists
t2 > 0 such that ϕt

F ∈ U , for every t ∈ [0, t2].

Claim 3. There exists t3 > 0 such that for every 0 < t ≤ t3 the pair (N, ϕt
F )

is non-degenerate.

Proof of Claim 3. Let x0 ∈ Crit f and t ∈ R. We define

(4.1) T t
x0

:= dϕt
F (x0) − id − tdXF (x0) : Tx0M → Tx0M.

We have T 0
x0

= 0. Since d
dt

∣
∣
t=0 dϕt

F (x0) = dXF (x0), by Taylor’s theorem
there exists a constant Cx0 such that |T t

x0
|op ≤ Cx0t

2, for every t ∈ [0, t1].
A calculation in Darboux charts shows that the bilinear form Bx0 :

Tx0M × Tx0M � (v, w) �→ ω
(

dXF (x0)v, w
)

∈ R is the Hessian of F . Since
F |N = f , it follows that the restriction bx0 := Bx0 |Tx0N×Tx0N is the Hes-
sian of f . We define the linear map A : Tx0N → Tx0N by gx0(·, A·) := bx0 ,
and we denote by V+ and V− the direct sum of the positive and nega-
tive eigenspaces of A, respectively. It follows that A is self-adjoint with
respect to gx0 . Since by assumption f is Morse, the form bx0 is non-
degenerate, hence A is an isomorphism, and therefore Tx0N = V+ ⊕ V−. We
define cx0 := min{|λ| |λ eigenvalue of A

}

. Since f is Morse the set Crit f
is isolated. Since N is compact, it follows that Crit f is finite. Hence the
number t3 := min

({

cx0/(2Cx0 |ωx0 |)
∣
∣ x0 ∈ Crit f

}

∪ {t1}
)

is positive. For
x0 ∈ N we denote by prx0

: Tx0N → Tx0N/Tx0N
ω the canonical projec-

tion. Let 0 < t ≤ t3, F ⊆ N be a leaf, x ∈ C∞([0, 1], F ) a path and
v ∈ Tx(0)N ∩ Tx(0)(ϕt

F )−1(N). Assume that ϕt
F (x(0)) = x(1), and that

(4.2) holω,N
x prx(0)v = prx(1)dϕt

F (x(0))v.

Claim 3 is a consequence of the following.
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Claim 4. We have v = 0.

Proof of Claim 4. We abbreviate x0 := x(0). Since x0 ∈ Fix(ϕt
F , N) and

t ≤ t1, Claim 2 implies that x0 ∈ Crit f . We define A and V± as above,
and v± ∈ V± by v+ + v− := v. Since A is gx0-self-adjoint, eigenvectors of
A for distinct eigenvalues are gx0-orthogonal to each other. It follows that
bx0(v−, v+) = 0, and therefore, cx0 |v±|2 ≤

∣
∣bx0(v, v±)

∣
∣ =

∣
∣ω

(

dXF (x0)v, v±
)∣
∣.

Since by assumption N is regular, it follows from (4.2) and Lemmas 3.3 and
A.5(b) that dϕt

F (x0)v − v ∈ ker dπN (x0) = Tx0N
ω. Hence by (4.1) we have

tω
(

dXF (x0)v, v±
)

= −ω(T t
x0

v, v±). Consider the case |v+| ≥ |v−|. Then
|v| ≤

√
2|v+|. It follows that cx0 |v+|2t ≤

√
2|ωx0 ||T t

x0
|op|v+|2. Combining

this with the inequalities |T t
x0

|op ≤ Cx0t
2 and 0 < t ≤ t3, it follows that

|v+| = 0, and therefore v = v+ + v− = 0. The case |v−| ≥ |v+| is treated
analogously. This proves Claim 4 and completes the proof of Claim 3. �

We choose a number t3 as in Claim 3, and define ϕ := ϕ
min{t1,t2,t3}
F . This

map has the required properties. This proves Theorem 1.2. �
Proof of Proposition 1.3. The first assertion is a consequence of the following
two claims. Note that the isotropic leaf through Θ ∈ V (k, n) is the orbit
U(k) · Θ of the action of U(k) on V (k, n) by left multiplication.

Claim 1. We have A
(

C
k×n, ω0, V (k, n)

)

≤ π.

Proof of Claim 1. Consider the map u : D → C
k×n defined by u1

1(z) := z,
for z ∈ D, ui

i ≡ 1, for i = 2, . . . , k, and ui
j ≡ 0, for i = 1, . . . , k, j = 1, . . . , n

such that i �= j. Then u(S1) ⊆ U(k) · u(1) and
∫

D
u∗ω0 = π. It follows that

π ∈ S
(

C
k×n, ω0, V (k, n)

)

(defined as in (2.5)). Claim 1 follows from this. �

Claim 2. We have A
(

C
k×n, ω0, V (k, n)

)

≥ π.

Proof of Claim 2. Let u ∈ C∞(D, Ck×n), and assume that
∫

D
u∗ω0 > 0, and

that there exists an isotropic leaf F ⊆ V (k, n) such that u(z) ∈ F , for every
z ∈ S1. Since the action of U(k) on V (k, n) is free, there exists a unique
map g0 : S1 → U(k) such that u(z) = g0(z)u(1), for z ∈ S1. This map is
smooth. We define d to be the degree of the map det ◦g0 : S1 → S1. Claim
2 is a consequence of the following.

Claim 3. We have
∫

D
u∗ω0 = dπ.

Proof of Claim 3. For a1, . . . , ak ∈ C we denote by diag(a1, . . . , ak) ∈ C
k×k

the diagonal matrix with entries a1, . . . , ak. We define h0 : S1 → U(k) by
h0(z) := diag(zd, 1, . . . , 1)g0(z)−1. The map det ◦h0 : S1 → S1 has degree 0.
Since the determinant induces an isomorphism of the fundamental groups
of U(k) and S1, it follows that there exists a continuous map h : D →
U(k) such that h|S1 = h0. We may assume without loss of generality that
h is smooth. Let μ : C

k×n → Lie U(k) be a moment map for the action
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of U(k) on V (k, n). By a straightforward calculation, we have (hu)∗ω0 =
u∗ω0 −d

〈

μ◦u, h−1dh
〉

, see Lemma 9 in [Zi1]. By Stokes’ theorem, it follows
that

∫

u∗ω0 =
∫

D
(hu)∗ω0. We define the map v : D → C

k×n by v(z) :=
diag(zd, 1, . . . , 1)u(1), for z ∈ D. Then (hu)(z) = (h0u)(z) = v(z), for z ∈ S1.
Therefore,

∫

D
(hu)∗ω0 =

∫

D
v∗ω0 = dπ

∑

j=1,...,n

∣
∣u1

j(1)
∣
∣2 = dπ. This proves

Claim 3 and hence Claim 2. �
To prove the second assertion, let C > π. There exists H̃ ∈ C∞

c (C, R) such
that ϕ1

˜H
(D)∩D = ∅, and ‖H̃‖ :=

∫ 1
0

(

maxCk×n H̃(t, ·)−minCk×n H̃(t, ·)
)

dt <

C. (See for example the proof of Proposition 1.4. in [Ho].) We define π :
C

k×n → C by π(Θ) := Θ1
1. We choose ρ ∈ C∞

c (Ck×n, [0, 1]), such that ρ = 1
on

⋃

t∈[0,1] ϕ
t
˜H◦π

(V (k, n)). Furthermore, we define H := ρ · (H̃ ◦π) : C
k×n →

R, and ϕ := ϕ1
H . Then ϕ ∈ Hamc(Ck×n, ω0), and dc(ϕ, id) ≤ ‖H‖ = ‖H̃‖ <

C. The facts π(V (k, n)) = D, π ◦ ϕ1
˜H◦π

= ϕ1
˜H

◦ π and ϕ1
˜H
(D) ∩ D = ∅ imply

that ∅ = V (k, n) ∩ ϕ1
˜H◦π

(V (k, n)) = V (k, n) ∩ ϕ1
H(V (k, n)). Hence ϕ has the

required properties. This proves Proposition 1.3. �
Proof of Proposition 1.4. Let Mi, ωi, L, M, ω, N and ψ be as in the hypoth-
esis of the Conjecture. Without loss of generality we may assume that M1
and L are connected. We define

M̃ := M1 × M2 × M1, ω̃ := ω1 ⊕ ω2 ⊕ (−ω1),

Ñ :=
{

(x1, x2, x1) ∈ M
∣
∣ x1 ∈ M1, x2 ∈ L

}

, ϕ̃ := ϕ × idM1 .

Then Ñ is a closed Lagrangian submanifold of M̃ . The map ψ̃ : M̃ → M̃

defined by ψ̃(x1, x2, y) := (y, ψ(x2), x1) is an ω̃-anti-symplectic involution
whose fixed point set equals Ñ . Furthermore, N = M1 × L ⊆ M =
M1 × M2 is a regular ω-coisotropic submanifold, and the symplectic quo-
tient

(

Nω,AN,ω, ωN

)

of (N, ω|N ) is isomorphic to (M1, ω1) via the map
M1 � y �→ {y} × L ∈ Nω. Via this map, the definitions of M̃, ω̃ and ϕ̃ agree
with (1.2), (1.3), (3.1). Hence by Lemma 3.2(c), we have Ñ � ϕ̃(Ñ). Thus
M̃, ω̃ and Ñ satisfy the hypotheses of the Lagrangian AGC. Supposing that
this conjecture is true, it follows that

∣
∣Ñ ∩ ϕ̃(Ñ)

∣
∣ ≥

∑

ibi(Ñ). Inequality
(1.1) follows now from Lemma 3.2(a). This proves Proposition 1.4. �
Proof of Corollary 1.5. Let (M, ω) be a bounded and aspherical symplectic
manifold, and (M ′, ω′) a closed and regular presymplectic manifold of corank
dim M − dim M ′. Assume that M ′ has a simply connected isotropic leaf F0,
and that there exists an embedding ψ : M ′ → M satisfying ψ∗ω = ω′.
Let ϕ ∈ Ham(M, ω). It suffices to prove that N := ψ(M ′) intersects ϕ(N).
Replacing M ′ by the connected component of M ′ containing F0, we may
assume without loss of generality that M ′ is connected. It follows from
Proposition A.1 below that the submanifold ψ(M ′) ⊆ M is coisotropic.
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We choose a constant C > 0 as in Theorem 1.1. If (N, ϕ) is degenerate,
then by definition Fix(ϕ, N) �= ∅, and hence N ∩ ϕ(N) �= ∅. So assume that
(N, ϕ) is non-degenerate.

Claim 1. We have A(M, ω, N) = ∞.

Proof of Claim 1. Let u ∈ C∞(D, M) be a smooth map such that there
exists F ∈ Nω such that u(S1) ⊆ F . Since N is closed and the projection
πN : N → Nω is a submersion, by the proposition on p. 31 in [Eh] it is a
smooth fiber bundle. Since N is connected, it follows that F is diffeomorphic
to F0, and therefore simply connected. Hence there exists a smooth map
v : D → F such that u and v agree on the boundary S1. We choose a
smooth map ρ : [0, 1] → [0, 1] such that ρ(r) = r for r ≤ 1/2, ρ(1) = 1,
ρ′(r) > 0, for every r ∈ (0, 1), and all derivatives of ρ vanish at r = 1. We
define f : D → D by f(rz) := ρ(r)z, for r ∈ [0, 1] and z ∈ S1. We denote
by D the disk with the reversed orientation, and by w : S2 ∼= D#D → M
the concatenation of u ◦ f and v ◦ f . This map is smooth, and since (M, ω)
is aspherical, we have 0 =

∫

S2 w∗ω =
∫

D
f∗u∗ω −

∫

D
f∗v∗ω. Since v(D) ⊆ F ,

we have f∗v∗ω = 0. It follows that
∫

D
u∗ω =

∫

B1
f∗u∗ω = 0. Claim 1 follows

from this. �
Claim 1 implies that C = ∞, and hence d(ϕ, id) < C. Therefore, the condi-
tions of Theorem 1.1 are satisfied. Applying this theorem, inequality (1.1)
follows, and therefore N ∩ ϕ(N) �= ∅. This proves Corollary 1.5. �

5. Appendix A. Auxiliary results

The following result was used in Section 1 and in the proof of Corollary 1.5,
and it will be used to prove Proposition A.2 below. Its proof involves only
linear algebra and is therefore omitted.

Proposition A.1. Let (M, ω) be a presymplectic manifold, M ′ a manifold,
ψ : M ′ → M an immersion and ω′ := ψ∗ω. If ω′ has constant corank then

(A.1) dimM ′ + corank ω′ ≤ dim M + corank ω.

Suppose now that ψ is an embedding. Then ψ(M ′) ⊆ M is coisotropic if and
only if ω′ has constant corank and equality in (A.1) holds.

The next result was used in Section 1. Let (X, σ) be a closed symplectic
manifold, π : E → X a closed smooth fiber bundle, H ⊆ TE a horizontal
subbundle and let N, πX , ιH , ω := Ωσ,H and M be as in the construction
explained in that section.

Proposition A.2. N ⊆ M is a regular coisotropic submanifold. Further-
more, if (X, σ) is aspherical then A(M, ω, N) = ∞.

For the proof of Proposition A.2 we need the following. We denote by iE
the embedding of E as the zero section N ⊆ V ∗E.
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Lemma A.3. We have π∗σ = i∗Eω.

Proof of Lemma A.3. We denote by jE the embedding of E as the zero-
section of T ∗E. Then ιH ◦ iE = jE , and therefore, denoting by λcan the
canonical one-form on T ∗E, we obtain i∗Eι∗Hωcan = −dj∗

Eλcan = −d0 = 0.
Since πX ◦ iE = π, it follows that π∗σ = i∗E

(

π∗
Xσ + ι∗Hωcan

)

= i∗Eω. This
proves Lemma A.3. �

Proof of Proposition A.2. If follows from Lemma A.3 and Proposition A.1
that N ⊆ M is a coisotropic submanifold. Regularity follows from an ele-
mentary argument. Assume now that (X, σ) is aspherical. To prove that
A(M, ω, N) = ∞, let u ∈ C∞(D, M) be a map such that there exists a leaf
F ∈ Nω satisfying u(S1) ⊆ F . It suffices to prove the following.

Claim 1. We have
∫

D
u∗ω = 0.

Proof of Claim 1. We denote by π0 the canonical projection from V ∗E to
its zero-section N . We choose a smooth function ρ : [0, 1] → [0, 1] such that
ρ(r) = r, for r ≤ 1/3, and ρ(r) = 1, for r ≥ 2/3. We define u0 : D → M
by u0(rz) := π0 ◦ u(ρ(r)z), for r ∈ [0, 1] and z ∈ S1. It follows from an
elementary argument involving Stokes’ Theorem that

∫

D
u∗ω =

∫

D
u∗

0ω. We
claim that

∫

D
u∗

0ω = 0. To see this, we choose an orientation preserving
diffeomorphism ϕ : C → B1, and we define the map f : S2 ∼= C ∪ {∞} → X
by f(z) := πX ◦ u0 ◦ ϕ(z), if z ∈ C, and f(z) := πX ◦ u(1), if z = ∞.
By an elementary argument this map is smooth. Therefore, by symplectic
asphericity of X we have 0 =

∫

S2 f∗σ =
∫

C

(

πX ◦u0 ◦ϕ
)∗

σ =
∫

B1
(πX ◦u0)∗σ.

Let v0 : D → E be the unique map such that iE ◦ v0 = u0. Then πX ◦ u0 =
π ◦ v0, and hence using Lemma A.3, (πX ◦ u0)∗σ = v∗

0π
∗σ = v∗

0i
∗
Eω = u∗

0ω.
It follows that

∫

D
u∗

0ω = 0. This completes the proof of Claim 1 and hence
of Proposition A.2. �

Proof of Proposition 2.1. Let M, F , F, a, b, x, N and y0 be as in the hypoth-
esis. To prove statement (a), let T : Ty0N → Tx(a)M be a linear map. We
denote by π2 : [a, b]×M → M the projection onto the second factor. By ele-
mentary arguments there exist f ∈ C∞(N, M) such that f(y0) = x(a) and
df(y0) = T , and a smooth section s : [a, b]×M → π∗

2TF of compact support,
such that s(t, x(t)) = ẋ(t), for every t ∈ [a, b]. We define u : [a, b] × N → M
to be the unique solution of the equations

∂tu(t, y) = s(t, y), u(a, y) = f(y), ∀t ∈ [a, b], y ∈ N.

This map has the required properties. This proves (a).
To prove statement (b), let u and u′ be as in the hypothesis. Consider

S :=
{

t ∈ [a, b]
∣
∣ prFd(u(t, ·))(y0) = prFd(u′(t, ·))(y0)

}

.
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By (2.3) this set contains a. Furthermore, it is a closed subset of [a, b]. It
follows from an elementary argument that it is open, and therefore S = [a, b].
This proves (b) and completes the proof of Proposition 2.1. �

The next result was used in the proof of Theorem 1.2.

Proposition A.4. Let (M, g) be a closed Riemannian manifold, F a regular
foliation on M and H ⊆ TM an F-horizontal distribution. Then there exists
a constant C such that for every t ≥ 0 and every x ∈ C∞([0, t], M) the
following holds. If ẋ(s) ∈ Hx(s), for every s ∈ [0, t], and x(t) ∈ Fx(0), then
d(x(0), x(t)) ≤ C	(x)2.

Proof of Proposition A.4. We denote by n and k the dimension of M and of
the leaves of F respectively. Since F is regular, there exists a unique smooth
structure on the set of leaves M/RF such that the canonical projection πF :
M → M/RF is a submersion, see Lemma A.5 below. Hence by Ehresmann’s
Theorem (proposition on p. 31 in [Eh]), πF is a smooth fiber bundle. It
follows that there exists a finite atlas A of surjective foliation charts ϕ :
U → R

n ∼= R
n−k × R

k, such that
⋃

(U,ϕ)∈A ϕ−1(B1) = M , and for every
(U, ϕ) ∈ A and x ∈ U the set ϕ(Fx ∩ U) is connected. For (U, ϕ) ∈ A
we define εϕ to be the distance (with respect to g) between ϕ−1(B̄1) and
M \ ϕ−1(B2), and we set ε := min{εϕ | (U, ϕ) ∈ A}. Proposition A.4 is a
consequence of the following.

Claim 1. There exists a constant C such that for every t ∈ [0,∞) and every
x ∈ C∞([0, t], M) the following holds. If ẋ(t′) ∈ Hx(t′), for every t′ ∈ [0, t],
x(t) ∈ Fx(0), and 	(x) ≤ ε then d(x(0), x(t)) ≤ C	(x)2.

Proof of Claim 1. Let x ∈ C∞([0, t], M) be such that ẋ(t′) ∈ Hx(t′), x(t) ∈
Fx(0), and 	(x) ≤ ε. We choose a chart (U, ϕ) ∈ A such that x(0) ∈ ϕ−1(B1).
By the choice of ε it follows that x(t′) ∈ ϕ−1(B2), for every t′ ∈ [0, t]. Hence
we may define (a, b) := ϕ ◦ x : [0, t] → R

n = R
n−k × R

k. By the choice of A,
the set ϕ(Fx(0) ∩ U) is connected, hence it equals {a(0)} × R

k. Since x(t) ∈
Fx(0), it follows that a(t) = a(0). Therefore, denoting by | · |0 the standard
norm on Euclidian space, we have

∣
∣(a, b)(t) − (a, b)(0)

∣
∣
0 = |b(t) − b(0)|0. We

define the map (u, v) : [0, 1] × [0, t] → R
n−k × R

k by

(u, v)(s, t′) := (a, b)(0) + s
(

(a, b)(t′) − (a, b)(0)
)

.

Furthermore, we define α : R
n → R

k×(n−k) as follows. Namely, for x ∈
R

n we define α(x) to be the unique real k × (n − k) matrix satisfying
{

(w, α(x)w) |w ∈ R
n−k

}

= dϕHϕ−1(x). Since H is horizontal, α is well
defined. For t′ ∈ [0, t] we have ḃ(t′) =

∫ 1
0 ∂s

(

α ◦ (u, v)(s, t′)∂tu(s, t′)
)

ds.
Therefore, a short calculation using a(t) = a(0), implies that b(t) − b(0) =
∫ t

0

∫ 1
0

((

dα ∂s(u, v)
)

∂tu−
(

dα ∂t(u, v)
)

∂su
)

ds dt′. Claim 1 is a consequence of
this. This proves Proposition A.4. �
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Lemma A.5. Let M be a set with a smooth structure and R an equivalence
relation on M . Then the following holds:
(a) There is at most one smooth structure on M ′ := M/R such that the

quotient map π : M → M ′ is a submersion.
Assume that R is the leaf relation of some foliation F on M . Then:

(b) If there is a smooth structure on M ′ as in (a) then ker dπ(x) = TxF ,
for every x ∈ M .

(c) R is a closed subset of M × M if and only if M ′ (equipped with the
quotient topology) is Hausdorff.

Assume that R is the leaf relation of some foliation F and the topology
on M is Hausdorff and second countable. Then:

(d) The quotient topology on M ′ is second countable.
(e) The following conditions are equivalent:

(i) There exists a smooth structure on M ′ as in (a).
(ii) R is a submanifold of M × M .

(f) Assume that there is a smooth structure A on M ′ as in (a). Let F
be a leaf of F , x ∈ C∞([0, 1], F ), and vi ∈ Tx(i)M , for i = 0, 1, be
such that prFv1 = holFx prFv0. Then dπ(x(0))v0 = dπ(x(1))v1, where
the differentials are defined with respect to A.

Proof of Lemma A.5. Statements (a,b,c,d) and (f) follow from elementary
arguments. To prove assertion (e), assume that R is the leaf relation of
some foliation F and M is Hausdorff and second countable. It follows from
Proposition 2.1(a) that the projection onto the first factor π1 : R → M
is a submersion. Assertion (e) is a consequence of this and a theorem by
Godement (see Theorem 3.5.25 in the book [AMR]). This concludes the
proof of Lemma A.5. �

The next lemma was used in the proof of Theorem 1.2. Let M be a C1-
manifold, and X a complete C1-vector field on M . We denote by ϕt

X the
time-t-map generated by X, for t ∈ R. For a pair (t, x0) ∈ [0,∞) × M we
write 	(t, x0) := 	

(

[0, t] � s �→ ϕs
X(x0) ∈ M

)

.

Lemma A.6 (Fast almost periodic orbits). Let (M, g) be a Riemann-
ian C2-manifold, X a C1-vector field on M with compact support, and
f : [0,∞) → [0,∞) a continuous function such that f(0) = 0. Then there
exists a constant ε > 0 such that for every (t, x0) ∈ [0, ε] × M satisfying
d
(

x0, ϕ
t
X(x0)

)

≤ 	(t, x0)f(	(t, x0)), we have X(x0) = 0.

The proof of this lemma is based on an idea from the proof of Proposition
17, p. 184 in the book [HZ]. We need the following.

Remark A.7. If t ≥ 0 and x ∈ W 1,1
(

[0, t], R
)

satisfy
∫ t
0 x(s)ds = 0 then

‖x‖L1([0,t]) ≤ t‖ẋ‖L1([0,t]). To see this, we choose a point t0 ∈ [0, t] such that
x(t0) = 0, and observe |x(t1)| =

∣
∣
∫ t1
t0

ẋ(s)ds
∣
∣ ≤

∫ t
0 |ẋ(s)|ds, for t1 ∈ [0, t].
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Proof of Lemma A.6. Let M, g, X and f be as in the hypothesis. We
denote by K ⊆ M the support of X, and by n the dimension of M .
We choose a finite set A of surjective C2-charts ϕ : U ⊆ M → R

n,
such that K ⊆

⋃

(U,ϕ)∈A ϕ−1(B1). For (U, ϕ) ∈ A we define εϕ to
be the distance between ϕ−1(B̄1) and M \ ϕ−1(B2), and we set ε1 :=
min

{

εϕ/ maxK |X|
∣
∣ (U, ϕ) ∈ A

}

. For v ∈ R
n we denote |v|1 :=

∑n
i=1|vi|.

Let x0 ∈ M , (U, ϕ) ∈ A be a chart such that x0 ∈ ϕ−1(B1), and
s ∈ [0, ε1]. Then ϕs

X(x0) ∈ ϕ−1(B̄2), hence the point ϕ◦ϕs
X(x0) ∈ R

n is well
defined.

Claim 1. There exists C ≥ 0 such that for every (U, ϕ) ∈ A, x0 ∈ ϕ−1(B1)
and t ∈ [0, ε1] satisfying d(x0, ϕ

t
X(x0)) ≤ 	(t, x0)f

(

	(t, x0)
)

, the inequality
(

Ct + Cf(	(t, x0)) − 1
) ∫ t

0

∣
∣ d
ds(ϕ ◦ ϕs

X(x0))
∣
∣
1 ds ≥ 0 holds.

Proof of Claim 1. Let (U, ϕ), x0 and t be as in the hypothesis. We define
y : [0, t] → R

n by y(s) := ϕ ◦ ϕs
X(x0), v := y(0) − y(t), z : [0, 1] → R

n

by z(s) := ẏ(s) + v/t, and C0 := max
{

|d(ϕ∗X)(x)w|1
∣
∣ x ∈ B̄2, w ∈ R

n :
|w|1 = 1

}

. It follows from Remark A.7 that ‖z‖1 ≤ t‖ż‖1 ≤ C0t‖ẏ‖1, where
the L1-norms are taken with respect to | · |1. Since ‖ẏ‖1 ≤ ‖z‖1 + |v|1, it
follows that ‖ẏ‖1 ≤ C0t‖ẏ‖1 + |v|1. Claim 1 is a consequence of this and the
inequality d(x0, ϕ

t
X(x0)) ≤ 	(t, x0)f

(

	(t, x0)
)

. �

We choose C ≥ 0 as in Claim 1, and 0 < ε ≤ ε1 so small that
Cε + C max

{

f(a)
∣
∣ 0 ≤ a ≤ ε maxK |X|

}

< 1. Let (t, x0) be as in the
hypothesis of Lemma A.6. It follows from the statement of Claim 1 that
d
ds(ϕ◦ϕs

X(x0)) = 0, for every s ∈ [0, t], and therefore X(x0) = 0. This proves
Lemma A.6. �
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[Gü] B. Gürel, Leaf-wise coisotropic intersections, preprint, May 2009,
arXiv:0905.4139v1, accepted by Int. Math. Res. Not.

[Ho] H. Hofer, On the topological properties of symplectic maps, Proc. Roy. Soc. Edin-
burgh Sect. A 115 (1–2) (1990), 25–38.

[HZ] H. Hofer, E. Zehnder, Symplectic invariants and Hamiltonian dynamics,
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