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A GROUPOID APPROACH TO QUANTIZATION

EL1 HAWKINS

Many interesting C*-algebras can be viewed as quantizations of Pois-
son manifolds. I propose that a Poisson manifold may be quantized by
a twisted polarized convolution C*-algebra of a symplectic groupoid.
Toward this end, I define polarizations for Lie groupoids and sketch
the construction of this algebra. A large number of examples show
that this idea unifies previous geometric constructions, including geo-
metric quantization of symplectic manifolds and the C*-algebra of a
Lie groupoid. I sketch a few new examples, including twisted groupoid
C*-algebras as quantizations of bundle affine Poisson structures.

1. Introduction

Many interesting C*-algebras can be regarded as quantizations. These
include the algebra of compact operators on a Hilbert space, the C*-algebra
of a Lie group [41], the noncommutative torus [40], the crossed product
C*-algebra of a group acting on a manifold, the C*-algebra of a foliation,
the C*-algebra of a Lie groupoid [32], quantum groups, and of course any
of the algebras appearing in quantum physics. A better understanding of
quantization should provide many more examples and lead to new tools for
understanding these algebras.

The space of continuous functions on a manifold is a commutative algebra
under the operations of pointwise addition and multiplication. A bivector
field on a smooth manifold determines an antisymmetric bracket of differ-
entiable functions. If this satisfies the Jacobi identity, then it is a Poisson
bracket and can be treated as a first-order correction to multiplication. A
Poisson manifold [46] is a manifold with such a bivector field.
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62 E. HAWKINS

In this way, a Poisson manifold may be regarded as a geometrical

approximation to a noncommutative algebra. I am specifically interested
in C*-algebras here. I will say that a C*-algebra A quantizes a Poisson
manifold M if the Poisson algebra of functions on M approximates A. This
is in the general C*-algebraic approach to quantization advocated by Rieffel,
but I will clarify the definition next. This paper is concerned with the prob-
lem of constructing a quantization systematically from a Poisson manifold
with some additional structure.
1.1. Symplectic groupoids and the dictionary. Symplectic groupoids
were invented independently by Karasév, Weinstein, and Zakrzewski as a
tool for quantization. The base manifold of a symplectic groupoid is a
Poisson manifold, and when it exists, the symplectic groupoid of a Poisson
manifold is unique modulo covering and isomorphism. The Poisson structure
can be thought of as an infinitesimal structure that is “integrated” by the
groupoid. A symplectic groupoid is supposed to be an intermediate structure
on the way to quantizing its base Poisson manifold.

A specific strategy for quantizing in this way was outlined by Weinstein
[49-51]. His approach is to mainly regard the groupoid as a symplectic man-
ifold with some additional structures and to apply geometric quantization
in a particular sense known as the dictionary. This is a proposed correspon-
dence between geometric (classical) and algebraic (quantum) objects and
constructions.

Geometrical Algebraic
Symplectic manifold M Vector space
M~ (with opposite symplectic form) | Dual vector space
Cartesian product Tensor product
Lagrangian submanifold Vector

Let ¥ be a symplectic groupoid; the corresponding vector space is sup-
posed to become the algebra A. The graph of multiplication is a Lagrangian
submanifold of X7 x X7 x X; this should correspond to a vector in
A* @ A* @ A — or equivalently, a bilinear map from A x A to A; this
is supposed to be the product. The unit manifold of ¥ is a Lagrangian
submanifold; this should correspond to an element of A which is supposed
to be the unit.

This approach has only been successfully carried out for a few simple
examples; see [18, 49, 50]. The problem is that the product is only guar-
anteed to be associative if the dictionary can be implemented exactly. In
practice, most things in geometric quantization are only approximately true.
They become exact in the classical limit.

Part of the problem is that the vector space cannot be constructed from
a symplectic manifold alone. It requires additional structure including a
prequantization and polarization. The dictionary-based approach does not
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assume the polarization to be compatible with the groupoid structures in
any way.

1.2. Alternative approach. The purpose of this paper is to propose a dif-
ferent approach to quantizing Poisson manifolds using symplectic groupoids.
Rather than regarding ¥ primarily as a symplectic manifold, I treat it pri-
marily as a groupoid. I propose that quantization is a modification of the
construction of the convolution C*-algebra of the groupoid .

With this in mind, I propose a definition (Definition 4.7) of polarization
of a groupoid in parallel with the notion of polarization of a symplectic
manifold. The prototypical groupoid polarization is a simple foliation of a
groupoid such that the leaf space is also a groupoid. In some ways, I will
treat an arbitrary polarized groupoid as a stand-in for a quotient groupoid
that may not exist.

My proposed recipe for geometric quantization of a Poisson manifold M
consists of the following steps.

1) Construct an s-connected symplectic groupoid over M.

2) Construct a prequantization (o, L, V) of X.

3) Choose a symplectic groupoid polarization P of ¥. That is, some
P satisfying both the definitions of a symplectic polarization and a
groupoid polarization.

4) Construct a “half-form” bundle (or sheaf) Q%/ 2,

5) M is quantized by the twisted, polarized convolution algebra C% (X, o).
This is essentially a convolution algebra of sections of L that are polar-
ized by P.

The first four steps each entail existence and uniqueness issues. The
required structure may not exist and is not necessarily unique.

My definition of a symplectic groupoid polarization is very restrictive.
Such polarizations may not exist in sufficient generality to quantize all Pois-
son manifolds that should be quantizable. Nevertheless, this is the optimal
scenario. If the symplectic groupoid approach to quantization does not work
with this type of polarization, then it will surely not work for more general
polarizations.

I will show in examples that such polarizations actually do exist in many
cases. Not only that, but these examples appear to reproduce every example
of geometrically constructed quantization that I am aware of.

1.3. Quantization. The term “quantization” has many meanings. Planck’s
original “quantum hypothesis” postulated discrete units of energy. As the
understanding of this physics developed, it proved to be more about non-
commutativity than discreteness. Canonical quantization emerged as the
process of constructing a quantum mechanical model from a classical one,
using the canonical commutation relations between position and momentum.
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Unfortunately, the canonical commutation relations are not coordinate
independent, and canonical quantization suffers from operator ordering
ambiguities. For the most part, these problems are not seriously troubling
to physicists, but they have led to interesting mathematical abstractions,
including geometric quantization [1, 44, 53] and formal deformation quan-
tization [3].

Although the phase space of a classical system is a symplectic manifold,
formal deformation quantization applies to any Poisson manifold. A formal
deformation quantization of a Poisson manifold is an associative product on
the space C*°(M)[[R]] of smooth functions valued in formal power series in
“Planck’s constant” #. The product is required to be pointwise multiplica-
tion modulo %, and the commutator is required to be ¢h times the Poisson
bracket, modulo A2.

Because formal deformation quantization uses formal power series, it is
not possible to insert a specific value for 4. This is an unfortunate departure
from physics, where /i is Planck’s constant and conventionally set equal to
1 by many theoreticians.

A more concrete approach to quantization was initiated by Rieffel [43].
This was originally stated in terms of an h-dependent product, but it can be
restated in terms of a continuous field of C*-algebras. A strict deformation
quantization of a Poisson manifold M consists of a continuous field of C*-
algebras { A} and quantization maps Qy : C§°(M) — Ay, such that:

e For any f € C5°(M), the section h — Qn(f) is continuous.

e For each value of 7, the image of Qp densely generates Ay,.

e The map @y, intertwines complex conjugation (of functions) with the
involution (in Ap).
Qo extends to an isomorphism Qg : Co(M) — Ay.
For any f,g € C3°(M), as h — 0 the norm

| (Qn(f), Qu(9)] — Qn({f, g}l

converges to 0.

This is not intended as a complete definition, because there are many vari-
ations on this in the literature (see [21] for a review of the variations).
Based on the idea of a smoothly deformed product, it was initially
assumed that the set of h-values would be an interval, and each Q3 would
be injective. Those assumptions are overly restrictive. There is a nice
quantization of the symplectic manifold S? in which the algebras Ap~q are
finite-dimensional. In that case, the quantization maps cannot possibly be
injective and the dimension cannot vary continuously over an interval of h-
values. Instead, we should only assume that the set of h-values is dense at 0.
In my view, the main objective of quantization is a single algebra. In
these terms, that would be A;. Strict deformation is flexible enough that
A is in no way uniquely determined by the Poisson manifold. However,
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there may exist a systematic natural construction if we include additional
structure.

Imagine quantization as a contravariant functor whose codomain is the
category of C*-algebras and *-homomorphisms. The objects of the domain
are Poisson manifolds with additional structure and the morphisms are Pois-
son maps compatible with this additional structure.

In this picture, the continuous field is not the direct result of quantizing
M. Instead, the algebra of continuous sections is the quantization of a
larger Poisson manifold M x R (with the Poisson structure rescaled by the
coordinate i € R). The evaluation homomorphism from continuous sections
to Ay, should be the quantization of the inclusion map M x {h} — M x R.
In this way, the quantization functor should contain all structures necessary
to produce the continuous field for strict deformation quantization.

In this paper, I am only sketching the construction of the C*-algebra and
will not be addressing morphisms at all. The point of this is to identify
the “additional structure” needed for quantization. I am proposing that an
object in the domain of quantization consists of a Poisson manifold M, a
symplectic groupoid ¥ integrating M, a prequantization of X, a polarization
of ¥, and a choice of half-forms. All of these things will be defined in the
following.

The reader may be wondering where the quantization maps are supposed
to come from in this picture. In strict deformation quantization, the exis-
tence of quantization maps is important, but the specific maps are not. If
the Qps are changed by something of order h2, then this does not effect
the algebraic structure. What the quantization maps really do is to give a
little bit of differentiable structure to the continuous field of C*-algebras.
For f € C§°(M), the section i — Qn(f) should be seen as differentiable
at h = 0. Specifying a differentiable (or smooth) subalgebra of continuous
sections should be almost as good as defining quantization maps.

In practice there are many examples of quantization maps, but their con-
struction involves structures that are specific to classes of examples (such as
Kéhler manifolds or linear Poisson structures). For these reasons, I do not
expect quantization maps to be as natural or general as the algebras. In the
approach that I am proposing, the C*-algebra is constructed using a sym-
plectic groupoid. With such a geometrical construction, it is very plausible
that there will be a nice “smooth” subalgebra of the C*-algebra; this would
compensate for the lack of a general quantization map.

In the end, strict deformation quantization may not be essential to quan-
tization. It provides some of the motivation, but if there is a functor that
produces strict deformation quantizations in many but not all cases, then
that is still interesting.

I will discuss in Section 5.5 the likely ambiguity in the choice of C*-
completion. This means that there may be more than one quantization
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functor, depending upon the recipe for choosing a norm. Perhaps only
one of these choices will lead to strict deformation quantizations, but other
choices may have other interesting properties.

1.4. Synopsis. I begin in Section 3 by reviewing the standard geometric
quantization of symplectic manifolds. This constructs a Hilbert space, but
the relevant C*-algebra is that of compact operators. Of course, a sym-
plectic manifold is a special type of Poisson manifold. The algebra can be
constructed directly using the pair groupoid, and this case motivates my
general approach.

In Section 4, I discuss the ingredients of my quantization recipe. I review
the results of Weinstein, Xu, Crainic, and Zhu on the prequantization of
symplectic groupoids and fill in some additional details. T also present some
related results which will be useful later. Then I present my definition of a
groupoid polarization, Definition 4.7.

In Section 5, I discuss the twisted, polarized C*-algebra itself. I give a
preliminary definition which only applies to well-behaved cases; neverthe-
less, this definition is sufficient for most of the examples. I also extend the
definition a little further using the idea of Bohr—Sommerfeld quantization
conditions, which are quite standard in geometric quantization. A more
complete definition is deferred to a future paper.

In Section 6, I present a series of examples in which my procedure repro-
duces known examples of quantization of Poisson manifolds.

In Section 7, I present some tools for working with polarizations of
groupoids. In particular, for real polarizations of a groupoid, I present the
corresponding structure of a real polarization of a Lie algebroid. This leads
to a definition for a real polarization of a Poisson manifold. It also reveals
some limitations on real polarizations.

Lest the reader suspect that this procedure only reproduces known exam-
ples, I present further examples in Section 8. Some of these are just examples
of polarizations, in other cases I do sketch the construction of the algebra.
In Section 8.1, I show how this construction returns the correct algebra of
functions when the Poisson structure is 0. In Section 8.2, I apply my con-
struction to affine Poisson structures on vector bundles and show that this
gives twisted convolution C*-algebras of Lie groupoids. In Section 8.3, I
construct a large class of polarizations from complex structures on Poisson
manifolds. In Section 8.4, I construct symplectic groupoids and polarizations
for Poisson structures that are locally induced by Abelian group actions, and
construct the quantizations explicitly in some examples.

2. Groupoid preliminaries

I will assume that the reader is familiar with the basic definitions of Lie
groupoids. For this background, see [35, 8, 37, 30]. I use the term “Lie
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groupoid,” but the terms “smooth groupoid” and “differential groupoid”
are also used synonymously in the literature. All groupoids here are Lie
groupoids.

A Lie groupoid homomorphism is a smooth map between Lie groupoids
that is a functor if the groupoids are viewed as categories.

Given a groupoid G, I denote by G, C G* the k-nerve; that is, the set of
composable chains of k elements. The 0-nerve Gy is the base manifold of G,
which I usually call M. I use the following notations for the structure maps
of a generic groupoid. The unit is 1 : M < G, but I usually treat M as a
submanifold, unless I need to refer to the inclusion explicitly. The source
and target maps are s,t : G — M. The multiplication map is m : Go — G,
but for a composable pair (v,n) € Ga I denote multiplication by apposition
or a dot as yp = v -n = m(v,n). The inverse map is inv : G — G, but
for v € G I denote its inverse as y~! = inv(7). I also denote the Cartesian
projections to the first and second factors of G? as pry,pry : Ga C Gz g.

The nerve of a groupoid has a natural structure as a simplicial manifold.
The maps s, t, m, pry, and pry are face maps. This structure gives a simpli-
cial coboundary operator 9* on differential forms on the nerve, Q°(G,). In
particular, for 0 € Q°*(M),

90 :=t"0 —s*0 € Q*(G)
and for w € Q*(G),
(2.1a) O*w :=prjw —m*w+ pryw € Q°(Ga).
Definition 2.1. A differential form w € Q°*(G) is multiplicative if
(2.1b) J*w = 0.
A symplectic groupoid [48] is a groupoid ¥ with a multiplicative symplectic
form w € Q?(X). (I usually denote a symplectic groupoid as X.)

It will also be useful to extend the simplicial coboundary to line bundles,
in a multiplicative sense. If A is a line bundle over M and G is a groupoid
over M, then

N :=t"A®s"A*
is a line bundle over G. If L is a line bundle over G, then
(2.2) OL:=pri L®m"L* ® pry L

is a line bundle over Gs. This continues so that the coboundary of a line
bundle over Gi is a line bundle over Gi1. The coboundary of a cobound-
ary, 0*0*L, is a canonically trivial line bundle. If L is equipped with a
connection, then 0* L inherits a connection, and

curv 0L = 0*(curv L).

A section of a line bundle o € T'(Gk, L) has a multiplicative coboundary
0*c € T'(Ggy1,0*L).
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It is standard terminology to use s as a prefix to describe a property of
the fibers of s : G — M. Hence G is s-connected if the fibers are connected,
s-simply connected if they are simply connected, and s-locally trivial if they
form a bundle. These properties are exactly the same as “t-connected” etc.,
but it is just conventional to refer to s.

T also use a superscript to denote certain subbundles of the tangent bundle,
namely T°G := ker T's C T'G and likewise TG and T™Gs.

I denote an arbitrary Lie algebroid over M as A. Every Lie algebroid
anchor map is denoted as # : A — TM. This includes the anchor map
given by a Poisson structure # : T*M — TM and even the map given by
the symplectic structure on a symplectic groupoid, # : T*%X — T>. When
there is a real danger of confusion, I will use a subscript to indicate which
anchor map it is.

I denote by A the Lie functor from the category of Lie groupoids (and
smooth homomorphisms) to the category of Lie algebroids, see [35]. This
restricts to the classical Lie functor from Lie groups to Lie algebras.

I denote by G the inverse of A (see [14]). The domain is the full sub-
category of integrable Lie algebroids (that is, the image of A). If A is an
integrable Lie algebroid, then G(A) is the unique (up to isomorphism) s-
connected and s-simply connected groupoid such that A = AG(A). I call
G(A) the integration of A, but I will say that any s-connected groupoid G
with A(G) = A integrates A.

If M is a Poisson manifold, then the cotangent bundle T*M with the
Koszul bracket is a Lie algebroid. I will say that a symplectic groupoid
over M integrates M if t is a Poisson map; ¥ is a symplectic integration
of M if and only if it is a groupoid integration of T*M. Any Lie groupoid
integrating this has a natural symplectic groupoid structure. I will denote
the symplectic integration by (M) := G(T*M) (see [15]).

Any manifold can be regarded as a groupoid, with every point a unit.
Given a manifold, we can also construct the pair groupoid Pair(M) := M X
M; note that this integrates T'M. If M happens to be a symplectic manifold,
then the pair groupoid is a symplectic groupoid if we give it the symplectic
structure of M x M~, where M~ is M with the symplectic form reversed.
In this case Pair(M) is a symplectic integration of M.

For an arbitrary manifold, there is also the fundamental groupoid M(M).
This is the s-simply connected cover of Pair(M), hence N(M) = G(TM). If
M is symplectic, then M(M) inherits a symplectic groupoid structure from
Pair(M), and £(M) = N(M).

Given a Lie groupoid G over M, we can construct another Lie groupoid
simply by applying the tangent functor. The unit manifold of T'G is T'M,
the source map is T's : TG — T'M, the multiplication is Tm : TGy — TG,
etc. The complexified tangent bundle T¢G is a groupoid in the same way.
This tangent groupoid is very important for my definition of polarization,
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but it should not be confused with Connes’ tangent groupoid [9], which is
also used in an example of quantization.

The cotangent bundle TG is a groupoid as well, but in a very different
way. This is a symplectic groupoid over A*(G), the dual vector bundle of
the Lie algebroid. This is an important example in Section 6.3.

3. Geometric quantization

For background on geometric quantization, see [1, 2, 44, 53]. Let (M,w) be
a symplectic manifold. Geometric quantization constructs a Hilbert space
based on (M,w). The C*-algebra is that of compact operators on this Hilbert
space. However, the construction requires a little more structure than just
the symplectic form.

The first step of the geometric quantization procedure is known as pre-
quantization. In the formulation of Kostant, this means the construction of
a Hermitian line bundle L over M with connection V and curvature w. Such
an L exists if and only if the cohomology class of w/27 is integral. There
is an equivalent formulation due to Souriau using a circle bundle instead.
This is just the principal T-bundle associated to L.

3.1. Polarization. The space of smooth sections of L is too large for geo-
metric quantization. We can restrict to a smaller class of sections by using
a polarization.

Definition 3.1. A polarization of a symplectic manifold (M, w) is an invo-
lutive (that is, integrable) Lagrangian distribution F C TcM. A section
Y € I'(M, L) is polarized if

(3.1) 0=Vxy VXelF.

I define polarized sections for other line bundles in the same way.

For two vector fields X,Y € I'(M, F) and a polarized section ¢ € T'(M, L),
the definition of curvature shows that

0=[Vx,Vy]_¢ = Vixy¥ + iw(X,Y ).
The involutivity of F implies that the first term vanishes. Since F is
Lagrangian, it is in particular isotropic and this means that the second
term vanishes. “Lagrangian” is equivalent to “isotropic of maximal dimen-

sion.” We can interpret the definition of polarization to mean that (3.1) is
as restrictive as possible while still being consistent.

Definition 3.2. If FNF = 0 then F is totally complex (or Kdhler). A real
polarization is an involutive Lagrangian real distribution F C T'M.

If a (complex) polarization satisfies F = F, then it is the complexification
of a real polarization. In this way, I will regard real as a special case of
complex.
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In general, the real part, F NT'M is not necessarily of constant rank, but
if it is then it is an involutive distribution, that is, a foliation. In that case,
F + F C TcM is a subbundle, but is not necessarily involutive. We can
choose to assume that these are very well behaved.

Definition 3.3. The (generally singular) distributions D,& C TM are
defined by D¢ := FNF and & := F + F. A polarization F is strongly

admissible if there exist manifolds and surjective submersions M S M /D 5
M/E such that D and £ are the the kernel foliations, D = kerTp and
E=kerT(qop).

3.2. Hilbert space. The next step is to construct a Hilbert space L%(M, L)
based on the polarized sections of L. Assume that F is a strongly admissible.
There are two important subtleties.

The naive approach would be to define L?(M, L) using the symplectic
volume form, and then to consider the Hilbert subspace densely spanned by
polarized sections. However, a polarized section is covariantly constant along
the leaves of D, and if these leaves are noncompact, then polarized sections
are not square-integrable. This is solved by recognizing that a polarized
section is equivalent to a section over M/D. However, there is (in general)
no natural volume form on M /D, so we must absorb the volume form into
the choice of line bundle.

Before considering this, we should recall a couple of standard concepts
which will be important throughout this paper.

Definition 3.4. If A is a (real or complex) line bundle, then a square root
of A is another line bundle v/A equipped with a specific isomorphism vA ®
VA=A

This may not exist, and if it does it may not be unique. For A a complex
line bundle, v/A exists if and only if ¢;(A) = 0 € H?(M;Zs). For a real
line bundle, ¢;(A) = 0, so /Ac always exists, but a real square root VA
only exists if A is orientable (that is, trivial); in that case there exists a
unique preferred choice of v/A which is real and orientable. Think of this
as the positive square root. For both real and complex line bundles, the
nonuniqueness of v/A is the freedom to take a tensor product with a real
line bundle, and this is classified by H'(M;Zs). By the Leibniz rule, any
connection on A determines an equivalent connection on \/K

Definition 3.5. If F C TcM is a distribution, then its annihilator (or
conormal) bundle is

Fr={¢eT*M|VX € F:(X,€) =0}.

If 7 is an involutive distribution, then the Bott connection is the flat
F-connection on FL that equals the Lie derivative. That is,

Vyé = Lxé =X d¢
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for any X € I'(M,F) and ¢ € I'(M,F*). The Bott connection extends to
any bundle constructed from F*, including v AmaxF-L

For a moment, consider the case that F is a real and strongly admissible
polarization. Pulling back A™*T*(M/F) to M gives the bundle A™*FL,

Now (if possible) construct the positive square root bundle vVAmaxFL A
section of VAmaxFL ig the pull-back of a section of /A™aXT*(M/F) if and
only if it is F-constant by the Bott connection, that is, it is polarized.
Combining the connection on L with the Bott connection gives a flat
F-connection on L ® VAmaxFL  Define a section of L ® VAmaxFL to be
polarized if it is F-constant by this connection. The local inner product
of two polarized sections is an F-constant section of /\maxfé‘; this can be
integrated over M/F to define the global inner product for L% (M, L).

If F is not real, then the local inner product is valued in VAmaxFLl
VAmax FL rather than /\maXDé. However, there is a natural isomorphism

Amaxfj_ ® AmaXf-J. ~ /\maxg(é ® /\maxDé_,

and the exterior product with “’k—’f (where 2k :=rk & —rk D) defines a canon-
ical isomorphism A™&XgL =2 AmaxDL - This corrects the inner product and
gives a (fairly) general definition of L% (M, L).

The bundle vV Am2xFL is known as a “half-form bundle.” Although I have
not indicated it explicitly, L% (M, L) does depend on this. The subscript F
should be understood to represent the choice of polarization and half-forms.

The second subtlety is that a polarized section of L ® vV A™axFL is covari-
antly constant along D-leaves. This is locally consistent, because D is
isotropic and hence the connection restricted to a D-leaf is (locally) flat.
However, if a D leaf is not simply connected, then the connection deter-
mines a holonomy homomorphism 7 (leaf) — T. If this is nontrivial, then
any polarized section must vanish on this leaf.

When there is nontrivial holonomy, it varies continuously over M /D and
is typically nontrivial over a dense subset. This means that global polarized
sections must vanish over a dense subset. Continuity implies triviality.

The usual solution to this paradox is to instead use distributional polar-
ized sections supported on the union of D-leaves with trivial holonomy, a
subset of M known as the Bohr—Sommerfeld variety, Mp g. In practice, this
means working with sections over Mp g/D.

This is a pragmatic solution, but it lacks a theoretical justification and
it does not always work. There are other reasons that the Hilbert space of
polarized sections may be “too small.” For example, if the leaves of a real
polarization are dense or a Ké&hler metric is negative definite, then there
may be no global polarized sections.
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There is a plausible solution to all of this using so-called “cohomological
wave functions” (see [53]). Local polarized sections of L ® VA™aXFL form
a sheaf. The space of global polarized sections is the Oth sheaf cohomology
space. It has been proposed that the correct Hilbert space is a completion
of the total sheaf cohomology. The only problem is to construct a natural
inner product and this has not been solved.

However, we can conclude that the simple construction of L%(M, L) from
the smooth, polarized, global sections is probably correct if and only if the
higher degree cohomology vanishes.

Example. The canonical example of a symplectic manifold is a cotangent
bundle 7% N. This is the phase space for a physical system with configuration
space N. The canonical choice of polarization F is the foliation whose
leaves are the cotangent fibers. In this case there are no Bohr—Sommerfeld
conditions and the prequantization L is trivializable, so the Hilbert space is

L%(T*N,L) = L%(T*N) = L? (T*N/F) = L*(N).
The polarized phase space behaves like the configuration space.

This is the simplest instance of an important guiding principle. In the
simplest cases, a polarized space behaves like its quotient by the polarization.

3.3. Algebra. As I stated in the introduction, the quantization problem
that concerns me here is the construction of a noncommutative C*-algebra
that is approximated by the Poisson algebra of functions on M. For standard
geometric quantization of a symplectic manifold, that algebra is the C*-
algebra of compact operators, K[L%(M, L)].

This is very specific to symplectic manifolds. A generic Poisson manifold
will not quantize to the algebra of compact operators on a Hilbert space. In
order to generalize geometric quantization from the symplectic case, we need
to break free of the Hilbert space and construct the algebra directly. This can
be done by working over the (symplectic) pair groupoid Pair(M) = M x M.

Let’s temporarily restrict to the well-behaved case, so that the Hilbert
space L% (M, L) is densely spanned by smooth, polarized sections of L ®
VAmax FL  The algebra IC[LQI(M , L)] is densely spanned by “ket-bras” —
products over Pair(M) of a section and a complex conjugate section. There
is a dense subalgebra whose elements are given by polarized sections of

(Lo VAmFL) & (Le VA FL)

over Pair(M). The X denotes the outer tensor product of vector bundles
over a Cartesian product space.

This algebra is a twisted and polarized convolution algebra over Pair(M).
It relates to the convolution algebra in the same way that L% (M, L) relates
to L2(M).
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The “twist” is the line bundle L X L. Its curvature is the symplectic form
of Pair(M). So, LKL serves as a prequantization of the symplectic groupoid
Pair(M).

This bundle has more structure than just its connection. The inner prod-
uct on L allows us to multiply vectors in different fibers of L X L; denote
this product as ¢. This is an elementary example of a groupoid cocycle. In
general, a twisted groupoid C*-algebra is constructed using a line bundle
and a cocycle; see [39] and Section 5.2.

The second modification is polarization. The modified convolution alge-
bra of the pair groupoid is composed of sections which are polarized by

F x F C Te(Pair M).
I will denote this algebra as

K[LF(M, L)] = C%. #(Pair M, o).

This suggests my general recipe for quantization of a Poisson manifold
M. The algebra should be a twisted, polarized groupoid algebra

Cr(X,0)

where X is a symplectic groupoid integrating M, P is a polarization of X,
and o denotes a prequantization of X.

All of the issues that must be considered in constructing the inner product
over M translate into issues in the construction of the convolution product
over the groupoid. Because of the polarization, we do not have the luxury
of starting with compactly supported sections. Likewise, if D # 0, then
the domain of integration in the definition of convolution must be modi-
fied. The holonomy problem remains as well and may force us to start with
distributional sections.

4. The ingredients

Before considering the recipe for the algebra, we need to prepare the ingre-
dients.

4.1. Integration. The first ingredient is a symplectic groupoid.

If 3 is a symplectic groupoid over a manifold M, then there exists a
unique Poisson structure on M such that t : ¥ — M is a Poisson map. The
Lie algebroid A(X) is naturally identified with the cotangent bundle 7% M;
the anchor map # : T*M — TM is given by contraction with the Poisson
bivector 7, and the Lie algebroid bracket is the Koszul bracket of 1-forms.

We can look at this from the other direction, by starting with a given
Poisson manifold M and trying to construct a symplectic groupoid over
it. The Lie algebroid structure on T*M is fixed by the Poisson structure,
so the groupoid structure is given locally by the Poisson structure. If the
s-fibers of a symplectic groupoid are not connected, then there is some global
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structure which is not given by the Poisson structure. That is not relevant
to the quantization of M, so I will assume that the groupoid is s-connected.

Definition 4.1. If M is a Poisson manifold, then a symplectic groupoid %
over M integrates M if t : ¥ — M is a Poisson map and ¥ is s-connected.
A Poisson manifold M is integrable if such a symplectic groupoid exists.

A complete understanding of integrability was achieved by Crainic and
Fernandes [15]. They presented a computable necessary and sufficient con-
dition for integrability. A Poisson manifold is integrable if and only if T* M
is integrable to a Lie groupoid. If 3 integrates a Poisson manifold M, then
t: X — M is a complete symplectic realization, and conversely, if a complete
symplectic realization of M exists, then M is integrable.

Unfortunately, this notion of integrability does not include the usual cozy
assumption of Hausdorffness. In the theory of Lie groupoids, it is often nec-
essary to consider non-Hausdorff groupoids. However, the base manifolds,
algebroids, and the s and t fibers are usually assumed to be Hausdorff. Non-
Hausdorff groupoids raise many delicate issues, which I do not attempt to
address in this paper.

If M is an integrable Poisson manifold, then there exists a unique s-simply
connected symplectic groupoid integrating M.

Definition 4.2. If M is an integrable Poisson manifold, then the symplec-
tic integration (M) is the unique s-simply connected symplectic groupoid
integrating M.

As a groupoid, this is £(M) = G(T*M), the unique s-simply connected
groupoid integrating the Lie algebroid 7M. Any symplectic groupoid inte-
grating M is a quotient of ¥ (M).

It would be tempting to just use (M) in the quantization construction.
However, in the motivating example of a symplectic manifold M, the relevant
symplectic groupoid was Pair(M). This is a symplectic groupoid integrating
M, but it is not isomorphic to X (M) unless M is simply connected.

So, to quantize a Poisson manifold M, the first ingredient in this recipe
is some symplectic groupoid ¥ integrating M.

This entails existence and uniqueness issues. Such a groupoid only exists if
M is integrable. This should be seen as a potential obstruction to quantiza-
tion. In general, the symplectic groupoid is not unique, although all possible
choices are quotients of ¥ (M). This should be viewed as an ambiguity in
the quantization process.

4.2. Prequantization. Prequantization of symplectic groupoids has been
studied by Weinstein and Xu [52], by Crainic [13], and by Crainic and Zhu
[16]. I summarize their relevant results and fill in some more details.
Prequantizing a symplectic groupoid ¥ involves a little more structure
than simply prequantizing 3 as a symplectic manifold. There are again
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two different but equivalent perspectives on prequantization: the Souriau
picture (in terms of circle bundles) and the Kostant picture (in terms of
line bundles). The contrast between these perspectives becomes greater,
but both perspectives are useful. I favor the Kostant picture, because it is
better suited to the construction of the algebra.

The purpose of prequantizing a symplectic groupoid is eventually to con-
struct twisted polarized convolution algebras, but it is useful to first concen-
trate on the structure needed just to define a twisted convolution algebra.
This is meaningful for an arbitrary groupoid.

Let L be a line bundle over a groupoid G. In order to define a convo-
lution algebra with coefficients in L, we need an associative way of multi-
plying fibers of L over different points; this means, for a composable pair
of groupoid elements (v,n) € Ga, a bilinear map o(v,n) : Ly ® L, — L.,.
To construct a C*-algebra, we also need a norm and an (antilinear) adjoint
*: Ly — Ly-1. A vector bundle with these structures is known as a Fell
bundle [17, 28, 54].

We can equivalently think of o as a section of

(4.1) O'L* =pri L* @ m"L @ pry L*

over Ga, see (2.2). Associativity means that the (multiplicative) coboundary
of o equals 1.

Because L is a line bundle, the norm and adjoint are equivalent to a
Hermitian inner product on L. The cocycle ¢ must have norm 1 everywhere.
So the structure we need can be summarized as: a Hermitian line bundle
with a norm 1 cocycle. This is the Kostant picture of a twist.

There is an equivalent Souriau picture. A Hermitian line bundle is equiv-
alent to a circle bundle (the set of elements in L* with norm 1). A cocycle
o gives this circle bundle the structure of a groupoid, which I denote as G°.
In fact, it is a T-extension:

(4.2) TxM <G’ —g.

This is a short exact sequence of groupoids in the following sense: as a
subgroupoid, T x M acts on G? (from the left, say); the second map is a
fibration (see Definition 4.12) and its fibers are the orbits of the T x M action.
Any T-extension is given by a Hermitian line bundle and multiplicative
cocycle. The set of isomorphism classes of T-extensions of G forms a group
Tw(G); see [26, 27, 29].

Given an extension, G7, applying the functor A to (4.2) gives a Lie alge-
broid extension,

(4.3) 0—-RxM—AG?)—A(G) — 0.

As a short exact sequence of vector bundles, this can be split, and a split-
ting identifies A(G7) = A(G) ® (R x M) as vector bundles. With such an
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identification, the bracket is of the form,

(4.4) [(€: 1), (€ 9)]age = (€, Clag, Laeg — Lucf + (&, Q)

The term c is a Lie algebroid cocycle. This defines a characteristic class map
¥ : Tw(G) — HE (AG), [o] — [c] to Lie algebroid cohomology; see [13].

Theorem 4.1. For G any s-simply connected Lie groupoid, ¥ : Tw(G) —
HE. (AG) is injective.

Proof. Let G7 be some T-extension of G. The class V(o) determines the Lie
algebroid extension (4.3) modulo isomorphism. Obviously, all three terms
are integrable Lie algebroids, so we can apply the integration functor G to
this Lie algebroid extension and get a sequence of groupoids,

(4.5) R x M — GA(G°) —» G.

The first map is not necessarily injective. The groupoid GA(G?) is the
s-simply connected cover of G?. In order to recover a T-extension from
this, quotient R by 27 Z and GA(G?) by the image of 2w Z. The result is
isomorphic to the extension (4.2) for G. O

Now we can turn to prequantization of symplectic groupoids. A prequan-
tization of X should be both a prequantization of 3 as a symplectic manifold
and a twist of ¥ as a groupoid. In order for convolution to be compatible
with polarization, the twist must be compatible with the connection on L;
this means that the cocycle o should be a covariantly constant section of
0*L over Y.

Definition 4.3. A prequantization of a symplectic groupoid Y consists of a
Hermitian line bundle L — ¥ with connection and a section o € I'(3g, 9* L*)
such that:

1) The curvature of L equals the symplectic form;
2) o is a (multiplicative) cocycle and has norm 1 at every point;
3) o is covariantly constant.

As a shorthand, I will usually refer to a prequantization (o, L, V) simply
as o. This avoids clutter in the notation for a twisted polarized convolution
C*-algebra.

In the Souriau picture, a prequantization of G is a T-extension of G which
(as a T-bundle) is equipped with a connection that has curvature w and is
compatible with the groupoid structure.

The curvature of 0*L* is —0*w = 0, because the symplectic form is mul-
tiplicative. A covariantly constant cochain o € I'(3q, 0*L*) therefore exists
if and only if the holonomy of 0*L* is trivial. If ¥y is connected, then o is
unique up to an irrelevant multiplicative constant.

Consider 1*L, the restriction of L to the identity submanifold M C .
The cocycle o makes 1*L into a bundle of algebras, each isomorphic to
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C. There is thus a unit section of 1*L over M. Compatibility of ¢ with
the connection implies that this unit section is covariantly constant, so the
connection 1*L must be flat and have trivial holonomy. In fact, one of the
elementary properties of a symplectic groupoid is that the unit submanifold
is Lagrangian, so the curvature of 1*L is automatically

curv1*L = 1*w = 0.

So, the only necessary condition for this unit section to exist is that 1*L
have trivial holonomy.

Weinstein and Xu [52] showed that this condition is not just necessary
for prequantization — it is sufficient.

Theorem 4.2. [52] If ¥ is a symplectic groupoid and L — X is a Hermitian
line bundle with a connection such that the curvature equals the symplectic
form and 1*L has trivial holonomy, then any covariantly constant norm 1
section of 1*L is the unit section for a unique cocycle making this a prequan-
tization of X.

They also proved that if ¥ is s-connected, s-simply connected, s-locally
trivial, and (symplectically) prequantizable, then such an L exists and is
unique.

Crainic [13] proved a more general prequantizability result by study-
ing the integrability of the Lie algebroid extension (4.3). This was further
improved by Crainic and Zhu [16]. See also [4]. Suppose that ¢ : S — M
is a smooth map whose image lies in a single symplectic leaf of a Poisson
manifold M. That symplectic leaf has a well-defined symplectic form wr et
which can be pulled back to S2. The monodromy [15] of ¢ is the first-order
variation of the integral |, g2 P WLeaf- The map ¢ has trivial monodromy if
this integral is unchanged to first order when ¢ is perturbed. Equivalently,
¢ has trivial monodromy if it is the base map of a homomorphism of Lie
algebroids T.S? — T*M.

Definition 4.4. [16] The periods of a Poisson manifold M are the integrals

/ SO*WLeaf
52

for such smooth maps ¢ : S — M with trivial monodromy.

Theorem 4.3. [13, 16] For an integrable Poisson manifold M, the sym-
plectic groupoid (M) is prequantizable if and only if all the periods of M
are integer multiples of 2m. If so, the prequantization of (M) is unique.

If a symplectic groupoid is not s-simply connected, then prequantization
may not be unique. This nonuniqueness is described as follows.

Theorem 4.4. Let 3 be a prequantizable symplectic groupoid over M. Any
prequantization of ¥ determines a bijection from H(X, M;T) to the set of
isomorphism classes of prequantizations of 3.
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Proof. By Theorem 4.2, a prequantization of X is equivalent to a Hermitian
line bundle with curvature w, trivial holonomy over M, and a choice of
covariantly constant unit section of 1*L.

Choosing a unit section is equivalent to choosing a value in each connected
component of M. If the line bundles for two prequantizations are isomorphic,
then there is enough freedom in the choice of isomorphism to identify the
unit sections. So, the isomorphism classes of prequantizations are in bijective
correspondence with the isomorphism classes of Hermitian line bundles with
curvature w and trivial holonomy over M.

If L and L’ are two such bundles, then their ratio L'® L* is a flat Hermitian
line bundle with trivial holonomy over M. Conversely, if A is a flat Hermitian
line bundle with trivial holonomy over M, then the tensor product A ® L
is another Hermitian line bundle with curvature w and trivial holonomy
over M. So, picking one prequantization gives a bijective correspondence
between isomorphism classes of prequantizations and such flat line bundles.
The set of (isomorphism classes of) flat Hermitian line bundles over ¥ is
equivalent to the cohomology group H'(¥;T).

The target map t : ¥ — M is a right inverse of the unit map 1, so M
is a retract of ¥. This means that 1* : H*(X;T) — H®*(M;T) is surjective
and the cohomology long exact sequence breaks into short exact sequences,
including

0— HYS,M;T) —» H(S;T) 5 HY(M;T) — 0.

The flat bundles we are interested in are those which become trivial when
restricted to M. These are classified by the kernel of 1* : H'(%;T) —
H'(M:;T), but the exact sequence shows that this is just the relative coho-
mology group H' (3, M;T). O

Note that if ¥ is s-connected and s-locally trivial, then this relative coho-
mology is the cohomology of the s-fiber.

For a Poisson manifold, the Lie algebroid cohomology of T*M is canon-
ically isomorphic to the Poisson cohomology of M, HP, (T*M) = Hy(M)
[62, Lemma 2.1]. The characteristic class of a prequantization of a sym-
plectic groupoid is just the class of the Poisson bivector itself [7] € H2(M).
In this way, the problem of prequantization is partly a matter of finding an
element of Tw(G) in the preimage ¥~![x].

4.3. Polarization of groupoids. Let G be an arbitrary Lie groupoid, and
P C TcG an involutive distribution. My objective is to construct a C*-
algebra from polarized (covariantly P-constant) sections of some line bundle
over G.
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There are many technical issues in constructing this algebra, but I will
completely ignore these for a moment in order to derive the necessary condi-
tions on P for such an algebra to be plausible. In this spirit, I am temporar-
ily pretending that the product is simply convolution on G; the product is
actually more complicated, but that discussion is postponed until Section 5.

Suppose that a and b are both polarized sections, that is, VX € P: 0 =
Vxa = Vxb. A C*-algebra should be closed under multiplication, so the
first question is, is the convolution a * b polarized?

The convolution product a * b is defined by integrating prj aprjb over
the fibers of m : Go — G. Taking the derivative Vx(a * b) corresponds to
taking the derivative of pr} a pri b by some (any) vector X € TcGa such that
Tm(X) = X. The integration can absorb differentiation along I8Ge =
ker T'm, and this is reflected in the freedom to choose X modulo T8Ga. Now
the question becomes,

? * * * * * *
0=Vx(priapryb) = Prl(varl(X)a) pry b+ prja Pr2(var2(X)b)-

This is satisfied if Tpry(X),Tpry(X) € P, so X expresses X € P as a
product (in the tangent groupoid TcG) of two other vectors from P.

On the other hand, the multiplication map for a C*-algebra is very nearly
surjective. (Any element is a finite sum of products.) This suggests that if
0 = Vx(ax*b) for any polarized a and b, then X € P. This means that any
product of vectors from P is also in P; in other words, P is multiplicatively
closed.

Putting these two conditions together gives the following definition for
compatibility between P and the groupoid product.

Definition 4.5. For any distribution P C TG, denote Py := (PxP)NIcGa.
P is multiplicative if for any (v,n) € Ga:

Tm (P2 () = Pyn C T;Cng.

Tang [45] has also given a definition for a “multiplicative distribution”
over a groupoid. This is formulated in terms of paths tangent to P, so it
only applies to real distributions. For real distributions, his definition is
equivalent to half of my definition: the condition that T'm (732 (%n)) 2 Pyy.

Example. A vector field X € X!(G) is multiplicative [36] if it is a groupoid
homomorphism when viewed as a map X : G — TcG. A nonvanishing vector
field spans a (rank 1) distribution. If the vector field is multiplicative, then
this distribution is multiplicative.

Example. For any Lie groupoid G, the source and target tangent bundles,
T°G and TG are multiplicative distributions.
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Note that this definition can also be expressed (more simply) in terms of
the annihilator P+ C T¢G. P is multiplicative if and only if

m*P+ = pri P+ 4 pry PL.
This is obviously similar to the condition (2.1) for a differential form to be
multiplicative.

Example. For any nonvanishing 1-form § € Q!(G), the set of vectors normal
to @ is a distribution. If 6 is a multiplicative 1-form, then this normal
distribution is multiplicative.

Example. In the Souriau picture, prequantization of a symplectic groupoid
Y gives a T-extension > with a compatible connection. The connection can
be expressed as a horizontal distribution on 3?. The compatibility between
the connection and groupoid structure means precisely that this distribution
is multiplicative. This is an example of a multiplicative distribution which
is mot involutive.

Multiplicativity is the compatibility of a distribution with the groupoid
multiplication. In order to construct a x-algebra, we also need compatibility
with the groupoid inverse. In a convolution algebra, the adjoint is a* :=
inv* a, where a is the complex conjugate, and inv : G — G is the groupoid
inverse map. If a is polarized, then a* should also be polarized: VX € P

0% Vxa*=Vyinv'a = inv* Vi, ga
This is true if T'inv(X) € P. So, we should require the following.
Definition 4.6. A distribution P C TcG is Hermitian if T inv(P) = P.
This leads to my main definition.

Definition 4.7. A polarization of a Lie groupoid G is an involutive, multi-
plicative, Hermitian distribution P C TcG. A polarization of a symplectic
groupoid 3 is a polarization in both the symplectic and groupoid senses —
that is, an involutive, multiplicative, Hermitian, Lagrangian distribution.

The issues of existence and uniqueness for groupoid polarizations are
largely unexplored. I begin to investigate these questions in Section 7, but
this is mostly left to future work.

4.4. Real and strongly admissible polarizations.

Definition 4.8. A real polarization (of a symplectic manifold, groupoid, or
symplectic groupoid) is a real distribution P whose complexification Pc is
a polarization.

The complexification P¢ is preserved by complex conjugation, and any
complex distribution that is preserved by complex conjugation is the com-
plexification of a real distribution. In this way, I consider real polarizations
to be a special case of complex polarizations.
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Definition 4.9. A Lie algebroid-groupoid (defined in [33, 34], but called
an LA-groupoid) is a Lie groupoid that is also a Lie algebroid; the unit
manifold is also a Lie algebroid, and all the structure maps are Lie algebroid
homomorphisms. A sub Lie algebroid-groupoid is a subset that is both a Lie
subalgebroid and a Lie subgroupoid.

TG is the fundamental example of a Lie algebroid-groupoid. It is a Lie
algebroid of the double groupoid Pair(G). A sub Lie algebroid-groupoid is
automatically a Lie algebroid-groupoid.

Definition 4.10. A wide subalgebroid [35] is one that shares the same
base manifold. A full subgroupoid [35] is one that shares the same unit
submanifold.

In general, the base of a subalgebroid is a submanifold. A wide subal-
gebroid is a subbundle in the usual sense, having a fiber over every point.
This discrepancy between the terminologies for groupoids and algebroids is
unfortunate.

Theorem 4.5. A real polarization of a Lie groupoid G is precisely a wide
sub Lie algebroid-groupoid P C TG.

Proof. An involutive real distribution is precisely a wide subalgebroid of the
tangent bundle.
For a real polarization of a groupoid, the Hermiticity condition
simplifies to
TinvP =P.

Multiplicativity and Hermiticity now mean that P C TG is a subgroupoid.
O

The best behaved case of a real polarization P C T'G is one that integrates
to a sub double groupoid of Pair(G). (See [5] for the definition of a double
Lie groupoid.) This relates polarization to the following concept.

Definition 4.11. A smooth congruence [23, 35] of a Lie groupoid G is a
closed, embedded sub double Lie groupoid of Pair(G) that is full over G.

Example. If G is a Lie group and H < G is a normal Lie subgroup, then
the subset

{(9.9") € Pair(G) | g~'¢’ € H}

is a smooth congruence of G. Any smooth congruence of G is of this form.

In this way, a congruence is a generalization of a normal subgroup. It
is the most general structure for defining a quotient groupoid. As a full
subgroupoid of Pair(G), a congruence is an equivalence relation; the set of
equivalence classes is the quotient groupoid.
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The projection from a Lie groupoid to a quotient is a fibration.

Definition 4.12. A fibration [23, 35] of Lie groupoids is a smooth
homomorphism ® : G — G’ such that the base map ®p : Gy — G|, and
the map

(®,s): G — G t+xa, Go

are surjective submersions.

Conversely, any fibration of Lie groupoids determines a smooth con-
gruence as its “kernel.” So, the notions of fibration and congruence are
equivalent.

A real polarization P C T'G is in particular a foliation. If P integrates to
a congruence, then the foliation is simple and the quotient groupoid is the
leaf space. I will denote the quotient groupoid as G/P.

This suggests another definition, analogous to Definition 3.3 for complex
polarizations of symplectic manifolds.

Definition 4.13. For a (complex) polarization P C TcG of a groupoid, two
(generally singular) distributions D,& C T'G are defined by D¢ := P NP
and & := P + P. The polarization P is strongly admissible if there exist

groupoids and fibrations G ke G/D S G/E such that D = kerTp and
& =kerT(qop).

In any case, if D has constant rank, then it is a real polarization of G. If P
is a strongly admissible polarization, then D and £ are themselves strongly
admissible real polarizations. However, if P is a symplectic groupoid polar-
ization, then D and £ will not be symplectic groupoid polarizations, unless
D=&E="7P.

A strongly admissible real polarization is equivalent to a fibration whose
fibers are connected. The kernel foliation P = kerT'® of a fibration is
always a strongly admissible real polarization. This is the easiest way to
find groupoid polarizations.

As the example of a cotangent bundle showed, a polarized symplectic
manifold can behave like its (unpolarized) quotient. This suggests that in
the case of a strongly admissible real polarization, a polarized groupoid
should act like its quotient. This will be the guiding principle in defining
polarized convolution algebras. Not all polarizations are real and strongly
admissible, but they’d like to be. A general polarized groupoid should be
regarded as a virtual quotient.

5. The algebra

5.1. Convolution. There are two standard ways of constructing the con-
volution algebra of a Lie groupoid: using either a Haar system [39] or half-
densities [9]. I favor the latter approach, because it is closer to the Hilbert
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space construction in geometric quantization. However, there is still an
important discrepancy between half-forms and half-densities.

With this in mind, let’s try to modify the definition of the convolution
algebra by substituting half-forms for half-densities. This means using a
bundle,

(5.1) QY2 = |\ [Am (TG © TEG).

If the bundle TG & T°G is orientable, then there exists a preferred “positive”
choice of square root, and with this choice, half-forms are equivalent to half-
densities. This orientability condition is frequently satisfied; it is true if the
Lie algebroid A(G) is an orientable bundle or if G is s-simply connected.

If some other choice of square root is chosen, then it may still define a
convolution algebra. However, it will not generally be possible to complete
this to a C*-algebra. The potential problem is exemplified by the *-algebra
of matrices on an indefinite inner product space; that is not a C*-algebra.

The convolution product of a,b € I'.(G,Q/?) is defined by integrating
priaprib over the fibers of m. For v € G, the fiber m~1(y) is explicitly
parametrized as

(5.2) m'(y) ={(mn"y) [net ()}

This gives the standard expression for the convolution product (see [9])
5.3 (@st)o)i= [ almplr )
net—1(ty)

To make sense of this expression, note that (5.2) implies isomorphisms
TMGy = pry TG = prs T°G.
Using these, the coboundary bundle (see (2.2)) is
0" QN2 = NMXTR*G, 2 pry AMRTEG.

The bundle of volume forms along the fibers of m in Go. With this isomor-
phism, the product prj aprjb is a section of

m*Ql/Q ® pr>{ AmaxT(tj*g'

So, integrating this over t—(t) in (5.3) does give another section of Q/2,
The other important property of Q1/2 is the canonical isomorphism

inv* QY2 ~ Q1/2,

This defines the involution on the convolution algebra.
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5.2. Twisted convolution. The concept of twisted C*-algebras of a
groupoid is fairly standard. Let L be a line bundle over G and ¢ a cocycle
with coefficients in L. In [39], Renault mainly discusses the case where L
is trivial, but he gives a more general definition: C*(G, o) is the quotient
of C*(G?) induced by the fundamental representation of T, where G7 is the
extended groupoid in (4.2). In order to generalize this to the polarized case,
it is better to work with sections of L ® Q/2, and this is easy enough.

For a,b € I'.(G, L ® Q/?), the twisted convolution product is defined by
modifying (5.3) to

(axb)(7y) r=/ ( )a(n,n’lv)a(n)b(n’lv)-
net—1(ty

Although this is constructed with a cocycle o, the algebra only depends
upon the cohomology class of [o] € Tw(G).

5.3. Polarized convolution. Let G be a Lie groupoid with a strongly
admissible real polarization P C T'G. Such a polarization is always the
kernel foliation of a fibration

p:G—G/P.
As T have suggested, the polarized groupoid should be treated as if it is
the quotient groupoid. For this reason, I define the polarized convolution
algebra to be
Cp(G) :== C*(G/P)

for any strongly admissible real polarization. This case will be the guide to
defining more general polarized convolution algebras.

Let’s re-express this more directly in terms of G. The elements of the
polarized convolution algebra should be polarized sections of p*Q'/2. The
pull-back of the target tangent bundle is

p*TYHG/P) 2 T'G/(T"GNP),

prOL/2 = 971)/2 — \/@
is the “positive” square root of
Qp == N> (T*G/[T*G NP & T°G/[T°G N'P)) -
The key property of this bundle is that
0" Qf* = pri "X (TG /[T*G N P])".
This is (the pull-back of) the bundle of volume forms along the t-fibers

but transverse to P. If a,b € T'(G, (2713/ 2) are two global polarized sections
(that is, the pull-backs of sections over G/P) and are compactly supported
modulo P then the polarized convolution is defined by modifying the integral
(5.3). Rather than integrating over the fiber t~![t(v)], we can note that the

SO
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integrand is constant along P-fibers, so it can be integrated over the quotient
space. Alternately, we can integrate over a transversal submanifold-with-
boundary of t~1[t(7)] that intersects each P-leaf there exactly once.

For the moment, this is just an awkward reformulation of convolution on
the quotient groupoid G/P. However, it is justified by its generalizations.

For a complex polarization, 9713/ 2

0% == /Qp
Qp = A" (TEG/[TEG N P) @ TEG/[TEG N P))”

provided that T*G NP has constant rank. This gives a general definition for

Q;D/ 2, if T*G NP has constant rank and there exists a square root bundle

satisfying

generalizes trivially to

(5.4)

inv* Q)% = /2.
This introduces a possible ambiguity because of the choice of square root;

any other choice is obtained by tensoring 9713/ ? with a real line bundle which
is isomorphic to its pull-back by inv. This choice is parametrized by the
inv-invariant cohomology, H'(G;Z2)™. However, it is plausible that only
one choice will lead to C*-algebras.

For a strongly admissible real polarization, a section of (2713/ % is polarized
if it is the pull-back by p of a section over G/P. This can also be expressed

in terms of a flat P-connection on Q;)/ 2, Showing that this connection exists
more generally requires a couple of steps.

Definition 5.1. For any distribution P C TG, define the (generally singu-
lar) distribution Py C TcM by

Poy = Tt(Pac)
for every z € M.
Lemma 5.1. If P is a multiplicative distribution, then for any v € G,
Tt(Py) =Po t(y)-
If P is also involutive, then Py is involutive.
Proof. The condition of multiplicativity at (v,7~!) € G states that,
Piiyy =Tm [Py 5-1)] -
Applying T't, and using Tt[X - Y] = Tt(X), this gives
Poriy) = {Tt(X) | X € Py,IY € P1 : Ts(X) =Tt(Y)}
C Tt(P,).
Conversely, multiplicativity at (t(vy),~) says,
Py =Tm [P (t%v)]
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and implies
Tt(P,) = {Tt(X) | X € Py, IY € P, : Ts(X) = Tt(Y)}
- Tt(Pt'V) = PO t(y):

Now suppose that P is involutive and recall that a vector field is
“projectable” by a smooth map if the push-forward is well defined. Any
section of Py can be lifted to a t-projectable section of P. If X, Y € I'(G, P)
are t-projectable, then [X,Y] € I'(G,P) and so

[Tt(X), Tt(Y)] = Tt([X,Y])
is a section of Py. Therefore Py is involutive. O

Theorem 5.2. If P is a polarization of a groupoid G, then the P-Bott
connection (Definition 3.5) induces a natural flat P-connection on Qp and

ng, provided that these bundles are defined.

Proof. The inverse image of Py is Tt~ (Py) = P + TG and the C®(G)-
module of sections is generated by the t-projectable ones. So, let X,Y €
I'(G, P+T{G) be t-projectable. Then Tt([X,Y]) is a section of Py, so [X,Y]
is a section of P+ TG = Tt~ Y(Py), therefore P + TEG is involutive.

This implies that the Bott connection for P preserves [P + TEG]H C PL.
So, this induces a natural flat 7P-connection on

PP+ TEGI = [(P + TEG)/P]" = [TEG/(PNTEG)] ™.

The same is true with 7°G in place of T%G, so this gives the desired

P-connection on p. Finally, the square root Q;)/ ? inherits a connection
by a simple application of the Leibniz rule. O

With this connection, we can speak of polarized sections of Q719/ 2 IfU C g
is an open subset, then a € I'(U, Q'/?) is polarized if V xa = 0 for any X € P
over U.

Some of the examples later in this paper suggest that it is useful to con-
sider polarizations for which T((t:g NP does not have constant rank. In that

case, TEG NP is not a bundle, so Q;)/ % is not defined. However, I expect that

1/2
P

the sheaf of local polarized sections of 23~ may be meaningful even when

the bundle is not.
Now suppose that P C TrG is a strongly admissible polarization and

Q;D/Z does exist. Given two polarized sections a,b € I'(G, L ® Q;)/2)7 the
convolution (a * b)(y) should be some sort of integral of
(5.5) a(n) b(n ")

with t(n) = t(y). The polarization of a and b implies that (5.5) is covariantly
constant along the foliation D restricted to t~1[t(7)], so we should integrate
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over the quotient by D. The problem is that for such an integration, we
need an isomorphism

(5.6) 0"/ = pri A™(T'G/[T*G N D).
Instead, there is a natural isomorphism
0"Qp = prj N"(T'G/[T°G N D))t @ pri N™(T"G/[T°G N €])¢

To “correct” this, we need an isomorphism,
(5.7) AT G N E) — N™™(T*'G N D).
This requires some additional structure. I will show in the next section that
a symplectic groupoid has such a structure.

I will not go any further in trying to define polarized convolution for
complex polarizations without a twist, because of two problems. One is the

need for an isomorphism (5.7). The other problem is that suitable global
polarized sections may not exist, as illustrated by this example.

Example. Consider the pair groupoid Pair(T?) of a complex torus with the
complex structure reversed on the second factor. Let P be the antiholo-

morphic tangent bundle. The bundle Q;;/ ? is trivial in this case, so global

%,/ % are just holomorphic functions on T4, but only

1/2
P

polarized sections of €

constant functions are holomorphic. Global polarized sections of {2
not suitable for defining a convolution algebra.

On the other hand, if this is twisted by a line bundle with positive cur-
vature, then many suitable holomorphic sections will exist.

are

This leads to the final level of generalization.

5.4. Twisted polarized convolution. I will concentrate on the most rel-
evant case: that of a symplectic groupoid. However, twisted polarized con-
volution should also make sense in some other cases, including at least real
polarizations and some polarizations of Poisson groupoids.

Theorem 5.3. If P is a polarization of a symplectic groupoid > and
tk TEX NP is constant, then for some k € N, contraction with “’k—f gives
an isomorphism,

(5.8) AT () == A™(T'S N D).

Proof. The tangent bundle restricted to the unit submanifold 1: M — ¥ is
a subgroupoid 1*T C T>. It is easy to explicitly construct the groupoid
structure on 1*7T'% in terms of the anchor map. In particular, the groupoid
multiplication on 1*(7T*X N T°Y) is just addition, so for any x € M and
X e TIYXNTEY, we have X1 = —X.

Now, for any element v € ¥ and any vector X € T 72 N1g 72 NP,
Hermiticity implies X ' € P. Multiplicativity implies that 0,-X -1 -0, € P,
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where 0, € T, X is the 0 vector over vy and a dot denotes the tangent groupoid
multiplication, T'm. However,

OW'X_l-OW = (X'wal)_l -0y = <_X'0"F1)'0’Y: _X.

So, TEX NTEE NP = TEX NTEX N P. This means that T*LNTSE N E =
TS NT°2ND.

Recall that the symplectic orthogonal bundle to Tt is #(T*%)+ = T°%,
and the symplectic orthogonal to £ is D. If we restrict the symplectic form
w to T*E N &, then the kernel is

TNENH#(TENE =TSN (T°ENE+D)=T'2ND.

This shows that w gives a nondegenerate form on (T*~NE)/(T*END). The

dimension of this bundle must be even, say 2k, and ‘;’C—}f gives the desired
isomorphism. |

Let P be a polarization of a symplectic groupoid ¥ and (o, L, V) a pre-
quantization. The connection on L combines with the partial connection on

Q;D/ % to give a flat P-connection on L ® Q;D/ 2, So, local polarized sections
will exist.

Suppose that the polarization P is strongly admissible. If a,b € T'(X, L ®

Q;D/ 2) are polarized sections, then the compatibility of ¢ with the connection
implies that

(5.9) a(n,n ') a(n)b(n'y)

is covariantly D-constant as a function of € t~1[t()]. To define the twisted
convolution a * b, we should integrate (5.9) over the quotient. If the square

root Q%/ % can be chosen appropriately, then the isomorphism (5.8) induces
an isomorphism

0*Q? = pri N™(T'S /(TS N D)%

which makes this integration meaningful.
There are two subtleties in defining a convolution algebra from polarized

sections of L ® 9713/ % The first is the problem of fall-off conditions. With-
out a polarization, a convolution algebra is usually defined with compactly
supported sections, although a somewhat weaker fall-off condition would
produce the same C*-algebra in the end. For a strongly admissible polar-
ization, compactly supported polarized sections will only exist if the leaves
of the foliation £ are compact. It is a delicate matter to formulate a general
fall-off condition that is strong enough, but not too strong. I do not solve
this problem here.

The second issue is that not all polarizations are strongly admissible, and
even for strongly admissible polarizations the space of polarized sections may
be “too small.” The idea of “cohomological wave functions” suggests that we
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should not just use the global polarized sections, but rather the convolution
algebra should be the total cohomology of the sheaf of (local) polarized

sections of L®Q%,/ 2, Unfortunately, the problem of defining the inner product
of cohomological wave functions translates here into the problem of defining
convolution on cohomology spaces. I do not attempt to solve this here either.

If P is strongly admissible, 9713/ Zisa bundle, and the higher degree coho-

mology of polarized sections of L ® Qg 2 vanishes, then the convolution
algebra should consist of global polarized sections.

5.5. Completion. Once a convolution algebra has been constructed, the
final step is to complete this to a C*-algebra, C;(X,0).

Since this algebra is a generalization of the convolution algebra of a
groupoid, we can expect that there will be more than one natural way of
completing it. Formally, the easiest to define will be the maximal com-
pletion; this is defined using (essentially) all possible representations. The
reduced C*-algebra should be defined using a “regular” representation.

In the correspondence between Poisson manifolds and C*-algebras, sym-
plectic manifolds correspond to Hilbert spaces (or sometimes, Hilbert mod-
ules) and Poisson maps correspond (contravariantly) to s-homomorphisms.
Based on this, symplectic realizations should correspond to representations.

Indeed, the regular representation (which I have not defined) should cor-
respond to t : X — M, which is itself a symplectic realization of M. There
may be a general procedure for quantizing symplectic realizations to repre-
sentations. If so, then this gives a preferred class of “geometrical” represen-
tations. Completion using these representations may give a third way — a
geometrical C*-algebra completion.

By convention, C*(G) denotes the maximal C*-algebra; I am not using
the notation C% (X, o) in this sense, but rather out of agnosticism. I do not
know which completion will fit a reasonable definition of quantization.

Some examples (Section 6.3) suggest that both the maximal and reduced
C*-algebras are quantizations. One example (Section 6.4) suggests that the
reduced C*-algebra is the natural quantization. The results in [24] suggest
that the maximal C*-algebra is the best behaved with respect to symplectic
reduction.

5.6. Real polarizations and Bohr—Sommerfeld conditions. Suppose
that P is a strongly admissible real polarization of a symplectic groupoid X.
Let p : ¥ — X/P be the quotient fibration. By design, C5(¥) = C*(X/P),
but with a twist, things become more subtle.

Let (0,L,V) be a prequantization of ¥. If the leaves of P are simply
connected, then the connection canonically trivializes L along these leaves.
This identifies L as the pull-back L = p*Lg of some bundle over ¥/P. The
algebra is thus,

Ch(X,0) = C*(X/P,00)
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where o9 is a cocycle (the “reduced cocycle”) with coefficients in Ly. Note
that Ly does not inherit a connection.

To compute the algebra up to isomorphism, we do not need the specific
cocycle oy, just its cohomology class [0g] € Tw(X/P). The twist group Tw
is a contravariant functor, so it maps Tw(p) : Tw(X/P) — Tw(X). The
reduced twist is related to the prequantization by Tw(p)(og) ~ o.

In most of the examples, L is actually trivializable. A trivialization iden-
tifies L with C x X. The connection is then given by a 1-form 6 € Q'(X) as
V = d + 6. The properties of a prequantization imply that df = —w and
1*0 is exact. We can always apply a gauge transformation to get another
trivialization for which 1*6 = 0.

Definition 5.2. A symplectic potential is a 1-form 6 € Q'(X) such that
df = —w and 10 = 0. It is adapted if it is conormal to the polarization,
that is, € T'(X, P1).

If there exists an adapted symplectic potential, then it is easy to compute
the reduced cocycle.

Lemma 5.4. Let P be a strongly admissible real symplectic groupoid polar-
ization with simply connected leaves, and p : ¥ — ¥ /P the projection to the
quotient. If 0 is an adapted symplectic potential, then Lq is trivial and the
reduced cocycle oo € C*°([X/P]2,T) is determined (up to a locally constant
phase) by

p*(0y tdog) = i 9%6.

Proof. The simplicial coboundary is a linear combination of pull-backs, so it
commutes with the exterior derivative. Recall that the simplicial cobound-
ary 0"0 measures the failure of 6 to be multiplicative. However, the sym-
plectic form is multiplicative, so

do*0 = 0"df = —0*w = 0,

and thus 0*0 is closed.

Recall that the cocycle ¢ is a covariantly constant section of the cobound-
ary bundle 9*L* over 3s. Existence of a symplectic potential implies that
this bundle is trivial and —90*6 is its connection 1-form. So,

0=Vo =do—i(0"0)o
and
o Vdo = i 5.

By assumption, 6 is conormal to P, so 06 is conormal to Py C Ts.
This means that o is Po-constant, so it is the pull-back of some oy €
C=([X/Pla, T).

By definition, the sections of the reduced line bundle L are identified with
the covariantly P-constant sections of L. The assumption that 6 is adapted
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means that “covariantly P-constant” is just P-constant in this trivializa-
tion. So, Lg is trivial. With these trivializations, the reduced cocycle is the
function oy. O

In practice, there usually exists a real function ¢ € C*([2/P]2) such that
dp*¢p = 0*0
and so og = €'?.

Corollary 5.5. If ¥ is s-connected and admits a multiplicative adapted sym-
plectic potential, then the reduced cocycle is trivial.

Proof. Multiplicativity means that 9*0 = 0, so o is locally constant. O

If the leaves of P are not simply connected, then L will typically have
holonomy around them. In this case, there is an open set over which smooth
polarized sections of L ® 971,/ % must vanish, and it is clearly insufficient to
construct a convolution algebra from smooth globally polarized sections.

This is the same situation encountered in the construction of a Hilbert
space. In that case, the problem was tentatively solved with the idea
of distributional wave functions and Bohr-Sommerfeld quantization. In
[49], Weinstein derived the noncommutative 2-torus by applying Bohr—

Sommerfeld quantization to a symplectic groupoid.

Definition 5.3. The Bohr-Sommerfeld subgroupoid ¥p_g C ¥ is the set of

points through which L ® (2713/ ? has trivial holonomy. The reduced groupoid
is the quotient Yp_g/P.

This terminology is deliberate. =~ The construction of the “reduced
groupoid” is very similar to symplectic reduction.
Tentatively, the algebra should be

Cp(E,0) = C" (Zp-s/P,00)

where (00, Lo) is an inherited twist.
Let ¢ be the inclusion of 5 g and p the quotient map:

55 Yp g & O g/P.

The reduced twist is related to the prequantization by Tw(t)(o) =~
Tw(p)(o0).

More generally, if P is a (complex) strongly admissible polarization, then
the Bohr—Sommerfeld conditions come from holonomy around the leaves
of D. There is again a Bohr—Sommerfeld subgroupoid ¥p g and a reduced
groupoid YX5_g/D. The twisted polarized C*-algebra of 3 should be a twisted
polarized C*-algebra of the reduced groupoid, but now by a totally complex
polarization. In general, the reduced groupoid is a Poisson groupoid.
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6. Examples

6.1. Symplectic. This first example was already used to motivate the
definitions. If M is a symplectic manifold with a polarization F, then
P := F x F is a symplectic groupoid polarization of Pair(M).

For the pair groupoid X = Pair(M), the set of composable pairs can be
identified as Yo &2 M x M x M. The multiplication map m : 3o — 3 simply
forgets the middle factor. Now Py = (P x P)NTcXe = F x (FNF) x F,
so the multiplicativity is apparent.

I shall call this type of induced polarization ezract, because it can be
thought of as the “coboundary” of the symplectic polarization F. Not all
polarizations of symplectic pair groupoids are exact; I give such an example
in the next section.

Example. Suppose that M = T*N for some smooth manifold N. The
natural polarization of T*N is the “vertical” polarization, whose leaves are
the cotangent fibers. The pair groupoid is Pair(T*N) = T*(Pair N). The
vertical polarization is just the kernel foliation of the projection down to
Pair(N), so that is the reduced groupoid.

We can take the Liouville 1-form as a symplectic potential. This is
adapted to the vertical polarization, but it is also multiplicative, therefore
the quantization is the untwisted groupoid C*-algebra

C*(Pair N) = K[L*(N)],
as expected.

A real polarization F of M induces the exact polarization P = F x F,
the set of pairs of vectors from F. Two such pairs are composable if the
second of the first pair is the first of the second pair, so Po = F x F x F.

The case of a purely complex polarization lies at the opposite extreme.

Example. Let M be a Kahler manifold with F the antiholomorphic tangent
bundle. This induces the exact polarization P := FxF. Two pairs of vectors
are only composable if the second of the first and the first of the second pair
both vanish. That is, Py = F x 0 x F.

This polarization is equivalent to a Kahler structure on the groupoid itself.
In this case, the convolution product is (essentially) ordinary convolution of
sections which happen to be polarized (holomorphic).

More generally, suppose that M is a symplectic manifold with polarization
F and prequantization L. Let ¥ := Pair(M), P := F x F, and o be the
prequantization with bundle L X L. To see that this gives Ch(X,0) =
K[L%(M, L)), first note that TEX = kert = 0 x TcM = s*TcM. So

TES/(TEENP) = s (TcM/F) = s*(FH)*



A GROUPOID APPROACH TO QUANTIZATION 93

and likewise T8X/(TEX N P) = t*(FL)*. Referring to (5.4), this shows that
QP _ /\maXfJ_ X AmaxﬁJ_
and the square root can be chosen so that the half-form bundle is
ng = VAmax FL [ //\Ina,x‘f'L7
which is exactly what we wanted. The algebra C,(3,0) is by definition
constructed from polarized sections of L ® VAmaxFL X [ @ v Amax FL  This
space (or cohomology) of polarized sections over ¥ = M x M is just a tensor
product of the space (or cohomology) of polarized sections of L @ v Amax F-L

over M with its complex conjugate. To the extent that either algebra is
defined, we do have C (%, o) = K[L%(M, L)].

6.2. Constant. Suppose that our Poisson manifold is a vector space V
with a constant Poisson bivector 7 € A?V. The symplectic integration is
> = V@V*asavector space and ¥ = T*V, symplectically. All the structure
maps are linear.

Let 2’ be coordinates on V and vy; coordinates on V*. The source and
target maps are

s(xi7 yz) = xi - %ﬂﬂyja

t(z!, y) = 2' + %Wjiyj.
The set of composable pairs can be identified with X5 2V & V* @ V*; the
relevant maps are

pro (', yi, yf) = (2" + 577y}, vi),
pr2($17yi7y'g) = (;Uz - %ﬂ-]zyjayz,‘)a
m(xl7 Yi,s y;) = (l‘z) Yi + y;)

The projection from the groupoid X =2 V & V* to the additive group V*
is a fibration of groupoids. The fibers are Lagrangian, so this is a polariza-
tion of the symplectic groupoid. The simplest choice of adapted symplectic
potential is

0 = —x'dy;.
We can compute directly
00 = (' + 3n7y)) dy; — a* (dys + dyf) + (2" — $77'y;) dy;
) !

— 1]
= 3Ty

=d (=37 yi}) -

dy; — 377 yidy;

This gives a group cocycle og : V* x V* — T, oo(y,y’) = eI So,
my quantization recipe applied to (V,7) gives the twisted group algebra,
C*(V*, 00).
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This is the usual Moyal quantization of a Poisson vector space, see
[42]. When 7 = 0, the Fourier transform gives the canonical isomorphism
C*(V*) = Cy(V). Because both C*(V*) and C*(V*,0¢) are completions
of the same vector space (compactly supported smooth densities) we can
identify dense subalgebras as vector spaces. With these identifications, this
quantization gives a deformed product on C5°(V'). The product is given by
an integral kernel which is the Fourier transform of og.

Example. If V is a symplectic vector space, then ¥ = Pair(V) is the
same symplectic groupoid, but this “horizontal” polarization does not come
from a symplectic polarization of V. Nevertheless, the algebras given by
these polarizations are isomorphic K[L?(V)] = C*(V*,00) because 7 is
nondegenerate.

6.3. Linear. Suppose that M is a vector space with a Poisson bivector that
is linear. Then M can be identified with the linear dual g* of a Lie algebra,
with the Lie—Poisson structure.

Let G be a connected Lie group integrating g. We can give the cotangent
space T*G a symplectic groupoid structure integrating g*; see [11, 35].
First, let the unit be the map 1: g* — TG C T*G identifying g* with the
cotangent fiber over the group unit. Then, define the source and target maps
as the duals of the maps which identify g with left- and right-invariant vector
fields. Finally, define the multiplication to be the unique one compatible
with these maps such that the product of an element of T/G with one of
Ty G lies in T;hG.

The bundle projection p : T*G — G is a fibration of groupoids, therefore
ker T'p is a real polarization of the groupoid T*G. The fibers are Lagrangian,
therefore this is a symplectic groupoid polarization. The Liouville 1-form
is a multiplicative adapted symplectic potential, therefore the reduced twist
will be trivial. The leaves of this polarization are the cotangent fibers, which
are contractible, so there are no Bohr—Sommerfeld conditions. The reduced
groupoid is therefore the quotient groupoid, which is the group G. The
quantization recipe applied to g* gives either Ci  ,,(T"G,0) = C*(G) or
C} (@), depending upon the choice of completion (see Section 5.5).

This is a standard example of quantization. It was first proposed by
Rieffel [41], who proved that with the reduced C*-algebra C;(G), there is
a “deformation quantization by partial embeddings.” In the case that G is
nilpotent, he proved that C*(G) gives a strict deformation quantization.

The restriction to nilpotent groups is related to a conjecture of Weinstein
[49, 50] that a “good quantization” of a Poisson manifold exists if and only if
it is of “exponential type,” meaning that there exists a symplectomorphism
Y (M) = T*M that intertwines the groupoid inverse with negation. The dual
of a nilpotent Lie algebra is of the exponential type. The dual of su(2) is
not, because 7T%S? is not homeomorphic to RS, let alone symplectomorphic.
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These notions of “strict” and “nice” are based on actually identifying
dense subalgebras of the quantum and classical algebras as vector spaces.
In the terms of Section 1.3, this means requiring injective quantization maps.
In my view, this is quite unnecessary and overly restrictive. C*[SU(2)] is a
very nice quantization indeed!

If A is a Lie algebroid over a manifold N, then (the total space of) the
dual bundle A* is a Poisson manifold [11, 12]. This example includes both
g* and T*N as special cases. A Poisson manifold is of this form if it is a
vector bundle and the space of smooth fiber-linear functions is closed under
the Poisson bracket.

If G is a groupoid integrating A, then the cotangent space T*G has a
natural structure as a symplectic groupoid integrating A*, see [11, 35].

Let p : T"G — G be the bundle projection. This is a fibration of groupoids,
therefore ker T'p is a groupoid polarization. This is also a Lagrangian foli-
ation, therefore kerT'p is a symplectic groupoid polarization. Once again,
T*@G is a cotangent space and the Liouville form is a multiplicative adapted
symplectic potential; therefore the twist can be eliminated by Corollary 5.5.
The quantization of A* is thus

Clteer(T*gﬂ L) = C*(g)

Landsman [30] proposed this as an example of quantization. There is
a parallel result for formal quantization in [38]. Landsman and Ramazan
[32] proved that both C*(G) and C}(G) give strict deformation quantiza-
tions of A*, although their definition of “strict” differs from Rieffel’s. This
suggests that in my general construction all completions may be legitimate
quantizations.

6.4. Multiply connected. Let M be a connected symplectic manifold
with universal covering M and fundamental group I' := 71 (M). Given that
M is symplectic, the most obvious symplectic integration is Pair(M ). How-
ever, this integration does not generalize to other Poisson manifolds. For an
arbitrary integrable Poisson manifold, the canonical symplectic integration
is the (unique) s-simply connected symplectic groupoid. In this case, that
is the fundamental groupoid

> (M) = N(M) = Pair(M)/T,

where I" acts diagonally. This is the s-simply connected covering of Pair(M).

As before, any polarization F of the symplectic manifold M determines
a polarization of Pair(M), but because (M) is a covering of Pair(M), F
also gives a polarization of M(M).

M(M) may be prequantizable when M is not. Any prequantization of
M(M) can be constructed from a prequantization of M with a projective
action of I'. This exists if and only if the integral of w over any S? is a
multiple of 27, as expected from Theorem 4.3.
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This quantization is heuristically equivalent to quantizing M , and then
quotienting by I'. I studied such a construction in [19] for M compact
and Kahler. A Toeplitz quantization map can be constructed for M but
applied to C(M). The C*-algebra generated by the image is a quantization
of M. I showed that this C*-algebra is isomorphic to the algebra of com-
pact operators on a Hilbert C}(T", or)-module, where the group cocycle op
is derived from the symplectic form. I expect that this algebra is isomor-
phic to Cp [M(M), L]. The best way to prove this would be to show that

P M(M), L] is the algebra of compact operators on a Hilbert C}(I", or)-
module and prove that these Hilbert modules are isomorphic. It is plausible
that such a Hilbert module can be constructed by (in some sense) quantizing
the Morita equivalence between (M) and T' = 71 (M).

In this example, it is specifically the reduced C*-algebra, C(I',or) that
emerges. This suggests that the reduced C*-algebra may be the most rele-
vant completion in my general construction.

6.5. The torus. Consider M = T? symplectic, with symplectic area 27 /h.
There are several ways to quantize this manifold. Traditional geometric
quantization corresponds to taking the pair groupoid. This is prequantizable
if and only if 1/ is an integer, m. For any well-behaved polarization, this
quantizes to the algebra of |m| x |m| matrices, which is not very interesting.

The more natural and interesting choice is the fundamental groupoid.
There are several nice choices of polarization here; each produces the same
algebra (the noncommutative torus) in significantly different ways. First,
we could choose a Kéhler polarization on T? and the corresponding exact
polarization of M(T?). This corresponds to the construction I studied in [19]
and described in the previous section.

We can always identify T? as a quotient T? = V/2r Z? of a symplectic
vector space V = R? with constant symplectic form w = ﬁdml A dxz?. The
fundamental groupoid is identified with 7*T? =2 T? x V*. We can employ a
“horizontal” polarization Py, which is the kernel of the groupoid fibration
T? x V* = V*,

The computation of the cocycle for a Poisson vector space (Section 6.2)
is still valid here, so we have gg : V* x V* — T,

- / !
o0(y, y') = emMviTLR),

The leaves of Ppo, are two-tori, so the holonomy around these gives two
Bohr—Sommerfeld conditions.

Although the symplectic form on this groupoid is exact, it does not admit
an adapted symplectic potential. This does not matter because the pre-
quantization is unique and there is no danger of contradiction. The simplest
choice of symplectic potential is

0 = y;dz’.
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For the fiber over y € V, the holonomies for the two generators of my(T?)
are e?™1 and e¢?™¥2, The holonomy is therefore trivial if and only if y €
Z2. The reduced group(oid) is thus Z? and the quantization is C*(Z?, o9).
This C*-algebra is generated by two unitaries U and V such that UV =
e 2™y U, This is one of the standard presentations of the noncommutative
torus algebra.

This construction generalizes easily to T™ with a constant Poisson struc-
ture. The quantization is C*(Z", o), where oy is constructed by exponenti-
ating the Poisson structure.

Another real polarization for T? was considered by Weinstein [49]. Let
Pwei be the foliation whose leaves are the cylinders of constant z? and
y1. This is indeed a polarization, and the quotient groupoid is the action
groupoid of R acting on S by (22, y1) — 22 — 27hy;.

This polarized symplectic groupoid is a quotient of 7™ Pair(R) with the
vertical polarization. As such, the cocycle on T*T? /Py is trivial, but there
is one Bohr-Sommerfeld condition to take into account. The holonomy
around the leaf over (x2,y1) is €2™¥!. This is trivial if and only if 31 € Z.
The reduced groupoid is thus the action groupoid of Z acting on S' by 27h
rotations. The quantization is the crossed product C*-algebra:

Chyi [N(T?), 0] 2 CH(Z % S') = C*[Z,C(SM)].

This is another standard presentation of a noncommutative torus algebra
and gives it the name “irrational rotation algebra” (if A is irrational).

This general framework for quantization provides a heuristic explanation
as to why these geometrically different constructions give the same algebras.
It is simply a case in which the algebra is independent of the polarization.

7. More about polarizations

7.1. Real polarizations of Lie algebroids. If (y,7) € G is a pair of
composable elements in a Lie groupoid, and we happen to know the values
of a polarization at v and 7, then the definition of polarization tells us what
the polarization is at vyn. So, if U C G is a subset that generates the entire
groupoid, then any polarization can be reconstructed from its restriction to
U. This suggests that for an s-connected groupoid, any polarization can
be reconstructed from its restriction to an infinitesimal neighborhood of the
identity submanifold.

In other words, a polarization of G should be completely described by an
infinitesimal structure in the same way that G is almost completely described
by its Lie algebroid. It seems appropriate to call this hypothetical structure
a polarization of a Lie algebroid.

Lie algebroids have many advantages over Lie groupoids. It is usually
easier to explicitly construct a Lie algebroid than its groupoid. Simple Lie
algebras are easier to classify than simple Lie groups. Polarization of Lie
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algebroids should have these same advantages. It may even be possible to
carry out my quantization recipe in some cases without having to explicitly
construct a symplectic groupoid.

The general description of Lie algebroid polarizations is a delicate matter,
and I leave it to a future paper. However, the case of real polarizations is
much simpler.

For any Lie algebroid A over M, the tangent space T'A is a double Lie
algebroid [35]. That is, it has two structures as a Lie algebroid: over A and
over T'M.

Definition 7.1. A sub double Lie algebroid of a double Lie algebroid is a
subset that is a Lie subalgebroid of both structures. A real polarization of a
Lie algebroid A is a sub double Lie algebroid B C T'A that is wide over A.

This definition is justified by the following result. Recall from Theo-
rem 4.5 that a real polarization of a groupoid G is a sub Lie algebroid-
groupoid P C TG.

Theorem 7.1. If P C TG is a real polarization of a Lie groupoid, then
A(P) C TA(G) is a real polarization of the Lie algebroid A(G).

Proof. The functor A maps Lie algebroid-groupoids to double Lie algebroids
and respects subalgebroids. See [35] for the proof that TA(G) = A(TG).

A polarization P C TG is a wide Lie subalgebroid because it has a fiber
over every point of G. This implies that A(P) is wide over A(G). O

Definition 7.1 is succinct, but it is useful to unpack it into more familiar
geometrical structures.

To distinguish the two bundle structures of T'A, I will refer to the tangent
bundle structure as “vertical” and the other structure as “horizontal.” The
four different bundle structures involved can be summarized in the following
(commutative) diagram:

TA —— TM

(7.1) | |

A —— M.

As a double Lie algebroid, T'A is in particular a double vector bundle.
One of the most important constructs from a double vector bundle is the
core [35]. This is the intersection of the kernels of the vertical and horizontal
projections. The core is an ordinary vector bundle over the base manifold
M. In this case, the core of T'A is naturally identified with A.

The horizontal Lie algebroid structure of T'A is defined using two spe-
cial types of sections. If & € I'(M, A), then T¢ € I'(TM,TA) is just the
result of applying the tangent functor to & : M — A. The core section
£ € T(TM,TA) is defined by the identification of A with the core of T'A.
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These two types of sections span I'(T'M, T A) as a C*°(T'M )-module, so the
horizontal Lie algebroid structure is completely defined by:

#7ATE = T(#4E), #raf = #aL,

76, 7¢) = T([6,¢)), [T¢,{)=[6,¢], and [£,{ =0
for £, e T'(M, A).

Definition 7.2. If V is a flat partial connection on a quotient bundle A/P;,
then a section of A is V-stable if it is V-constant modulo Py, that is, it gives
a V-constant section of A/P;.

Theorem 7.2. A real polarization 3 C T'A determines a triple (Py, P1, V)
where Py C TM is a foliation, P1 C A is a subbundle, and V is a flat
Po-connection on A/P1, such that over any open U C M :

(1) the V-stable sections of A form a Lie subalgebra of I'(U, A);

(2) the sections of Py form a Lie ideal inside this Lie subalgebra;

(3) #P1 CPo;

(4) the map A/P1 — TM/Py induced by the anchor intertwines V with
the Py-Bott connection (Definition 3.5).

Conversely, such a triple determines a real polarization of A, such that the
structures are equivalent.

Proof. Define Py C T'M to be the horizontal base of 3. Wide in the vertical
structure means that the vertical base of 8 is A. This implies that Py is a
wide subalgebroid of TM — in other words, a foliation of M. Graphically,
this can be summarized by a subdiagram of (7.1):

3
4

P —— P

Lo

A —— M.

The core of T'A is canonically isomorphic to A itself. Define P; C A to
be the core of P C T A.

By definition, 8 C T'A is a sub double Lie algebroid. Compatibility with
both vector bundle structures implies that this is actually a linear subal-
gebroid in both the vertical and horizontal structures, that is, all relevant
maps are fiber linear in the other bundle structure.

Being a linear subalgebroid in the vertical structure means that P is a
linear foliation of A. (If Py = TM and P; = 0, then this would be a
flat linear connection on A.) In general, a linear foliation of A is a flat
Po-connection on A/P;. Define V to be this connection.

Now consider the horizontal Lie algebroid structure. For { € T'(U, A), é
is a section of P if and only if £ is a section of Py; T€ is a section of P if
and only if £ is V-stable.
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We can now translate the condition that 8 C T A be a horizontal
subalgebroid into conditions on Py, Pi, and V. Let &,¢ € T'(U, A) be
V-stable sections and A € I'(U, Py), so that T¢,T¢,\ € T'(TU,B).

The brackets [T¢,T¢] = T([€,¢]) and [T€, ] = [€, A] must be sections of
B. Therefore [£, (] is V-stable and [¢, A] is a section of Py.

The anchor #7 A\ must be a section of TPy, so # 4\ is a section of Py.
The anchor of T'¢ must be a section of TPy, so #4£ is stable with respect
to the Bott connection of the foliation Py.

Conversely, if V is a connection satisfying these conditions, then over a
sufficiently small neighborhood of any point, there exist enough V-stable
sections to generate the module of horizontal sections of %3 in this way. This
then shows that 8 C T'A is a linear horizontal subalgebroid. O

Theorem 7.2 is very close to the definition [22, 35] of an ideal system
for A. An ideal system is for a Lie algebroid what a smooth congruence
(Definition 4.11) is for a Lie groupoid; it determines a quotient algebroid.
A surjective submersion p : M — M’ determines an equivalence relation by

x~y < p() =py)
for z,y € M. This equivalence relation is a Lie subgroupoid M x, M C
Pair(M). An ideal system of A consists of a surjective submersion p : M —»
M', a subbundle P; C A, and an action of M x, M on A/P;. The definition
is otherwise the same as the conclusion of Theorem 7.2, with M x, M playing
the role of the foliation Py and the action playing the role of V.

An ideal system always determines a real Lie algebroid polarization. If
the fibers of p are connected, then the ideal system is completely equivalent
to this polarization. A real Lie algebroid polarization determines an ideal
system if and only if Py is simple (the kernel foliation of a submersion) and
V has trivial holonomy.

To recover a groupoid polarization from a Lie algebroid polarization, one
should apply the groupoid integration functor G to the horizontal structure
of PB. In principle, there should be an integration theorem for real polar-
izations, saying that under some global conditions an algebroid polarization
integrates to a groupoid polarization. However, I will not dwell on this here.
It is a special case of the problem of integrating complex polarizations, and
I plan to explore that in a future paper.

When B = A(P), the structures Py, P1, and V can be understood geo-
metrically. First, Py is the horizontal base of A(P), so it is the unit manifold
of P (as a groupoid); in other words, Py = PNT'M. Thought of as foliations,
Py is the restriction of P to M C G.

As a vector bundle, A = A(G) is defined to be the normal bundle to
M C G. This can be stated as an exact sequence of vector bundles,

(7.2) 0—TM 517G — A — 0.
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The subbundle P; is given by the exact subsequence,
(7.3) 0—Py—1"P — P — 0.

There are three natural ways of splitting (7.2): using s, t, or inv. The last is
the most symmetrical; it identifies 1*T'G with TM & A as the *1 eigenspace
decomposition of T'inv|ys. Because P is a real polarization, T'inv |5/ is an
automorphism of 1*P, so this is also a splitting of (7.3).

The P-Bott connection on P~ restricts along M to a flat Py-connection on
1*PL. The foliation P is preserved by inv : G — G, so this connection must
be compatible with inv and respect the splitting. The connection decom-
poses into the Py-Bott connection on Pg- and the connection V on Pi (or
equivalently, on its dual A/Py).

The case of a complex polarization is much more difficult to study, because
P C TG is no longer a subgroupoid, it may be transverse to M C G, and
T inv |/ is no longer an automorphism of 1*P.

Over any = € M, ker#, C A, is a Lie algebra (quite possibly 0). If
£, € I'(M, A) satisfy #&(z) = #((z) = 0, then the Lie algebra bracket
[€(x),(x)] is (by definition) the value of the Lie algebroid bracket [¢, (] at x.

Theorem 7.3. For any real polarization of A and any point x € M,
P1 Nker #, C ker #,
1s a Lie algebra ideal.

Proof. Let U > x be a neighborhood over which Py is a simple foliation.
Then any pair of vectors in Py N ker #, and ker #, are the values at x of a
section £ € T'(U,P1) and a V-stable section ¢ € T'(U, A). By the properties
of a real polarization, [, (] € I'(U,P1) and

[£(z), C(2)] = [€, C](x) € Pr N ker #,.
g

Example. One extreme case would be a polarization with Py = T'M and
P1 = 0. Then V is a flat connection on A. If V has no holonomy, then
it gives a trivialization of A as a bundle. The constant sections form a Lie
subalgebra g C I'(M, A). The anchor map gives an action of g on M. In
this case, A must be the action Lie algebroid of g on M.

7.2. Real polarizations of Poisson manifolds. Now consider the case
that P is a real polarization of a symplectic groupoid ¥ integrating a Poisson
manifold M. In this case, A(X) = T*M, so what are the properties of
A(P) Cc TT*M?

We can (again) use inv to split the exact sequence (7.2) and identify 1*T'%
with TM @ T*M. In this identification, the symplectic structure on 1*7'%
is given by the pairing between T'M and T*M. Because P is a symplectic
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polarization, 1*P = Py dP; C TM @& T*M must be Lagrangian. This just
means that P; = P()l. The Py-connection V thus acts on 73&4 =Py itself.
For any isotropic foliation of a symplectic manifold, the Bott connection
gives (through the symplectic form) a partial connection on the foliation
itself — and this is torsion-free (see [46]). The connection coming from
A(P) is just the restriction of this connection, so it is also torsion-free.

Definition 7.3. A real polarization of a Poisson manifold is a pair (Py, V)
where Py C T'M is a coisotropic foliation of M and V is a flat, torsion-free
Po-connection such that over any open U C M:

(1) the set of V-stable 1-forms is closed under the Koszul bracket;
(2) the sections of Pg- form a Lie ideal inside this;
(3) if f € C>(U) is Po-constant then V#df = 0.

“Coisotropic” is just a restatement of #P; = #790L C Py. Everything
in this definition is a restatement of the properties of a real Lie algebroid
polarization to this case, except the torsion condition. The vanishing torsion
of V is necessary to insure that P remains Lagrangian away from M C X,
as illustrated by this example.

Example. Consider S? with 0 Poisson structure. This is integrated by
¥ = T*S3 with the structure of a bundle of Abelian groups. Identifying
S3 22 SU(2), the right-invariant trivialization of T'S® defines a linear map
p: T*S3 — R3 which is a groupoid homomorphism and in fact a fibration.
So, its kernel foliation ker T'p is a groupoid polarization.

The Lie algebroid polarization A(P) is given by Py = T'S®, P; = 0, and
the right invariant connection. This connection is not torsion-free, so this
does not satisfy Definition 7.3.

The map p would be Poisson if we gave R? the nonzero Lie-Poisson struc-
ture of su(2)*, therefore ker T'p is not Lagrangian and is not a symplectic
groupoid polarization.

What if M is symplectic? A symplectic polarization does not require the
additional structure of a connection, so these two definitions of polarization
need to be reconciled.

Example. If M is symplectic and Py is a Lagrangian foliation, then the
last condition in Definition 7.3 completely fixes a connection V. Any vector
in Py is a value of a Hamiltonian vector field #df for a Py-constant function
f defined over some open set. Any such vector field is V-constant. So,
the connection is not really an additional structure in this case, and a real
symplectic polarization is a special case of a real Poisson polarization.

However, depending upon the topology of a symplectic manifold, there
may exist real Poisson polarizations for which Py is not Lagrangian and V
does carry additional information.
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Example. In Section 6.2, I described the quantization of a vector space V
with constant Poisson structure, using a “horizontal” polarization. In this
case, Py = TV (which is automatically coisotropic) and V is the trivial
connection of the vector space.

At a point x € M of a Poisson manifold, the Lie algebra ker #, has
a particular significance. It is the dual of the linearization of the Poisson
structure transverse to the symplectic leaf through z; see [47]. This is only
nonabelian if x is a singular point of the Poisson structure.

Theorem 7.3 shows that 730L Nker #,. is a Lie algebra ideal in ker #,.. This
can be a very restrictive condition.

Proposition 7.4. Let M be a connected Poisson manifold admitting a real
polarization whose connection is geodesically complete. If the Poisson struc-
ture vanishes at x € M and the linearization is the dual of a simple Lie
algebra g, then M is isomorphic to g* with the Lie—Poisson structure.

Proof. Since g has no nontrivial ideals, Py, must be all or nothing. By local
triviality, we must have either Py = 0 or Py = T'M, but 0 is not coisotropic.
So, Po =TM and V gives M a locally affine structure.

Since V is geodesically complete, the universal cover M is an affine space,
but we can assign a preimage of z to be 0, thus making M a vector space.
Because Pg- = 0, V-stable just means V-constant. A function f € COO(M )
is affine if and only if 0 = Vdf. So, for two affine functions f,g € C* (]\7),

0 = VI[df,dg). = Vd{f,g}.

Hence {f, g} is affine. Since the Poisson structure vanishes at 0, the bracket
{f, g} vanishes at 0 and is thus linear. So, the linear functions form a Lie

algebra which must coincide with the linearization g. This identifies M as
g*. Because g is simple, the Lie—Poisson structure only vanishes at one

point, and thus we must have M = M = g* U

The group SU(2) admits an essentially unique Poisson-Lie group struc-
ture, corresponding to the standard quantum groups SU,(2). (This should
not be confused with the “Lie-Poisson” structure on the dual of a Lie
algebra.)

Proposition 7.5. There does not exist any real polarization of this Poisson
structure on S% = SU(2).

Proof. The Poisson bivector vanishes along a single great circle C' C S3. The
nontrivial symplectic leaves are open 2-dimensional discs with boundary C.

53 does not admit a flat, torsion-free connection, so a real polarization
must have rk’Py =1 or 2.
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At any point of C, the linearized Lie algebra is isomorphic to that gener-
ated by {X,Y, Z} with the brackets:

[X,Y]=0, [V,Z]=X, [X,Z]=-Y.

The only proper ideal is spanned by X and Y. Its annihilator is
1-dimensional and corresponds to the tangent to C.
So, if there is a real polarization, then rk Py = 1, and Py is tangent to C.
Being coisotropic implies that Py is tangent to the symplectic leaves.
Restricting Py to the closure of a symplectic leaf, we have a closed
2-disc with a rank 1 foliation that is tangential to the boundary. This is
impossible. O

This type of problem can sometimes be circumvented by using complex
polarizations. Theorem 7.3 generalizes to complex polarizations, but the
generalization of P; is not locally trivial, and a Lie algebra sometimes has
more ideals when it is complexified.

The structure of a real Poisson polarization is quite restrictive.

Theorem 7.6. Around any point of a real polarized Poisson manifold there
exist coordinates (z*,y®) such that:

(1
(2

the 770 leaves are the subspaces of fixed y;

(3 the y—y components of m vanish;
(4) the x—y components of m are constant in the xs;
(5) the x—x components of m are affine in the xs.

)
) Vi= g
)
)

Proof. The flat, torsion-free Py-connection V gives a locally affine structure
to the leaves of Py.

Over some open U C M, let f,g € C°°(U) be functions which are affine
along the Pp-leaves. Equivalently, df and dg are V-stable. Definition 7.3
then requires that the Koszul bracket,

[df, dg]r = d{f, g},

is also V-stable. Therefore {f, g} is also affine along the Py-leaves.
Let h € C*°(U) be constant along the Pp-leaves. This means that dh is a
section of P()l. Definition 7.3 requires that the Koszul bracket,

[df,dh]. = d{f,h},
is also a section of Py-. Therefore, {f,h} is also Py-constant.

Because of the locally affine structure, we can construct a foliated coor-
dinate chart around any point of M such that V is just given by partial
derivatives. Let z! be the leafwise coordinates and y® the transverse coor-
dinates in such a chart.

The ys are Py-constant, so 70 = {y® yﬂ } =0, because Py is coisotropic.

The s are affine in the Py-leaves, so 7' = {z*,y*} is Po-constant.
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Finally, 7/ = {z%, 27} is affine in the Py-leaves, so it is affine in the zs. [

7.3. Computing the twist. The description of real polarizations at the
Poisson manifold level opens the possibility of constructing the algebra
CH[X(M), o] without having to work with the symplectic groupoid ¥ (M)
directly.

Unfortunately, when Bohr—Sommerfeld conditions come into play, Yg_g
is typically not s-connected. In that case, the Lie algebroid does not contain
essential information about the groupoid. However, if the Bohr—-Sommerfeld
conditions are trivial, then there is still hope.

If P is a strongly admissible real polarization of a groupoid G, then A(P)
is equivalent to an ideal system for A(G). We can compute A(G/P) directly.
Its base manifold is the leaf space M/Py. The Lie algebra of sections is
identified with the space of V-stable sections of A(G) modulo the sections
of 730.

The description of the Lie algebroid cohomology complex of A(G/P) is
actually simpler. It consists of the V-constant sections of A®Pi-.

Now, let M be a Poisson manifold and P a strongly admissible real polar-
ization of X (M) with simply connected leaves. Let p: X(M) — L(M)/P be
the quotient map. Let A := A[X(M)/P] be the quotient Lie algebroid.

Prequantization of Y (M) gives a cocycle o which has a class [0] €
Tw[X(M)]. This should be equivalent to the pull-back of the class of the
reduced cocycle [og] € Tw(X(M)/P). Applying the “characteristic class”
map V¥ from Section 4.2 gives a commutative diagram as shown.

Tw[E(M)] — s H2(M)

TW(p)T p*T
Tw[E(M)/P] —— HE(A).

We know that W(o) = [r] € H2(M), so the pull-back of ¥(gy) must be
cohomologous to 7.

If p* : H{,(A) — H2(M) happens to be injective, then in light of
Theorem 4.1, the problem comes down to finding a V-constant bivector
c € T(M, N*Py) such that

c=7m+6X

where § X is the Poisson differential of some vector field. We can then recover
[o0] from [c] = ¥(0y), and only the class of oy is relevant to computing the
algebra.

The question of whether such a ¢ exists is not obvious, but it does in the
very general example that I will discuss in Section 8.2.

7.4. Totally complex polarizations. In the quantization of symplectic
manifolds, the best kind of polarization is a totally complex polarization
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given by a positive Kéhler structure. In that case, all the elegant tools of
complex analysis and Dirac-type operators apply. One might expect totally
complex polarizations to be equally useful for symplectic groupoids, but one
should be prepared for disappointment, because such polarizations do not
exist for most groupoids.

Theorem 7.7. If G is an s-connected Lie groupoid over M with a com-
plex structure such that the antiholomorphic tangent bundle is a groupoid
polarization, then G is a covering of Pair(M), the anchor is an isomorphism
# : A(G) — TM of Lie algebroids, and there exists a unique complex
structure on M that induces the complex structure on G.

Proof. Again, 1*T'G can be identified with TM @ A(G) using the +1
eigenspace decomposition by Tinv. FEach fiber of this is a vector space
groupoid, and so the product can be written in terms of the anchor (as in
Section 6.2).

Let J : TG — TG be the complex structure, and P C_T(cg the antiholo-
morphic tangent bundle. By Hermiticity, 7T'inv : P — P (and vice versa),
so JoT inv = —T invoJ. The complex structure intertwines the eigenvalues
of T'inv, so it restricts to a vector bundle isomorphism J : TM — A(G).
The antiholomorphic tangent bundle along M is

1"P = {(v,iJv) | v € TcM}.
So, take an arbitrary v € TM. By multiplicativity, (v,iJv) can be written
as a product,
(v,iJv) = (u,iJu) - (w,iJw)
= (u— s#Jw,iJ[u+w]) = (w+ t#Ju,iJ[u+ w)).

The two expressions occur because (u,iJu) and (w,iJw) must be compos-
able. The first implication of this is that v = u + w. Applying T's to this
gives the equations,

Ts(w,iJw) = Ts(v,iJv) = Ts(u + w,iJ[u + w]).
The map T's: 1*TG — T'M is linear, so
0= Ts(u,iJu) = u— s#Ju.
Likewise, applying T't gives,
0="Tt(w,iJw) =w + L#Jw.
This shows that
T#Jv = i(—u+ w)
and
s#I5#Iv = —v,
which means that Jy := %#J is an almost complex structure and # must
be an isomorphism.
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Since # : A(G) — T'M is always a Lie algebroid homomorphism, it is now
a Lie algebroid isomorphism. This makes the groupoid anchor (t,s) : G —
Pair(M) a local homeomorphism.

From the explicit presentation of 1*P, we can compute

Po=Tt(1"P) ={v+iJov |veTcM} ={veTcM]| Jov =—iv}.

By Lemma 5.1, Py is involutive, so Jy is integrable, and Py is the antiholo-
morphic tangent bundle for this complex structure.
By Lemma 5.1, for any v € G, Tt(Py) = Pyy(y) and

Ts(Py) = TtoTinv(Py) = Tt(P,-1) = Poys(y),
SO
PCTt 'PoNTs Py =T(t,s) " (Po x Po).

This is an equality along the unit manifold. Computing the rank shows that
it is an equality everywhere. O

Corollary 7.8. If 3 is an s-connected symplectic groupoid with a totally
complex polarization, then its base manifold is a Kdhler manifold and the
polarization is the corresponding exact polarization.

Despite this negative result, there is a nice class of polarizations associated
to complex structures on Poisson manifolds; I describe this in Section 8.3.
Note that Hermiticity was essential to Theorem 7.7.

Example. If G is a complex algebraic group, then the (anti)holomorphic
tangent bundle is not a polarization. It is involutive and multiplicative, but
not Hermitian.

7.5. Induced polarizations. Here, I give two techniques by which a polar-
ization on one groupoid can determine a polarization on another.

First, we need a few definitions. A Lie algebra-groupoid is just a special
case of a Lie algebroid-groupoid (see Definition 4.9); this is also known as a
strict 2-Lie algebra.

Definition 7.4. If §) is a Lie algebra-groupoid, G is a Lie groupoid, and 7 :
9 — XY(G) is a Lie algebra action, then 7 is multiplicative if 7 : §x G — TG
is a groupoid homomorphism. A subspace F' C $¢ of the complexification
is multiplicative if F- F = F and Hermitian if inv(F) = F.

Lemma 7.9. Let 7 : § — G be a multiplicative action of a Lie algebra-

groupoid on a groupoid, and F' C Hc a multiplicative, Hermitian Lie subal-
gebra. If

Im7(F) :={m(y) |ve F,ve G} CTIcG

s a regular distribution, then it is a polarization of G.
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Proof. In particular, 7 : F — X!(G) is a Lie algebra action, therefore
Im 7(F') is involutive.
Multiplicativity of 7 and Hermiticity of F' imply that
invyg or(F) = 7 oinvg(F) = 7(F).
So, Im 7(F') is Hermitian.
Finally, multiplicativity of 7 and F' implies multiplicativity of Im7(F).
O

In particular, there is the canonical action (by right-invariant vector fields)
of $) on the Lie group-groupoid (strict 2-group) G()). F' determines a right-
invariant polarization of G($)). Any right-invariant polarization is of this
form, so a multiplicative, Hermitian Lie subalgebra F' C ¢ is equivalent to
a right-invariant polarization of G($).

Lemma 7.10. Let ¢ : G — G’ be a groupoid homomorphism, and Q a
polarization of G'. If the inverse image

P:=Tq (Q) C TcG
s a regular distribution, then it is a polarization of G.
Proof. If X, Y € I'(G, P) are g-projectable, then because Q is involutive,
Tq([X,Y]) = [Tq(X), Tq(Y)]

is a section of Q. Therefore [X, Y] is a section of P, and P is involutive.
Hermiticity of ©Q implies Hermiticity of P, because ¢ intertwines the
inverses.
Now use the multiplicativity of Q. If (X,Y") € Py is a pair of composable
vectors from P, then Tq(X -Y) =Tq(X) -Tq(Y) € Q, therefore X - Y € P.
If (7,m) € Ga are composable and Z € P, then there exist X' € Q)
and Y' € Qg such that X' .Y’ = Tq(Z). Choose an arbitrary vector
X € P, such that Tq(X) = X'. If we define Y by X - Y = Z, then

Tq(Y)=Tq(X™ ' 2)=X""Tq2)=Y'€Q,
so Y € P,. This proves multiplicativity of P. O

The simplest example is when ¢ is a fibration and Q = 0; then T'¢~1(0) =
ker T'q is the kernel foliation. A little more generally, if ¢ is a fibration
and Q is a strongly admissible real polarization, then Tq~!(Q) is the kernel
foliation of the composition of ¢ with the quotient fibration G' — G/Q.

8. Further examples

8.1. Trivial Poisson structure. If the Poisson structure vanishes, then
quantization should return the algebra Co(M). This is very important for a
consistent classical limit.
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First, suppose that we start with a manifold M with Poisson bivector
m and symplectic integration ¥. Choose some polarization P of X. If the
Poisson bivector is rescaled to i, then the symplectic form of ¥ is rescaled
to w/h.

Now, imagine taking the classical limit # — 0. In doing this, we should
“zoom in” around the unit manifold of ¥ to balance the growing symplectic
form. If we do so, then in the limit we are left with 7% M with the canonical
symplectic form and addition on fibers as the groupoid operation. This is
the unique s-simply connected integration of M with 0 Poisson structure.

In this process, the polarization becomes stretched vertically. What is left
is the direct sum of the horizontal part PNTcM and its annihilator. This is
(the complexification of) a real polarization of T*M, although it may have
developed some singularities.

So, all polarizations become real in the classical limit. A (regular) real
Poisson polarization of M with m = 0 is just a foliation Py of M with a
locally affine structure on the leaves.

With this in mind, consider a manifold M with trivial Poisson bivector
m = 0, symplectic groupoid T*M and a polarization P.

The classical limit of a Kéahler polarization is a vertical polarization,
that is, Py = 0.

Example. If Py = 0, then the fibers of P are the cotangent fibers. These
are simply connected, so there are no Bohr-Sommerfeld conditions. The
Liouville form is a multiplicative adapted symplectic potential, so the
reduced cocycle og is trivial. The reduced groupoid is the quotient
T*M/P = M with trivial groupoid structure. Therefore, the quantization
recipe gives

Cp(T*M,0) = C*(M) = Co(M).

Any other (not totally complex) polarization will have some horizontal
part in the classical limit. Two elementary examples illustrate how this
may still give the same algebra.

Example. Let M = R. A Poisson polarization is given by Py = TR and the
trivial connection V. The symplectic groupoid polarization is the horizontal
foliation of T*R.

These leaves are simply connected, so there is no Bohr—Sommerfeld con-
dition. The reduced groupoid is the quotient, T*R/P = R as an additive
group. The group cohomology of R is trivial, so the reduced cocycle oy must
be trivial. Therefore

CH(T™R,0) = C*(R) = Cy(R).
This becomes more subtle when a Bohr-Sommerfeld condition comes

into play, but it also illustrates the importance of the Bohr—Sommerfeld
conditions.
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Example. Let M = S = R/27rZ. Again let Py = T'S' with the trivial
connection. Parametrize T*S! with horizontal coordinate z (modulo 27)
and vertical coordinate y. The leaves of P are the circles of constant y, so
the quotient groupoid is again the group R.

The symplectic form is dz A dy. Prequantization of T*S! as a symplectic
manifold is not unique, but since it is a symplectic groupoid, the holonomy
around the units needs to be trivial. This makes the prequantization unique
up to isomorphism as dictated by Theorem 4.3.

The holonomy around the P-leaf at y is e ~2™%¥. So, the Bohr-Sommerfeld
condition is y € Z. The reduced groupoid is the set of leaves with trivial
holonomy; this is the additive group Z. Therefore

CH(T*S*, o) = C*(Z) = C(SY).

As a more general case, suppose that R : T* x M — M is a free action of
a torus T* by diffeomorphisms of M. The orbits define a foliation Py and a
flat structure on the leaves; this is thus a Poisson polarization.

The quotient M /Py = M/T* is a manifold; call it N. The original mani-
fold M is a principal T*-bundle over N.

The symplectic groupoid is again T* M. The vertical part of the polariza-
tion is Py = Pg-, so T*M /Py = P; =2 R¥ x M. The quotient groupoid is thus
the trivial bundle of groups R* x N. The projection ¢ : T*M — R¥ x N is
the product of the dual map TR* : T*M — R* and the composed projection
"M — M — N.

The leaves of this polarization each have topology R* x T*. so there are
k Bohr—-Sommerfeld conditions. Suppose that v is one of the integral basis
vectors of the Lie algebra of T*. The holonomy around the flow of v should
be trivial. This holonomy can be computed using the Liouville form 6 €
QYT*M). At £ € T*M, the inner product of TR(v) with §(¢) is the pairing
of v with the dual map,

TR(v)10(§) = (v, TR*(S))-
The holonomy around the v orbit through £ is given by exponentiating,

1 L p2mi(v,TR*(€))

So the Bohr-Sommerfeld conditions require TR*(¢) € Z*. The reduced
groupoid is
T*Mg /P = 7ZF x N.
Let w € ZF be an integral vector. What is the reduced line bundle
over {w} x N7 The space of sections over {w} x N is equal to the space

of V = d + if constant functions over ¢~ !({w} x N) = (TR*)"}(w). In
particular, these functions are constant along what is left of the cotangent
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fibers. If 1) is such a function, and v € R¥ is a vector in the Lie algebra of
T, then

ETR(’U)¢ = _Z<TR(U)7 QW = —WMUW,
and the reduced line bundle over {w} x M is

C Xefiw M

where =™ is the equivalent unitary character (representation) of T*.

The twisted polarized convolution algebra is the tensor algebra over
CS°(N) generated by compactly supported smooth sections of these line bun-
dles. This is isomorphic to a dense subalgebra of smooth functions on M.
Effectively, what has happened is the decomposition of functions on M into
their Fourier components with respect to the T* action. If this torus bundle
is nontrivial, then the Fourier components are sections of these nontrivial
line bundles.

—iw

Example. If £ = 1 then M is a T-bundle over N. The algebra of continuous
functions on M is generated (as a C*-algebra) by sections of the associated
line bundle over N.

8.2. Bundle affine. A real polarization of a Poisson manifold is in partic-
ular a foliation with a locally affine structure on the leaves. Suppose that
the leaves are actually the fibers of a vector bundle. Let N := M /Py be the
base manifold and ¢ : M — N the projection.

By Theorem 7.6, the space Cg (M) of fiber-affine functions is closed as a
Lie algebra under the Poisson bracket. The space ¢*C*(N) C C23(M) is an
Abelian Lie ideal. The quotient Lie algebra is naturally identified with the
space of (homogeneous) fiber-linear functions or the space of sections of the
dual vector bundle, which I will suggestively denote as A — N. This gives
a central extension of Lie algebras,

0 C®(N) S ¢22(M) — T(N, A) — 0.

Define ¢ € I'(N, A2A*) to be the vertical part of the Poisson bivector along
the 0 section of M = A*. Extending this to a fiber-constant bivector, we
can decompose ™ = ¢ + 7.

The Lie bracket on I'(N, A) is given by o, so it is bidifferential, therefore
A is a Lie algebroid and mp is a Poisson structure. The Jacobi identity for
7 implies that ¢ € T'(N,A2A*) is a Lie algebroid cocycle.

Now suppose that (M, ) is integrable and we follow the quantization
recipe using the groupoid Y (M). The algebroid A is the quotient of T™*M
by the polarization; the quotient of the groupoid is a fibration p : X(M) — G
with connected fibers, therefore G = G(A). To compute the quantization of
M, we need the reduced cocycle og on G, or rather its class [0g] € Tw(G).

By Theorem 4.1, [0¢] is determined by its characteristic class ¥(og) €
H?. (A). This in turn is (partly) determined by p*(V[og]) = [] € HZ(M).
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The pull-back map p* : H*(A) — H2(M) is simple to describe. An alge-
broid cochain in I'(N, A®* A*) maps to the equivalent vertical, fiber-constant
multivector on M. So, the class p*(¥[og]) includes a vertical, fiber-constant
bivector on M which is cohomologous to 7.

Let X € X1(M) be the Euler vector field on M (as a vector bundle over
N). The eigenvectors of the Lie derivative operator Lx are the tensors which
are homogeneous in the vector bundle structure. The terms 7wy and ¢ have
degrees of homogeneity —1 and —2, respectively. So,

Lxm = —m — 2c.
This Lie derivative is also a Poisson coboundary: Lxm = [X, 7] = —6X. So,
—c=m—0X

may be the cocycle we are looking for.
If p* : HZ, . (A) — H2(M) happens to be injective, then we can conclude
that the quantization recipe for (M, ) gives

Cp[X(M), 0] = C*[G(A), o]

with any ¢ such that ¥(og) ~ —c. If p* is not injective, then this oy is still
correct, but the proof requires more analysis. I just give the construction
here.

Consider the T-extended groupoid G°?°. Its Lie algebroid is an extension

0—>RXxN—=AG?®) -A—0

classified by the cohomology class of —c. So, A(G?°) can be identified with
the bundle A® (R x N) with a bracket of the form (4.4). The dual A*(G?°)
is a linear Poisson manifold which can be identified with A* x R; the Poisson
structure is essentially my minus ¢ times the R coordinate. So, M can be
identified with the Poisson submanifold where the R coordinate equals —1.

The symplectic groupoid T*G° integrates A*(G?°). The source and target
of any element of this groupoid must lie in the same symplectic leaf, therefore
they have the same R coordinate and this defines a map H : G7° — R.

By construction, there is a T-action on G?°. This of course extends to
a Hamiltonian T-action on T*G?9, where the Hamiltonian is just H. The
inverse image H 1(—1) C G7° is a subgroupoid over the submanifold M.
The symplectic reduction H—1(—1)/T is the symplectic groupoid X (M).
Let Y € X1[H~1(—1)] be the restriction of the Hamiltonian vector field
#dH generating this T action.

The Liouville form # € QY7*G°°) is a symplectic potential, so the
prequantization of T*G?° is given by the trivial bundle with connection
V = d + i6. From this, we can explicitly construct the prequantization
L — X (M). Because Y 10 = (#dH)+0 = H = —1 on H~'(—1), the smooth
sections of L are identified with the functions f € C>°(H~'(—1)) such that

0=Vyf=Y(f)—if.
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In other words, L is the line bundle associated to the principal T-bundle
H~1(—1) — (M) by the fundamental representation of T.

Reducing this by the polarization gives the line bundle associated to
G%9 — G. In other words, og is the correct reduced twist.

I believe this class of examples is new, although it is not a surprising gen-
eralization beyond linear Poisson structures on vector bundles. The case of
affine Poisson structures on vector spaces was already proposed by Lands-
man [31].

8.3. Kahler—Poisson.

Definition 8.1. A Kdhler—Poisson manifold [25] is a manifold equipped
with both complex and Poisson structures, such that the Poisson bracket of
any two local holomorphic functions vanishes.

Theorem 8.1. Let X be a symplectic groupoid integrating a Kdhler—Poisson
manifold M, and F C TcM the antiholomorphic tangent bundle. If

P=T(t,s) Y(F x F)

1s a reqular distribution, then it is a polarization of ¥ as a symplectic
groupoid.

Proof. F gives an exact polarization F x F of Pair(M). The groupoid anchor
(t,s) : ¥ = M x M = Pair(M) is a homomorphism for any groupoid. By
Lemma 7.10, P is a groupoid polarization.

The definition of Kihler-Poisson implies that F* is isotropic (with
respect to 7). Because t is a Poisson map, this implies that Tt*(F~) is
isotropic; likewise, Ts*(]:ﬂ) is isotropic. These are subbundles of T((S:LE
and TéLE, which are symplectically orthogonal to one another. Therefore
PL = Tt*(FL) 4+ Ts*(F1) is isotropic, and P is coisotropic.

Again, use inv to split the exact sequence (7.2) and identify 1*7T% =
TMa&AX)=ZTM & T M. A straightforward computation shows that

VP = {(—5J#£,6) | £ €T M},
where J : TM — TM is the complex structure. So, tk’ P = dim M =
%dimE and P is Lagrangian. O

Unlike the previous examples, this is not usually strongly admissible.
Unless rk 7 is constant, PN P = TeX N TEY will not be a bundle.

It is rather difficult for this P to fail to be a regular distribution; indeed, I
do not know if that ever happens. Such a failure at least requires a nonzero
intersection Tt* F- N Ts*F+, which is related to F N ker #.

Example. Consider S? with any nonzero integrable Poisson structure. A
real polarization is impossible because Py = 0 cannot be coisotropic, there
exists no rank 1 foliation of S?, and S? is not parallelizable. However, with
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any complex structure, this is Kéhler-Poisson. The intersection of F* with
ker # is trivial, so this defines a polarization of any symplectic groupoid
over S2.

8.4. Abelian and locally Abelian. In [42], Rieffel studied an explicit
quantization for Poisson structures induced by Abelian group actions. In
this section, I study this class of Poisson structures as well as the general-
ization where the Poisson structure is only locally of that form. For these
Poisson structures, I present a simple, explicit symplectic integration which
is related to an action groupoid. I construct polarizations for these symplec-
tic groupoids in two steps, using the results of Section 7.5.

Rieffel constructed an explicit deformed product. Because I have not
studied quantization maps or deformed products here, I do not go so far as
to compare my construction with his in any detail.

Suppose that 7" C Diff (M) is a connected Abelian group of diffeomor-
phisms of a smooth manifold M. Let t := A(T) be the Lie algebra of
T. Any translation invariant Poisson structure on T is given by a bivector
II € A%t, and any such bivector determines an invariant Poisson structure.
I use #p to denote the equivalent map, #m : t* — t.

Let p:t — X1(M) be the action of t by vector fields. If this is extended
to exterior powers as p : A*t — X*(M), then

(8.1) 7 = p(II)
defines a T-invariant Poisson structure on M.

Definition 8.2. A Poisson structure induced from an Abelian group action
in this way is an Abelian Poisson structure.

8.4.1. Integration. Another way to construct the Abelian Poisson struc-
ture (8.1) is to view M as

M =T xy M= (T x M)/T.

Then 7 is just the push-forward of II x 0 by the quotient map. The algebra
of continuous functions on M is the T-invariant subalgebra

C(M)=[c(T)wc(M)]".

To quantize (M, ) we just need to replace C(T) in this expression with an
(equivariant) quantization of (7', II); see [10].

The symplectic integration of T is X(T,II) = t* x T" = T*T, where t*
acts on 1" by the composition of # : t* — t and exp : t — T. This is a
group-groupoid, where the group structure is the Cartesian product of the
Abelian group t* with T

The quantization of M should be (something like) the T-invariant sub-
algebra of the tensor product of C(M) with the quantization of T. The
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quantization of T is constructed from the symplectic groupoid t* x T, so the
quantization of M should be constructable from the groupoid

(t"'xT)xp M =t"xgp M
where the action R is the composed map,
R:t* 1 ¢ &2 7 - Diff(M).

In order to fit this into the framework of symplectic groupoids, we need
to construct the symplectic integration of M and find its relationship to
t* X R M.

The dual of p : t — X1(M) is a map, p* : T*M — t*; equivalently, p
extends to a Hamiltonian action on T*M, and p* is its momentum map.
Let p: T*M — M be the bundle projection. The anchor map for T*M
factors through t* x M; for any £ € T*M,

#E = punore) (PIE])-
With this in mind, define a map ¢ : T*M — t* x M by

q(&) = (p*(£),p(§))-

This is a Lie algebroid homomorphism, if t* x M is identified as the action
Lie algebroid of t* on M, that is, the Lie algebroid of t* xg M.

Integration of Lie algebroids is functorial, so ¢ should integrate to a
groupoid homomorphism from the symplectic integration (M) to t* x g M.
As it will turn out, X(M) is symplectomorphic to T*M, so we can try to
derive a groupoid structure on T*M by identifying t* xp M with t* x M
and requiring that ¢ : T*M — t* x g M itself be a groupoid homomorphism.

Because t* is a vector space, we have the luxury of dividing by 2, and can
identify t* x g M with t* x M in a way that is more symmetrical than the
standard presentation. The source, target, multiplication, and inverse are:

st (U, ) = R_yyj9()
tewnr (U, v) = Ry jo(T)
(u,2) - (v,y) = (u+v,R_y)ow) = (u+v, Ry oy)
(u, x)_l = (~u,z)
where u,v € t*, z,y € M.
Now, for § € T* M, the target must be t(§) = te-x a[q(§)] = Ryee/2[p(§)]-
To simplify notation, define a map B : T*M — T C Diff (M) by
Be = Ryeepp = exp (3#10°€) -
With this notation,
t(&) = Belp(£)];

and likewise,



116 E. HAWKINS

The unit map of t* x g M is the zero section, so the unit of T*M should be
the zero section. The inverse of (u,z) € t* xg M is (—u, z), so the inverse
of £ € T*M should be ¢! := —¢.

Suppose that £, € T*M are composable (that is, s(§) = t(¢)) then

(8.2) q(€-C) = (p* &+ p(,8(8)).

So, £ - ¢ is a covector over s(§) = B_¢[p(§)] = B¢[p(¢)] given by a sum of
two terms. The natural candidate is to pull both £ and ¢ back to this point
and add them:

€-Ci= Bl + B L.
The map p* is T-invariant, so this satisfies (8.2).

Theorem 8.2. With these source, target, unit, inverse, and product maps,
the cotangent space ¥ := T*M is a symplectic groupoid integrating (M, ).
The map q : X — t" xg M is a groupoid homomorphism.

Proof. The groupoid axioms are straightforward to verify, and we have just
verified the conditions for ¢ to be a homomorphism.

To check multiplicativity of the symplectic form, first observe that the
manifold of composable pairs can be identified with the direct sum T*M &
T*M, by mapping a composable pair (£,() € X3 to the pair of cotangent
vectors (B £, BX() over the point B_¢[p(£)] = B¢[p(Q)]-

Let 6§ € QY(T*M) be the Liouville form. The symplectic form is multi-
plicative if and only if the simplicial coboundary 0*0 is closed. It is sufficient
to check this over the dense submanifold where the action p has locally con-
stant rank. We can use coordinates in which p(t) are constant vector fields
and so 7 is constant. A simple computation then shows that 9*0 is exact.
It is the derivative of —%77, viewed as a bilinear function on T*M & T*M.
So, 0*w = —d[0*0] = 0.

Finally, we need to verify that t : T*M — M is Poisson. It is again
sufficient to check this over regular points of the action p. O

8.4.2. Polarization. As 1 have already mentioned, the symplectic
integration

T =t"x T =TT
is a Lie group-groupoid (a special case of a double Lie groupoid). So, there
are two ways of applying the Lie algebroid functor A to this. Applying A
to the group structure gives a symplectic Lie algebra-groupoid, t* & t. An
invariant polarization of t* x T' is equivalent to a subspace F' C t @ tc that
is multiplicative, Hermitian, and Lagrangian. Let

T ®t— X xp M)

denote the product of the tautological action of t* on t* with the action
p:t — XY(M). This is a multiplicative action. A polarization of t* x T
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extends trivially to a polarization of (t* x T') x M. This projects down to
the polarization

Q:=Im7(F)

of t* xp M, described in Lemma 7.9, provided that this is a regular distri-
bution. Using Lemma 7.10, the inverse image T'¢~'(Q) should at least be a
groupoid polarization of 3.

Proposition 8.3. If I' C t; @ tc is Lagrangian, Hermitian, and multi-
plicative, and F is transverse to the isotropy subspace ker p|, C t for every
x € M, then

P:=Tq¢ Q) =Tq Im7(F)]
1s a symplectic groupoid polarization.

Proof. First, note that ker T\(M) = ker p|,. The transversality assumption
means that 7 maps F' injectively to each tangent fiber, therefore Q is regular
and is a groupoid polarization of t* xz M.

Next we need to check that P C T¢X is a regular distribution. It is easier
to work in terms of the annihilator bundles where the definition of P is
equivalent to,

Pt =Tq(Q") C TS

By Tq*(Q%), I mean the set of pulled-back covectors. The definition of Q
can also be restated in terms of the annihilator; Q' is an inverse image,
QJ_ — (T*)il(FJ‘).

The kernel of

is entirely vertical; it consists of the covectors (v,0) where v € t** =t
such that p,(p[¢]) = 0. The covector (v,0) lies in Q* if and only if F+ >
7*(v,0) = (v,0) Since F' is Lagrangian, this is equivalent to (0,v) € F', and
transversality then implies v = 0. So, 0 = Q) M ker Tq; for every £ € X.
This shows that qu : QqL(g) — TgE; Hence P+ — and therefore P — is
regular.

The following diagram is commutative,

Tq: *
TES  Thg (kg M) —— (F @ 1)

| 5
qu * T‘& %
ng E—— Tq(g)(f XR M) —— t"Ppt
where the vertical map on the right is the symplectic identification of

t* @ t with its dual; either way around, (v,() € Tq*(g) (t* xr M) maps to
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(p*(Q), —pu[p(§)]). The definitions of Q and P imply that this diagram
restricts to:

Tq* *
1 3 1 T 1
PS QQ(E ) F

! -

Tqe 7|e
Pe r Qqe) < .
So, #P+ C P, meaning that P is coisotropic.
The rank of Q is dim F' = dim+t. The corank of P is the corank of Q,
which is

dim(t* x g M) — dimt = dim M = { dim %,

therefore P is Lagrangian. O

I derived this symplectic groupoid and polarization via the idea that the
quantization would be given by t* x g M. Because the polarization P of ¥ is
an inverse image polarization, the construction of the algebra should factor
through ¢ : ¥ — t* xg M. The algebra ought to be a twisted polarized
convolution algebra of Im ¢, but Im ¢ is not necessarily a Lie groupoid. It is
not quite all of t* xp M,

Img={(v,z) €t* xg M | v € (ker p|,)*}.

This has “holes” over points x € M where p|, is not injective. The transver-
sality assumption on F' implies that the polarization @ := Im7(F) fills in
these holes in Img. Any point of t* xg M lies on a leaf of the singular
foliation QN Q which intersects Im g. So, the twisted, polarized convolution
algebra of Im ¢ should be that of t* xp M after all.

Example. Im #11 C t is a symplectic vector space, so we can always choose
a complex structure J that makes this a Kahler vector space. The subspace

F .= {(w72ZJ#Hw) | w e t;(k:} C f&k: &b tc

is Lagrangian, multiplicative, and Hermitian. This is transverse to t¢ C
t& @ tc, so it always defines a polarization. So, the symplectic integration of
an Abelian Poisson structure always admits a polarization.

Example. If F' is real, then it is preserved by invigi. The eigenspace
decomposition shows that F' decomposes in the direct sum. Let Fy := F Nt
be the “horizontal” part. Since F' is Lagrangian, it must be F = FOl @ Fp.

In this case, multiplicativity means simply that #HFOL C Fy, that is, Fy
is coisotropic. Transversality means that Fj is transverse to each ker p|;.
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8.4.3. Locally Abelian. This class of examples can be generalized a little
further.

Definition 8.3. A Poisson structure on M is locally Abelian if it lifts to an
Abelian Poisson structure on some covering manifold M.

This class of examples is important because I have shown in [20] that if
a compact Riemannian manifold admits a noncommutative deformation of
its geometry, then the Poisson structure is locally Abelian with the Abelian
group acting by isometries of M. -

Let T' be the covering group, so that M = M /T". Obviously, the Poisson
structure on M must be I-invariant, so II € A2t induces a well-defined
Poisson structure 7 € X2(M) if and only if it is I-invariant via the adjoint
representation of Diff (M ). This implies that 7" C Diff (M ) can be chosen to
be preserved by I.

The symplectic integration of M can be obtained from the integration of
M by ¥(M) = T*M. Symplectically, it is Y(M) = T*M/F T*M.

The (adjoint) action of I' extends to t* @ t, and the construction of a
polarization will work if and only if F' C t& @ tc is preserved by I'. In
particular, a real polarization is given by any Fy C t that is coisotropic,
transverse to the isotropy subspaces, and I'-invariant.

8.4.4. Quantization. Consider a real polarization of a locally Abelian
Poisson manifold, given by some Fy C t. For clarity, I only describe the
case that Fy is the Lie algebra of some (compact) torus TF C 7.

In order for this polarization to be well-defined, Fjy must be I'-invariant.
This means that T* is a normal subgroup of the group of diffeomorphisms
of M generated by T* and I'. So, the action of T on M descends to a
well-defined action of T* on M itself.

By assumption, Fp is transverse to the isotropy subspaces, this means
that TF acts freely on M. There is some freedom in the choice of covering
M; we could replace M by M /(T¥ NT), and so we can assume that TN T
is trivial. With this assumption, T acts freely on M, and so M has the
structure of a T*-bundle over the quotient manifold N := M /T*.

The quotient groupoid ¥/P is the quotient of t* xr M by the action of
F = FOL @ Fp; the two parts act independently on t* and M. The unit
manifold is M/Fy = M/T* = N. The first factor reduces to t*/Fy- = F§ =
R*. The group action R reduces to a well-defined action of Fy on N. The
quotient groupoid is thus F{J x V.

The leaves of this polarization have fundamental group Z¥, so there are
k Bohr—Sommerfeld conditions. This is a generalization of the last exam-
ple I gave in Section 8.1, and by the same reasoning as there, the Bohr—
Sommerfeld conditions reduce Fj to Z*. So, the reduced groupoid is Z¥ x N.
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Each point in Z* corresponds to a character of T, and again the twist
line bundle over that component of Z* x N is the line bundle constructed
from the torus bundle M — N by that character.

Example. Suppose that M is a trivial T* bundle over N. Then the twist is
trivial, and the quantization is C*(Z* x N) = C*(Z* Co(M)). This is a case
of the quantization constructed by Cadet [6, 7]. His general construction
uses an open subgroupoid of ZF x N in order to include cases when the
action of T* on M is not free.

Example. (The Connes—Landi 3-sphere). Consider a unit sphere M = S3.
A torus T = T? acts on this by isometries, and any constant symplectic
structure on T2 induces a Poisson structure on S3. The two obvious genera-
tors of A(T?) do not act freely on S3; their vector fields vanish on two great
circles. We must choose Fy transverse to these generators and the simplest
choice is the diagonal.

So, we take Fy = R as the Lie algebra of T acting freely on S% with
quotient N = S3/T = §2: S3 is viewed as the tautological T-bundle over
S2. The group Z acts on S? by rotations (the rotation angle is the symplectic
area of T?). Lift this to some action of Z on the tautological line bundle. Let
U be the generator of this action on sections of the tautological line bundle.

The quantization of S2 is the C*-algebra generated by elements of the form
U (and their adjoints) where 1 is any smooth section of the tautological
line bundle over S2.

Note that changing the action on the line bundle would mean replacing
U with uU for some function u € C*(S?) with |u| = 1. This would give an
isomorphic algebra.

Example. (Heisenberg manifolds). The kth Heisenberg manifold is the
total space of the T-bundle over T? with Chern class [1, ¢1 = k. Rieffel [40]
constructed a quantization of this with two parameters v, u € R.

The corresponding Poisson structure is locally Abelian. The symplectic
foliation is the inverse image of the diagonal foliation of T? with slope v/ p;
this is a Kronecker foliation if v/u is irrational.

There is only one nice choice of polarization here. This is given by taking
Fy = R to generate the principal action of T on M.

The reduced groupoid is Z x T2, where the action of Z is generated by
a (v,p) translation. This can be lifted to an action on the line bundle
associated to M — N. Again, let U be the generator of this action on
sections.

The quantization of M is the C*-algebra generated by elements of the
form U, where 1 is any smooth section of that line bundle.
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9. Outlook

In this paper I have sketched a broadly ambitious program for the
geometric quantization of Poisson manifolds.  Although I have only
addressed the object side here, the central ambition is to realize quantization
as a contravariant functor whose codomain is the category of C*-algebras
and *-homomorphisms.

The central idea is that the quantization of a Poisson manifold is a twisted
polarized convolution C*-algebra of a symplectic groupoid. Although I have
only given a preliminary definition of this algebra, I hope that the examples
have convinced the reader that this idea unifies and extends the previously
known geometric constructions of C*-algebraic quantization. In particular,
the cases where my preliminary definition applies do include the standard
geometric quantization of symplectic manifolds, as well as twisted convolu-
tion algebras of s-connected Lie groupoids.

If quantization is a functor, then the domain category is not simply the
category of Poisson manifolds. The main message of this paper is really
about the objects of this category, that is, the structure needed for quan-
tization. I am proposing that an object in this category is a symplectic
groupoid with a prequantization, polarization, and half-form structure.

By itself, this proposal raises many interesting questions, because any con-
struction or question in Poisson geometry can be revisited by incorporating
some or all of this additional structure.

Not all Poisson manifolds should be quantizable, and the quantization of
a Poisson manifold is not generally unique. In each step of this recipe for
quantization, there are existence and uniqueness issues.

First, the Poisson manifold M needs to be integrable. The integrability
conditions were found by Crainic and Fernandes [15]. In general, there exists
more than one symplectic groupoid ¥ integrating M; however, any choice
of ¥ is a quotient of the unique s-simply connected integration ¥ (M). This
nonuniqueness seems to account for the difference between standard geo-
metric quantization of a symplectic manifold, and my construction in [19].

Second, a prequantization of the symplectic groupoid ¥ may not exist.
Theorem 4.3 (due to Crainic and Zhu [13, 16]) describes the prequantiz-
ability condition for ¥ (M) and shows that its prequantization is unique. In
general, X is prequantizable if X (M) is prequantizable and the prequantiza-
tion descends to ¥. Prequantization of ¥ is not generally unique, but this
nonuniqueness is described by H' (X, M;T) according to Theorem 4.4.

Third, a polarization may not exist and may not be unique. Understand-
ing these issues requires a general description of the polarizations of Poisson
manifolds.

Fourth, the construction of a half-form bundle (or sheaf) (2713/ % involves
taking the square root of a line bundle. This may not exist and may not be
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unique. Finally, there may be some freedom in choosing the completion to
a C*-algebra.

This paper is only intended as a beginning. There are several fundamental
questions that remain to be answered in order to carry this program of
quantization forward.

What is a polarization of a Lie algebroid or Poisson manifold? I presented
here a description of real groupoid (and symplectic groupoid) polarizations
at the infinitesimal level, in terms of the Lie algebroid. This needs to be
extended to complex polarizations.

What is a twisted polarized C*-algebra for a symplectic groupoid? I
have given a preliminary definition of such a convolution algebra in the best
behaved cases. I have not discussed the details of completing this to a C*-
algebra, but as I suggested in Section 5.5, there should be at least two ways
of doing this. I suggested that the general twisted, polarized convolution
algebras may be constructed from a total sheaf cohomology space. This
leaves the problem of defining convolution on cohomology. This may be
extremely difficult, because it is closely related to the problem of defining
an inner product on cohomological wave functions in conventional geometric
quantization, which has never been resolved.

To what extent is this algebra independent of the polarization? In the
examples where I have considered more than one polarization of the same
groupoid, the resulting algebras were isomorphic. This happened for a sym-
plectic vector space, a torus, and manifolds with zero Poisson structure.
I doubt that the algebra will always be independent of the polarization,
but it would be useful to characterize which polarizations are equivalent in
this way.

How are Poisson maps quantized? A smooth map intertwining Pois-
son brackets is the semiclassical analog of a homomorphism of noncom-
mutative algebras. Such a Poisson morphism should be quantizable to a
x-homomorphism when it is sufficiently compatible with the polarizations.
A construction for quantizing some Poisson maps would make quantization
a functor.

Is this really quantization? It is important (or at least desirable) to prove
that this construction satisfies some reasonable definition of C*-algebraic
deformation quantization along the lines sketched in Section 1.3.
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