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SCALING LIMITS FOR EQUIVARIANT SZEGÖ KERNELS

Roberto Paoletti

Suppose that the compact and connected Lie group G acts holo-
morphically on the irreducible complex projective manifold M , and
that the action linearizes to the Hermitian ample line bundle L on M .
Assume that 0 is a regular value of the associated moment map. The
spaces of global holomorphic sections of powers of L may be decom-
posed over the finite dimensional irreducible representations of G. We
study how the holomorphic sections in each equivariant piece asymp-
totically concentrate along the zero locus of the moment map. In the
special case where G acts freely on the zero locus of the moment map,
this relates the scaling limits of the Szego kernel of the quotient to the
scaling limits of the invariant part of the Szego kernel of (M, L).

1. Introduction

Let (M, J) be an n-dimensional complex projective manifold, and let (L, h)
be an Hermitian ample line bundle on M . Suppose that the unique com-
patible connection on L has curvature Θ = −2i ω, where ω is a Hodge
form on M . The pair (ω, J) puts a Hermitian structure H = g − iω on the
(holomorphic) tangent bundle TM , hence a Riemannian structure g on M .

Let G be a compact connected g-dimensional Lie group, and suppose given
a Hamiltonian holomorphic action of G on (M, ω, J) unitarily linearizing to
(L, h). For every k = 1, 2, . . ., there is a natural Hermitian structure on each
space of holomorphic global sections H0(M, L⊗k), and a naturally induced
unitary representation of G on H0(M, L⊗k).

Let {V�}�∈Θ be the finite dimensional irreducible representations of G,
and for every � ∈ Θ let H0(M, L⊗k)� ⊆ H0

(
M, L⊗k

)
be the maximal

subspace equivariantly isomorphic to a direct sum of copies of V�. There
are unitary equivariant isomorphisms

(1.1) H0(M, L⊗k) =
⊕

�∈Θ

H0(M, L⊗k)�.

9
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The action of G on L dualizes to an action on the dual line bundle L∗ in
a natural manner; on the other hand, the G-invariant Hermitian metric h
on L naturally induces a Hermitian metric on L∗, still denoted by h, which
is also G-invariant.

Let X ⊆ L∗ be the unit circle bundle, with projection π : X → M .
Then, the action of G on L∗ leaves X invariant. Furthermore, X is a con-
tact manifold, with contact form given by the connection 1-form α. Since
G preserves both the Hermitian metric and the holomorphic structure, it
preserves the unique compatible connection, and therefore it acts on X as
a group of contactomorphisms; given this, X has a standard G-invariant
Riemannian metric. By these underlying structures, in the following we
shall tacitly identify functions, densities and half-densities on X. In the
following, to avoid cumbersome notation, we shall use the same symbol μg

for the symplectomorphism of M and the contactomorphism of X induced
by g ∈ G.

As is well known, the spaces of smooth sections C∞(M, L⊗k) may be
unitarily and equivariantly identified with the spaces C∞(X)k of smooth
functions on X of the k-th isotype for the S1-action, that is, obeying the
covariance law f(eiϑ · x) = eikϑ f(x) for x ∈ X and eiϑ ∈ S1. Let H(X)k ⊆
C∞(X)k be the subspace of functions corresponding to H0(M, L⊗k) under
this isomorphism, so that H(X) =:

⊕+∞
k=0 H(X)k is the Hardy space of X.

Thus (1.1) translates into

(1.2) H(X)k =
⊕

�∈Θ

H(X)�,k.

In this paper, we are concerned with certain C∞ functions Π�,k on X ×X
naturally associated to each pair (�, k) ∈ Θ × N. Namely, let us choose for
any (�, k) ∈ Θ × N an orthonormal basis {s

(�,k)
j }N�k

j=1 of H(X)�,k, and let
us define

Π�,k(x, y) =:
N�k∑

j=1

s
(�,k)
j (x) · s

(�,k)
j (y) (x, y ∈ X).

Then Π�,k is well defined, that is, independent of the choice of the orthonor-
mal basis, and in fact it can be intrinsically described as the distributional
kernel of the orthogonal projection P�,k : L2(X) → H(X)�,k. We shall
study here the asymptotic properties of the functions Π�,k, as � is fixed
and k → +∞.

Let g be the Lie algebra of G, and denote by Φ : M → g∗ the moment
map of the action of G on (M, 2ω). In [P1], it has been shown that for fixed
� one has Π�,k(x, x) = O(k−∞) as k → +∞, unless Φ

(
π(x)

)
= 0.

On the other hand, if Φ
(
π(x)

)
= 0, and G acts freely on Φ−1(0) ⊆ M , then

by Corollary 1 of [P2] (working with a different normalization convention
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for the total volume) there is an asymptotic expansion

Π�,k(x, x) =
∑

j

∣
∣
∣s(�,k)

j (x)
∣
∣
∣
2

∼ dim(V�)2

Veff
(
x
) kn−g/2 +

∑

l≥1

al,�(x) kn−g/2−l,

where Veff : (Φ ◦ π)−1(0) → R is the effective potential of the action [BG];
its value on x ∈ (Φ ◦ π)−1(0) is the volume of the G-orbit in M through
π(x). Thus the effective potential of the action controls the asymptotics of
the restriction of Π�,k to the diagonal of X × X.

In the particular case of the trivial representation � = 0, Veff relates
the asymptotics of Π0,k and of the Szegö kernel of the symplectic reduction
(M0, ω0, L0) of (M, L, ω), expressing an obstruction to the conformal unitar-
ity of the Guillemin–Sternberg map H0

(
M, L⊗k

)G → H0(M0, L
⊗k
0 ). Fur-

ther developments on this problem are due to Charles [Ch], Hall and Kirwin
[HK], Hui Li [L], Ma and Zhang [MZ].

Turning momentarily to the action free case, the fast decay of Szegö
kernels away from the diagonal has stimulated interest in the asymptotics of
their scaling limits near the diagonal. More precisely, suppose x ∈ X, and
let ρ(z, θ) be a Heisenberg local chart for X centered at x, as in (3.2) that
follows; in particular, if m =: π(x) this unitarily identifies (TmM, Hm) and
C

n with its standard Hermitian structure. As shown in Theorem 3.1 of [SZ],
for any w, v ∈ C

n the following asymptotic expansion holds as k → +∞ for
the level-k Szegö kernel Πk:

Πk

(
ρ

(
v√
k
, θ

)
, ρ

(
w√
k
, θ′
))

∼
(

k

π

)n

eik(θ−θ′)+ψ2(u,v)

×

⎛

⎝1 +
∑

j≥1

aj(x, w, v) k−j/2

⎞

⎠ ,(1.3)

where
ψ2(w, v) =: w · v − 1

2
(
‖w‖2 + ‖v‖2) ,

and the aj are polynomials in w and v (see also [BSZ] for the leading term).
Recall that here Hm denotes the Hermitian structure of TM induced by
ω =: (i/2)Θ; this normalization convention accounts for the factor 1/πn in
(1.3), unlike the earlier work [Z]. We shall conform here to [SZ]; thus the
total volume of M is vol(M) = (πn/n!)

∫
M c1(L)n.

In this article, we shall study the scaling limits of the equivariant Szegö
kernels Π�,k, and show that to leading order they are still simply related to
the effective volume, certain data associated to the representation �, and
(in the special case where G acts freely on Φ−1(0) ⊆ M) the scaling limits
of the Szegö kernel of the symplectic reduction. Furthermore, we shall see
that equivariant scaling limits can also be expressed by the product of an
exponentially decaying factor in v, w times an asymptotic expansion whose
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coefficients are polynomials in v and w. We remark that in the toric case
equivariant asymptotics have been studied in [STZ].

To express our results, we need some basic facts about the local geometry
of M along M ′ =: Φ−1(0) [GS], [GGK]. Recall that if 0 ∈ g∗ is a regular
value of Φ, then M ′ is a g-codimensional connected coisotropic submanifold
of M , whose null-fibration is given by the orbits of the G-action.

At any m ∈ M , let us denote by gM (m) ⊆ TmM the tangent space to the
orbit through m, and by Jm : TmM → TmM the complex structure.

If m ∈ M ′, let us denote by Qm ⊆ TmM the Riemannian orthocomple-
ment of gM (m) in TmM ′. Thus, Qm is a complex subspace of TmM ′, of
complex dimension n − g.

The Riemannian orthocomplement of TmM ′ ⊆ TmM is Jm(gM (m)).
Therefore, we have orthogonal direct sum decompositions

(1.4) TmM = TmM ′ ⊕ Jm

(
gM (m)

)
, TmM ′ = Qm ⊕ gM (m).

Given (1.4), if m ∈ M ′ and w ∈ TmM , we shall decompose w as w =
wv + wh + wt, where wv ∈ gM (m), wh ∈ Qm, wt ∈ Jm(gM (m)). The labels
stand for vertical, horizontal, and transverse. This hints to the fact that in
the special case where G acts freely on M ′, the latter is a principal G-bundle
on the symplectic reduction M0 = M ′/G; thus gM (m) is the vertical tangent
fiber, whereas Q is a connection projecting unitarily to the tangent bundle
of M0.

Before stating our theorem, another definition is in order. To this end,
recall that if 0 ∈ g∗ is a regular value of the moment map then the action
of G on Φ−1(0) ⊆ M is locally free. Therefore, any m ∈ Φ−1(0) has finite
stabilizer subgroup Gm ⊆ G.

Suppose x ∈ X, Φ
(
π(x)

)
= 0. If Gπ(x) ⊆ G is the (finite) stabilizer

subgroup of π(x), for every g ∈ Gπ(x) there exists a unique hg ∈ S1 such
that μg(x) = hg · x, where μg : X → X is the contactomorphism induced by
g. We shall then let

(1.5) A�,k(x) =: 2g/2 dim(V�)
Veff(x)

· 1∣
∣Gπ(x)

∣
∣
∑

g∈Gπ(x)

χ�(g)hk
g ,

where χ� : G → C is the character of the irreducible representation �.
As before, ω =: (i/2)Θ, where Θ is the curvature, and h is the Hermitian

metric on TM associated to ω.
Furthermore, as in (1.3) we shall express the asymptotic expansion for

Π�,k in a Heisenberg local chart ρ centered at x. However, given that the
dependence of Π�,k on θ and θ′ is given by the factor eik(θ−θ′) and carries no
geometric information, in the following we shall generally take θ = θ′ = 0;
with the identification TmM ∼= C

n induced by ρ understood, we shall set
x + w/

√
k =: ρ

(
w/

√
k, 0
)
.
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We then have the following theorem.

Theorem 1.1. Suppose that 0 ∈ g∗ is a regular value of Φ, and x ∈ X,
Φ
(
π(x)

)
= 0. Let us choose a system of Heisenberg local coordinates centered

at x. For every � ∈ Θ and w, v ∈ Tπ(x)M , the following asymptotic
expansion holds as k → +∞:

Π�,k

(
x +

w√
k
, x +

v√
k

)
∼
(

k

π

)n−g/2

A�,k(x) eQ(wv+wt,vv+vt) eψ2(wh,vh)

·

⎛

⎝1 +
∑

j≥1

a�j(x, w, v) k−j/2

⎞

⎠ ,

where

Q(wv + wt, vv + vt) = −‖vt‖2 − ‖wt‖2 + i
[
ωm(wv, wt) − ωm(vv, vt)

]
,

and the a�js are polynomials in v, w with coefficients depending on x and �.

We integrate the statement by the following remarks.
• The remainder term can be given a “large ball estimate” (that is,

for ‖u‖, ‖v‖ � k1/6), similar to the ones in [SZ]. More precisely, let
RN (x, v, w) be the remainder term following the first N summands
in (1.6). Given the description of Π�,k as an oscillatory integral (cfr
(4.32 below), we may adapt the arguments in Section 5 of [SZ] to
obtain that for ‖u‖, ‖v‖ � k1/6 we have

|RN (x, v, w)| ≤ CN kn−(g+N+1)/2e− 1−ε
2 (‖uh−vh‖2+2‖vt‖2+2‖wt‖2).

The bound also holds in Cj-norm.
• In the special case where G acts freely on Φ−1(0), denote by X0 ⊆ L∗

0

the circle bundle of the reduced pair (M0, L0), and by Π(0)
k the level

k Szegö kernel of X0. If Φ
(
π(x)

)
= 0, let us denote by x its image

in X0, and if wh ∈ Qπ(x) let wh be its isometric image in the tangent
space to M0. By (1.3) and Theorem 1.1, we obtain

Π�,k

(
x +

w√
k
, x +

v√
k

)

∼ 2g/2
(

k

π

)n−g/2 dim(V�)2

Veff(x)
eQ(wv+wt,vv+vt) eψ2(wh,vh)

+
∑

j≥1

a�j(x, w, v) kn−(g+j)/2

=
(

2k

π

)g/2

·
(

dim(V�)2

Veff(x)
eQ(wv+wt,vv+vt)

)
· Π(0)

k

(
x +

wh√
k
, x +

vh√
k

)

+ L.O.T.



14 R. PAOLETTI

• Arguing as in Section 2.3 of [DP], one can see that Π�,k = O (k−∞)
uniformly on compact subsets of the complement in X × X of the
locus

I(Φ) =:
{
(x, y) : x ∈ (G × S1) · y, Φ

(
π(y)

)
= 0
}

.

Thus, it is natural to consider scaling limits at any (x, y) ∈ I(Φ).
Given g0 ∈ G, h0 ∈ S1, x ∈ (Φ ◦ π)−1 (0) and v, w ∈ Tπ(x)(M),
a minor modification of the arguments in the proof of Theorem 1.1
leads to an asymptotic expansion

Π�,k

(
μg0 ◦ rh0

(
x +

w√
k

)
, x +

v√
k

)
(1.6)

∼
(

k

π

)n−g/2

A�,k(x, g0, h0) eQ(wv+wt,vv+vt) eψ2(wh,vh)

·

⎛

⎝1 +
∑

j≥1

a�j(x, w, v) k−j/2

⎞

⎠ ,

where now

A�,k(x, g0, h0) =: 2g/2 dim(V�)
Veff(x)

· 1∣
∣Gπ(x)

∣
∣
∑

g∈Gπ(x)

χ�

(
g g−1

0
)
·(h0 hg)k.

• We are primarily interested in the case of complex projective mani-
folds. In view of the microlocal description of almost complex Szegö
kernels appearing in [SZ], the results of this paper can however be
extended to the context of almost complex symplectic manifolds.

After this paper was completed, I learned of the rich paper [MZ] alluded
to that discussed before. Using analytic localization techniques of Bismut
and Lebeau for spinc Dirac operators, Ma and Zhang obtained among other
things an asymptotic expansion for the trivial representation.

2. Examples

In the non-equivariant case, a key feature of scaling asymptotics of Szegö
kernels expressed by (1.3) is the universal nature of the leading term, essen-
tially the level-one Szegö kernel of the reduced Heisenberg group Hn

red. To
express this more precisely, recall that the latter may be viewed as the unit
circle bundle of the trivial line bundle L = C

n × C over C
n, endowed with

the Hermitian metric

h
(
(z, w), (z, w′)

)
= w w′e−‖z‖2

(
z, z′ ∈ C

n, w, w′ ∈ C

)
.

The unit circle bundle is thus given by

X = Hn
red =

{
(z, w) ∈ C

n × C : |w| = e−‖z‖2/2
}

.
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A Heisenberg chart for X centered at (0, 1) is

ϕ0 : C
n × (−π, π) → X, (z, θ) �→

(
z, e−‖z‖2/2+iθ

)
.

As shown in [BSZ], for every k = 1, 2, . . . the level-k Szegö kernel is

(2.1) ΠH
k

(
ϕ0(w, θ), ϕ0(v, θ′)

)
=
(

k

π

)n

ek
[
i(θ−θ′)+ψ2(w,v)

]
.

In the linear case, we shall derive from (2.1) an asymptotic expansion in
the spirit of Theorem 1.1, at any x =

(
z1, e

−‖z1‖2/2
)

for which the map

γz1 : g ∈ G �→ μg(z1) ∈ C
d is an embedding (that is, z1 has trivial stabilizer

in G); with minor changes, the arguments that follow apply when γz1 is an
immersion (that is, z1 has finite stabilizer in G).

Example 2.1. Let A : G → U(n), g �→ Ag, be a unitary representation,
so that the underlying action on (Cn, ω0) is μg(z) =: Agz (z ∈ C

n); here
ω0 =: (i/2)

∑n
j=1 dzj ∧ dzj is the standard symplectic structure on C

n.
The standard Hermitian structure on C

n is then H0 = g0 − iω0, where
g0(w,v) = −ω0(J0w,v) (J0 being multiplication by i).

A linearization to L is given by

μg

(
(z, w)

)
=:
(
Agz, w

)
.

For any z1 ∈ C
n, a Heisenberg chart for X centered at (z1, e

−‖z1‖2/2) is

ϕz1 : (z, θ) �→ ϕ0
(
z+z1, ω0(z, z1)+θ

)
=
(
z + z1, e

−‖z+z1‖2/2+i
(
ω0(z,z1)+θ

))
.

Thus, given x = (z1, e
−‖z1‖2/2) ∈ Hn

red and v ∈ C
n, in our notation

x + v = ϕz1(v, 0) = ϕ0
(
z1 + v, ω0(v, z1)

)
.

Given an irreducible representation � and w,v ∈ C
n, by a straightfor-

ward computation using (1.7) we obtain

ΠH
�,k

(
x +

w√
k
, x +

v√
k

)
= dim(V�)(2.2)

·
∫

G
χ�(g) ΠH

k

(
ϕ0

(
Agz1 +

Agw√
k

,
1√
k

ω0 (w, z1)
)

,

ϕ0

(
z1 +

v√
k
,

1√
k

ω0 (v, z1)
))

dg

= dim(V�)
(

k

π

)n ∫

G
χ�(g) eSk(z1,w,v) dg,
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where dg is the density on G associated to a Haar metric with
∫
G dg = 1,

and

Sk(z1,w,v) =: k H0
(
Agz1 − z1, z1

)
+

√
k
[
H0
(
v, A−1

g z1 − z1
)

(2.3)

+ H0 (Agz1 − z1,w)
]

+ ψ2(Agv,w).

Given the simplifying assumption that z1 has trivial stabilizer in G, there
exists C > 0 such that ‖Agz1 − z1‖ ≥ C distG(g, e), where e ∈ G is the
unit and distG is the Riemannian metric on G. Thus, it follows from (2.1)
that the integrand of (2.2) is O (k−∞) on the loci Ak ⊆ G where, say,
distG(g, e) ≥ k−1/3. On the loci Bk where distG(g, e) ≤ 2 k−1/3, on the other
hand, we can transfer the integration to the Lie algebra g by the exponential
map expG : g → G, η �→ eη, and apply the rescaling η = (1/

√
k) ξ. Let

Â : g → u(n), η �→ Âη, be the differential of the morphism of Lie groups
A : G → U(n). Thus

A
eξ/

√
k = e

̂Aξ/
√

k = idV +
Â(ξ)√

k
+

1
2

Â(ξ)2

k
+ · · · .

On the upshot, after some computations we obtain

Π�,k

(
x +

w√
k
, x +

v√
k

)
∼ dim(V�)

πn
kn−g/2

∫

g

χ�

(
eξ/

√
k
)

eSk(ξ,w,v,z1) dξ

(2.4)

=
dim(V�)2

πn
kn−g/2

×
∫

g

eSk(ξ,w,v,z1) dξ ·
(
1 + O

(
k−1/2

))
,

where now

Sk(ξ,w,v, z1) =: i
√

k ω0

(
z1, Âξ(z1)

)
+ ψ2(w,v)

− 1
2

∥
∥
∥Âξ(z1)

∥
∥
∥

2
+ H0

(
Âξ(z1),v

)
− H0

(
w, Âξ(z1)

)

= i
√

k Φξ
(
z1
)

+ ψ2(w,v) − 1
2

∥
∥
∥Âξ(z1)

∥
∥
∥

2
+ H0

(
Âξ(z1),v

)

− H0

(
w, Âξ(z1)

)
;(2.5)

here Φ : V → g∗ is the moment map, and Φξ =: 〈Φ, ξ〉.
Suppose, to begin with, that Φ

(
z1
)

�= 0. Then the linear phase ξ �→
Φξ
(
z1
)

has no stationary point in ξ, and since by (2.5) the integrand in
(2.4) is absolutely convergent, the stationary-phase lemma applies to show
that Π�,k(x + w/

√
k, x + v/

√
k) = O(k−∞).
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If Φ
(
z1
)

= 0, on the other hand, we have

Π�,k

(
x +

w√
k
, x +

v√
k

)

=
dim(V�)2

πn
kn−g/2 eψ2(w,v)

×
∫

g

e(−1/2)‖ ̂Aξ(z1)‖2
+H0( ̂Aξ(z1),v)−H0(w, ̂Aξ(z1)) dξ ·

(
1 + k−1/2

)

=
dim(V�)2

πn · Veff(z1)
kn−g/2 eψ2(w,v)

∫

g(z1)
e(−1/2) ‖s‖2+H0(s,v)−H0(w,s) ds

·
(
1 + k−1/2

)
,

wherein the latter equality integration has been shifted from g to the tangent
space g(z1) ⊆ C

n at z1 to the G-orbit of z1 by the change of variables
s = Âξ(z1); hence ds = Veff(z1) dξ.

Given the equalities H0
(
w, s
)

= H0
(
wt+wv, s

)
, ψ2
(
w,v

)
= ψ2

(
wh,vh

)
+

ψ2
(
wt + wv,vt + vv

)
, we obtain with a few calculations

Π�,k

(
x +

w√
k
, x +

v√
k

)
(2.6)

=
dim(V�)2

πn · Veff(z1)
kn−g/2 eψ2(w,v)+(1/2)‖wv−vv‖2

×
∫

g(z1)
e−iω0(s,vt+wt)−(1/2) ‖s−(wv−vv)‖2

ds ·
(
1 + O

(
k−1/2

))
.

The Gaussian integral in (2.6) is (2π)g/2 eiω0(vt+wt,wv−vv)−(1/2)‖vt+wt‖2
, and

from this one computes

Π�,k

(
x +

w√
k
, x +

v√
k

)

= 2g/2 dim(V�)2

Veff(z1)

(
k

π

)n−g/2

eψ2(wh,vh)−‖wt‖2−‖vt‖2+i
(
ω0(wv ,wt)−ω0(vv ,vt)

)

·
(
1 + O

(
k−1/2

))
.

Before considering the next example, let us recall from [BSZ] that for
k = 1, 2, . . . an orthonormal basis of H0

(
P

d,OPd(k)
)

is
{
sk
J

}
|J|=k

, where

(2.7) sk
J =:

√
(k + d)!
πd J!

zJ;

here J! =:
∏d

l=0 jl!, zJ =:
∏d

l=0 zjl
l .
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Example 2.2. The unitary representation of S1 on C
2 given by t·(z0, z1) =:(

t−1z0, tz1
)

descends to a symplectic action on P
1, with a built-in lineariza-

tion to the hyperplane line bundle. The associated moment map is

Φ : P
1 → R, [z0 : z1] �→ −|z0|2 + |z1|2

|z0|2 + |z1|2
.

Clearly, any [z0 : z1] ∈ Φ−1(0) has stabilizer subgroup {±1}. Since any
S1-orbit in S3 has length 2π and doubly covers its image in P

1, the effective
volume is identically equal to π = 2π/2 on Φ−1(0). Therefore,

A�,k

(
[z0 : z1]

)
=

√
2

π
· 1
2

[
1 + (−1)� (−1)k

]
=

{√
2/π if k ≡ � (mod. 2)

0 if k �≡ � (mod. 2).

Given that

μt

(
zl
0 zk−l

1

)
=
(
zl
0 zk−l

1

)
◦ μt−1 = (tz0)

l (t−1z1
)k−l = t2l−k zl

0 zk−l
1 ,

we have for � ∈ Z and k ∈ N:

(2.8) H0 (
P

1,OP1(k)
)
�

=

⎧
⎨

⎩
span

{
z

�+k
2

0 z
k−�

2
1

}
if k ≡ � (mod. 2),

0 if k �≡ � (mod. 2).

By the Stirling formula, if b is fixed and a → +∞ we have

(a + b)! ∼
√

2π a

(
aa+b

ea

)
.(2.9)

Suppose then k = �+2s, s ∈ N, and choose (z0, z1) ∈ S3 lying over [z0 : z1];
in view of (2.7), (2.8) and (2.9),

Π�,k

(
[z0 : z1], [z0 : z1]

)
=

(� + 2s + 1)!
π (� + s)! s!

|z0|2(�+s) |z1|2s(2.10)

∼ 1
π

√
s

π
2�+2s+1 |z0|2(�+s) |z1|2s,

as s → +∞.
If [z0 : z1] ∈ Φ−1(0), so that |z0|2 = |z1|2 = 1/2, we obtain

Π�,k

(
[z0 : z1], [z0 : z1]

)
∼ 2

π

√
s

π
∼

√
2

π

√
k

π
= A�,k

(
[z0 : z1]

)
√

k

π
,

which fits with the asymptotic expansion of Theorem 1.1.
If |z0| �= |z1|, (2.10) is rapidly decreasing as s → +∞.
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3. Preliminaries

In this section we shall collect some preliminaries and set some notation.
If (M, J) is a complex manifold, any Kähler form ω on it determines an

Hermitian metric h on the tangent bundle of M , and ω = −�(h). The
Riemannian metric g =: �(h) is gm(w, v) = ωm(w, Jmv) (m ∈ M , w, v ∈
TmM).

Since Heisenberg local coordinates centered at a given x ∈ X will be a
key tool in the following, we shall briefly recall their definition [SZ].

Thus we now assume that L → M is an Hermitian ample line bundle,
and ω = (i/2) Θ, where Θ is the curvature of the unique compatible covari-
ant derivative. Let us choose an adapted holomorphic coordinate system
(z1, . . . , zn) for M centered at π(x). This means that, when expressed in the
zis, ω evaluated at π(x) is the standard symplectic structure on C

n, that
is, ω

(
π(x)

)
= (i/2)

∑n
j=1 dzj ∧ dzj . Thus the choice of the zis determines a

unitary isomorphism Tπ(x)M ∼= C
n.

Let us next choose a preferred local frame eL for L at π(x), in the sense
of [SZ]. Thus eL is a holomorphic local section for L in the neighborhood
of π(x), satisfying

∥
∥eL

(
π(x)

)∥∥ = 1, ∇eL

(
π(x)

)
= 0, ∇2eL

(
π(x)

)
= −hπ(x) ⊗ eL

(
π(x)

)
,

(3.1)

where ∇ is the covariant derivative of the connection, and h = g + iω. The
local holomorphic frame for L uniquely determines a holomorphic dual local
frame e∗

L for L∗, determined by the condition (e∗
L, eL) = 1,

For δ > 0, let B2n(0; δ) ⊆ C
n ∼= R

2n be the ball of radius δ centered at the
origin. For an appropriate δ > 0, a system of Heisenberg local coordinates
for X centered at x is then given by the map

(3.2) ρ : B2n(0; δ) × (−π, π) → X, (z, θ) �→ eiθ a(z)−1/2 e∗
L(z),

where a(z) =: ‖e∗
L‖2 = ‖eL‖−2. If w ∈ Tπ(x)M ∼= C

n, we shall denote by
x + w the point in X with Heisenberg local coordinates (w, 0).

It will simplify our exposition to make a little equivariant adjustment
to the previous construction. Suppose that m ∈ M has finite stabilizer
subgroup Gm ⊆ G (this will always be the case when Φ(m) = 0 if 0 ∈ g∗ is
a regular value of the moment map). Let U ⊆ M be a Gm-invariant open
neighborhood of the identity, and suppose that a local holomorphic frame
σ = e∗

L satisfying (3.1) has been chosen on U . Clearly, for every g ∈ Gm we
have g∗(σ)(m) = hg · σ(m) (recall that g∗(σ) = μg ◦ σ ◦ μg−1). We may then
consider the new frame

σ =
1

|Gm|
∑

g∈Gm

h−1
g g∗(σ).
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Then σ(m) = eL(m), and since the metric and the connection are
G-invariant σ also satisfies (3.1). Moreover, we now have

(3.3) g∗(σ) = hg · σ, ∀ g ∈ Gm.

In the following, the underlying preferred local holomorphic frame in the
definition of Heisenberg local coordinates will be assumed to satisfy (3.3).

For ξ ∈ g, we shall denote by ξM and ξX the vector fields on M and X,
respectively, associated to ξ by the infinitesimal actions of g. The moment
map Φ : M → g∗ for the action on (M, 2ω) is related to the G-invariant
connection form α on X by the relation Φξ = −ι(ξX) α, where Φξ = 〈Φ, ξ〉.

4. Proof of Theorem 1.1

To begin with, let us fix an invariant Haar metric on G, and let dg denote
the associated measure; by Haar metric we mean that

∫
G dg = 1. Now if

ρ : G → GL(W ) is a linear representation on a complex vector space, for
any � ∈ Θ the projection P� of W onto the the �-isotypical component
W� is given by

(4.1) P� = dim(V�)
∫

G
χ�

(
g−1) ρ(g) dg

[Di]. On the other hand, the unitary representation of G on Hk(X) ⊆ L2(X)
induced by the action on X is given by (g ·f)(y) =: f

(
μg−1(y)

)
(f ∈ L2(X),

y ∈ X). Therefore, the equivariant Szegö kernel Π�,k is given by

(4.2) Π�,k(y, y′) = dim(V�)
∫

G
χ�

(
g−1) Πk

(
μg−1(y), y′) dg,

where μg : X → X is the contactomorphism associated to g ∈ G.
Suppose x ∈ X, Φ(x) = 0, and set m =: π(x). We assume given a system

of Heisenberg local coordinates for X centered at x. This choice gives a
meaning to the expression x + w, for any w ∈ TmM ∼= C

n.
Then for every � ∈ Θ and k ∈ N we have

Π�,k

(
x +

w√
k
, x +

v√
k

)
(4.3)

= dim(V�)
∫

G
χ�

(
g−1) Πk

(
μg−1

(
x +

w√
k

)
, x +

v√
k

)
dg,

where χ� : G → C is the character of the irreducible representation V�.
We shall now split the integration in dμ as the sum of two terms, one

which is rapidly decaying as k → +∞, and another where integration is
over a suitably shrinking neighborhood of the (finite) stabilizer subgroup
Gm ⊆ G.
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To this end, let us define for every k ∈ N an open cover {Ak, Bk} of G by
setting

Ak =:
{

g ∈ G : distG

(
g, Gm

)
> k−1/3

}
,

Bk =:
{

g ∈ G : distG

(
g, Gm

)
< 2 k−1/3

}

(towards application of the stationary-phase lemma later in the proof, the
exponent −1/3 used in the definition of Ak and Bk, could be replaced by −a,
for any a ∈ (0, 1/2)). Here distG : G × G → R is the Riemannian distance
function. Let ak + bk = 1 be a Gm-invariant partition of unity on G subor-
dinate to the open cover {Ak, Bk} (thus, supp(ak) ⊆Ak, supp(bk) ⊆Bk).

We may then split (4.3) as

Π�,k

(
x +

w√
k
, x +

v√
k

)
(4.4)

= Π�,k

(
x +

w√
k
, x +

v√
k

)

a

+ Π�,k

(
x +

w√
k
, x +

v√
k

)

b

;

the first (respectively, second) summand in (4.4) is (4.3) with the integrand
multiplied by ak (respectively, bk).

Proposition 4.1. Π�,k(x + w/
√

k, x + v/
√

k)a = O(k−∞) as k → +∞.

Proof of Proposition 4.1. Let distM : M × M → M be the Riemannian
distance function. We have the following.

Lemma 4.1. There exists a positive constant C (dependent on w and v,
but independent of k) such that for all k � 0 and g ∈ Ak we have

(4.5) distM

(
μg−1

(
m +

w√
k

)
, m +

v√
k

)
≥ C distG(g, Gm) ≥ C k−1/3.

Proof of Lemma 4.1. If not, we can find N � kj ↑ +∞ and gj ∈ Akj
such

that ∀j = 1, 2, . . . we have

(4.6) distM

(

μgj

(

m +
w
√

kj

)

, m +
v
√

kj

)

≤ 1
j

distG(gj , Gm).

Since distG(gj , Gm) is bounded above by the diameter of the compact Lie
group G, we have in particular distM (μgj (m + w/

√
kj), m + v/

√
kj) → 0,

hence also distM (μgj (m), m) → 0. Therefore, gj → Gm; after passing to a
subsequence, therefore, we may assume that gj → g0 for some g0 ∈ Gm. Let
us write gj = g0 hj , where hj → e, and distG(hj , e) = distG(gj , Gm) ≥ k

−1/3
j .

Using the exponential map expG : g → G, for all j � 0 we can write hj = eνj ,
for unique νj ∈ g such that ‖νj‖ = distG(hj , e). Since G acts locally freely on



22 R. PAOLETTI

Φ−1(0), there exists c > 0 such that ‖νM (m)‖ ≥ c ‖ν‖, ∀m ∈ Φ−1(0), ν ∈ g

(the former norm is in TmM , the latter in g). Hence,

(4.7)
∥
∥(νj

)
M

(m)
∥
∥ ≥ c k

−1/3
j (j � 0).

Working in preferred local coordinates centered at m, we have

μeνj

(

m +
w
√

kj

)

= m +
(
νj

)
M

(m) +
w
√

kj

+ O
(
k

−2/3
j

)
,

μg−1
0

(

m +
v
√

kj

)

= m + O
(
k

−1/2
j

)
.(4.8)

By definition of the preferred local coordinates, it follows from (4.7) and
(4.8) that for j � 0 we have

distM

(

μeνj

(

m +
w
√

kj

)

, μg−1
0

(

m +
v
√

kj

))

≥ c

2
‖νj‖.

On the other hand, we can rewrite (4.6) as

(4.9) distM

(

μeνj

(

m +
w
√

kj

)

, μg−1
0

(

m +
v
√

kj

))

≤ 1
j

‖νj‖,

a contradiction. �

Returning to the proof of Proposition 4.1, by Lemma 4.1 and the off-
diagonal estimate on the Szegö kernel in (6.1) of [C], we conclude

(4.10)
∣
∣
∣
∣Πk

(
μg−1

(
m +

w√
k

)
, m +

v√
k

)∣∣
∣
∣ ≤ C e−C2 k1/6

whenever k � 0 and g ∈ Ak. The statement follows easily from (4.10). �

Since our focus is on asymptotic expansions, we shall henceforth disregard
the a term. Let us set β�(g) = (dim(V�)/2π) χ�

(
g−1
)

(g ∈ G). Then we
have

Π�,k

(
x +

w√
k
, x +

v√
k

)

b

(4.11)

=
∫ π

−π

∫

Bk

β�(g) bk(g) e−ikϑ Π
(

μg−1 ◦ reiϑ

(
x +

w√
k

)
,

x +
v√
k

)
dϑ dg.

Suppose Gm = {g1 = e, g2, . . . , gNx}. Let us define

Ek =:
{
g ∈ G : distG(g, e) < 2 k−1/3}.
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Then Bk =
⋃Nx

j=1 Bjk, where Bjk = gj · Ek (1 ≤ j ≤ Nx, k ∈ N). Thus

Π�,k

(
x +

w√
k
, x +

v√
k

)

b

(4.12)

=
∑

j

∫ π

−π

∫

Bjk

β�(g) bk(g) e−ikϑ

Π
(

μg−1 ◦ reiϑ

(
x +

w√
k

)
, x +

v√
k

)
dϑ dg

=
∑

j

Π�,k

(
x +

w√
k
, x +

v√
k

)

j

,

where the j-th summand in (4.12) is

Π�,k

(
x +

w√
k
, x +

v√
k

)

j

(4.13)

= e−ikϑj

∫ π

−π

∫

Ek

β�(gj g) bk(gjg) e−ikϑ

Π
(

μg−1g−1
j

◦ r
ei(ϑ+ϑj)

(
x +

w√
k

)
, x +

v√
k

)
dϑ dg;

here eiϑj = hgj for every j. Notice that bk(gjg) = bk(g) for every k ∈ N and
j, since bk is Gm-invariant.

Let us examine the asymptotics of (4.13). To this end, fix ε > 0 very
small (but independent of k), and let γ0 + γ1 = 1 be a partition of unity on
(−π, π) with supp(γ0) ⊆ (−ε, ε), supp(γ1) ⊆ (−π,−ε/2) ∪ (ε/2, π). Then

Π�,k

(
x +

w√
k
, x +

v√
k

)

j

=
1∑

l=0

Π�,k

(
x +

w√
k
, x +

v√
k

)

jl

,

where Π�,k(x + w/
√

k, x + v/
√

k)jl is given by (4.13) with the integrand
multiplied by γl.

Lemma 4.2. Π�,k(x + w/
√

k, x + v/
√

k)j1 = O(k−∞) as k → +∞.

Proof. If k � 0, g ∈ Bjk and |ϑ| > ε/2, then

distX

(
μg−1g−1

j
◦ r

ei(ϑ+ϑj)

(
x +

w√
k

)
, x +

v√
k

)
>

ε

3

(w and v are held fixed). Since the singular support of the Szegö kernel Π
is the diagonal diag(X) ⊆ X × X, we conclude that

Ψk,g(h) =: γ0(h) β�(g) bk(g) Π
(

μg−1g−1
j

◦ r
ei(ϑ+ϑj)

(
x +

w√
k

)
, x +

v√
k

)
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is a bounded family of smooth functions on S1 when k ≥ k0, g ∈ Bjk and
|ϑ| > ε/2; here γ0 is interpreted as γ0(eiϑ), a cut-off function supported on
a small open neighborhood of 1 ∈ S1.

In the same range, therefore, for every l ∈ N we can find a constant
Cl > 0 such that

∣
∣Ψ(s)

k,g

∣
∣ < Cl s

−l for every s ∈ N, where Ψ(s)
k,g denotes the

s-th Fourier coefficient of Ψk,g. In particular, this is true for s = k, hence
∣
∣Ψ(k)

k,g

∣
∣ < Cl k

−l. The same estimate then holds after integrating over Bk,
and this implies the statement. �

We are reduced to studying the asymptotics of Π�,k(x + w/
√

k, x +
v/

√
k)j1. To proceed, let us introduce the parametrix for the Szegö ker-

nel contructed in [BS]. Thus, up to a smoothing term which does not
contribute to the asymptotic expansion, we can represent Π as a Fourier
integral operator of the form

(4.14) Π(y, y′) =
∫ +∞

0
eitψ(y,y′) s(y, y′, t) dt (y, y′ ∈ X),

where the phase satisfies �(ψ) ≥ 0, and the amplitude is a semiclassical
symbol admitting an asymptotic expansion s(y, y′, t) ∼

∑+∞
t=0 tn−j sj(y, y′).

In view of Lemma 4.2, inserting (4.14) into (4.13), and multiplying the
integrand by γ0, we obtain

Π�,k

(
x +

w√
k
, x +

v√
k

)

j

(4.15)

∼ e−ikϑj

∫ +∞

0

∫ ε

−ε

∫

Ek

γ0(ϑ) β�(gj g) bk(g)

× e
i
[

tψ
(

μ(gjg)−1◦r
e
i(ϑ+ϑj)(x+w/

√
k),x+v/

√
k
)

−kϑ
]

· s

(
μg−1g−1

j
◦ r

ei(ϑ+ϑj)

(
x +

w√
k

)
, x +

v√
k
, t

)
dt dϑ dg

= k e−ikϑj

∫ +∞

0

∫ ε

−ε

∫

Ek

eikΨkj(g,t,ϑ) A�kj(g, t, ϑ) dt dϑ dg;

in the last equality we have performed the coordinate change t � kt, and set

Ψkj(g, t, ϑ) =: tψ
(
μ(gjg)−1 ◦ r

ei(ϑ+ϑj)

(
x + w/

√
k
)

, x + v/
√

k
)

− ϑ,(4.16)

A�kj(g, t, ϑ) =: γ0(ϑ) β�(gj g) bk(g)(4.17)

·s
(

μg−1g−1
j

◦ r
ei(ϑ+ϑj)

(
x +

w√
k

)
, x +

v√
k
, kt

)
.
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Let expG : g → G be the exponential map, and let E ⊆ g be a suitably
small open neighborhood of the origin 0 ∈ g, over which expG restricts to
a diffeomorphism E → E′ =: expG(E). Since the shrinking open neighbor-
hood Ek ⊆ G of the identity e ∈ G is definitely contained in E′, we may
express the integration in dg using the exponential chart. To this end, let us
fix an orthonormal basis of g, so as to unitarily identify g with R

g, and let
us write ξ for the correspondig linear coordinates on g. We shall denote by
HG(ξ) dξ the local coordinate expression of the Haar measure dg under the
exponential cart; the orthonormality of the chosen basis of g implies that
HG(0) = 1.

With some abuse of language, we shall write bk for the composition bk ◦
expG, and assume that bk(ξ) = b( 3

√
k ξ) for a fixed function b = b1 on E.

We shall also leave expG implicit in the expression for Ψkj and A�kj , which
shall be viewed in the following as functions of ξ ∈ E. Thus, replacing g by
ξ and dg by HG(ξ) dξ in (4.15), and then performing the change of variable
ξ = ν/

√
k, we obtain

Π�,k

(
x +

w√
k
, x +

v√
k

)

j

(4.18)

∼ k1−g/2 e−ikϑj

∫ +∞

0

∫ ε

−ε

∫

Rg
e
ikΨkj

(

ν√
k
,t,ϑ

)

·A�kj

(
ν√
k
, t, ϑ

)
HG

(
ν√
k

)
dt dϑ dν.

Our next step will be to Taylor expand Ψkj in descending powers of k1/2,
by relying on (64) and (65) of [SZ]; to this end, we shall need the Heisenberg
local coordinates of μg−1 ◦r

ei(ϑ+ϑj)(μg−1
j

(x+w/
√

k)) when g = expG

(
ν/

√
k
)
.

Recalling that m = π(x) and Gm ⊆ G is the stabilizer subgroup, let us
consider the isotropy representation Gm → GL

(
TmM

)
, g �→ dmμg; for every

j = 1, . . . , Nx and w ∈ TmM , let us set wj =: dmμg−1
j

(w) ∈ TmM .

In view of our choice of ω = (i/2) Θ as the reference Kähler form in our
construction of Heisenberg local coordinates, we then have the following
lemma.

Lemma 4.3. Suppose x ∈ X, Φ ◦ π(x) = 0, and fix a system of Heisenberg
local coordinates centered at x. Then there exist C∞ functions Qj , Tj : C

n ×
R

g → C
n, vanishing at the origin to third and second orders, respectively,

such that the following holds. For every w ∈ Tπ(x)M , −π < ϑ < π, ν ∈ g,
as k → +∞ the Heisenberg local coordinates of

Xj,k(x, w, ν) =: μ
e−ν/

√
k

(
r
eiϑj ◦ μg−1

j

(
x +

w√
k

))
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are given by
(

1√
k

[
wj − νM (m)

]
+ Tj

(
w√
k
,

ν√
k

)
,
1
k

ωm

(
νM (m), wj

)

+Qj

(
w√
k
,

ν√
k

))
.

Proof. Set m = π(x). By definition of νM , μ
e−ν/

√
k ◦ μg−1

j
(m + w/

√
k) has

underlying preferred local coordinates (1/
√

k)
(
wj −νM (m)

)
+T ((1/

√
k) wj ,

(1/
√

k) ν), where T : C
n × R

g → C vanishes to second order at the origin
(here, w, νM (m) ∈ TmM are identified with their images in C

n under the
unitary isomorphism TmM → C

n induced by the chosen preferred local
coordinates centered at m).

Therefore, the Heisenberg local coordinates of Xj,k(x, w) have the form
(θ(k−1/2), k−1/2 (wj − νM (m)) + T (k−1/2 wj , k

−1/2 ν)), for an appropriate
smooth function θ : (−δ, δ) → R.

In order to determine θ, set γs(t) =: μe−tν ◦ μg−1
j

(x + sw), defined and
smooth for all sufficiently small s, t ∈ R. Let us write wj = pwj + iqwj ,
νM (m) = pν + iqν , where pwj , qwj , pν , qν ∈ R

n. The preferred local coordi-
nates of π

(
γs(t)

)
= μe−tν ◦ μg−1

j
(m + sw) are (spwj − tpν) + i(sqw − tqν) +

T (sw, tν). Therefore, the Heisenberg local coordinates of γs(t) have the form

(4.19)
(
θ̃(s, t),

(
spwj − tpν

)
+ i
(
sqwj − tqν

)
+ T (sw, tν)

)
,

for an appropriate smooth function θ̃(s, t); clearly, θ(u) = θ̃(u, u).

Claim 4.1. We have θ̃(s, t) = −ϑj +(st) ·d0(wj , ν)+ θ̃1(swj , tν), for appro-
priate smooth functions d0, θ̃1 : C

n × R
g → R, with θ̃1 vanishing to third

order at the origin.

Proof of Claim 4.1. Recall that Heisenberg local coordinates depend on the
choice of a preferred local holomorphic frame eL of L, an open neighborhood
U ⊆ M of m; as discussed in Section 3, without loss of generality we may
assume that U is Gm-invariant and g∗(e∗

L) = hg · e∗
L, ∀ g ∈ Gm. Let us write

σ = e∗
L. We have x + sw = σ(m + sw)/‖σ(m + sw)‖, where m + sw ∈ U is

the point with local preferred holomorphic coordinates w ∈ C
n. Therefore,

μ−1
gj

(x + sw) = μ−1
gj

(
σ(m + sw)

)/
‖σ(m + sw)‖

= h−1
gj

σ
(
μ−1

gj
(m + sw)

)/∥∥
∥σ
(
μ−1

gj
(m + sw)

)∥∥
∥

has Heisenberg local coordinates (−ϑj , zj(w, s)), where zj(w, s) are the local
preferred holomorphic coordinates of μ−1

gj
(m+sw). Therefore, θ̃(s, 0) = −ϑj

for all s.
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We conclude that θ̃(s, t) = −ϑj + t R(s, t), for some smooth function R.
On the other hand, X ′ is G-invariant, and G acts horizontally on it (in

other words, for every x ∈ X ′ and ξ ∈ g we have ξX(x) = ξ�
M (π(x)),

where ξ�
M denotes the horizontal lifting of ξM ). Lemmata 2.4 and 3.3 of

[DP] then imply that θ(0, t) = t3 S(t) for a smooth function S(t). Thus,
R(s, t) = t2R1(t) + s d(s, t) for smooth functions R1(t), d(s, t). We con-
clude that θ̃(s, t) = t3 R1(t)+ st d(s, t), and the statement follows by setting
d0 = d(0, 0).

Returning to the proof of Lemma 4.3, in order to determine d0 we recall
that the expression for α in Heisenberg local coordinate is α = dθ + p dq −
q dp + β(‖z‖2). Inserting the local expression for γs(t) that we obtain from
(4.19) and Claim 4.1, we obtain

γ∗
s (α) =

{[
sd0 +

(
spwj − tpν

)
· (−qν) −

(
sqwj − tqν

)
· (−pν)dt

]

+G1(s, t, ν, wj)} dt

=
{

s
[
d0 + ωm(νM , wj)

]
+ G1(s, t, ν, wj)

}
dt,(4.20)

where G1 vanishes to second order for (s, t) = (0, 0).
On the other hand, we have dt(γs)(1) = −νX

(
γs(t)

)
. Therefore

(4.21) γ∗
s (α)(t) = −ι(νX)α

(
π
(
γs(t)

))
dt = Φν

(
π
(
γs(t)

))
dt,

having used that Φν = −ι(νX)α.
Because of the G-equivariance of Φ, Φ ◦ π(γ0(t)) = Φ ◦ π(μgjetν (x)) = 0

for every sufficiently small t; therefore, ∂Φ ◦ γ/∂t|(0,t) = 0 identically, where
with abuse of language we have written Φ for Φ ◦ π : X → g. This implies

Φν
(
π
(
γs(t)

))
= s dmΦν(wj) + G3(s, t, ν, wj)

= 2s ωm(νM , wj) + G3(s, t, ν, wj),(4.22)

where m = π(x), and G3 vanishes to second order for (s, t) = (0, 0).
Comparing (4.21) and (4.22) with (4.20), we obtain d0 = ωm(νM , w),

G2 = G3. To complete the proof of Lemma 4.3, we need only take s =
t = 1/

√
k, and remark that in Heisenberg local coordinates r

eiϑj is simply
translation by ϑj .
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Let us set ψ2(u, v) = u · v − 1/2
(
‖u‖2 + ‖v‖2

)
(u, v ∈ C

n). Invoking
(63)–(65) of [SZ], in view of Lemma 4.3 we obtain that Ψkj in (4.16) has
the form:

Ψkj(g, t, ϑ) = i t
(
1 − eiϑ

)
− ϑ(4.23)

+
t

k
eiϑ
[
ωm

(
νM (m), wj

)
− i ψ2

(
wj − νM (m), v

)]

+ t eiϑ Rj

(
νM (m)√

k
,

w√
k
,

v√
k

)
,

where Rj : (Cn)3 → C is a smooth function vanishing to third order at
the origin.

Let us now insert (4.23) in (4.18). We obtain

Π�,k

(
x +

w√
k
, x +

v√
k

)

j

∼ k1−g/2e−ikϑj

∫ +∞

0

(4.24)

∫ ε

−ε

∫

Rg
eikΨ(t,ϑ)Ã�kj (ν, w, v, t, ϑ) dtdϑdν,

where we have set

Ψ (t, ϑ) =: i t
(
1 − eiϑ

)
− ϑ,(4.25)

Ã�kj (ν, w, v, t, ϑ) =: et eiϑ
[
ψ2

(
wj−νM (m),v

)
+iωm

(
νM (m),wj

)]

· ei k t eiϑ Rj(νM (m)/
√

k, w/
√

k, v/
√

k)(4.26)

· A�kj(ν/
√

k, t, ϑ) HG(ν/
√

k).

A straightforward computation shows that

ψ2
(
wj − νM (m), v

)
+ iωm

(
νM (m), wj

)
= Th + Tt + Tv + Tvt,

where

Th =:ψ2
(
wh, vh

)
, Tt =: − 1

2

∥
∥wt − vt

∥
∥2

, Tv =: − 1
2

∥
∥wjv − νM (m) − vjv

∥
∥2

,

Ttv =: − i ωm

(
wjv − νM (m) − vjv, wjt + vjt

)
+ i
[
ωm

(
wv, wt

)
−ωm

(
vv, vt

)]

(notice that the map w �→ wj induced by the isotropy action of g−1
j ∈ Gm ⊆

G is an isometry of TmM , since G preserves the metric of M).
We may insert in (4.17) the asymptotic expansion for the classical symbol

s(x, y, t) appearing in the parametrix for Π, and use Taylor expansion in
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g = ν/
√

k, w/
√

k and v/
√

k in descending powers of k1/2, to deduce that

(4.27) Ã�kj (ν, w, v, t, ϑ) ∼
∑

l≥0

a�jl (ν, w, v, t, ϑ) kn−l/2,

where every coefficient has the form

a�jl (ν, w, v, t, ϑ) = eteiϑ(Th+Tt+Tv+Tvt) p�jl (ν, w, v, t, ϑ)

and each p�jl (ν, w, v, t, ϑ) is a polynomial in ν, w and v with coefficients
depending on x, t, ϑ and �. In particular, the leading coefficient is

(4.28) a�j0 (ν, w, v, t, ϑ) = e
t eiϑ

(
Th+Tt+Tv+Tvt

)

γ0(ϑ) β�(gj) s0(x, x) tn.

Thus,

Π�,k

(
x +

w√
k
, x +

v√
k

)

j

∼ k1−g/2 e−ikϑj(4.29)

∑

l≥0

(∫ +∞

0

∫ ε

−ε

∫

Rg
eikΨ(t,ϑ)

×a�jl (ν, w, v, t, ϑ) kn−l/2 dt dϑ dν
)

.

To determine the leading asymptotics of (4.29), let us first integrate
(4.28) in dν. By our choice of Heisenberg local coordinates, we may uni-
tarily identify (TmM, ωm) with (Cn, ω0), where ω0 is the standard symplec-
tic structure on C

n; let g0 be the standard scalar product on C
n, so that

ω0
(
a,b
)

= −g0
(
a, J0(b)

)
, ∀a, b ∈ C

n, where J0 is multiplication by i. We
shall view Sm : ν �→ νM (m) as a map g → C

n. Let us set λ = t eiϑ. Up to a
multiplicative factor, we are led to integrating

(4.30) e
λ

[

−1/2
∥
∥wjv−νM (m)−vjv

∥
∥2

+i g0

(
wjv−νM (m)−vjv ,J0(wjt+vjt)

)]

in dν.
Recall that the ν coordinates are induced by the choice of an orthonormal

basis of g; we can shift the integration to the tangent space of the G-orbit
through m, gM (m) ⊆ TmM . Let us then choose an orthonormal basis of
gM (m), and let β be the corresponding linear coordinates. We can use β
as integration variable, by the relation β = Sm(ν). By Lemma 3.9 of [DP],
after performing the change of variables β �→ β − (wjv −vjv) we are left with

1
Veff(m) |Gm|

∫

Rg
e
t eiϑ

[

−1/2‖β‖2−i g0

(
β,J0(wjt+vjt)

)]
dβ(4.31)

=
(2π)g/2

Veff(m) |Gm| · 1√
t eiϑ/2

e− 1
2 t eiϑ ‖wtj+vtj‖2

;
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in fact, since t > 0 (4.31) is valid when ϑ = 0 because −(1/2)‖β‖2 equals its
own Fourier transform, and consequently by analytic continuation it holds
for all ϑ ∈ (−π/2, π/2).

Let us next consider the case a general a�jl (ν, w, v, t, ϑ). Up to multi-
plicative factors polynomial in w and v, we are led to integrate the prod-
uct of (4.30) times a monomial in ν. Again up to an appropriate scalar
factor, this amounts to multiplying the integrand in (4.31) by a mono-
mial in β, hence evaluating an appropriate higher derivative of e−‖β‖2/2

in J0(wjt + vjt) ∈ gM (m). We are thus left with the product of the right
hand side in (4.31) times a polynomial in wt and vt.

We can now insert (4.31) in (4.27) and (4.24) to obtain

Π�,k

(
x +

w√
k
, x +

v√
k

)

j

(4.32)

∼ k1−g/2 e−ikϑj

∫ +∞

0

∫ ε

−ε
eikΨ(t,ϑ) S�j (w, v, t, ϑ, k) dt dϑ

where S�j (w, v, t, ϑ, k) ∼
∑

l≥0 S�jl(w, v, t, ϑ) kn−l/2 and the coefficients of
the expansion are as follows.

First, the leading coefficient is

(4.33)

S�j0(w, v, t, ϑ) =
(2π)g/2

Veff(m) |Gm| · 1√
t eiϑ/2

γ0(ϑ) β�(gj)s0(x, x) tn et eiϑ Γ(w,v)

where Γ(w, v) = ψ2(wh, vh) − ‖wt‖2 − ‖vt‖2 + i[ωm(wv, wt) − ωm(vv, vt)].
Next, for every l ≥ 1 we have S�jl(w, v, t, ϑ) = p�jl(w, v, t, ϑ) et eiϑ Γ(w,v),

where p�jl(w, v, t, ϑ) is a poynomial in w and v.
Thus we are left with an oscillatory integral whose phase Ψ, given by

(4.25), is the same phase appearing in the discussion of the scaling asymp-
totics of non-equivariant Szegö kernels in Section 3 of [SZ]. In particular,
Ψ has non-negative imaginary part, and a unique stationary point for t = 1
and ϑ = 0; furthermore, at this point the Hessian of Ψ is

Ψ′′(1, 0) =
(

0 1
1 i

)

Hence (1, 0) is a non-degenerate stationary point of Ψ. Arguing as in loc.
cit., the contribution coming from |t| ≥ 2, say, is rapidly decreasing, and by
the stationary phase method for complex oscillatory integrals (Theorem 7.7.5
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of [H]) there is an asymptotic expansion:

Π�,k

(
x +

w√
k
, x +

v√
k

)

j

(4.34)

∼ k1−g/2 e−ikϑj
1

√
det
(
kΨ′′(1, 0)/2πi

)

×
+∞∑

s=0

k−s Ls

(
S�j (w, v, t, ϑ, k)

)∣∣
t=1,ϑ=0 ,

where L0 is the identity, and Ls is a suitable differential operator of degree 2s
in (t, θ) for any s = 0, 1, 2 . . .. The statement then follows from the previous
description of the phase; in particular, each coefficient in the asymptotic
expansion is the product of eΓ(w,v) and a polynomial in w, v.

The statement of the theorem follows by summing over j.
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