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BIHERMITIAN METRICS ON DEL PEZZO SURFACES

Nigel Hitchin

From a hermitian metric on the anticanonical bundle on a Del Pezzo
surface, and a holomorphic section of it, we construct a one-parameter
family of bihermitian metrics (or equivalently generalized Kähler struc-
tures). The construction appears to be linked to noncommutative
geometry.

Dedicated to Dusa McDuff

1. Introduction

Algebraic geometry and symplectic geometry are usually linked through the
study of Kähler metrics. In this paper, we shall describe an example of
another connection, which is one subject with two realizations — bihermi-
tian geometry [1] and generalized Kähler geometry [4]. We shall follow here
the first approach.

A bihermitian structure on a manifold M consists of a pair of integrable
complex structures I+ and I−, a Riemanniann metric g which is hermitian
with respect to both, and a closed 3-form H such that ∇+I+ = 0 = ∇−I−,
where ∇± is the Riemannian connection with skew torsion ±H. This geom-
etry first appeared in the physics paper [3] in the context of the (2, 2) super-
symmetric sigma model.

For a Kähler manifold with complex structure I, taking I+ = I, I− = −I
and H = 0 solves these equations, but for sometime other compact examples
were scarce. This has since changed somewhat thanks to [5], [2], and [6].
Here we shall give a concrete construction which differs from these examples
and holds for any Del Pezzo surface.

Recall that a Del Pezzo surface is defined as an algebraic surface with
ample anticanonical bundle K∗. Ampleness means that the line bundle K∗

has a hermitian metric whose curvature form F is a Kähler form. This is
the data for our construction – we take a holomorphic section σ of K∗, and
the function f = log ‖σ‖2. This function is singular on the zero set of σ
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(which is an elliptic curve). The section σ can also be seen as a holomorphic
Poisson structure on M and its real part is a real Poisson structure. We use
this Poisson structure to define a Hamiltonian vector field for f , which turns
out to be well defined and smooth on the whole of M . Integrating it for a
time t, we get a Poisson diffeomorphism ϕt and take I+ = I, the original
complex structure on the Del Pezzo, and I− = ϕ∗

t I. For small enough t, we
show how to define a bihermitian metric g canonically from the imaginary
part of σ.

The parameter t has an intriguing role: clearly as t → 0, I−(t) → I+,
but also the metric g(t)/t tends to the Kähler metric defined by F and I+.
More interestingly, ϕt preserves the elliptic curve and acts as a translation
proportional to t. This data coincides with the algebraic version of non-
commutative geometry espoused by Artin, van den Bergh, and Stafford (see
[8]), so that our deformation of a Kähler metric to a bihermitian one tracks
a deformation from a commutative Del Pezzo surface to a noncommutative
one. The possibility of a link between these two areas was first conjectured
by Gualtieri, and our construction provides an example of this phenome-
non. Further work is clearly needed to understand the relation between the
differential and algebraic geometry.

2. Bihermitian 4-manifolds

We assemble here briefly the essential facts about bihermitian geometry.
Since we are working on a 4-dimensional manifold M , [1] is the best ref-
erence; [5] includes similar material for arbitrary dimensions and is more
motivated by the generalized geometry approach. The definition of a biher-
mitian structure in [1] is a pair of integrable complex structures I+ and I−

on a 4-manifold defining the same orientation and a Riemanniann metric g
which is hermitian with respect to both. When M is compact with even first
Betti number, and ω+, ω− are the two hermitian forms, the authors shows
that dc

−ω− = H = −dc
+ω+ for a closed 3-form H, which is equivalent (see

[4]) to our definition in the introduction.
Given a bihermitian metric, the fundamental object to study is the 2-form

(2.1) φ(X, Y ) = g([I+, I−]X, Y ).

A simple calculation shows that φ(I+X, I+Y ) = −φ(X, Y ) = φ(I−X, I−Y ).
This means that, with respect to either complex structure, φ is of type
(2, 0) + (0, 2). Thus if we define φ′(X, Y ) = φ(I+X, Y ), then φ + iφ′ is a
(0, 2)-form with respect to I+. Using the hermitian metric, this section of
Λ2T̄ ∗ can be identified with a section σ of Λ2T = K∗ and it is shown in
[1] that this is holomorphic. A similar situation holds, of course, for the
complex structure I−.

It follows that φ vanishes on an anticanonical divisor, and this leads as
in [1] to an appeal to the classification of surfaces for candidates to admit
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bihermitian metrics. A Del Pezzo surface has a concrete description as an
algebraic surface; it is either CP2 or CP1 × CP1 or is obtained by blowing
up k ≤ 8 points in CP2 such that no three are collinear and no six lie on
a conic. The proper transform of a plane cubic curve that passes through
these points is an anticanonical divisor, and for CP1×CP1 the anticanonical
bundle is O(2, 2), so we know explicitly what σ can be in all these cases.

It is convenient to work with the meromorphic section σ−1 of K. This is
a meromorphic 2-form ω + iω′ with a pole on the anticanonical divisor. It
is related to φ by

Proposition 2.1.

ω + iω′ =
1

2‖φ‖2 (φ − iφ′).

Proof. In local holomorphic coordinates σ = s∂/∂z1 ∧ ∂/∂z2 and then

φ + iφ′ = s(det hij̄)dz̄1 ∧ dz̄2.

But ‖σ‖2 = ss̄ det hij̄ , so

φ − iφ′ = s−1‖σ‖2dz1 ∧ dz2 = 2‖φ‖2(ω + iω′). �

Where σ is nonvanishing, we therefore have a closed form ω + iω′ from the
complex structure I+ and ω + iω′′ from the complex structure I−. Since
each is of type (2, 0) with respect to its own complex structure, we have
(ω + iω′)2 = 0 = (ω + iω′′)2 or

ω2 = ω′2 = ω′′2, ωω′ = 0 = ωω′′.

Conversely, closed forms satisfying these constraints define a pair of inte-
grable complex structures (we simply define the (1, 0) forms for I+ to be
those anihilated by ω + iω′). Less obviously, the hermitian metric is defined
by these data. This is the content of Theorem 2 in [1], but more concretely
we have

Proposition 2.2. For a bihermitian metric, the hermitian form ω+(X, Y ) =
g(I+X, Y ) is the (1, 1) component, with respect to I+, of 4ω′′.

Proof. From (2.1), ω′′ = −φ′′/2‖φ‖2, and

φ′′(X, Y ) = φ(I−X, Y ) = g([I+, I−]I−X, Y ).

Now I+ and I− define, using the metric, self-dual 2-forms on M and so
their action on the tangent space is through the Lie algebra of SU(2), or
the imaginary quaternions. For two imaginary quaternions u, v, we have

uv + vu = −2(u, v)1, |uv − vu|2 = 4(|u|2|v|2 − (u, v)2).

Thus
|φ|2 = |[I+, I−]|2 = 4(1 − (I+, I−)2) = 4(1 − p2)
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and
I+I− + I−I+ = −2p1.

Using this latter relation,

g([I+, I−]I−X, Y ) = −g(I+X, Y ) − g(I−I+I−X, Y )

= −2g(I+X, Y ) + 2pg(I−X, Y ),

and so

(2.2) φ′′ = −2ω+ + 2pω−.

Similarly,

(2.3) φ′ = 2ω− − 2pω+.

Eliminating ω− gives

φ′′ = 2(p2 − 1)ω+ + pφ′,

and since φ′ is of type (2, 0) + (0, 2) with respect to I+, the (1, 1) part of φ′′

is 2(p2 − 1)ω+. From (2.1)

ω′′ = − φ′′

2‖φ‖2 = − φ′′

8(1 − p2)

so that
(ω′′)1,1 = ω+/4.

�

3. Potentials

In the last section, we have seen that a bihermitian metric is determined in a
concrete fashion from the two closed forms ω +iω′ and ω +iω′′, holomorphic
symplectic with respect to I+ and I−, respectively. Both real and imaginary
parts are real symplectic forms.

Locally, of course, any two complex structures are equivalent under a
diffeomorphism. Moreover, the holomorphic version of the Darboux theorem
says that any two holomorphic symplectic forms are equivalent. It follows
that there is a local diffeomorphism ϕ such that ϕ(ω + iω′) = ω + iω′′, or

ϕ∗ω = ω, ϕ∗ω′ = ω′′.

Conversely, given a holomorphic symplectic form ω + iω′ and a diffeomor-
phism ϕ which is symplectic with respect to ω, we can define ω′′ = ϕ∗ω′ and
get a bihermitian metric, so long as (ω′′)1,1 is a positive hermitian form. In
particular, given a smooth function f , we can form its Hamiltonian vector
field X and generate a local one-parameter group of symplectic diffeomor-
phisms ϕt.



BIHERMITIAN METRICS ON DEL PEZZO SURFACES 5

Proposition 2.3. If f is a Kähler potential on an open set U, then on
a compact subset, the hermitian form (ϕ∗

t ω
′)1,1 is positive for sufficiently

small t.

Proof. Differentiating with respect to t at t = 0 gives

∂

∂t
ϕ∗

t ω
′|t=0 = LXω′ = d(iXω′).

But (ω + iω′)(X, Y ) = i(ω + iω′)(X, I+Y ) and iXω = df so that iXω′ =
I+df . Hence

∂

∂t
ϕ∗

t ω
′|t=0 = dI+df = ddcf.

The function f is a Kähler potential if and only if ddcf is positive, which
means that

∂

∂t
(ϕ∗

t ω
′)1,1|t=0

is positive. At t = 0, ϕt is the identity and since ω′ is of type (2, 0) + (0, 2),
0 = (ω′)1,1 = (ϕ∗

0ω
′)1,1. It follows that (ϕ∗

t ω
′)1,1 is positive for small t. �

We see here that if we start with a choice of holomorphic symplectic form
defining the holomorphic Poisson structure, the data for a local bihermi-
tian structure appear to be the same as that for a Kähler structure. There
is a difference however: whereas two Kähler potentials f, f ′ give the same
metric if they differ by the real part of a holomorphic function, the biher-
mitian structures are the same if the composition ϕ′

t ◦ ϕ−t is holomorphic.
Bihermitian geometry is a nonlinear form of Kähler geometry.

Remark. The use of Hamiltonian functions to generate bihermitian met-
rics in this fashion began with an observation of Joyce quoted in [1]. A more
extensive version in arbitrary dimensions is given in [7].

4. Del Pezzo surfaces

We shall now use the local construction in the previous section on a rather
large open set in a Del Pezzo surface. We choose a hermitian metric on
the holomorphic anticanonical line bundle K∗ and a holomorphic section σ.
By the adjunction formula, σ vanishes on an elliptic curve C (which may
be degenerate). We take the open set U = M\C and the function f on U
given by

f = log ‖σ‖2.

We have a holomorphic symplectic form σ−1 = ω + iω′ on U , and we con-
sider the Hamiltonian vector field X of f with respect to ω. We shall show
that X is well defined on the whole of M .
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Write X = Y + Ȳ , where Y is a (1, 0) vector field, and let u = 0 be a
local equation for the divisor C. Then

ω + iω′ =
1
u

ν,

where ν is a local nonvanishing holomorphic 2-form. Also, ‖σ‖2 = huū for
a locally defined positive function h.

If iXω = df ,
1
u

iY ν = ∂f = ∂ log huū =
∂h

h
+

du

u
,

and so

(4.1) iY ν = u
∂h

h
+ du.

Since ν is nondegenerate, this means that Y (and hence X) is smooth in a
neighbourhood of C. We can therefore integrate the globally defined vector
field X on the compact manifold M to give a one-parameter group of diffeo-
morphisms ϕt. The form ϕ∗

t (ω + iω′) = ω + iω′′ is then meromorphic with
respect to the complex structure I− = ϕ∗

t I.
We need to address next the behaviour of the form (ϕ∗

t ω
′′)1,1 — does it

extend to M , and is it positive?
Here we have on U

∂

∂t
(ϕ∗

t ω
′)1,1 = (ϕ∗

t LXω′)1,1 = (ϕ∗
t ddcf)1,1.

But ddc log ‖σ‖2 = F , where F is the curvature of the connection on K∗

defined by the chosen hermitian metric. Thus ω+(t) = (ϕ∗
t ω

′)1,1 satisfies the
differential equation

∂ω+

∂t
= (ϕ∗

t F )1,1,

which is well defined and smooth on the whole of M since ϕt and F are
globally defined. With the initial condition ω+(0) = 0 this has the solution

ω+(t) =
∫ t

0
(ϕ∗

sF )1,1 ds.

As before, if F is a positive (1, 1) form, then for small enough t, ω+(t) will
be positive and define a bihermitian metric. But there is a metric on K∗

with F positive if K∗ is ample, which is the case for a Del Pezzo surface.
Remark. Surfaces which are not Del Pezzo can admit bihermitian struc-
tures — indeed the quotient construction of [6] yields Hirzebruch surfaces or
CP2 blown up at an arbitrary number of points (though in special position).
Our construction here has the property that the two complex structures
I+, I− are different but equivalent under a diffeomorphism. This restricts
the possibilities considerably.
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As an example, consider M to be the Hirzebruch surface F2 — this is the
projective bundle P (O ⊕ O(−2)) → CP1. The canonical symplectic form
on the cotangent bundle O(−2) of CP1 extends as an anticanonical section
with a double zero on the infinity section, which is a rational curve C of self-
intersection +2. The homology group H2(M\C) is generated by the zero
section B, a rational curve of self-intersection −2. Now, for any bihermitian
structure with this anticanonical divisor, ω′ and ω′′ are closed and smooth
on M \C. The integral of ω′ on B is zero because ω′ is of type (2, 0)+ (0, 2)
and B is holomorphic, thus the cohomology class of ω′ vanishes. On the
other hand, from Proposition 2.2, the integral of ω′′ is nonzero and so its
cohomology class is nonzero. It follows that for the complex structure I−,
there can be no holomorphic curve in M \C and the complex structure must
be different — in fact CP1 × CP1.

5. Symplectic aspects

The bihermitian 4-manifolds we have been considering are not obviously
symplectic, but they do have a natural symplectic structure. Note that ω′

and ω′′ are closed 2-forms but are singular along C. We shall see that the
difference ω′′ − ω′ is a smooth symplectic form on M .

The closed form ρ(t) = ϕ∗
t ω

′ − ω′ satisfies the equation

∂ρ

∂t
= ϕ∗

t F

with initial condition ρ(0) = 0 and so, by the same reasoning as above, is
globally defined. Moreover, ρ2 = t2F 2 + · · · and so for small t, since F
is positive, ρ is a symplectic form, with cohomology class 2πtc1(M). In
the generalized Kähler interpretation of bihermitian structures (see [5]),
one of the two commuting generalized complex structures is the symplectic
structure ρ/2.
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