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CONTACT STRUCTURES ON OPEN 3-MANIFOLDS

James J. Tripp

In this paper, we study contact structures on any open 3-manifold V
that is the interior of a compact 3-manifold. To do this, we introduce
new proper contact isotopy invariants called the slope at infinity and
the division number at infinity. We first prove several classification the-
orems for T 2 × [0,∞), T 2 × R, and S1 × R

2 using these concepts. The
only other classification result on an open 3-manifold is Eliashberg’s
classification on R

3. Our investigation uncovers a new phenomenon in
contact geometry: There are infinitely many tight contact structures
on T 2 × [0, 1) that cannot be extended to a tight contact structure on
T 2 × [0,∞). Similar results hold for T 2 × R and S1 × R

2. Finally,
we show that if every S2 ⊂ V bounds a ball or an S2 end, then there
are uncountably many tight contact structures on V that are not con-
tactomorphic, yet are isotopic. Similarly, there are uncountably many
overtwisted contact structures on V that are not contactomorphic, yet
are isotopic. These uncountability results generalize work by Eliashberg
when V = S1 × R

2.

1. Introduction

Recently, there has been much work towards the classification of tight con-
tact structures on compact 3-manifolds up to isotopy (relative to the bound-
ary). In particular, Honda and Giroux provided several classification the-
orems for solid tori, toric annuli, torus bundles over the circle, and circle
bundles over surfaces [8, 9, 10, 13, 14]. In comparison, tight contact struc-
tures on open 3-manifolds have been virtually unstudied. Two main results
dealing with open contact manifolds are due to Eliashberg. In [3], Eliashberg
shows that R

3 has a unique tight contact structure. It is immediate from his
proof that S2× [0,∞) has a unique tight contact structure with a fixed char-
acteristic foliation on S2 × 0. Therefore, the classification of tight contact
structures on open manifolds with only S2 ends can be reduced to the case
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of compact manifolds. In [5], Eliashberg shows that, in contrast to the sit-
uation for S2 ends, there are uncountably many tight contact structures on
S1 × R

2 that are not contactomorphic. The situation for closed 3-manifolds
is different. Colin et al. [2] proved that an atoroidal 3-manifold supports
finitely many tight contact structures up to isotopy. Honda et al. [15],
and independently, Colin [1], show that an irreducible, toroidal 3-manifold
supports countably infinitely many tight contact structures up to isotopy.

In this paper, we study tight contact structures on any open 3-manifold V
that is the interior of a compact manifold. Due to the failure of Gray’s the-
orem on open contact manifolds, we relegate ourselves to the study of tight
contact structures up to proper isotopy, by which we mean isotopy of the
underlying manifold rather than a one-parameter family of contact struc-
tures. When we say that two contact structures are isotopic, we will mean
that they are connected by a one-parameter family of contact structures.
We first introduce two new proper isotopy invariants which we call the slope
at infinity and the division number at infinity of an end Σg × [0,∞) of an
open contact manifold. These invariants are most naturally defined for toric
ends T 2 × [0,∞), where we take our inspiration from the usual definition
of the slope and division number of a convex torus. Using these invariants
and Honda’s work in [13], we essentially classify tight contact structures on
toric ends T 2 × [0,∞). In particular, we show that there is a natural bijec-
tion between tight toric annuli and tight toric ends that attain the slope at
infinity and have finite division number at infinity. However, we also show
that for any slope at infinity, there is an infinite family of tight toric ends
which do not attain the slope at infinity and therefore do not come from
closed toric annuli. This yields the following:

Theorem 1.1. Let X be T 2 × [0, 1), T 2 ×(0, 1), or S1 ×D2, where D2 is the
open unit disk. Let X ′ be another copy of X parametrized as T 2 × [0,∞),
T 2 × R, or S1 × R

2. For each slope at infinity, there exist infinitely many
tight contact structures on X with that slope, distinct up to proper isotopy,
which do not extend to a tight contact structure on X ′.

This result stands in contrast to Eliashberg’s original examples. Eliash-
berg’s examples are all S1 × D2 neighborhoods of a transverse curve in the
standard tight contact structure on S3, and each has a different slope at
infinity. Moreover, for each example, one can find an S1 × R

2 neighbor-
hood inside S3 that extends the S1 × D2 neighborhood of the transverse
curve. Theorem 1.1 shows that, in general, such an extension need not
exist. Indeed, for each slope at infinity, there are infinitely many distinct
contact structures that are not extendible to a tight contact structure.

Finally, just as high torus division number is a problem in the classification
of toric annuli, contact structures with infinite division number at infinity
prove difficult to understand. However, we are able to use the notion of stable
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disk equivalence to partially understand this situation. Precise statements
of all of these results are in Section 4. In Section 5, we use these results to
reduce the classification of tight contact structures on S1 × R

2 and T 2 × R

to the classification of the corresponding toric ends.
In the second half of the paper, we use the slope at infinity to study

contact structures on any open 3-manifold V that is the interior of a compact
manifold. We generalize Eliashberg’s results for V = S1 × R

2 proved in [5]:

Theorem 1.2. Let V be any open 3-manifold which is the interior of a
compact, connected 3-manifold M with nonempty boundary such that every
embedded S2 either bounds a ball or is isotopic to a component of ∂M . If
∂M contains at least one component of nonzero genus, then V supports
uncountably many tight contact structures which are not contactomorphic,
yet are isotopic.

Eliashberg’s proof involves computing the contact shape of the contact
structures on S1 × R

2, which in turn relies on a previous computation of
the symplectic shape of certain subsets of Tn × R

n done in [18]. We bypass
the technical difficulties of computing the symplectic shape by employing
convex surface theory in the end of V . The first step in the proof is to
put a tight contact structure on the manifold M with a certain dividing
curve configuration on the boundary. To do this, we use the correspondence
between taut sutured manifolds and tight contact structures covered in [16].
We then find nested sequences of surfaces which allow us to construct a con-
tact manifold (V, ηs) for every s ∈ (−2,−1). We distinguish these contact
structures up to proper isotopy by showing that they have different slopes
at infinity. Since the mapping class group of an irreducible 3-manifold with
boundary is countable (see [17]), uncountably many of the ηs are not con-
tactomorphic. To simplify the presentation of the proof, we first present the
proof in the case when ∂M is connected in Section 7.2. We deal with the
case of disconnected boundary in Section 7.3.

In [3], Eliashberg declares a contact structure on an open 3-manifold V
to be overtwisted at infinity if for every relatively compact U ⊂ V , each
noncompact component of V \U is overtwisted. If the contact structure is
tight outside of a compact set, then it is tight at infinity. He then uses his
classification for overtwisted contact structures in [4] to show that any two
contact structures that are overtwisted at infinity and homotopic as plane
fields are properly isotopic. In contrast to this result, we have the following:

Theorem 1.3. Let V be any open 3-manifold which is the interior of a
compact, connected 3-manifold M with nonempty boundary such that every
embedded S2 either bounds a ball or is isotopic to a component of ∂M . If
∂M contains at least one component of nonzero genus, then V supports
uncountably many overtwisted contact structures which are tight at infinity
and which are not contactomorphic, yet are isotopic.
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2. Background and conventions

For general facts about 3-manifolds, we refer the reader to [11]. For ter-
minoloy and facts about contact geometry and especially convex surface
theory, we refer to [13] and [6]. In particular, for the construction of the
Farey graph and the relationship to convex tori, see [13]. Given a convex
surface S in a contact 3-manifold, we denote the dividing set of S by ΓS .
The Legendrian realization principle (see [13]) says that any nonisolating
collection of arcs and closed curves on a convex surface can be made Legen-
drian after an isotopy of the surface. When we say “LeRP”, we will mean
“apply the Legendrian realization principle” to a collection of curves. We
will use this as a verb and call this process “LeRPing” a collection of curves.

We first review the definition of a net, which we use in the definition of
the slope at infinity and the division number at infinity. Let A be a directed
set, and let X be a topological space. A net in X is a function f : A → X.
Let Y ⊂ X. We say that f is eventually in Y if there exists a β ∈ A such
that, for all α ≥ β, f(α) ∈ Y . We say that the net f converges to x ∈ X if,
for every neighborhood U of x, f is eventually in U .

We now list some of the definitions and results in [16] which we will
need later. A sutured manifold (M, γ) is a compact oriented 3-manifold M
together with a set γ ⊂ ∂M of pairwise disjoint annuli A(γ) and tori T (γ).
R(γ) denotes ∂M\int(γ). Each component of R(γ) is oriented. R+(γ) is
defined to be those components of R(γ) whose normal vectors point out of
M , and R γ is defined to be R(γ)\R+(γ). Each component of A(γ) contains
a suture which is a homologically nontrivial, oriented simple, closed curve.
The set of sutures is denoted s(γ). The orientation on R+(γ), R−(γ), and
s(γ) are related as follows. If α ⊂ ∂M is an oriented arc with ∂α ⊂ R(γ)
that intersects s(γ) transversely in a single point and if s(γ) · α = 1, then α
must start in R+(γ) and end in R−(γ).

A sutured manifold with annular sutures is a sutured manifold (M, γ) such
that ∂M is nonempty, every component of γ is an annulus, and each com-
ponent of ∂M contains a suture. A sutured manifold (M, γ) with annular
sutures determines an associated convex structure (M, Γ), where Γ = s(γ).
For more on this correspondence, see [16].

A transversely oriented codimension-1 foliation F is carried by (M, γ) if
F is transverse to γ and tangent to R(γ) with the normal direction point-
ing outward along R+(γ) and inward along R−(γ), and F|γ has no Reeb
components. F is taut if each leaf intersects some closed curve or properly
embedded arc connecting R−(γ) to R+(γ) transversely.

Let S be a compact oriented surface with components S1, . . . , Sn. Let
χ(Si) be the Euler characteristic of Si. The Thurston norm of S is defined
to be

x(S) =
∑

χ(Si)<0

|χ(Si)|.



CONTACT STRUCTURES ON OPEN 3-MANIFOLDS 97

A sutured manifold (M, γ) is taut if

(1) M is irreducible.
(2) R(γ) is Thurston norm minimizing in H2(M, γ); that is, if S is any

other properly embedded surface with [S] = [R(γ)], then x(R(γ)) ≤
x(S).

(3) R(γ) is incompressible in M .

The following is due to Gabai [7] and Thurston [19].

Theorem 2.1. A sutured manifold (M, γ) is taut if and only if it carries a
transversely oriented, taut, codimension-1 foliation F .

We require the following result due to Honda et al. [16].

Theorem 2.2. Let (M, γ) be an irreducible sutured manifold with annular
sutures, and let (M, Γ) be the associated convex structure. The following are
equivalent:

(1) (M, γ) is taut.
(2) (M, γ) carries a taut foliation.
(3) (M, Γ) carries a universally tight contact strucuture.
(4) (M, Γ) carries a tight contact structure.

3. The end of an open contact manifold and some invariants

Let (V, ξ) be any open contact 3-manifold which is the interior of a com-
pact 3-manifold M such that ∂M is nonempty and contains at least one
component of nonzero genus. Fix an embedding of V ↪→ int(M) so that we
can think of V as M\∂M . Choose a boundary component S ⊂ ∂M and let
Σ ⊂ M\∂M be an embedded surface isotopic to S in M . Note that S and
Σ bound a contact manifold (Σ × (0, 1), ξ). We call such a manifold, along
with the embedding into V , a contact end corresponding to S and ξ. Let
Ends(V, ξ; S) be the collection of contact ends corresponding to S and ξ.

Let S ⊂ ∂M be a component of nonzero genus and let λ ⊂ S be a
separating, simple, closed curve which bounds a punctured torus T in S.
Fix a basis B of the first homology of T . Let Σ ⊂ V be a convex surface
which is isotopic to S in M and contains a simple, closed curve γ with the
following properties:

(1) γ is isotopic to λ on Σ, where we have identified Σ and S by an isotopy
in M .

(2) γ intersects ΓΣ transversely in exactly two points.
(3) γ has minimal geometric intersection number with ΓΣ.

Call any such surface well-behaved with respect to S and λ. Note that
there exists a simple, closed curve µ ⊂ ΓΣ which is contained entirely in T .
Let the slope of Σ, written slope(Σ), be the slope of µ measured with respect
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to the basis B of the first homology of T . When S is a torus, we omit all
references to the curve λ as it is unnecessary for our definition.

Let E ∈ Ends(V, ξ; S). Let C(E) be the set of all well-behaved convex
surfaces in the contact end E. If C(E) �= ∅, then define the slope of E to be

slope(E) = sup
Σ∈C(E)

(slope(Σ)).

Here we allow sup to take values in R ∪ {∞}. We topologize R ∪ {∞} as
the unit circle. Note that Ends(V, ξ; S) is a directed set, directed by reverse
inclusion, and that the function slope: Ends(V, ξ; S) → R ∪ {∞} is a net.
If C(E) is nonempty for a cofinal sequence of contact ends and this net is
convergent, then we call the limit the slope at infinity of (V, ξ; S, λ, B) or the
slope at infinity of (V, ξ) if S, λ, and B are understood from the context. If
the slope at infinity exists, then we say that this slope is attained if for each
E ∈ Ends(V, ξ; S), there exists a Σ ∈ C(E) with that slope. Note that any
slope that is attained must necessarily be rational.

Let Σ ∈ C(E). Define the division number of Σ, written div(Σ), to be
half the number of dividing curves and arcs on T . When Σ is a torus, this
is the usual torus division number. If C(E) �= ∅, then let

div(E) = min
Σ∈C(E)

(div(Σ)).

Note that div: Ends (V, ξ, S) → N ∪ {∞} is a net, where we endow N ∪
{∞} with the discrete topology. If C(E) is nonempty for a cofinal sequence
of contact ends, then we call the limit the division number at infinity of
(V, ξ; S, λ, B) or the division number at infinity of (V, ξ) if S, λ, and B are
understood from the context. Note that the slope at infinity and the division
number at infinity are proper isotopy invariants.

4. Classification theorems for tight toric ends

In this section, we study tight contact structures on toric ends. We say that
a toric end is minimally twisting if it contains only minimally twisting toric
annuli. We first show that it is possible to refer to the slope at infinity and
the division number at infinity for toric ends.

Proposition 4.1. Let T 2 × [0,∞) be a tight toric end. Then the division
number at infinity and the slope at infinity are defined.

Proof. First note that C(E) is nonempty for any end E since the condition
for being well-behaved is vacuously true for tori. Also, note that the division
number at infinity exists by definition.

If there exists a nested sequence of ends Ei such that slope(Ei) = ∞, then
the slope at infinity is ∞. Otherwise, there exists an end E = T 2 × [0,∞)
such that for no end F ⊂ E is slope(F ) = ∞. This means that E is
minimally twisting. Without loss of generality, assume Ti = T 2 × i is convex
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with slope si. Note that the si form a clockwise sequence on the Farey
graph and are contained in a half-open arc which does not contain ∞. Since
slope(F ) ≤ si for any end F ⊂ T 2 × [i,∞), our net is convergent, so the
slope at infinity is defined. �

4.1. Tight, minimally twisting toric ends with irrational slope
at infinity. In this section, we study tight, minimally twisting toric ends
(T 2 × [0,∞), ξ) with irrational slope r at infinity and with convex bound-
ary satisfying div(T 2 × 0) = 1 and slope(T 2 × 0) = −1. Unless otherwise
specified, all toric ends will be of this type.

We first show how to associate to any such toric end a function fξ : N →
N ∪ {0}. There exists a sequence of rational numbers qi on the Farey graph
which satisfies the following:

(1) q1 = −1 and the qi proceed in a clockwise fashion on the Farey graph.
(2) qi is connected to qi+1 by an arc of the graph.
(3) The qi converge to r.
(4) The sequence is minimal in the sense that qi and qj are not joined by

an arc of the graph unless j is adjacent to i.
We can form this sequence inductively by taking q2 to be the rational

number which is closest to r on the clockwise arc of the Farey graph [−1, r]
between −1 and r and has an edge of the graph from −1 to q2. Similarly,
construct the remaining qi. Any such sequence can be grouped into contin-
ued fraction blocks. We say that qi, . . . , qj form a continued fraction block
if there is an element of SL2(Z) taking the sequence to −1, . . . ,−m. We
call m the length of the continued fraction block. We say that this block
is maximal if it cannot be extended to a longer continued fraction block in
the sequence qi. Since r is irrational, maximal continued fraction blocks
exist. Denote these blocks by Bi. To apply this to our situation, we need
the following.

Proposition 4.2. There exists a nested sequence of convex tori Ti with
div(Ti) = 1 such that slope(Ti) = qi. Moreover, any such sequence must
leave every compact set.

Proof. By the definition of slope at infinity, for any ε, there is an end E such
that slope(E) is within ε of r. This means that there is a convex torus T in
E with slope lying within 2ε of r. Note that since our toric end is minimally
twisting and has slope r at infinity, slope(T ) ∈ [−1, r). We attach bypasses
to T so that div(T ) = 1. The toric annulus bounded by T 2 × 0 and T
contains the tori Ti with qi lying counterclockwise to slope(T ). Fix these
first Ti. Choose another torus T ′ outside of the toric annulus with slope
even closer to r. Again, adjust the division number of T ′ so that it is 1 and
factor the toric annulus bounded by T and T ′ to find another finite number
of our Ti. Proceeding in this fashion, we see we have the desired sequence



100 J. J. TRIPP

of Ti. Any such sequence must leave every compact set by the definition
of the slope at infinity. For, if there were such a sequence of tori, then we
could find a torus T in any end with slope(T ) > r, which would show that
the slope at infinity is not r. �

This factors the toric end according to our sequence of rationals. We say
that a consecutive sequence of Ti forms a continued fraction block if the
corresponding sequence of rationals do. Each maximal continued fraction
block Bi determines a maximal continued fraction block of tori which we
also call Bi. We think of Bi as a toric annulus.

To each continued fraction block, we let nj be the number of positive
basic slices in the factorization of Bi by Tj . Define fξ : N → N ∪ {0} by
fξ(j) = nj . To show that the function fξ is independent of the factorization
by Ti, suppose T ′

i is another factorization with the same properties as Ti.
Let B′

j denote the corresponding continued fraction blocks. Fix j. There
exists n large such that the toric annulus A bounded by Tn and T1 contains
the continued fraction blocks Bj and B′

j . Extend the partial factorization
of A by B′

j . Recall that one can compute the relative Euler class via such
a factorization and that it depends on the number of positive basic slices
in each continued fraction block [13]. Therefore, Bj and B′

j must have the
same number of positive basic slices.

Given an irrational number r, let F(r) denote the collection of functions
f : N → N ∪ {0} such that f(i) does not exceed one less than the length
of Bi. We can now state a complete classification of the toric ends under
consideration.

Theorem 4.3. Let (T 2 × [0,∞), ξ) be a tight, minimally twisting toric end
with convex boundary satisfying div(T 2 × 0) = 1 and slope(T 2 × 0) = −1.
Suppose that the slope at infinity is irrational. To each such tight contact
structure, we can assign a function fξ : N → N ∪ {0} which is a complete
proper isotopy (relative to the boundary) invariant. Moreover, given any
f ∈ F(r), there exists a toric end (T 2 × [0,∞), ξ) such that fξ = f .

Proof. If fξ = fξ′ , then we can shuffle bypasses within any given continued
fraction block so that all positive basic slices occur at the beginning of the
block. Since the number of positive basic slices in any continued fraction
block is the same, it is clear that they are properly isotopic.

It is a straightforward application of the gluing theorem for basic slices
in [13] to show that we can construct a toric annulus corresponding to the
desired continued fraction blocks. The fact that they stay tight under gluing
follows from the fact that overtwisted disks are compact. �

Corollary 4.4. Let (T 2 × [0, 1), ξ) be a tight, minimally twisting toric end
with irrational slope r at infinity and slope(T 2×{0}) = −1. Suppose that for
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each i, there exist j, k ≥ i such that fξ(j) > 0 and fξ(k) = 0. Then there does
not exist any tight, toric end (T 2×[0,∞), η) such that ξ|T 2×[0,1) = η|T 2×[0,1).

Proof. For contradiction, assume that there was an inclusion φ : (T 2 ×
[0, 1), ξ) → (T 2 × [0,∞), η). Perturb T 2 × {2} to be convex of slope b.
Without loss of generality, we can assume that the toric annulus bounded
by T 2 × {0} and T 2 × {2} is minimally twisting. We have a minimal, clock-
wise sequence of rationals ql for 1 ≤ l ≤ n on the Farey graph such that
q1 = −1, qn = b, and ql is joined to ql+1 by an arc of the Farey graph. There
exists m ≤ n−1 such that r lies on the clockwise arc between qm and qm+1.
By the definition of the slope at infinity, there exists a torus Tin ⊂ T 2 × [0, 1)
with slope(Tin) = qm. By the hypothesis on fξ, there exist two continued
fraction blocks, B1 and B2, contained in T 2 × [0, 1) and lying outside the
toric annulus bounded by T 2 ×{0} and Tin, with the following property: B1
has a negative basic slice and B2 has a positive basic slice. This follows from
the definition of the function fξ. Choose a torus T ′ so that the toric annulus
bounded by Tin and T ′ contains B1 and B2. Let Tout be a torus with slope
qm+1 that lies between T ′ and T 2 ×{2}. Observe that Tin and Tout bound a
basic slice. But, this basic slice was formed by gluing basic slices of opposite
signs, since B1 and B2 are contained in this basic slice. This contradicts the
tightness of the contact structure η by [13]. �

4.2. Tight, minimally twisting toric ends with rational slope
at infinity. We now consider tight, minimally twisting toric ends (T 2 ×
[0,∞), ξ) with rational slope r at infinity and with convex boundary satis-
fying div(T 2 × 0) = 1 and slope(T 2 × 0) = −1. Unless otherwise specified,
all toric ends will be of this type. We first deal with the situation when the
slope at infinity is not attained.

We show how to every toric end under consideration we can assign a
function

fξ : {1, . . . , n(r)} × {1,−1} → N ∪ {0,∞}.

We proceed in a fashion similar to the irrational case. Given r rational,
there exists a sequence of rationals qi satisfying the following:

(1) q1 = −1 and qi proceed in a clockwise fashion on the Farey graph.
(2) qi are connected to qi+1 by an arc of the tesselation.
(3) qi converge to r, but qi �= r for any i.
(4) The sequence is minimal in the sense that qi and qj are not joined by

an arc of the tesselation unless j is adjacent to i.
We construct such a sequence inductively just as in the irrational case,

except we never allow the rationals qi to reach r. Note that such a sequence
breaks up naturally into n − 1 finite continued fraction blocks Bi and one
infinite continued fraction block Bn (i.e., Bn can be taken to the negative
integers after action by SL2(Z)). Note that n is completely determined
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by r. Just as in the irrational case, there exist nested convex tori Ti with
div(Ti) = 1 and slope(Ti) = qi. We can argue as in the irrational case to
show that these tori must leave every compact set of the toric end. We will
also refer to the collection of tori Ti corresponding to Bi by the same name.

We will now construct fξ. Let fξ(i,±1) be the number of positive (neg-
ative) basic slices in the continued fraction block Bi. Of course, for a
finite continued fraction block, fξ(i, 1) determines fξ(i,−1). However, this
is clearly not the case for Bn.

As in the irrational case, let F(r) be the collection of functions f : {1, . . . ,
n(r)} × {1,−1} → N ∪ {0,∞} such that fξ(i, 1) + fξ(i,−1) = |Bi| − 1 for
i ≤ n − 1, where |Bi| is the length of Bi, and at least one of fξ(n(r),±1) is
infinite. Recall that |Bi| ≥ 2.

Theorem 4.5. Let (T 2 × [0,∞), ξ) be a tight, minimally twisting toric end
with convex boundary satisfying div(T 2 × 0) = 1 and slope(T 2 × 0) = −1.
Suppose that the slope at inifinity is rational and is not attained. To each
such tight contact structure, we can assign a function fξ : {1, . . . , n(r)} ×
{1,−1} → N ∪ {0,∞} which is a complete proper isotopy (relative to the
boundary) invariant. Moreover, for any f ∈ F(r), there exists a tight,
minimally twisting toric end (T 2 × [0,∞), ξ) with slope r at infinity which
is not realized such that f = fξ.

Proof. Suppose fξ = f ′
ξ. As in the irrational case, we can adjust our factor-

ization of the finite continued fraction blocks so that all of the positive basic
slices occur first in each continued fraction block. Therefore, we can isotope
the two contact structures so that they agree on the first n − 1 continued
fraction blocks.

We now consider the infinite basic slice. Without loss of generality, we
may assume that the infinite basic slices for ξ and ξ′ are toric ends (T 2 ×
[0,∞), ξ) and (T 2×[0,∞), ξ′) with slope(T 2×{0}), div(T 2×{0}), and infinite
slope at infinity that is not realized. The corresponding factorization is then
given by nested tori Ti and T ′

i such that slope(Ti) = slope(T ′
i ) = −i and

div(Ti) = 1. We now construct model toric ends ξ±
n and ξalt and show that

any infinite basic slice is properly isotopic to one of the models. Let B±
i be

the positive (negative) basic slice with slope(T 2×0) = −i and slope(T 2×1) =
−i−1. Let ξ±

n be the toric end constructed as B±
1 ∪· · ·∪B±

n ∪B∓
n+1∪· · · . Let

ξalt be B+
1 ∪B−

2 ∪B+
3 ∪· · · . First consider the case when fξ(n, 1) = m. There

exists N large so that the toric annulus bounded by T1 and TN contains
at least m positive basic slices and m negative basic slices. By shuffling
bypasses in this toric annulus, we can rechoose our factorization so that
all positive bypass layers occur first in our factorization. This toric end is
clearly properly isotopic to ξ+

m. We handle the case when fξ(n, −1) = m
similarly. Now, suppose that fξ(n, ±1) = ∞. Fix some number k. Choose
N1 large enough that the toric annulus bounded by T1 and TN1 contains at
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least k positive and k negative basic slices. By shuffling bypasses in this
toric annulus, we can arrange for the first 2k basic slices in the factorization
to be alternating. There exists an isotopy φ1

t such that φ1
0 is the identity and

φ1
1∗(ξ) agrees with ξalt in the first 2k basic slices. Call the pushed forward

contact structure by the same name. There exists N2 large such that T2k

and TN2 bound a toric annulus with k positive and k negative basic slices.
Leaving the first 2k tori in our factorization fixed, we can shuffle bypasses
in the toric annulus bounded by T2k and TN2 so that signs are alternating.
Choose an isotopy φ2

t as before such that φ2
t is the identity on the toric

annulus bounded by T1 and T2k and takes the second 2k basic slices of ξ
onto those of ξalt. Continuing in this fashion, we can construct φn

t , which
is supported on Kn compact such that Ki ⊂ Ki+1 and T 2 × [0,∞) = ∪Ki.
Hence we have an isotopy taking ξ to ξalt. The existence result follows
immediately from Honda’s gluing results for toric annuli [13]. �
Corollary 4.6. Let (T 2 × [0, 1), ξ) be a tight, minimally twisting toric end
that does not attain a rational slope r at infinity. Suppose fξ(n(r) × {1})
and fξ(n(r) × {−1}) are nonzero. Then there does not exist any tight, toric
end (T 2 × [0,∞), η) such that ξ|T 2×[0,1) = η|T 2×[0,1).

Proof. Assume that there was such an inclusion φ : (T 2 × [0, 1), ξ) →
(T 2 × [0,∞), η). Let Ti be the first torus in the factorization of the infinite
continued fraction block of (T 2×[0, 1), ξ). By definition, there exists another
torus Tj with j > i such that Ti and Tj bound basic slices of both signs. By
the definition of the slope at infinity, there exists a convex torus T outside
of the toric annulus bounded by φ(Ti) and φ(Tj) which has slope r. Note
that φ(Ti) and T bound a basic slice which is formed by gluing basic slices
of opposite signs. This implies that (T 2 × [0,∞), η) is overtwisted [13]. �

Corollary 4.4 and Corollary 4.6 will be essential to prove Theorem 1.1.
We now consider tight, minimally twisting toric ends that realize the slope
at infinity and have finite division number at infinity.

Theorem 4.7. Tight, minimally twisting toric ends with finite division
number d at infinity that realize the slope r at infinity are in one-to-one cor-
respondence with tight, minimally twisting contact structures on T 2 × [0, 1]
with T 2 × i convex, slope(T 2 × 0) = −1, slope(T 2 × 1) = r, div(T 2 × 0) = 1,
and div(T 2 × 1) = d up to isotopy relative to T 2 × 0.

Proof. Let (T 2 × [0,∞), ξ) be such a toric end. By the definition of division
number at infinity and slope at infinity, there exists a convex torus T with
the following properties:

(1) div(T ) = d
(2) slope(T ) = r
(3) Any other convex torus T ′ lying in the noncompact component of

T 2 × [0,∞) \ T satisfies div(T ′) ≥ d.
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Any such torus will necessarily have slope r. Let A be the toric annulus
bounded by T 2 × 0 and T . We know that any other torus T ′ with the same
properties as T bounds a toric annulus A′ that is topologically isotopic to
A. By the definition of T and T ′, there exists a torus T ′′ outside of A and
A′ that has the same properties as T . Since ξ is minimally twisting, T ′ and
T ′′ bound a vertically invariant toric annulus. Similarly, T and T ′′ bound a
vertically invariant toric annulus. We can use these toric annuli to isotope
A and A′ to the same toric annulus in our toric end. This yields the desired
correspondence. Given a tight, minimally twisting contact structures on
T 2 × [0, 1] with T 2 × i convex, slope(T 2 × 0) = −1, slope(T 2 × 1) = r,
div(T 2 × 0) = 1, and div(T 2 × 1) = d, we obtain a toric end by removing
T 2 × 1. �

Let A1 = S1× [0, 1] and A2 = S1× [0, 1] be convex annuli with Legendrian
boundary such that tb(S1 × 0) = −1 and tb(S1 × 1) = −m. We say that
A1 and A2 are stabily disk equivalent if there exist disk equivalent convex
annuli A′

i = S1 × [0, 2] such that tb(S1 × 1) = −1, tb(S1 × 2) = −n < −m,
and Ai = S1 × [0, 1] ⊂ A′

i.

Theorem 4.8. Let (T 2 × [0,∞), ξ) be a tight, minimally twisting toric end
with slope(T 2 × 0) = ∞, slope ∞ at infinity, and division number ∞ at
infinity. Then we can associate to ξ a collection of nested families of convex
annuli Ai = S1 × [0, i] with Legendrian boundary such that tb(S1 × 0) = −1,
tb(S1×i+1) = tb(S1×i)+1 such that any two annuli Ai and A′

i in different
families are stabily disk equivalent.

Proof. To construct such annuli, simply choose a factorization of the toric
end by tori Ti such that T1 = T 2×0, slope(Ti) = ∞, div(Ti+1) = div(Ti)+1,
and the Ti leave every compact set. Let A1 be the convex annulus with
boundary on T1 and T2. Choose A′

1, a horizontal convex annulus between
T2 and T3 which shares a boundary component with A1. Let A2 = A1 ∪ A′

1.
Continuing in this fashion, we construct a sequence of nested annuli Ai.
Now, choose any other factorization by tori T ′

i satisfying the same properties
as the Ti and let A′

i be the corresponding sequence of convex annuli. We
will show that Ai is stabily disk equivalent to A′

i. Choose N large so that
the toric annulus bounded by T1 and TN contains Ai and A′

i. Let A be a
convex annulus between the S1 × i ⊂ A′

i and a horizontal Legendrian curve
on TN . Let A′ = A′

i ∪ A. Honda’s result in [13] implies that A and A′ are
disk equivalent. �
Corollary 4.9. Any tight, minimally twisting toric end (T 2× [0,∞), ξ) with
slope(T 2 × 0) = ∞, slope ∞ at infinity, and division number ∞ at infinity
embeds in a vertically invariant neighborhood of T 2 × 0.

Proof. Honda’s model [13] for increasing the torus division number can
be applied inductively on a vertically invariant neighborhood of T 2 × 0 to
create the desired sequence of nested tori Ti and corresponding annuli Ai.
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The contact structure on the toric annulus bounded by T1 and Ti is uniquely
determined by Ai [13]. �

We are lead to the following question:

Question 4.10. What are necessary and sufficient conditions for two toric
ends with infinite division number at infinity to be properly isotopic?

4.3. Nonminimally twisting, tight toric ends. In this section, we deal
with tight toric ends (T 2×[0,∞), ξ), with slope(T 2×0) = 0 and div(T 2×0) =
1, that are not minimally twisting. We first recall Honda’s classification for
nonminimally twisting tight contact structures on T 2 × [0, 1] in [13]. He
constructs a family ξ±

n of tight, rotative contact structures on T 2 × [0, 1]
with slope(T 2 × i) = 0 and div(T 2 × i) = 1 and shows that this is a complete
and nonoverlapping list of contact structures satisfying these conditions.
We define the rotativity of a tight toric end ξ with slope(T 2 × 0) = 0 and
div(T 2 × 0) = 1 to be the maximum n such that there is an embedding
e : (T 2 × [0, 1], ξ±

n ) ↪→ (T 2 × [0,∞), ξ) with e(T 2 × 0) = T 2 × 0. If no
maximum exists, then we say that ξ has infinite rotativity. If n is the
rotativity of ξ, then ξ+

n and ξ−
n cannot both be embedded in ξ. Assume for

contradiction that there are two such embeddings e+ and e−, respectively.
Then the images of these two embeddings are contained in a common toric
annulus T 2 × [0, 1], where div(T 2 × {1}) ≥ 1. If div(T 2 × {0}) = 1, then
it follows from the factorization theorems concerning such toric annuli in
[13] that these embeddings cannot coexist. If div(T 2 × {0}) > 1, then the
closure of the exterior of the image of e+ inside T 2 × [0, 1] is a nonrotative
outer layer (similarly for e−). By Honda’s work in [13], the images of e+
and e− must therefore have the same sign. But, this contradicts the very
existence of the two different embeddings e+ and e−. Hence, we can refer to
the sign of rotativity as well. We construct two more nonminimally twisting
toric ends ξ±

∞. Set (T 2 × [0,∞), ξ±
∞) = ∪∞

i=1(T
2 × [0, 1], ξ±

2 ).

Theorem 4.11. Let (T 2×[0,∞), ξ) be a tight toric end that is not minimally
twisting and such that slope(T 2 × {0}) = 0 and div(T 2 × {0}) = 1.

(1) Assume that ξ has finite rotativity and that the slope at infinity is s
and is not attained. Then ξ is uniquely determined by n and the sign
of rotativity. Moreover, ξ is universally tight.

(2) Assume that ξ has finite rotativity, the slope at infinity is s and is
attained, and the division number at infinity is k < ∞. Such ξ are
in one-to-one correspondence with tight, toric annuli T 2 × [0, 1] with
slope(T 2 × {0}) = 0, slope(T 2 × {1}) = s, div(T 2 × {0}) = 1, and
div(T 2 × {1}) = k, up to isotopy relative to T 2 × {0}. Moreover, all
such ξ are universally tight.

(3) Assume that ξ has slope s at infinity and infinite division number at
infinity (the rotativity must necessarily be finite). We can factor ξ into
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a toric annulus T 2×[0, 1] with slope(T 2×{1}) = s and div(T 2×{1}) =
1 and a minimally twisting, toric end T 2 × [1,∞). Moreover, the
contact structure on the toric annulus is uniquely determined by ξ,
and ξ is universally tight. To the toric end T 2 × [1,∞), we can assign
a family of annuli Ai as in Theorem 4.8 that is unique up to stable
disk equivalence.

(4) Assume that ξ has infinite rotativity. Then ξ is properly isotopic rel-
ative to the boundary to either ξ+

∞ or ξ−
∞, so the sign of rotativity is

defined in the infinite case as well. Moreover, the ξ±
∞ are universally

tight.

Proof. First, consider the case of finite rotativity when the slope at infinity
is not attained. Assume that the sign of rotativity is +. Factor off a toric
annulus ξ+

n . What remains is a minimally twisting, toric end. Based on
previous classification results for these ends, it suffices to determine the
number of positive basic slices in each continued fraction block. Note that
the sign of the basic slices in the continued fraction blocks is determined by
the sign of rotativity, just as in [13]. Since all basic slices have the same
sign, ξ is universally tight just as in [13]. The proof of the case when the
slope at infinity is attained and the division number at infinity is finite is
essentially identical to the analogous case when the toric end is minimally
twisting.

The case of infinite division number at infinity is similar to previous cases.
We first show that the toric annulus in the factorization is unique. Choose
two such factorizations by tori T and T ′. These tori are contained in a
larger toric annulus T 2 × [0, 2]. T and T 2 × {2} and T ′ and T 2 × {2} bound
nonrotative outer layers. By [13], we know that the toric annuli bounded by
T and T 2 × {0} and T ′ and T 2 × {0} must therefore be the same. The fact
that ξ is universally tight is virtually identical to the previous cases. The
statement concerning the minimally twisting toric annulus follows from the
proof of Theorem 4.8.

Now, assume ξ has infinite rotativity. First, note that we cannot have two
embeddings e±

n : (T 2× [0, 1], ξ±
n ) ↪→ (T 2× [0,∞), ξ) with e±

n (T 2×0) = T 2×0
as previously discussed. Since ξ has infinite rotativity, there exists a sequence
of, say, positive embeddings en : (T 2 × [0, n], ξ+

n ) ↪→ (T 2 × [0,∞), ξ) with
en(T 2 × 0) = T 2 × 0. Moreover, we can take this sequence of embeddings
to be nested in the sense that en = en+1 on [0, n]. This follows immediately
by factoring a toric annulus containing the images of en and en+1. Note
that any sequence of such embeddings must necessarily leave any compact
set. We can use this sequence of embeddings to construct a proper isotopy
of ξ with ξ+

∞ as in the proof of Theorem 4.5. Again, the fact that ξ±
∞

are universally tight follows from the fact that nonminimally twisting toric
annuli are universally tight. �
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Corollary 4.12. Let (T 2 × [0,∞), ξ) be a tight toric end that is not mini-
mally twisting and has finite rotativity. Then (T 2 × [0,∞), ξ) embeds into a
toric annulus (T 2 × [0, 1], η) with convex boundary.

Proof. In the case when the slope at infinity is not attained, the obstruction
to finding an embedding, the mixing of signs of basic slices in continued
fraction blocks, is not present. Therefore, such embeddings exist and are
straightforward to construct using the techniques in [13]. In the case when
the slope is attained and the division number is finite, the embedding comes
for free. When the division number at infinity is infinite, one must use
the folding trick in a vertically invariant neighborhood of a convex torus
described in [13] and already used in our discussion of minimally twisting
toric ends with infinite division number at infinity. �

5. Classifying tight contact structures on S1 × R
2 and T 2 × R

We now show that in many cases, the classification of tight contact structures
on S1 × R

2 and T 2 × R reduces to the classification of toric ends.

5.1. Factoring tight contact structures on S1 × R
2. Let (S1 × R

2, ξ)
be a tight contact structure and let r be the slope at infinity. Consider
the collection of points on the Farey graph of the form 1/n where n ∈ Z.
Let s(r) = 1/n be the point closest to r (when traversing the Farey graph
counterclockwise from r) that is realized as the slope of a convex torus T
topologically isotopic to S1 × S1. We can then factor (S1 × R

2, ξ) into
(S1 × D2, ξ) and (T 2 × [0,∞), ξ). To see that this factorization is unique,
consider any other torus T ′ satisfying the same conditions as T . Both T
and T ′ lie in a common solid torus S with convex boundary. Note that the
toric annuli bounded by ∂S and T and by ∂S and T ′ are identical by the
uniqueness of such factorizations on solid tori. This proves the following:

Theorem 5.1. Tight contact structures on (S1 × R
2, ξ) with nonzero slope

at infinity are in one-to-one correspondence with isotopy classes relative to
the boundary of tight, minimally twisting toric ends (T 2 × [0,∞), η) with
div(T 2 × {0}) = 1. Tight contact structures on (S1 × R

2, ξ) with slope zero
at infinity are in one-to-one correspondence with isotopy classes relative to
the boundary of tight, minimally twisting toric ends (T 2 × [0,∞), η) which
do not attain the slope at infinity.

5.2. Factoring tight contact structures on T 2 × R. In this section, we
deal with tight contact structures on T 2 × R. Any convex, incompressible
torus T ⊂ T 2 × R produces a factorization of T 2 × R into T 2 × (−∞, 0]
and T 2 × [0,∞). We identify T 2 × (−∞, 0] with T 2 × [0,∞) via reflection
about the origin in R to obtain a negative contact structure on T 2 × [0,∞).
We change this to a positive contact structure by reflecting across the (1, 0)
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curve in T 2. Let (T 2 × [0,∞), ξ±) and (T 2 × [0,∞), ξ′
±) be two factorizations

corresponding to two different convex tori T and T ′ with division number
1 and slope s. We see that by keeping track of the I-twisting of a toric
annulus in T 2 ×R containing T and T ′, we can obtain (T 2 × [0,∞), ξ±) from
(T 2 × [0,∞), ξ′

±) as follows: Remove a (possibly) rotative T 2 × [0, 1] with
div(T 2 × i) = 1 and slope(T 2 × i) = s from the boundary of (T 2 × [0,∞), ξ+)
(or (T 2 × [0,∞), ξ−)). Apply a suitable diffeomorphism to T 2 × [0, 1]. Then,
glue T 2 × [0, 1] to the boundary of (T 2 × [0,∞), ξ−) (or (T 2 × [0,∞), ξ+)).
We call this procedure shifting the rotativity between (T 2 × [0,∞), ξ+) and
(T 2 × [0,∞), ξ−).

Theorem 5.2. Let (T 2 × R, ξ) be a tight contact manifold which contains a
convex, incompressible torus T with div(T ) = 1 and slope(T ) = s. Then the
factorization of (T 2 × R, ξ) into toric ends (T 2 × [0,∞), ξ±) is unique up to
shifting the rotativity between the two toric ends.

Theorem 5.2 shows that the classification of contact structures on T 2 ×R

reduces to the study of toric ends if there is a convex, incompressible torus
T with div(T ) = 1. If (T 2 × R, ξ) contains no such torus, then the situation
is much more subtle.

Question 5.3. If (T 2 × R, ξ) contains no convex, incompressible torus with
division number 1, then what is the relationship between two factorizations
by convex, incompressible tori of minimal torus division number?

6. Proof of Theorem 1.1

The proof of Theorem 1.1 is essentially a compilation of the results in pre-
vious sections.

We first prove the theorem for T 2 × [0, 1). Let r be an irrational number.
Define the family of functions fn : N → N∪{0} as follows: fn(i) > 0 for i ≤ n
or when i is even, and fn(i) = 0 when i > n and i is odd. Theorem 4.3 and
Corollary 4.6 guarantee that the family of contact structures associated with
fn are distinct and not extendible. If r is rational, then define a family of
functions fm : {1, . . . , n(r)}×{1,−1} → N∪{0,∞} as follows: fm(i×{1}) =
0 for i <= n(r) − 1, fm(n(r) × {1}) = m, and fm(n(r) × {−1}) = ∞. By
Theorem 4.5 and Corollary 4.6, the family of contact structures associated
to fm are distinct and are not extendible.

Theorem 5.1 and Theorem 5.2 now finish the cases of T 2×R and S1×D2.

7. Proof of Theorem 1.2 and Theorem 1.3

Before beginning the proof of Theorem 1.2, we prove a result which allows
us to choose the dividing set on ∂M nicely. Let Σ be a genus n surface. In
Figure 1, we specify αi, βi, and λj for a genus 3 surface. For a higher genus
Σ, make the analogous specification.
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Figure 1. For 1 ≤ i ≤ 3, let the αi be the half-hidden, non-
separating, simple, closed curves and let βi be the nonsepa-
rating curves such that αi · βi = 1 (with subscript increasing
from left to right). Let the λj be the two separating curves
again labeled left to right.

Lemma 7.1. Let M be any 3-manifold with connected boundary of genus
n. Let K be the kernel of the map H1(∂M ; Q) → H1(M ; Q) induced from
inclusion. There exists an identification of ∂M with Σ such that αi form
a basis for K ⊂ H1(∂M ; Q) as vector space over Q. Moreover, there exist
integers ni and embedded, orientable surfaces Σi such that ∂Σi consists of
ni parallel copies of αi.

Proof. Let S1 be the first cutting surface in a Haken decomposition for M .
We may assume that no collection of components of ∂S1 is separating in
∂M and that S1 is orientable [11]. We may also assume that ∂S1 consists of
parallel copies of a nonseparating, simple, closed curve that we identify with
α1. If ∂S1 is not all parallel, then two boundary components b1 and b2 can
be chosen so that there exists an arc µ joining the bi that does not intersect
any other components of ∂S1. Let A be a small annular neighborhood of µ.
Since ∂S1 is nonseparating, we can choose µ so that S1 ∪ A is an oriented
surface with bi replaced by a new boundary component homologous to b1+b2.
We can continue this process until the boundary components of S1 consist
of n1 copies of simple closed curve which we identify with α1. Form a new
3-manifold M1 by attaching a 2-handle H1 to ∂M along α1. Let S2 be the
first surface in a Haken decomposition for M1. We may assume that ∂S2
consists of m2 copies of a nonseparating, simple, closed curve γ ⊂ ∂M1 which
do not intersect the two disks ∂H1 ∩∂M1. Since ∂S2 ⊂ M , we can identify γ
with α2. Note that S2 may intersect H1. If we cannot isotop the interior of
S2 to be disjoint from H1, then we may assume that the intersection consists
of k disjoint disks Di on S2. Moreover, we can assume that the disks all
have the same sign of intersection with the cocore of H1. If two disks had
different signs of intersection, then we could find two adjacent such disks,
remove the disks, and identify the boundaries to reduce the intersection of S2
with H1. Note that ∂S1 consists of n1 copies of the attaching curve for H1.
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Therefore, we can take k copies of S1 and n1 copies of S2, remove the kn1
disks kS2 ∩ H1 from n1S2, and use the kn1 boundary components of kS1 to
cap off these boundary components, possibly reversing the orientation of S1
if necessary. This operation shows that class n2α2 ∈ K, where n2 = n1m2.
Attach another handle H2 to M1 along α2 to form a new manifold M2.
Continuing in this fashion, we find n integers ni and an identification of ∂M
with Σ such that niαi ∈ K. αi are clearly linearly independent and thus
generate K since dimQ(K) = n [11]. �

Given any 3-manifold with connected boundary, we identify ∂M with the
genus n surface Σ as specified in Lemma 7.2. We now describe the collection
of curves Γ ⊂ ∂M which will be the dividing set of a universally tight contact
structure on M . Let γ1 be a simple, closed curve homologous to α1 − 2β1
and let γi be a simple, closed curve homolgous to αi − βi for 2 ≤ i ≤ n.
Finally, let γn+1 be a simple, closed curve homologous to −(γ1 + · · · + γn).
Note that this collection of curves is diffeomorphic to the collection of curves
shown in Figure 2.

Lemma 7.2. Let M be any irreducible 3-manifold with connected boundary
of nonzero genus. Then there exists a universally tight contact structure on
M such that ∂M is convex and Γ divides ∂M .

Proof. Let (M, γ) be the sutured 3-manifold with annular sutures s(γ) = Γ.
We will show that (M, γ) is a taut sutured 3-manifold. We then invoke the
result in [16] which says that M also supports a universally tight contact
structure with ∂M convex and Γ∂M = Γ.

To prove that (M, γ) is taut, it suffices to show that M is irreducible,
R(γ) is Thurston norm-minimizing in H2(M, γ) among all other orientable
surfaces in the same relative homology class, and R(γ) is incompressible in
M . By assumption, M is irreducible. We now show R(γ) is incompressible.
Suppose not. Then the loop theorem [11] says that there exists an embedded
disk (D, ∂D) ⊂ (M, ∂M) such that ∂D is homotopically nontrivial in R(γ).
Since R(γ) consists of two planar surfaces and ∂D is embedded, ∂D must

Figure 2. The collection of curves Γ is diffeomorphic to the
collection of curves shown above.
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also be homologous to ±(γi1 + · · · + γij ) where 1 ≤ i1, ij ≤ n are distinct.
There exist qi ∈ Q such that ±(γi1 + · · ·+ γij ) = q1α1 + · · ·+ qnαn since ∂D
is null homologous in M . Take the intersection pairing of each side with αi

to arrive at a contradiction.
We show that R(γ) is Thurston norm-minimizing in H2(M, γ). Let

S = ∪Si be any orientable surface homologous to R(γ) in H2(M, γ). With-
out loss of generality, we assume that ∂S ⊂ int(A(γ)). Fix an annulus
A(s) ⊂ A(γ) about the suture s (s is a homologically nontrivial simple,
closed curve in A(s)). Note that ∂R(γ) intersects A(s) in two oriented cir-
cles isotopic to s, where one comes from R+(γ) and the other comes from
R−(γ). These circles must have the same orientation since the orientation of
R+(γ) agrees with the orientation on ∂M and the orientation on R−(γ) does
not. Consider the intersection of S with A(s). If any two curves of ∂S∩A(s)
have opposite orientation induced from S, then we can find two such curves
which are adjacent. We then identify these curves and isotop them off of
∂M to reduce the number of boundary components of S. We continue this
procedure until ∂S ∩ A(s) consists of two curves with the same orientation,
which agrees with the orientation of ∂A(s) induced from R(γ). Note that
the orientation on and number of these remaining curves in ∂S ∩ A(s) are
completely determined by the assumption that [S] = [R(γ)] in H2(M, γ).
To summarize, we may assume that ∂S intersects each annulus of A(γ)
in exactly two essential curves with the same orientation induced from S,
which agrees with the orientation of the boundary of the annulus induced
R(γ) (see Figure 3).

We assume that our curves are exactly as in Figure 2. Recall that ∂R(γ) =
∪n+1

j=1 γj ∪ ∪n+1
j=1 γj . Let Si be a component of S. We now show that ∂Si =

∪n+1
j=1 γj or ∂Si = ∪n+1

j=1 γj ∪ ∪n+1
j=1 γj as oriented manifolds. Note that ∂Si

is the union of some subset of the oriented curves {γ1, γ1, . . . , γn+1, γn+1}.
Since ∂Si ⊂ K, ∂Si = q1α1+ · · ·+qnαn. For 1 ≤ j ≤ n, take the intersection

Figure 3. The white region is an annular suture. The gray
region is R(γ). The two vertical lines in the annulus are
boundary curves of S with orientation induced from S. The
arrows on ∂R(γ) denote the orientation induced from R(γ).
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pairing of both sides of this expression with αj to see that γj and γn+1 must
occur together (if they occur at all) in ∂Si. This shows that ∂Si = ∪n+1

j=1 γj or
∂Si = ∪n+1

j=1 γj ∪∪n+1
j=1 γj . We say such surfaces are of type I or II, respectively.

If Si is of type I, then S consists of two such surfaces, and if Si is of type
II, then S = Si. In either case, x(S) ≥ x(R(γ)), with equality when S is
planar. �

7.1. Construction of the contact structures when ∂M is connected.
Let (M, η) be the universally tight contact manifold given by Lemma 7.2.
When we refer to well-behaved surfaces, we will mean well-behaved with
respect to (M, η; ∂M, λ1, {α1, β1}). Let S1 be the first cutting surface in a
hierarchy for M with boundary α1. Recall that in the proof of Lemma 7.1,
we chose S1 so that ∂S1 consists of n1 copies of α1, so S1 is well-groomed,
as defined in [7]. Via the correspondence between sutured manifold decom-
positions and convex decompositions, we may assume that S1 is the first
cutting surface in a convex decomposition for M and has ∂-parallel dividing
curves (see [16]). Since tb(S1) ≤ −2, there is a bypass abutting ∂M along
α1. After attaching this bypass to ∂M , we have a Σ× [0, 1] slice with convex
boundary, where Σ is a genus n surface, n is the genus of the boundary of
M , and Σ × {1} = ∂M . Let (Y, η) denote this contact manifold. Note that
after attaching this bypass, the dividing curves consist of n (−1, 1) curves
on each of the tori summands and another simple, closed curve which is
homologous to the sum of the other n.

We now construct an embedding of Y into S3 with the standard tight
contact structure. Fix g disjoint Darboux balls in S3 labeled Bi, where g is
the genus of the slice Y . In B1, we have a convex torus T1 with slope −2.
One can find such a torus in S3 and then remove a point from S3 to get such
a torus in R

3. In each of the remaining Bi, we have a convex torus with slope
−1. On T1, LeRP a curve m1 which bounds a disk in T1 containing a single
arc of the dividing set. On each of the other Ti, LeRP a curve li containing
a disk in Ti with a single arc of ΓTi and LeRP a curve mi which is disjoint
from li and bounds a disk with a single arc of the same dividing curve that
li intersects. Now, remove the disks bounded by the li and mi on Ti and join
li to mi+1 by a convex annulus Ai. This yields a convex genus n surface.
Inside B1, we have a compressing disk for T1. By the imbalance principle,
there is a bypass along this compressing disk. Attaching this bypass yields
the desired embedding of Y . Note that we can arrange for the sign of this
bypass to agree with the sign of the bypass we attached to ∂M .

Fix a real number r ∈ (−2,−1). Let qi be an infinite sequence of rationals
constructed in Section 4 such that q1 = −1 and qi �= r.

Proposition 7.3. There exists a sequence Σi ⊂ Y = Σ × [0, 1] of well-
behaved surfaces such that slope(Σi) = qi and Σ1 = Σ × {0}.
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Proof. We will prove our results for the embedding of Y ⊂ S3. LeRP copies
li of λ1 on Σ × {i} such that tb(li) = −1. Let A ⊂ Y be a convex annulus
between l0 and l1. li separates Σ × {i} into a punctured torus Pi and a
punctured genus n− 1 surface. Cap off the Pi in S3 with convex disks Di to
obtain tori Ti such that slope(T1) = −2 and slope(T0) = −1. There exists
an incompressible torus T in the toric annulus bounded by the Ti such that
div(T ) = 1 and slope(T ) = q2 [13]. Let d2 be a Legendrian divide on T . d2
can be Legendrian isotoped within the toric annulus bounded by the Ti so
that it does not intersect D2 × [0, 1], which we used to cap off the thickened
punctured torus bounded by P0∪P1∪A. This can be seen working in a model
for D2 × [0, 1], a standard neighborhood of a Legendrian arc. Hence, there
exists a Legendrian isotopy taking d2 to a curve in Y that is homologous
to a2α1 + b2β1, where q2 = b2/a2. LeRP a curve d′

2 in the same homology
class on Σ1 such that d′

2 ∩ ΓΣ1 is minimal. Let A2 ⊂ Y be a convex annulus
between d2 and d′

2. By our choice of d2, ΓA2 ∩ d2 = ∅ and ΓA2 ∩ d′
2 �= ∅,

so there exists a bypass along d′
2. Attaching this bypass to Σ1 yields Σ2.

Now, repeat the previous argument for q3 and the slice bounded by Σ2 and
Σ × {1} to obtain Σ3. These surfaces are well-behaved by construction. �

Let Σi be as in Proposition 7.3. Let (Yi, η) be the genus n slice bounded
by Σi and Σi+1 in Y . Construct a contact structure η on Σ × [0,∞) by
taking Σ × [i, i + 1] to be Yi. Let (V, ηr) be obtained from (M, η) by peeling
off Y \Σ1 from (M, η) and attaching (Σ× [0,∞), η) in the obvious way. Note
that (V, ηr) is tight by construction since it embeds into (M, η).

Lemma 7.4. Let s, t ∈ (−2,−1). Then (V, ηs) and (V, ηt) are in the same
isotopy class of contact structures.

Proof. There exists a convex surface S ⊂ V such that V \S = V ′∪S×(0,∞),
where V ′ is diffeomorphic to V and ηs|V ′∪S = ηt|V ′∪S . This follows from the
construction of (V, ηs) and (V, ηt). We claim that ηs|S×[0,∞) and ηt|S×[0,∞)
are isotopic relative to S × 0. We can assume that S × [0, 1) is a one-sided
vertically invariant neighborhood of our convex surface S × 0. Hence, in
particular, ηt and ηs agree on S × [0, 1). Form a new contact structure ηλ

t

as follows: Extend the vertically invariant neighborhood S × [0, 1) of ηt to
S×[0, λ), and on S×[λ, ∞), take ηλ

t to be ηt|S×[1,∞). Define ηλ
s similarly. By

construction, η∞
t = η∞

s . Hence, (V, ηs) and (V, ηt) are in the same isotopy
class of contact structures. �

7.2. Proof of Theorem 1.2 and Theorem 1.3 when ∂M is connected.
In order to show that V supports uncountably many tight contact structures
that are not contactomorphic, we will first show that the (V, ηs) are distinct
up to proper isotopy. Theorem 1.2 then follows immediately since the map-
ping class group of any 3-manifold with boundary is countable ([17]). To
achieve this, we use the idea of the slope at infinity introduced in Section 3.
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Proposition 7.5. The net slope: C(Ends(V, ηs; ∂M)) → R ∪ {∞} is con-
vergent, so the slope at infinity is defined. Moreover, the slope at infinity of
ηs is s for all s ∈ (−2,−1).

Proof. We first show that there is an E ∈ Ends(V, ηs) such that for all
F ⊂ E, slope(F ) ≤ s. Choose E ⊂ int(Y ). We will be now working in
S3. Let F ⊂ E and suppose for contradiction that slope(F ) > s. Then,
there exists Σ ∈ C(E) such that slope(Σ) > s. Let Σi be the family of
surfaces given by Proposition 7.3. There exists an i such that Σ is contained
in the genus n slice bounded by Σ1 and Σi. LeRP a copy of λ1 on Σ, Σ1,
and Σi and cap off the punctured tori bounded by these curves with convex
disks. This yields a toric annulus T 2 × [0, 1] ⊂ S3 which contains a convex,
incompressible torus T such that slope(T ) > slope(T 2×{1}). No such T 2×I
can exist in S3 (see [13]). Therefore, such a Σ could not exist. Similarly,
one can show that slope(F ) < s leads to a contradiction. The existence of
the family Σi now implies that the slope at infinity is s. �

By the proper isotopy invariance of the slope at infinity, there are uncount-
ably many tight contact structures that are not properly isotopic, or even
contact diffeomorphic, on V . This concludes the proof of Theorem 1.2 in the
case of connected boundary. The proof of Theorem 1.3 is now immediate.
For each ηs, simply choose a transverse curve in V and introduce a Lutz
twist. Since the contact structures is identical outside of a compact set, the
slope at infinity is unchanged.

7.3. Proof of Theorem 1.2 and Theorem 1.3 when ∂M is discon-
nected. Before proceeding with the proof, we will need the following tech-
nical result.

Lemma 7.6. For every nonzero, positive integer n, there exists an irre-
ducible 3-manifold Mn with connected, incompressible boundary of genus n.

Proof. Let Σg be an orientable surface of genus g. If n = 2m, let F ⊂ Σn

be a once-punctured genus m surface. Form a manifold Mn by identifying
F × {0} with F × {1} on Σn × [0, 1]. It is straightforward to show that
Σn×{0} and Σn×{1} are incompressible in Mn. Using the incompressibility
of these surfaces and the irreducibility of Σn × [0, 1], it is routine to show
that Mn has incompressible boundary and is irreducible. If n = 2m − 1,
let F ⊂ Σm be an annular neighborhood of a nonseparating, simple, closed
curve. Form a manifold Mn by identifying F × {0} with F × {1} on Σm ×
[0, 1]. It is again straightforward to show that Σm × {0} and Σn × {1} are
incompressible in Mn. Irreducibility and incompressibility of the boundary
follow as before. �

Let ∂M = ∪n
i=1Si where Si are the connected components of ∂M and

S1 is of nonzero genus. Let Sj be any component different from S1. If Sj
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is compressible, compress it, and continue doing so until we have a collec-
tion of spheres and incompressible surfaces. We are now in the situation
where every boundary component, besides possibly S1, is incompressible or
a sphere. Fill in each sphere with a ball and onto each incompressible com-
ponent of genus n, excluding S1 if it happens to be incompressible, glue in
an irreducible manifold with connected, incompressible boundary of genus n
(such manifolds exist by Lemma 7.6). It is straightforward to show that the
resulting manifold is irreducible since we are gluing irreducible manifolds
(after filling any spheres in the boundary) along incompressible surfaces.
Call the resulting manifold M ′. We are now in the case of connected bound-
ary. Put a tight contact structure on M ′ as before and attach a bypass
along α1 so that we have factored off a ∂M ′ × [0, 1] slice Y . Topologically,
the closure of M ′\Y is again M ′. Without intersecting Y , remove each of
the manifolds we glued in after perturbing the gluing surfaces to be convex.
Reconstruct M by gluing the boundary components back together along the
compressing disks. To ensure that the resulting manifold is tight, choose the
compressing disks to be convex with Legendrian boundary and with a single
arc in the dividing set [12]. We now have a tight contact structure on M
and a bypass layer Y along S1 which is identical to the case of connected
boundary. To form the (V, ηs), remove all the boundary components except
for S1 and construct the ends in Y as before. The calculation of the slope at
infinity is identical to the case of connected boundary. As in the case of con-
nected boundary, the proof of Theorem 1.3 is immediate after introducing
a Lutz twist along a transverse curve in V .
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Honda, Will Kazez, and Gordana Matić for their comments and questions during his talk
at the Georgia Topology Conference and the conversations that followed.


