JOURNAL OF
SYMPLECTIC GEOMETRY
Volume 1, Number 2, 253-267, 2002

New smooth counterexamples to the Hamiltonian
Seifert conjecture

ELy KERMAN!

We construct a new aperiodic symplectic plug and hence new
smooth counterexamples to the Hamiltonian Seifert conjecture in
R?" for n > 3. In other words, we describe an alternative proce-
dure, to those of V.L. Ginzburg [Gil, Gi2] and M. Herman [Her],
for producing smooth Hamiltonian flows, on symplectic manifolds
of dimension at least six, which have compact regular level sets that
contain no periodic orbits. The plug described here is a modifica-
tion of those built by Ginzburg. In particular, we use a different
“trap” which makes the necessary embeddings of this plug much
easier to construct.

1. Introduction.

The Poincaré recurrence theorem suggests that there are periodic orbits on
every compact level set of a Hamiltonian flow. Indeed, there are now many
theorems which establish the existence of periodic orbits for a variety of level
sets and symplectic manifolds, see e.g., [FHV, Ho, HV, Ke, LT, Vi]. However,
there is also a small set of examples of Hamiltonian flows which have compact
regular level sets that contain no periodic orbits. These examples must be
accounted for by any existence theorem and also serve to determine their
limits.

The most important of these aperiodic flows are defined on the standard
symplectic R?®, for n > 3, and were first constructed, independently and
in different ways, by V.L. Ginzburg [Gil, Gi2] and M. Herman [Her|. More
precisely, smooth Hamiltonian flows with aperiodic level sets were built for
n > 3 in [Gil] and [Her], a C3 “-example for n = 3 was also defined in
[Her], and finally a C*°-example for n = 3 was constructed in [Gi2]. Among
other things, these flows illustrate that the “almost existence” results of
Hofer, Zehnder [HZ] and Struwe [St] are in some sense optimal. For a thor-
ough discussion of the relevance of these examples to the various existence
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theorems, as well as a list of all the (previously) known Hamiltonian flows
without periodic orbits, the reader is referred to the surveys [Gi3| and [Gi4].

In building their examples, both Ginzburg and Herman follow a general
procedure due to Wilson [Wi], which uses the concept of an aperiodic plug to
create aperiodic flows (see §1.1). However, they each extend this procedure
to the Hamiltonian category in a different way. In particular, Herman sym-
plectizes the plugs of Wilson [Wi] and Harrison [Ha|, while Ginzburg builds
a new type of plug entirely within the symplectic framework (see Definition
2.1). In this paper, we modify Ginzburg’s constructions to obtain a com-
paratively simple symplectic plug and hence a new procedure for building
smooth aperiodic Hamiltonian flows on R?® with n > 3. This plug is built
around a different trap which makes the necessary embeddings of it much
easier to construct. For example, in the most difficult case when n = 3, we
require only standard symplectic embedding theorems, whereas in [Gi2] it
is necessary for Ginzburg to improve the dimensional constraints for some
symplectic embedding results of M. Gromov [Grl, Gr2].

In the remainder of this section, we briefly recall Wilson’s strategy for
producing aperiodic flows and discuss how it was used to find counterexam-
ples to the Seifert conjecture. We also describe a Hamiltonian version of the
Seifert conjecture as well as the motivation behind our choice of a different
trap. In the second section, we recall Ginzburg’s extension of Wilson’s pro-
cedure to Hamiltonian flows. We then construct our new symplectic plug in
the third section of the paper.

1.1. Counterexamples to the Seifert and Hamiltonian Seifert
conjectures.

One of the most well known conjectures concerning the existence of periodic
orbits is the Seifert conjecture. It asserts that every nonvanishing vector field
on S3 must have a closed trajectory. Since it was posed (asked) by Seifert in
1950 [Se], three counterexamples to this conjecture have been constructed,;
first in the C'-category by P. Schweitzer [ScP], then in the C3~¢-category
by J. Harrison [Ha], and ultimately in the C“-category by K. Kuperberg
[KuK1]. A volume preserving version of Schweitzer’s flow was also built by
G. Kuperburg in [KuG]. For a review of these counterexamples see [KuK2]
and [Gi3].

The Seifert conjecture can be extended to Hamiltonian flows in a number
of ways [Gi3]. Consider the Hamiltonian flow defined by a smooth function
H on a symplectic manifold. For the purposes of this paper, the Hamiltonian
Seifert conjecture will be the assertion that there exists a periodic orbit of
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this flow on every compact regular level set of H. Just as its namesake, this
conjecture is known to be false. The constructions of Ginzburg, Herman and
those defined here, can be used to produce counterexamples on any symplec-
tic manifold of dimension at least six. Indeed, these aperiodic Hamiltonian
flows can be glued into any Darboux chart. However, the conjecture remains
open for R*. It also continues to merit study because these rare examples of
aperiodic level sets may help to illuminate the poorly understood boundary
between existence and nonexistence theorems, (see §3.4 of [Gi4]).

All of the counterexamples mentioned above are based on Wilson’s con-
struction of aperiodic flows in [Wi]. Starting with a manifold W, of dimen-
sion k, and a vector field X, in a specific class, his idea is simply to make
special local alterations to X which destroy all periodic orbits. More pre-
cisely, suppose that X has a periodic orbit which passes through the point
w € W. One would like to modify X near w so that

1) for the resulting vector field, the trajectory through w is no longer
closed

2) no new periodic orbits are created
3) the new vector field is still in the desired class.

To accomplish this, Wilson introduced the notion of an aperiodic plug. This
consists of a compact product manifold P = [—1,1] x N, a carefully con-
structed vector field V' on P which is parallel to [—1,1] on P, and an
embedding j: P — RF such that dj(V) is constant near P. With this,
the dynamical system defined by V on P can be inserted, via j, into a flow
box around w. This results in a new local flow, and the properties of j
and V on OP imply that the only trajectories that are altered are those
which enter j(P) through j({—1} x N). Once they are inside the image
of P, these trajectories behave like trajectories of V whose flow has been
designed to accomplish the goals above. For example, with the exception
of K. Kuperberg’s plug, the first goal is achieved as follows. The flow of V'
is built so that some point (—1,p) € {—1} x N asymptotically approaches
an aperiodic orbit on an invariant submanifold M that lies in the interior of
P. The insertion of P into the flow box is then chosen so that (—1,p) gets
mapped to w. As a result, the new trajectory through w becomes trapped in
the image of P and, because of its asymptotic behavior, is no longer closed.
The submanifold M together with its inherited flow is called the trap (or
core) of the plug.
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Remark 1.1. The remarkable feature of K. Kuperberg’s plug is that, in-
stead of using a known aperiodic flow as a trap, she creates an entirely new
aperiodic dynamical system in dimension three (see [KuK1, Gh]).

Every plug which uses a trap to destroy periodic orbits is defined on
a thickening of the trap’s manifold M, i.e., P ~ M x D' for some closed
ball D' C R!. Hence, in order to construct the embedding j for such a
plug one must first find a suitable embedding for M. In [Wi], Wilson uses
the irrational flow on a two-dimensional torus as a trap. Around this, he
constructs a smooth plug which can be embedded in a flow box of dimension
at least four. Schweitzer then constructs a Cl-plug in [ScP] which can be
embedded in a flow box of dimension three and with this he obtains the
first counterexamples to the original Seifert conjecture. The trap which
enables Schweitzer to do this is a punctured two-dimensional torus with a
flow that is trivial near the boundary and contains the (aperiodic) closure of
an (aperiodic) orbit of the Denjoy flow in the interior. Unlike the complete
torus, the punctured torus can be embedded into R3 in such a way that
the standard normal vectors are everywhere parallel to a constant vector
(see Figure 3. of [ScP]). By thickening this embedding along the normal
directions, Schweitzer is then able to appropriately embed his plug into R3.

What allows Schweitzer to use the punctured torus is the fact that the
Denjoy flow on T? has a proper minimal set that contains no closed orbits.
(Note that the Denjoy flow is C! and that no C2-flow on any surface admits
such a minimal set [ScA].) His crucial observation can be summarized as
follows :

The flow on the trap only needs to be aperiodic on an invariant
closed subset.

The strength of this simple statement lies in the fact that we know of very
few examples of totally aperiodic flows on manifolds of small dimension.

In [Gil] and [Gi2], Ginzburg uses a trap consisting of the horocycle flow
on ST*Y, the unit cotangent bundle of a surface ¥ with constant negative
curvature. This flow is not only aperiodic on all of ST*X, but is also minimal
[Hed]. In order to use this trap to obtain the counterexample for n = 3, it
was necessary for Ginzburg to prove a new symplectic embedding theorem
in [Gi2]. Using Schweitzer’s observation above, our choice of a trap is a
relatively simple flow on T® which is only aperiodic on an invariant subset.
For this trap, the construction of the necessary embeddings is much simpler.
Unfortunately, this choice does not allow us to reduce to the case n = 2.
Most likely, the construction of a counterexample for this final case (if it is
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even possible!) will require, as in [KuK1], the creation of an entirely new
type of Hamiltonian dynamics.

Acknowledgments. 1 am deeply grateful to Viktor Ginzburg for many
encouraging and helpful comments. In particular, the relative simplicity of
the construction presented here owes much to one of his suggestions.

2. Symplectic plugs and aperiodic Hamiltonian flows.

In this section we describe how the special nature of a Hamiltonian flow
allows one to reformulate the Hamiltonian Seifert conjecture and to use a
different type of plug to produce counterexamples.

We begin by considering the existence of periodic orbits for a nonvan-
ishing vector field X on an odd-dimensional manifold W, and we note that
it is possible to rephrase this question given an additional geometric struc-
ture. Recall that a two-form is said to be maximally nondegenerate if its
kernel is everywhere one-dimensional. Let us assume that we can find such
a form o on W so that X (w) spans ker o(w) for all w € W. Then, instead of
looking for periodic orbits of X, we may equivalently look for smooth maps
v: St — W for which #(t) spans ker o(v(t)) for all ¢ € [0, 1]. Such maps are
called closed characteristics of o on W and we will identify those having the
same image. If v is instead defined on some interval, i.e., the image isn’t a
loop, it will just be called a characteristic of o.

Now, let H be a smooth function on a symplectic manifold (@, 2) and let
W be a compact regular level set of H. The corresponding Hamiltonian flow
is generated by the Hamiltonian vector field Xy defined by the equation

ix, Q= dH.

This vector field is tangent to W and nonvanishing there. It is also easy to
verify that o = Q| is maximally nondegenerate and that Xy spans kero.
From the discussion above, we see that the Hamiltonian Seifert conjecture
can be reformulated as a statement which asserts the existence of closed
characteristics for certain maximally nondegenerate two-forms. In particu-
lar, the conjecture concerns those forms which are obtained by restricting
a symplectic form to a hypersurface in a symplectic manifold. With this
version of the conjecture in mind, Ginzburg introduced the following notion
of a symplectic plug as a tool to construct counterexamples.

Definition 2.1 ([Gil]). A symplectic plug for dimension 2n (n > 2) is a
product manifold P = [~1,1] x N?"~2 equipped with an exact maximally
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nondegenerate two-form w, and embeddings j: P — R?*~! and J: P — R??
such that the following conditions hold:

(P.1) kerw is vertical (parallel to [—1,1]) near OP.

(P.2) there exists a point (—1,p) € {—1} x N such that any characteristic
of w through this point does not pass through {1} x N.

(P.3) a characteristic through (—1,p) € {—1} x N which meets {1} x N
does so at (1,p).

(P.4) w has no closed characteristics in P.

(P.5) j*Qo,_2 = w near P, where Qg,_o is the pullback of the canonical
symplectic form on R?®~2 via the projection R?*~1 — R2n—2,

(P.6) for a given § > 0 we have J: P — [~§,d] x R*~! and J*Qq, =
w. Moreover, if we let j be the map j with its range identified with
{0} x R?"=1 C R?" then J = j near OP and J is isotopic to j relative
to OP.

Remark 2.2. It is perhaps unnecessary to include the embedding j in this
definition. However, as described below, this map allows a symplectic plug to
be used for the slightly different purpose of destroying closed characteristics
for any maximally nondegenerate two-form. It also helps to clarify the
construction of the embedding J. Indeed, here and in [Gil] the map J is
of the form J = f o j where f: R?*»~! — R?". Again, j is used to destroy a
closed characteristic while the map f now ensures that this is done without
disturbing the symplectic structure. When the domain of f is identified with
{0} x R?"»~1 ¢ R?™ we will denote it by f so that J = f o j.

Symplectic plugs were constructed for n > 3 in [Gil] and for n = 3 in
[Gi2]. In [Gil], Ginzburg also describes how a symplectic plug for dimen-
sion 2n can be used to obtain counterexamples to the Hamiltonian Seifert
conjecture in R?®. We recall this procedure here.

As a first step, we show that a symplectic plug can be used to destroy a
closed characteristic of a maximally nondegenerate two-form o on an odd-
dimensional manifold W?2"~!. In fact, assuming that ¢ has only a finite
number of closed characteristics, we will construct from it a new maximally
nondegenerate two-form having none. Let w € W be a point in the image of
one of the closed characteristics of o and choose a small open neighborhood
of w which does not meet the others. This neighborhood can be chosen to
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be diffeomorphic to an open ball B?*»~! c R?"~! in such a way that o gets
identified with €9, _o. This is a version of a flow box around w since the
characteristics of Qg,,_o in R?*~! are all straight. We can then use j to insert
(P,w) into this neighborhood so that (—1,p) gets mapped to w. Let o’ be
the form which equals o outside of j(P) and w inside. By (P.1) and (P.5), we
see that o’ is well-defined, smooth and maximally nondegenerate. Properties
(P.2), (P.3) and (P.4) then imply that the characteristics of ¢’ through w
are no longer closed and that ¢’ has no new closed characteristics. We have
thus succeeded in finding a maximally nondegenerate two-form on W with
exactly one less closed characteristic than o. Applying this procedure to the
other closed characteristics we see that the existence of symplectic plugs for
n > 3 implies the following theorem.

Theorem 2.3 ([Gil, Gi2]). Assume that AimW > 5 and o has a finite
number of closed characteristics. Then there exists a closed maximally non-
degenerate two-form o' which is homotopic to o and has no closed charac-
teristics.

Remark 2.4. Two closed maximally nondegenerate two-forms are said to
be homotopic if they can be joined by a one parameter family of such forms
all lying in the same cohomology class. The existence of the homotopy in
Theorem 2.3 follows from one between w and a two-form w; which has a
vertical kernel and satisfies j*(29, 9 = wj. This homotopy is defined in
Remark 3.3 and is not a necessary feature for a symplectic plug.

We can now use the embedding J to extend the previous theorem to
one which applies to a hypersurface W in a symplectic manifold (Q", ).
Assume that Q| has a finite number of closed characteristics and let w € W
be a point on one of them. There exists a neighborhood U of w in @
such that U doesn’t meet the other closed characteristics on W and U is
a symplectic flow box. In other words, U is diffeomorphic to an open ball
B> c R?" = R x R>* ! in such a way that the intersection of B?" with
{0} x R?"~! corresponds to U N W, the form ) gets identified with Qg
and Q|ynw gets identified with Q, 2 on {0} x R?*~1. We can then use
J (corresponding to a sufficiently small ) to insert (P,w) into U so that
J(OP) Cc UNW and (—1,p) gets mapped to w. Let W' be the hypersurface
which is equal to W outside of U and agrees with the image of J inside of
U. We claim that Q|+ has exactly one less closed characteristic than Q| .
To see this, we view the insertion of (P,w), by J = foj, as a two step
process (see Remark 2.2). The primary insertion uses j to map (P,w) into
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UNW. As above, this yields a new form ' on W with exactly one less
closed characteristic than Q|y. The map f then deforms W into W' so that
Q = f*ﬂ In particular, f takes the characteristics of ' through w € W to
the characteristics of Q| through w € W', which can therefore never be
closed. Repeating this process for the other closed characteristics we get;

Theorem 2.5 ([Gil, Gi2]). Assume that dim@Q > 6 and that Q|w has a
finite number of closed characteristics. Then there exists a smooth hyper-
surface W' C Q, C%-close and isotopic to W, such that Q|y: has no closed
characteristics.

Let W be an irrational ellipsoid in (R?",Qy,), i.e., a level set of a func-
tion of the form H(z) = >, aj|zj||* where the a; are independent over
Q. Then W contains only n closed characteristics and can be modified, as
above, to obtain a concrete example of a smooth hypersurface (regular level

set) with no closed characteristics (periodic orbits), see Corollary 3.3 and
Corollary 3.4 of [Gi3].

3. A new symplectic plug.

We now build a new symplectic plug for n = 3. This construction can easily
be extended to obtain plugs for n > 3 as well.

3.1. The trap.

As a trap, we will use the constant-speed geodesic flow of the flat metric on
the two-dimensional torus. This is described in terms of a Hamiltonian flow
as follows. The symplectic manifold is (7*T?,d)), the cotangent bundle of
the two-dimensional torus equipped with its canonical symplectic structure.
With respect to the (global) coordinates {61, 02, p1,p2} on T*T? = T? x R?,
the Hamiltonian is the standard kinetic energy function defined by

H:T°T? 5 R
1
(01,62,p1,p2) — E(P% + p3).

It is easy to check that the Hamiltonian vector field of H has only base com-
ponents and that its flow on the torus T? x {(p1,p2)} is the constant linear
flow with slope z—f. Our trap will be the level set M = H~'(R?) together
with its inherited flow. If we let S be the dense subset of M consisting of
the points whose last two components, (p1,p2), are rationally independent,
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then each torus T? x {(p1.p2)} C S is a closed invariant aperiodic subset
of M. Alternatively, our trap can be described as a manifold M which is
diffeomorphic to the three dimensional torus and is equipped with an exact
maximally nondegenerate two-form dn = dA|y. Moreover, M contains a
dense subset S such that every characteristic of dn which starts in S stays
in S and is not closed.

Switching to polar coordinates (p1,p2) — (r,03) we see that § =
(01,62,03) is a set of coordinates on M and

17 = Rcos(63)d6; + Rsin(f3)d0s.

We will call the angle 63 irrational if it corresponds to a rationally indepen-
dent pair (p1,p2).

3.2. The plug.

Let N = [—€,€] x M so that P = [—1,1] X [—¢,¢] x M. We label the
coordinates for the two intervals by ¢ and x, respectively. Consider the
two-form on P defined by

w=d(A(03,z,t)n + B(z,t)dt),
for smooth functions A and B of the indicated coordinates.
Claim 3.1. Let the functions A and B have the following properties:
(A.1) A>0.

(A.2) Al > 0, with equality only at (53, 0, :I:%) where 63 is a fixed irrational
angle. These are also the only two critical points of A.

(A.3) A=1+ z near OP.

(A.4) Aisevenin t.

(B.1) B =0 near OP.

(B.2) B =z near (0,%3).

(B.3) Bisoddin t.

Then, w is maximally nondegenerate and (P.1), (P.2), (P.3) and (P.4) hold.

Remark 3.2. Functions satisfying the conditions in the claim are easily
constructed.
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Proof. Treating w as a family of skew—symmetric matrices parameterized by
P, it is easy to check that the coefficient of the linear term in the charac-
teristic polynomial of w(fy,60s,60s,z,t) is

RYAY (AP + A% + R®BLA (A2 + A ).

Clearly, w is maximally nondegenerate if and only if this coefficient is
never zero. By properties (A.1) and (A.2), the first term only vanishes
at (63,0, :l:%) At these points the second term becomes

R’B.A?

which does not equal zero by property (B.2). Thus, w is maximally nonde-
generate.
Near the boundary of P we have

w=dzx An+ (1+z)dn.

Since n is nondegenerate on kerdn, we see that % spans kerw near OP.
Hence, w has property (P.1).

In order to check (P.2), (P.3) and (P.4), we consider a nonvanishing
vector field V on P such that V spans ker w. We choose V' so that it equals
% near OP and we recall that any characteristic of w is equivalent (after
some reparameterization) to a trajectory of V.

It is straightforward to check that
wAwAdt =R*AA. pu,

where p is the standard volume form with respect to our coordinates on P.
Since iyw = 0, it follows that the t-component of V', V;, satisfies

ViwAw = R2AAL iyp.

This equation implies that V; vanishes only when R2AA! does. Hence, by
property (A.2), V; equals zero along the two-dimensional tori T% defined by
(03, z,t) = (93, 0, :I:%), respectively. By continuity and our choice of V' near
OP, we also see that V; is strictly positive away from these tori. On T% we
have,

~ 1
w=A <03,0,:|:§) dn + dx A dt.

Hence, V is tangent to both tori and lies in the kernel of dn on each. This
means that the flows of V on T2 and Ti are both conjugate to the irrational
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flow for the angle 3. Let L™ (T2 ) be the negative limit set of T2 under the
flow of V. The previous observations then imply that the set

({1} x N)n L™(T%)

is nonempty and that all the points inside it asymptotically approach the
aperiodic flow on T? . Consequently, the trajectories of V through all of these
points are trapped in P and property (P.2) holds.

At this point, it is also easy to see that none of the trajectories of V' are
closed and hence (P.4) is satisfied. This is because V; is nonnegative and
so any periodic orbit of V would have to lie on either Ti or T2 , where we
know the flow of V is aperiodic.

To verify (P.3), we look at the map +: P — P which sends t — —t and
acts as the identity on the N-component. By properties (A.4) and (B.3), it
is possible to choose V' so that

dy(V) = V.

Consider a trajectory of V' (characteristic of w) which starts at a point
(—=1,p) € {—1} x N and exits P through {1} x N. The t-component V; can
not vanish along this trajectory since it would then be trapped in one of the
internal tori 'H‘i and could never exit P. Consequently, the (anti-)symmetry
of V described above implies that as the trajectory progresses from ¢ = 0 to
t = 1 it retraces, in reverse, the progress it made along the N-component
from ¢t = —1 tot = 0. The trajectory must then exit P at (1, p) and property
(P.3) is satisfied. O

In order to complete the construction of our plug we must find embed-
dings j: P — R® and J: P — R’ which satisfy (P.5) and (P.6). First,
consider the restriction of w to

{=1} X N ~ [—¢€,¢] x M.
We call this restriction p and note that
p=dzAn+ (1+z)dn.

This form restricts to the hypersurface {0} x M as dn. Notice that [—e¢, €] x M
can also be considered as a (closed) neighborhood of M in T*T? and recall
that the canonical symplectic form dA also restricts to M as dn. Using
Weinstein’s Extension theorem [We], it is easy to show that two symplectic
forms which agree on a compact oriented hypersurface are equivalent in a
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neighborhood of that hypersurface, see [MS, Exercise 3.35, p.102]. Hence,
for sufficiently small € there exists a symplectomorphism

¢1: ([—€,€] x M, p) = (N(M),dN),

where N'(M) is an open neighborhood of M in T*T?. Next, for sufficiently
small R (and €), we can assume that A'(M) lies in an arbitrarily small neigh-
borhood of the zero section in T*T2. Invoking the Lagrangian Neighborhood
theorem, there exists a symplectomorphism

b2: (N(M),dN) — (R, Q)

onto a neighborhood surrounding a Clifford torus in R*. Composing ¢; and
¢2 we get a symplectomorphism

¢: ([—6, 6] X Map) - (]R4794)'
We now define the embedding j by

j: P=[-1,1] x N - R x R*
(t,p) — (t,¢(p)).

Since w = p near all of 0P, j satisfies (P.5).

Remark 3.3. To form the homotopy discussed in Remark 2.4, we replace
A and B in the definition of w by the family of functions

A = (I1-1)A+71(1+2x)
B, = (1-71)B.

The resulting two-forms, w,, are all maximally nondegenerate and by the
construction of j we also have j7*Qy = w;.

As noted in Remark 2.2, the embedding J is of the form J = f o j for
some embedding f: j(P) C R> — RS. For simplicity we will identify j(P)
with P. We then choose f so that it maps P into R x P C R x R?. On
R x P we have coordinates (y,t,z,6). Recalling that j*(£4) = p we see that
with respect to these coordinates

Qslpxp = dyNdt+p
= d(ydt + (14 z)n).
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Let f: P — R x P be defined by
(t,z,0) — (B,t,A—1,0).

Property (A.2) ensures that f is indeed an embedding. In addition, we may
choose the function B to be arbitrarily small so that given any § > 0 the
image of f will lie in (—4,8) x R%. Note also that A and B are equal to 1+
and 0 on OP, respectively, and are also isotopic to these functions. This
implies that J equals j near P and is isotopic to j relative to P. Hence,
we only need to prove that f*Q¢ = w. In fact, we can verify the stronger
fact that

f*(ydt + (1 + z)n) = An + Bdt.
—_—

To see this let v € T, P. Then

fralv) = a(f)df W)
—  (An + Bat)[df (v)]
— (An+ Bat)lv],

where the last equality holds because f acts as the identity map on t and 6.
With this, the construction of our symplectic plug is complete.
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