
Japan J. Indust. Appl. Math., 26 (2009), 169–190 Area 〈2〉

Fast Verified Solutions of Linear Systems

Takeshi Ogita∗ and Shin’ichi Oishi†

∗Department of Mathematical Sciences
Tokyo Woman’s Christian University
2–6–1 Zempukuji, Suginami-ku, Tokyo 167–8585, Japan and
Visiting Associate Professor at
Faculty of Science and Engineering, Waseda University
3–4–1 Okubo, Shinjuku-ku, Tokyo 169–8555, Japan
E-mail: ogita@lab.twcu.ac.jp

†Department of Applied Mathematics
Faculty of Science and Engineering, Waseda University
3–4–1 Okubo, Shinjuku-ku, Tokyo 169–8555, Japan
E-mail: oishi@waseda.jp

Received June 5, 2008

Revised November 14, 2008

This paper aims to survey fast methods of verifying the accuracy of a numerical solution
of a linear system. For the last decade, a number of fast verification algorithms have
been proposed to obtain an error bound of a numerical solution of a dense or sparse
linear system. Such fast algorithms rely on the verified numerical computation using
floating-point arithmetic defined by IEEE standard 754. Some fast verification methods
for dense and sparse linear systems are reviewed together with corresponding numerical
results to show the practical use and efficiency of the verified numerical computation as
much as possible.

Key words: verified numerical computation, verified solutions of linear systems, self-
validating methods

1. Introduction

A number of mathematical problems arising in science and engineering can
numerically be solved by using digital computers, especially using floating-point
arithmetic, and then a numerical solution is obtained; for example, systems of even
more than millions linear equations are solved. However, one may ask “How reliable
is the numerical solution?” In such a case, a simple (and perhaps the best) answer
to this question might be “The leading k decimal digits are correct.” A possibility
to enable us to do it is so-called verified numerical computation.

In this paper, we surveys the verified numerical computation for enclosing a
solution of a linear system

Ax = b, (1.1)

where A is a real n × n matrix and b is a real n-vector. If A is nonsingular,
then there exists the unique solution x∗ := A−1b. Therefore, the verified numerical
computation also aims to prove the nonsingularity of A. On the other hand, if A is
singular or nearly singular, then the verified numerical computation may answer “I
can’t prove the nonsingularity of A.” This means A might be singular, but it is not
known. In general, the verified numerical computation cannot prove the singularity

170 T. Ogita and S. Oishi

of A, because it is an ill-posed problem. At least, however, it never answers a
wrong result unless an unexpected error occurs on hardware or software. It is an
important property of the verified numerical computation.

For the last decade, a number of fast algorithms (cf., for example, [20, 25, 36])
have been proposed to prove the nonsingularity of A and to compute a normwise
error bound ε of x̃ such that

‖x∗ − x̃‖ ≤ ε, (1.2)

or a componentwise error bound (vector) d such that

|x∗ − x̃| ≤ d. (1.3)

Here for real n-vectors v and w, we denote by |v| a nonnegative vector consisting
of entrywise absolute values |vi|, and an inequality v ≤ w is understood entrywise,
i.e., vi ≤ wi for 1 ≤ i ≤ n. We call a verification algorithm fast if the compu-
tational cost for the verification process is comparable to that for obtaining an
approximate solution by a standard numerical algorithm. Such fast algorithms rely
on the verified numerical computation using floating-point arithmetic defined by
IEEE standard 754 [2].

In this paper, we do not treat the case where A and b are interval quantities.
Strictly speaking, we focus on the case where all the entries of A and b are floating-
point numbers. Although most of the discussions in the paper can be extended
to not only the case of the entries being real numbers but also the case of those
being (moderately narrow) interval numbers, we do not mention the details in this
paper. Excellent overviews of the verified numerical computation for systems of
real/interval linear equations can be found in [12, 16, 34, 26]. For further details of
interval arithmetic, see [1], for example.

The rest of the paper is organized as follows: In Section 2, we state notation
and definitions used in this paper. In Section 3, we introduce fast and verified
numerical computations for vector and matrix operations proposed by Oishi and
Rump. In Section 4, we review well-known fast and efficient verification methods
for an approximate solution of a dense linear system. In Section 5, we review some
useful verification methods for a sparse linear system with the coefficient matrix
having such special properties as monotone (including M -matrix), H-matrix and
symmetric positive definite. Finally in Section 6, we conclude the paper. Besides,
some numerical results are presented suitably in each sections.

We express algorithms in Matlab-like style for readability. We want to stress
that the verified numerical computation for the dense linear system has been equal
to the practical task. Therefore, we try to present the practical use of fast and
efficient verified numerical computation as much as possible.

Fast Verified Solutions of Linear Systems 171

2. Notation and definitions

Let R denote the set of real numbers. For real matrices A = (aij), B = (bij) ∈
R

m×n, we denote by |A| = (|aij |) ∈ R
m×n a nonnegative matrix consisting of entry-

wise absolute values, and an inequality A ≤ B is understood entrywise, i.e., aij ≤ bij

for all (i, j). Moreover, the notation A ≥ O (or A > O) means that all elements
of A are nonnegative (positive). For real vectors, similar notation is applied. For
p ∈ {1, 2,∞} we denote p-norm of A by

‖A‖1 := max
1≤j≤n

m∑
i=1

|aij |, ‖A‖2 := σmax(A), ‖A‖∞ := max
1≤i≤m

n∑
j=1

|aij |,

where σmax(A) denotes the largest singular value of A. Then the condition number
of A is defined by

condp(A) := ‖A‖p‖A−1‖p for p ∈ {1, 2,∞}.

We denote the spectral radius of A by ρ(A).
Throughout this paper, e and o denote e := (1, . . . , 1)T and o := (0, . . . , 0)T

with length n, respectively, and I denotes the n × n identity matrix.
Let IR denote the set of interval real numbers. Interval quantities are written

in brackets. For example, we denote an interval matrix including A by [A] :=
[A,A] ∈ IR

n×n where A and A is a lower and an upper bound of A, respectively.

2.1. Special matrices
We collect here some definitions of matrices and lemmas:

Definition 2.1 (monotone). A matrix A ∈ R
n×n is called monotone if

Av ≥ o for v ∈ R
n implies v ≥ o.

Definition 2.2 (M -matrix). Let A = (aij) ∈ R
n×n with aii > 0 and aij ≤

0 for i �= j. Then A is called an M -matrix if A is nonsingular and A−1 ≥ O.

Definition 2.3 (H-matrix). A is called an H-matrix if M(A) is an M -
matrix.

Definition 2.4 (positive definite). A matrix A ∈ R
n×n is positive definite

if vTAv > 0 for all v �= o ∈ R
n.

From Definition 2.4, all eigenvalues of a symmetric positive definite matrix
are positive.

Lemma 2.5. A is monotone if and only if A is nonsingular with A−1 ≥ O.

Lemma 2.6. A is an H-matrix if and only if there exists a vector v > o such
that M(A)v > o.

Lemma 2.7. If A is an H-matrix, then |A−1| ≤ M(A)−1.

172 T. Ogita and S. Oishi

From Lemma 2.7, it follows that

‖A−1‖∞ ≤ ‖M(A)−1‖∞. (2.1)

These special matrices does not appear until Section 4.3.

2.2. Some properties of floating-point arithmetic
Let F be a set of floating-point numbers following IEEE standard 754. Let

u and u be the unit-roundoff and the underflow unit, respectively. Let uN be
the smallest positive normalized floating-point number in F. For example, u =
2−53, u = 2−1074 and uN = 2−1022 in IEEE 754 double precision arithmetic. F is
symmetric, i.e., x ∈ F =⇒ −x ∈ F, so that |x| is exact for x ∈ F. The following
four types of rounding mode are defined in IEEE standard 754: Let c ∈ R.
round-to-nearest, ties to even (default): Round c to the nearest floating-

point number f̃ ∈ F satisfying |f̃ − c| = minf∈F|f − c|. We represent it by
fl�(c) = f̃ .

round-downwards: Round c to the largest floating-point number f ∈ F satisfy-
ing f ≤ c. We represent it by fl�(c) = f .

round-upwards: Round c to the smallest floating-point number f ∈ F satisfying
f ≥ c. We represent it by fl�(c) = f .

round-towards-zero: Round c to one of the floating-point neighbors f̂ ∈ F

satisfying |f̂ | ≤ |c|. We represent it by fl♦(c) = f̂ .
The floating-point arithmetic following IEEE standard 754 is defined as follows:

Let x, y ∈ F. For ◦ ∈ {+,−, ∗, /} and © ∈ {�,�,,♦}

fl©(x ◦ y) := fl©(z) where z = x ◦ y ∈ R (2.2)

and

fl©(
√

x) := fl©(z) where z =
√

x ∈ R, (2.3)

which also hold in the presence of underflow. Therefore, (2.2) and (2.3) are
mathematically reliable statements.

Here we want to stress that we should carefully implement algorithms using
floating-point arithmetic, especially in case where the algorithm is sensitive to its
behavior, in terms of not only the programming code itself but also the compiler,
the compile options and the processors in use:

“So the mathematical specification of the algorithms for floating-point
arithmetic can be correct and never-failing, but the implementation
might not follow the specification. We assume in the following that the
implementation of floating-point arithmetic follows its specification and
therefore the IEEE 754 standard, and that the software and hardware
in use are operating correctly. Then, we may ask again whether it is
possible to validate results with the aid of digital computers.” (Siegfried
M. Rump [29])

Fast Verified Solutions of Linear Systems 173

In fact, we sometimes encounter a problem of the “optimization” overdone by
the compiler. For example, the statement (a + b) − a in C or Fortran code may be
simplified to just b by some compilers with some compile options for higher level
optimization. Of course, it does not necessarily hold that fl©((a+ b)− a) = b since
fl©(a + b) �= a + b in general. Moreover, a wider register, e.g., Intel’s floating-point
80-bit register, also affects this kind of computations which require the consistency
of IEEE 754 arithmetic, although such a wider register usually tends to improve the
result accuracy. Using some special compile options1 for obeying the consistency of
IEEE standard 754, we can normally avoid changing the intended code and using
the wider register, but it may significantly slow down the computational speed.

According to the Higham’s notation [10], a constant γn is defined by γn :=
nu

1−nu , which is very useful for rounding error analysis.

3. Vectorized interval arithmetic

In [31, 23, 25], Oishi and Rump proposed fast and verified numerical computa-
tions for vector and matrix operations, i.e., dot product, matrix-vector product and
matrix-matrix product with result verification, which can be regarded as vectorized
versions of interval arithmetic.

First, we present a classical interval approach adapted to dot product xTy

for x, y ∈ F
n:

Algorithm 3.1. A classical interval algorithm for an inclusion of dot prod-
uct xTy where x, y ∈ F

n.

function [s] = IncDot(x, y)
s = 0; s = 0;
for i = 1 : n

setround(−1);
s = fl�(s + xi ∗ yi); % lower bound of xTy

setround(+1);
s = fl�(s + xi ∗ yi); % upper bound of xTy

end for % [s] = [s, s]

Here the instructions setround(−1) and setround(+1) mean to adopt the
round-downward mode and the round-upward mode, respectively. We assume that
once the rounding mode is changed, it remains unchanged until the next instruction
setround appears. This assumption is ensured on a wide class of computer sys-
tems following IEEE standard 754. Algorithm 3.1 requires 2n flops (floating-point
operations) and 2n switches of the rounding modes. A switch of rounding mode
costs relatively large compared to a floating-point operation.

1For example, the options -fp-model source -pc64 are available for double precision arithmetic
strictly following IEEE standard 754 in Intel compilers.

174 T. Ogita and S. Oishi

On the other hand, Oishi and Rump promote the following vectorized inclusion
algorithm for dot product xTy:

Algorithm 3.2. A vectorized version of an inclusion of dot product xTy

where x, y ∈ F
n.

function [s] = FastIncDot(x, y)
setround(−1);
s = fl�(xTy); % lower bound of xTy

setround(+1);
s = fl�(xTy); % upper bound of xTy

Algorithm 3.2 requires 2n flops and only two switches of the rounding modes,
so that it is much more efficient than Algorithm 3.1. Note that the quality of
the inclusion by Algorithm 3.2 is almost the same as or even better than that
by Algorithm 3.1, because Algorithm 3.2 can benefit from an internal extended
precision register, e.g., 80 bits in IA-32 architecture, while Algorithm 3.1 cannot.

We can also extend this idea to a fast inclusion of matrix multiplication:

Algorithm 3.3. A vectorized version of an inclusion of matrix multiplica-
tion A · B where A ∈ F

m×p and B ∈ F
p×n.

function [C] = FastIncMM(A,B)
setround(−1);
C = fl�(A ∗ B); % lower bound of A · B
setround(+1);

C = fl�(A ∗ B); % upper bound of A · B

The main advantage of Algorithm 3.3 against a classical approach such as
Algorithm 3.1 is the availability of BLAS [6], especially an optimized BLAS for
the architecture in use, which aims to be as fast as possible in terms of measured
computing time. For matrix multiplication, using the Level-3 BLAS impacts on
computational speed very much, because such an optimized BLAS is designed to
achieve near-peak performance and to be efficiently parallelized for both shared and
distributed memory systems.

Remark 3.4. We have to be careful in the implementation of the black-box
type of optimized BLAS, because some of them may use a special method such as
Strassen’s fast matrix multiplication algorithm [39], they may change the internal
computational precision, or the switch of rounding mode may not work in them
correctly.

To see the difference of the computational speed between Algorithm 3.3 and
the classical interval approach, we present a numerical example: Let A,B ∈ F

n×n.
Table 3.1 displays results of computing time (sec) and MFlops for calculating an
approximation C̃ = fl(A · B) by DGEMM in BLAS, an inclusion [C] = [C,C] such

Fast Verified Solutions of Linear Systems 175

Table 3.1. Computing time (sec) and MFlops (inside parenthesis) for an approximation

(by BLAS DGEMM) and an inclusion (by Algorithm 3.3 and by Classical interval,

resp.) of matrix multiplication with Intel Core 2 Extreme X9650 (3.0 GHz,

quad-core), GNU Compiler Collection 4.12 (gcc and gfortran) and GotoBLAS
v1.25; peak performance: 48 GFlops = 48 · 103 MFlops.

n BLAS (DGEMM) Algorithm 3.3 Classical interval

500
1.32 · 10−2 2.66 · 10−2 7.71
(18.9 · 103) (18.8 · 103) (65)

1000
5.09 · 10−2 0.10 62.55
(39.3 · 103) (39.1 · 103) (64)

2000
0.37 0.75 495.2

(42.9 · 103) (42.7 · 103) (65)

5000
5.66 11.38 7892

(44.2 · 103) (43.9 · 103) (63)

10000
44.73 89.45 > half a day

(44.7 · 103) (44.7 · 103) (—)

that C ≤ A · B ≤ C by Algorithm 3.2, which also utilizes DGEMM, and that by a
classical interval approach similar to Algorithm 3.1, respectively. Here we use a PC
with Intel Core 2 Extreme (3.0 GHz, quad-core) and GNU Compiler Collection 4.12
(gcc and gfortran). In addition, we adopt GotoBLAS v1.25 [7, 8] as the optimized
BLAS with parallelization. Fortunately, GotoBLAS is now distributed as source
code (though written in inline assembler code), from which we can confirm that
there is no problem concerning Remark 3.4. Note that we implement a straight-
forward and serial code for the classical interval approach, which does not use any
parallelization, because it even slows down the computational speed compared to
the serial implementation, so that we decided to stop doing it.

From Table 3.1, we can observe that the performance of Algorithm 3.3 is very
high since it relies on that of the optimized BLAS. For larger n, it is unrealistic to
adopt the classical interval approach.

We stress that such an approach as Algorithms 3.2 and 3.3 is very suited for
Matlab implementation in terms of not only readability of the algorithm but also
its computational speed, because a classical interval approach like Algorithm 3.1
significantly suffers from interpretation overhead of Matlab.

4. Verification methods for dense linear systems

In this section, we will review some methods of calculating an error bound of
an approximate solution x̃ of a dense linear system Ax = b where A ∈ R

n×n and
b ∈ R

n. These methods are widely used in verified numerical computations.

176 T. Ogita and S. Oishi

4.1. Rump’ theorem
First, we present Rump’s approach [32, 34], which is one of the standard veri-

fication methods based on the Krawczyk operator [11, 13]:

K([x]) := x̃ + R(b − Ax̃) + (I − RA)[x],

where x̃ ∈ R
n denotes an approximate solution of Ax = b, R denotes an approx-

imate inverse of A, and [x] ∈ IR
n an interval n-vector supposed to be a potential

inclusion of the solution A−1b. If ‖I−RA‖ < 1 for some norm, then K([x]) ⊆ int[x]
implies A−1b ∈ [x], where int([x]) denote the interior of [x] (cf., e.g., [16]).

Theorem 4.1 (Rump [32, 34]). Let A ∈ R
n×n, R ∈ R

n×n, b ∈ R
n and x̃ ∈

R
n be given. Let [ε] ∈ IR

n be closed and bounded with [ε] �= ∅. Let int([ε]) denote
the interior of [ε]. If

[y] := R(b − Ax̃) + (I − RA)[ε] ⊆ int([ε]), (4.1)

then A and R are nonsingular and the unique solution x∗ = A−1b of Ax = b

satisfies x∗ ∈ x̃ + [y].

Rump proved that if ρ(|I − RA|) < 1 − δ for some δ > 0, then (4.1) holds for
some [ε]. Conversely, if (4.1) holds, then ρ(|I−RA|) < 1. In [32], Rump devised the
“epsilon-inflation” to obtain a valid [ε] together with an iteration scheme for (4.1):

Algorithm 4.2. Rump’s method of calculating a verified solution of a linear
system Ax = b with epsilon-inflation.

[G] = [I − RA]; % inclusion of I − RA

[z] = [R(b − Ax̃)]; % inclusion of R(b − Ax̃)

[y(0)] = [z];
repeat k = 1, 2, . . .

[ε(k)] = εinflation([y(k−1)], ε); % epsilon-inflation

[y(k)] = [z] + [G] · [ε(k)]; % corresponding to (4.1)

until [y(k)] ⊆ int([ε(k)])

If the iteration in this algorithm stops, then A is nonsingular and A−1b ∈
x̃ + [y(k)].

The epsilon-inflation is defined by

εinflation([y], ε) := [y] + [−ε, ε] · diam([y]) + [−uη, uη], (4.2)

where diam([y]) denotes the diameter of [y], ε ≥ 0 and uη > o. In [27], Rump noted
that the small absolute term [−uη, uη] is necessary for the correct behavior of the
epsilon-inflation. According to his experience, he suggested to set ε = 0 and

uη = 0.1 · |R(b − Ax̃)| + uN · e, (4.3)

Fast Verified Solutions of Linear Systems 177

which is obtained from the heuristics by replacing diam([y]) by diam([y0]) in (4.2),
and by setting ε = 0.1 and uη = uN · e. In this case, the inflation part consists of
nothing but the absolute term.

A verification method based on the above-mentioned approach is implemented
as part of the function verifylss in INTLAB [31], a fast and efficient interval
toolbox for Matlab. For more details of the iteration scheme and the epsilon-
inflation for (4.1), see [32, 34, 27].

Thus if interval operations are used in the above iteration scheme and
ρ(|I−RA|) < 1−δ for some δ > 0 involving the effect of rounding errors, then it will
eventually converge for some k. This method has been implemented in INTLAB
as the first stage of verifylss for dense linear (interval) systems.

We present the following numerical example using Matlab with INTLAB’s
verifylss on our laptop PC, which is not intended to show the efficiency of the
algorithm but the fact that the verified numerical solution can easily be obtained
in this case:
>> n=1000; A=randn(n); b=A*ones(n,1);

>> tic; x=verifylss(A,b); toc, max_rel_err=max(abs(x.rad./x.mid))

Elapsed time is 2.699914 seconds.

max_rel_err =

6.6613e-16

From this result, we can know
• A is nonsingular,
• it rigorously holds that x.mid− x.rad ≤ A−1b ≤ x.mid + x.rad, and
• each component of the numerical solution x.mid has at least 15 correct

decimal digits.
Thus in this case, the verified numerical computation clearly answered the first
question of the paper.

4.2. Yamamoto’s theorem
An alternative approach was proposed by Yamamoto [41]. We present in the

following a linearized version of Yamamoto’s theorem.

Theorem 4.3 (Yamamoto [41]). Let A ∈ R
n×n, R ∈ R

n×n, b ∈ R
n and x̃ ∈

R
n be given. If ‖I − RA‖p < 1 for any p ∈ {1, 2,∞}, then A is nonsingular and

|A−1b − x̃| ≤ |R(b − Ax̃)| + ‖R(b − Ax̃)‖p

1 − ‖I − RA‖p
|I − RA|e. (4.4)

An advantage of applying this theorem is that it does not need the interval
iteration process required for (4.1). In other words, if Algorithm 4.2 is executed in
infinite precision as k → ∞, a similar estimate can be formulated from Theorem 4.1.

To apply Theorem 4.3, it is necessary to prove ‖I − RA‖p < 1 for some p. In
practice, we aim to compute an upper bound α of ‖I − RA‖∞ and check α < 1
to prove whether A is nonsingular, which requires the main computational effort
in the verification process. On the other hand, we see from (4.4) that any value

178 T. Ogita and S. Oishi

α less than 1/2, say, is sufficient for a reasonable error estimation. So not too
much effort must be spent on estimating α. For this purpose, several verification
methods have been proposed. For example, the following algorithm tries to prove
the nonsingularity of A.

Algorithm 4.4 (cf. Oishi–Rump [25]). Rigorous test for the nonsingularity
of A ∈ F

n×n. If res = 1, A is proved to be nonsingular. Otherwise, the algorithm
cannot prove it.

function res = IsNonsingular(A)
R = inv(A); % approximate inverse of A

setround(−1);
C = fl�(R ∗ A − I); % lower bound of RA − I

setround(+1);

C = fl�(R ∗ A − I); % upper bound of RA − I

C = max(|C|, |C|); % upper bound of |I − RA|
α = fl�(‖C‖∞); % upper bound of ‖I − RA‖∞
if α < 1, res = 1; else res = 0; end

Note that it is not valid to compute C = fl�(I − R ∗ A) instead, because C
does not necessarily become a lower bound of I − RA, i.e., C = fl�(I − (lower
bound of RA)). Let us assume that LU factors of A have been computed by
Gaussian elimination with partial pivoting as usual, which requires 2

3n3 flops.
Then Algorithm 4.4 requires 16

3 n3 flops (4
3n3 flops for calculating an approxi-

mate inverse R using the LU factors and 4n3 flops for calculating the upper bound
of |I − RA|).

In case of A being a general full matrix, the fastest known method of calculating
an upper bound of ‖I−RA‖∞ was proposed by Oishi and Rump [25]. The fastness
of Oishi–Rump method relies on a priori error bounds by backward error analysis
for the LU factorization of A and for solving triangular matrix equations: Assume
that computed LU factors L, U and P such that PA ≈ LU are obtained by a
standard numerical algorithm. Then the following estimate holds [10]:

|PA − LU | ≤ γn|L| |U | (4.5)

Moreover, for a given (lower or upper) triangular matrix T ∈ F
n×n, assume that

a triangular matrix equation XT = I is solved by standard (floating-point) for-
ward/backward substitution and then an approximate solution XT ∈ F

n×n is
obtained. Then the following estimate also holds [10]:

|I − XT T | ≤ γn|XT | |T | (4.6)

Fast Verified Solutions of Linear Systems 179

Let XL and XU be approximate inverses of L and U , respectively. To compute
each of them requires 1

3n3 flops. Set R := XUXLP . Using (4.5) and (4.6) yields

|I − RA| = |I − XUXLPA| = |I − XUXL(PA − LU + LU)|
≤ |I − XUXLLU | + |XUXL(PA − LU)|
≤ |I − XU (I − I + XLL)U | + |XU | |XL| |PA − LU |
≤ |I − XUU | + |XU (I − XLL)U | + |XU | |XL| |PA − LU |
≤ γn|XU | |U | + 2γn|XU | |XL| |L| |U |.

Hence we have

‖I − RA‖∞ ≤ γn

(
2
∥∥|XU | |XL| |L| |U |∥∥∞ +

∥∥|XU | |U |∥∥∞
)

= γn

(
2
∥∥|XU |(|XL|(|L|(|U |e)))

∥∥
∞ +

∥∥|XU |(|U |e)
∥∥
∞

)
.

In [25], the presence of underflow is also taken into account and

‖I − RA‖∞ ≤ γn

(
2
∥∥|XU |(|XL|(|L|(|U |e)))

∥∥
∞ +

∥∥|XU |(|U |e)
∥∥
∞

)
+ c1u, (4.7)

where c1 is some computable factor. To compute (an upper bound of) the right-
hand side of (4.7) requires only O(n2) flops. Thus Oishi–Rump method requires 2

3n3

flops in total, the same computational effort for calculating an approximate solution
by Gaussian elimination with partial pivoting. Namely, Oishi–Rump method is
8 times faster than Algorithm 4.4.

Another possibility is the following approach by the authors [18]:

|I − RA| = |I − XUXLPA| = |I − XUU − XU (XLPA − U)|
≤ |I − XUU | + |XU | |XLPA − U |
≤ γn|XU | |U | + |XU | |XLPA − U |
= |XU |(|XLPA − U | + γn|U |)

Involving the presence of underflow yields

‖I − RA‖∞ ≤ ∥∥|XU |((|XLPA − U | + γn|U |)e)
∥∥
∞ + c2u, (4.8)

where c2 is also some computable factor. This approach requires 8
3n3 flops after

obtaining the LU factors.
On the other hand, the fastness of the verification method produces a side

effect on its robustness, i.e., there is a trade-off between the fastness and the robust-
ness. To see it, we present numerical examples using randsvd from Higham’s test
matrices [10] on Matlab:
RANDSVD Random matrix with pre-assigned singular values.

A = GALLERY(’RANDSVD’, N, KAPPA, MODE, KL, KU) is a banded random

matrix of order N with COND(A) = KAPPA and singular values from the

distribution MODE. If N is a two-element vector, A is N(1)-by-N(2).

180 T. Ogita and S. Oishi

MODE may be one of the following values:

1: one large singular value,

2: one small singular value,

3: geometrically distributed singular values,

4: arithmetically distributed singular values,

5: random singular values with uniformly distributed logarithm.

We compare the quality of the upper bound α of ‖I − RA‖∞ by Algorithm 4.4,
Oishi–Rump method [25] based on (4.7) and Ogita–Oishi method [18] based on
(4.8). We vary N = 8, 16, . . . , 1024 with setting KAPPA = 106 ≈ cond2(A) for MODE =
1, 2, . . . , 5. The parameters KL and KU are omitted, so that A is generated as a
full matrix. The results are displayed in Fig. 4.1. Here we do not display the case
MODE = 4 since the result for MODE = 4 is quite similar to that for MODE = 2.

Fig. 4.1. Estimates for ‖I − RA‖∞ by several verification methods for Higham’s test
matrix randsvd with cond2(A) = 106 and MODE = 1, 2, 3, 5.

From Fig. 4.1, we can empirically observe that the applicable range of each
verification method is limited to

cond2(A) � O(n−k)u−1 < u−1 (4.9)

according to the following table:

Fast Verified Solutions of Linear Systems 181

Verification method (Empirical) k in (4.9) Flops

Oishi–Rump method [25] based on (4.7) 3 ≤ k ≤ 4 2
3n3

Ogita–Oishi method [18] based on (4.8) 1 ≤ k ≤ 2 8
3n3

Algorithm 4.4 1 16
3 n3

Note that we can seamlessly switch the verification method from Oishi–Rump
method to Ogita–Oishi method even if the former failed in verification, so that
we can easily combine both of the methods. We now call it Oishi–Rump–Ogita
method.

The above-mentioned verification methods can be used together with Theo-
rem 4.3. To compare the performance of the verification methods for linear systems
based on Algorithm 4.4 and Oishi–Rump–Ogita method, we present numerical ex-
amples2 using the same architecture as before and Matlab 2007b. Let A ∈ F

n×n

be generated by a Matlab’s built-in function randn as a matrix containing pseudo-
random values drawn from a normal distribution with mean zero and standard
deviation one. Let b := fl�(A · e). We vary n from 2,000 to 10,000. In each case,
we observe cond2(A) ≈ 104. To compute a numerical solution x̃ of a linear system
Ax = b, we use a standard numerical algorithm via an LU factorization of A.

In Table 4.1, we display the computing time for calculating x̃ (labeled “Ap-
prox.”) and its verification based on Oishi–Rump–Ogita method and Algorithm 4.4,
respectively. The ratio of computing time for “Approx.” to each verification method
is also shown inside parenthesis by “Approx.” being normed to one. Here the
column labeled “Oishi–Rump–Ogita (MEX)” displays the results by the same al-
gorithm as “Oishi–Rump–Ogita,” which uses our compiled MEX-functions for ex-
ecuting triangular matrix multiplication (n3 flops) and triangular matrix inversion
(n3/3 flops) based on BLAS and LAPACK routines. The reason why we use such
MEX-functions is that they have still not been implemented as the built-in functions
on the latest Matlab 2008a, unfortunately.3 Without using the MEX-functions as
in labeled “Oishi–Rump–Ogita,” they have to be executed as full matrix multiplica-
tion (2n3 flops) and triangular matrix equation (n3 flops), respectively; of course, it
is not optimal. We can confirm the efficiency of the MEX-functions from Table 4.1.
In the numerical examples, n = 8000 is the switch point from Oishi–Rump method
to Ogita–Oishi method, so that the ratio of the computing time suddenly increases
from this point.

In Table 4.2, we also display an upper bound of the maximum relative error
max1≤i≤n|x∗

i − x̃i|/|x∗
i | for x∗ := A−1b by Yamamoto’s theorem applying each

verification method. Here we do not use any higher precision arithmetic nor the
iterative refinement of the numerical solution. Nevertheless, we can obtain the nu-
merical solutions with their error bounds after verifying the nonsingularity of A.
Although the obtained error bounds are a little pessimistic compared to the exact

2Thanks to Dr. Katsuhisa Ozaki for helping with the numerical experiments.
3It seems to be not so difficult to incorporate them into Matlab since the built-in optimized

BLAS and LAPACK library (Intel Math Kernel Library) used in Matlab has already included
them, so the authors desire them to be available for keeping the portability of the Matlab-code.

182 T. Ogita and S. Oishi

Table 4.1. Computing time (sec) for calculating numerical solutions (labeled “Approx.”)

and their verifications with Intel Core 2 Extreme X9650 (3.0 GHz, quad-core)

and Matlab 2007b.

n Approx. Oishi–Rump–Ogita Oishi–Rump–Ogita (MEX) Algorithm 4.4
2,000 0.38 0.99 (2.6) 0.62 (1.6) 1.72 (4.5)
4,000 2.17 5.27 (2.4) 3.57 (1.6) 11.3 (5.2)
6,000 6.17 15.1 (2.4) 10.6 (1.7) 35.5 (5.8)
8,000 13.3 83.4 (6.3) 58.9 (4.4) 76.9 (5.8)

10,000 24.1 158 (6.6) 109 (4.5) 157 (6.5)

Table 4.2. Error bounds of numerical solutions of linear systems with random matrices.

n Oishi–Rump–Ogita Algorithm 4.4
2,000 2.26 · 10−8 7.55 · 10−10

4,000 1.69 · 10−7 4.79 · 10−9

6,000 1.15 · 10−6 6.22 · 10−9

8,000 1.13 · 10−6 8.52 · 10−9

10,000 2.08 · 10−6 2.49 · 10−8

error, we can improve such an overestimation with not so much computational
effort. For more details of the tight estimation, see [19, 21].

4.3. Other methods
To compute a lower bound σ of the smallest singular value σmin(A) of A is also

useful for the verified solution of Ax = b, e.g.,

‖A−1b − x̃‖∞ ≤ ‖A−1b − x̃‖2 ≤ ‖A−1‖2‖b − Ax̃‖2 =
‖b − Ax̃‖2

σmin(A)

≤ ‖b − Ax̃‖2

σ
.

However, this approach frequently overestimates the error ‖A−1b − x̃‖∞ because
separating the norm causes the worst case estimation and the quality of σ directly
influences that of the error estimation. To reduce the overestimation, we store the
approximate solution in two parts x̃ and ỹ. This approach was used in Rump’s
Ph.D. thesis [32] and later called “staggered correction.” Then

|A−1b − x̃| = |A−1b − (x̃ + ỹ − ỹ)| ≤ |ỹ| + |A−1b − (x̃ + ỹ)|
≤ |ỹ| + ‖A−1b − (x̃ + ỹ)‖∞e.

Hence

|A−1b − x̃| ≤ |ỹ| + ‖A−1‖p‖b − A(x̃ + ỹ)‖pe for p ∈ {1, 2,∞}.

From this, we obtain the following theorem.

Fast Verified Solutions of Linear Systems 183

Theorem 4.5 (Ogita–Oishi–Ushiro [21]). Let A ∈ R
n×n, b ∈ R

n, x̃ ∈ R
n

and ỹ ∈ R
n be given. Suppose ‖A−1‖p ≤ τ for any p ∈ {1, 2,∞}. Then

|A−1b − x̃| ≤ |ỹ| + τ‖b − A(x̃ + ỹ)‖pe. (4.10)

Usually, we take ỹ as an approximate solution of a linear system Ay = r where
r := b − Ax̃. We see from (4.10) that the term ‖b − A(x̃ + ỹ)‖p can arbitrarily be
decreased if ỹ approaches to the exact error of x̃. Note that the technique makes
only sense when a more accurate dot product is available, which is necessary to
compute accurate residuals b−Ax̃ and b−A(x̃+ ỹ). For further details of fast and
efficient algorithms for accurate dot product, see [22, 37, 38].

The Hansen–Bliek–Rohn–Ning–Kearfott enclosure [14] for linear interval equa-
tions whose coefficient matrix is an H-matrix can also be used. For A = (aij) ∈
R

n×n, we define the comparison matrix M(A) = (âij) of A as

âij =

{
|aij | (i = j),

−|aij | (i �= j).

A simplified version of the Ning–Kearfott theorem [17] for non-interval inputs A

and b is as follows:

Theorem 4.6 (Ning–Kearfott [17]). Let an H-matrix A ∈ R
n×n and b ∈

R
n be given. Let y, z ∈ R

n be defined by

y := M(A)−1|b| and zi := [M(A)−1]ii.

Let p, q ∈ R
n be defined by

pi := [M(A)]ii − zi and qi := yi/zi − |bi|.

Then A−1b ∈ [x] where

[xi] :=
bi + [−qi, qi]

Aii + [−pi, pi]
.

To apply this theorem, it must be known in advance that A is an H-matrix.
For example, by preconditioning A as RA where R is some preconditioner (usually
an approximate inverse of A), RA is expected to be an H-matrix. Then we try to
find a vector v > o which satisfies RAv > o. If such a vector v is found, then a
linear system RAx = Rb is considered. This method has also been implemented
in INTLAB as the second stage of verifylss for dense linear (interval) systems.
In the INTLAB-code verifylss.m, it is mentioned that the results of Hansen–
Bliek–Rohn–Ning–Kearfott enclosure may be of better quality (than that of Rump’s
approach in Section 4.1) for extremely ill-conditioned linear systems; normally the
quality is similar.

184 T. Ogita and S. Oishi

If cond2(A) ≥ u−1, then all the verification methods mentioned in this section
cannot verify the nonsingularity of A. In such case, one may simply increase the
working precision, e.g., quadruple precision. Another possibility is to apply Rump’s
method [32, 24] for inverting arbitrarily ill-conditioned matrices, and again we need
a more accurate dot product; In the Rump’s method, the computational precision
of dot product is adaptively increased with iteratively updating an approximate
inverse R until R satisfying ‖I − RA‖∞ < 1.

5. Verification methods for sparse linear systems

Fast verification for large sparse linear systems is still difficult in terms of both
computational complexity and memory requirements except a few cases where it is
known in advance or to be proved that the coefficient matrix A belongs to a certain
special matrix class, e.g., diagonally dominant and M -matrix. The difficulty is
mainly due to the destruction of the sparsity of A which is caused in the verification
process. Let nnz(X) denote the number of nonzero elements in a matrix X. Usually,
nnz(A) = O(n), e.g., when using finite difference or finite element method. If we
compute A−1 explicitly, then nnz(A−1) = n2 in general, the explosion of nonzero
elements due to fill-in (see Fig. 5.1). Therefore, we do not want to calculate A−1

nor its approximate full matrix R. Thus the verification for sparse systems of linear
(interval) equations becomes one of the open problems posed in Grand Challenges
and Scientific Standards in Interval Analysis [15] by Neumaier.

Fig. 5.1. Destruction of the sparsity.

For diagonally dominant matrices, we do not need to compute a full matrix R:
Suppose A is strictly (row) diagonally dominant. Let D := diag(a11, . . . , ann) and
Ã := A − D. If setting R := D−1 = diag(a−1

11 , . . . , a−1
nn), then we have

‖I − RA‖∞ = ‖I − D−1A‖∞ = ‖D−1Ã‖∞ < 1,

since
∑

j 	=i|aij | < |aii| for all i.

Fast Verified Solutions of Linear Systems 185

In this section, we restrict ourselves to the following cases:
• A is monotone (including an M -matrix).
• A is an H-matrix (or equivalently a generalized strictly diagonally dominant

matrix).
• A is symmetric positive definite.

The main point is to develop a fast verification method which is suited for
treating a sparse matrix A. For example, we may use an iterative solution method
in the verification process. In any case, after bounding ‖A−1‖p, we can apply
Theorem 4.5.

5.1. Verification methods for inverse nonnegative matrices
The class of inverse nonnegative matrices (A−1 ≥ O) has wide applications

in engineering and scientific computations [3]. We can exploit the inverse non-
negativity for verified solutions of sparse linear systems.

We first present a theorem for calculating an upper bound of ‖A−1‖∞ in case
of A being monotone.

Theorem 5.1 (Ogita–Oishi–Ushiro [20]). Let A ∈ R
n×n be monotone. For

given ỹ ∈ R
n, define a residual vector s by s := e − Aỹ. If ‖s‖∞ < 1, then

‖A−1‖∞ ≤ ‖ỹ‖∞
1 − ‖s‖∞ . (5.1)

Usually, we set ỹ as an approximate solution of a linear system Ay = e.
If A is an H-matrix, then we can extend Theorem 5.1 to the following corollary

from (2.1) and Theorem 5.1:

Corollary 5.2. Let A ∈ R
n×n be an H-matrix. For given z̃ ∈ R

n, define
a residual vector t by t := e −M(A)z̃. If ‖t‖∞ < 1, then

‖A−1‖∞ ≤ ‖z̃‖∞
1 − ‖t‖∞ . (5.2)

Clearly, these approaches can also be extended when the signs of the entries
of A−1 are known, e.g., for totally positive matrices and others. Of course, if A

is an H-matrix, then we can also apply the Hansen–Bliek–Rohn–Ning–Kearfott
enclosure [14] introduced in Section 4.3.

So far we assume that A has monotone or H-matrix property. However, some-
times we do not have any information on the property of A. That means it is
necessary to prove whether A has such property or not. For the purpose, several
criteria (e.g., [9]) have been proposed. Using such methods, we can obtain a vec-
tor v > o which is expected to satisfy M(A)v > o. Using the verified numerical
computation, it is easy to check whether it is true (see [14] and the INTLAB-code
verifylss.m).

In the above cases, the only we need is a solver for a linear system Ay = e (or
M(A) = e), which means we can apply the same solver for Ax = b. Therefore, we
can keep the sparsity of A if an iterative solution method is used for solving Ay = e

186 T. Ogita and S. Oishi

(or M(A) = e). Usually, we set a stopping criterion for the iterative solution
method like ‖b − Ax̃‖2/‖b‖2 < tolx for some tolerance tolx. On the other hand,
‖s‖∞ in Theorem 5.1 (or ‖t‖∞ in Corollary 5.2) should be less than one but could
be considerably larger than tolx; for example, ‖s‖∞ < toly with toly = 0.1 while
tolx = 10−9. Thus it can be expected that computing an error bound of x̃ is fairly
faster than computing x̃ when choosing tolx such that tolx � toly.

We present the following numerical result with block tridiagonal M -matrix
from Poisson’s equation using Matlab. To solve the linear systems, we adopt the
function pcg, which is ICCG (Incomplete Cholesky Conjugate Gradient) method,
as an iterative solution method.
>> m=300; A=gallery(’poisson’,m); b=A*ones(m^2,1);

>> tol=1e-9; maxit=1000;

>> tic, M=cholinc(A,’0’); x=pcg(A,b,tol,maxit,M’,M); toc

pcg converged at iteration 228 to a solution with

relative residual 9.7e-10

Elapsed time is 121.035008 seconds.

>> tic; xerr = verifymonotonelss(A,b,x,M), toc

pcg converged at iteration 116 to a solution with

relative residual 0.00033

xerr =

7.6815e-06

Elapsed time is 10.111394 seconds.
Then it rigorously holds that x− xerr ≤ A−1b ≤ x + xerr. This result is only for
the reference, but the fastness of the verification method can be seen.

5.2. Verification methods for symmetric positive definite matrix
Some fast verification methods for symmetric positive definite linear systems

have been proposed, e.g., [33, 36]. To prove the positive definiteness of a symmetric
matrix A is related to this topic [35]. Even if we have an information that A is
positive definite, we need to compute a lower bound λ of the smallest eigenvalue
λmin(A) of A. For a symmetric positive definite A, σmin(A) = λmin(A), so that
‖A−1‖2 ≤ 1/λ.

Let B = (bij) ∈ R
n×n with B = BT be given. The following algorithm executes

a Cholesky factorization of B such that B = RTR where R = (rij) is an upper
triangular matrix.

Algorithm 5.3. Cholesky factorization.

for j = 1 : n

for i = 1 : j − 1

rij =
(
bij −

∑i−1
k=1 rkirkj

)
/rii

end for

rjj =
(
bjj −

∑j−1
k=1 r2

kj

)1/2

end for

Fast Verified Solutions of Linear Systems 187

If B is positive definite, then Algorithm 5.3 runs to completion,4 and vice
versa. Every known verification method for symmetric positive definite linear sys-
tems relies on the floating-point Cholesky factorization for some B. Although the
verification process causes fill-in, such a verification method can be applied for
moderately large sparse matrices when utilizing the band or sparse property of B;
At least, computing an approximate (full) inverse of B is not necessary.

First, we present a fast verification method proposed in [33]: We set an esti-
mated lower bound λ̃ of the smallest eigenvalue λmin(A) of A, which is, for example,
computed by some inverse iterations using the Cholesky factor of A. Then we ex-
ecute a floating-point Cholesky factorization of B := A − λ̃I. If the factorization
ends prematurely with an imaginary square root, then the positive definiteness of
A cannot be proved. In such a case, one may change λ̃ and try the floating-point
Cholesky factorization again. Suppose it runs to completion and denote the com-
puted Cholesky factor by an upper triangular matrix R̃ such that B ≈ R̃TR̃. Let
E := B − R̃TR̃. Then using well-known Weyl’s theorem, we have

|λmin(B) − λmin(R̃TR̃)| ≤ ‖E‖2.

Here we find

0 ≤ λmin(R̃TR̃)

≤ λmin(B) + ‖E‖2 = λmin(A − λ̃I) + ‖E‖2 = λmin(A) − λ̃ + ‖E‖2.

Hence

σmin(A) = λmin(A) ≥ λ̃ − ‖E‖2 =: β.

If β > 0, then A is proved to be positive definite. To compute ‖E‖2 or its upper
bound, we can use a backward error analysis for Cholesky factorization [40, 33, 34]
or explicitly compute (an inclusion of) B − R̃TR̃. Of course, the latter needs much
more amount of memory but the estimation becomes more sharp.

If an approximate solution of Ax = b is computed via (sparse) Cholesky fac-
torization, then the above-mentioned verification process needs the same amount of
memory as the approximation process. Moreover, the result of symbolic (Cholesky)
factorization of A for finding all fill-in can be reused to save some computational
effort since the sparse pattern of B = A − λ̃I is the same as that of A.

Recently, a super-fast verification method for symmetric positive definite linear
systems was proposed in [36]. Here “super-fast” means the computational effort for
the verification is almost negligible compared to that for calculataing an approxi-
mate solution of Ax = b. The method relies on the following theorem due to Rump
(cf. [35, 36]), which is an improved version of a theorem by Demmel [5].

4It means no imaginary square root appears in the factorization process.

188 T. Ogita and S. Oishi

Theorem 5.4. Suppose Algorithm 5.3 is applied to a symmetric matrix B =
(bij) with bjj ≥ 0, and set ϕk := γk(1−γk)−1. Then for execution in finite precision
and barring overflow and underflow the following is true:
i) If λmin(B) ≥ ∑n

j=1 ϕj+1bjj, then Algorithm 5.3 runs to completion.
ii) If λmin(B) < −∑n

j=1 ϕj+1bjj, then Algorithm 5.3 ends prematurely with an
imaginary square root.

By the contraposition of ii) in Theorem 5.4, if Algorithm 5.3 runs to comple-
tion, then

λmin(B) ≥ −
n∑

j=1

ϕj+1bjj . (5.3)

Suppose β1 ≥ ∑n
j=1 ϕj+1ajj , and set B := A − β2I for some5 β2 > β1. If the

floating-point Cholesky factorization of B ends prematurely, then the positive def-
initeness of A cannot be proved. Suppose it runs to completion. Even then it does
not necessarily imply B to be positive definite because the factorization process
suffers rounding errors. Nevertheless, it holds from (5.3) that

λmin(A) − β2 = λmin(A − β2I) = λmin(B)

≥ −
n∑

j=1

ϕj+1bjj = −
n∑

j=1

ϕj+1(ajj − β2)

≥ −
n∑

j=1

ϕj+1ajj ≥ −β1

and

λmin(A) ≥ β2 − β1 > 0,

which implies A to be positive definite. Moreover, x̃ can be computed by forward
and backward substitution using R̃, the computed Cholesky factor of B. If A is
ill-conditioned, then we need some iterative refinement [36]: For k = 0, 1, 2, . . . ,

x̃(k+1) := x̃(k) + B−1(b − Ax̃(k)) (5.4)

with x̃(0) := x̃. In practical application, multiplication of B−1 is replaced by
forward and backward substitution using R̃. It is shown in [36] that if c :=
β2‖A−1‖2 < 1, then

‖A−1b − x̃(k+1)‖2 � c

1 − c
‖A−1b − x̃(k)‖2 �

(
c

1 − c

)k+1

‖A−1b − x̃‖2.

So the residual iteration (5.4) with perturbed iteration matrix B = A−β2I instead
of A behaves similar to the usual residual iteration provided β2‖A−1‖∞ < 1, which
means β2 < σmin(A).

5For example, β2 = 2β1 in [36].

Fast Verified Solutions of Linear Systems 189

6. Conclusions

We surveyed the fast verification methods for dense and sparse linear systems.
We do not have enough space to mention the details of rounding error analysis
in floating-point arithmetic, interval arithmetic, concrete algorithms for obtaining
verified solutions of linear systems, the efficient use of the iterative refinement with
result verification, nor the extension to the case where A and b are real/interval
quantities. We have to refer the interested reader to [1, 10, 12, 16, 25, 34] and the
literature cited there. Moreover, we could not talk about applications. For example,
an efficient verification method for saddle point problems has been proposed in [4],
in which the fast verification methods presented in this paper are used.

Nevertheless, we hope the reader has now believed that the verified numerical
computation can actually answer the first question “How reliable is the numerical
solution?” for a certain class of mathematical problems.

References

[1] G. Alefeld and J. Herzberger, Introduction to Interval Computations. Academic Press, New
York, 1983.

[2] ANSI/IEEE, IEEE Standard for Binary Floating Point Arithmetic, Std 754-1985 edition.
IEEE, New York, 1985.

[3] A. Berman and R.J. Plemmons, Nonnegative Matrices in the Mathematical Sciences. Clas-
sics Appl. Math., 9, SIAM, Philadelphia, 1994.

[4] X. Chen and K. Hashimoto, Numerical validation of solutions of saddle point matrix equa-
tions. Numerical Linear Algebra with Applications, 10 (2003), 661–672.

[5] J.B. Demmel, On floating point errors in Cholesky. LAPACK Working Note 14 CS-89-87,
Department of Computer Science, University of Tennessee, Knoxville, TN, USA, 1989.

[6] J. Dongarra, Basic linear algebra subprograms technical forum standard. International
Journal of High Performance Applications and Supercomputing, 16 (2002), 1–111.

[7] K. Goto and R.A. van de Geijn, Anatomy of high-performance matrix multiplication. ACM
Trans. Math. Softw., 34 (2008), 12:1–12:25.

[8] K. Goto and R.A. van de Geijn, High performance implementation of the Level-3 BLAS.
ACM Trans. Math. Softw., 35 (2008), 4:1–4:14.

[9] A. Hadjidimos, An extended compact profile iterative method criterion for sparse H-matrix.
Linear Alg. Appl., 389 (2004), 329–345.

[10] N.J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd edition. SIAM, Philadel-
phia, PA, 2002.

[11] R. Krawczyk, Newton-Algorithmen zur Bestimmung von Nullstellen mit Fehlerschranken.
Computing, 4 (1969), 187–201.

[12] G. Mayer, On regular and singular interval systems. J. Comp. Appl. Math., 199 (2007),
220–228.

[13] R.E. Moore, A test for existence of solutions for non-linear systems. SIAM J. Numer. Anal.,
4 (1977), 611–615.

[14] A. Neumaier, A simple derivation of the Hansen–Bliek–Rohn–Ning–Kearfott enclosure for
linear interval equations. Reliable Computing, 5 (1999), 131–136; Erratum. Reliable Com-
puting, 6 (2000), 227.

[15] A. Neumaier, Grand challenges and scientific standards in interval analysis. Reliable Com-

puting, 8 (2002), 313–320.
[16] A. Neumaier, Interval Methods for Systems of Equations. Encyclopedia of Mathematics and

its Applications, Cambridge University Press, 1990.
[17] S. Ning and R.B. Kearfott, A comparison of some methods for solving linear interval equa-

tions. SIAM J. Numer. Anal., 34 (1997), 1289–1305.

190 T. Ogita and S. Oishi

[18] T. Ogita and S. Oishi, Fast verification method for large-scale linear systems. Trans. IPSJ,
46 (2005), 10–18 (in Japanese).

[19] T. Ogita and S. Oishi, Tight enclosures of solutions of linear systems. International Series
of Numerical Mathematics, 157 (2009), 167–178 (Inequalities and Applications, C. Bandle,

A. Gilányi, L. Losonczi, Z. Páles and M. Plum eds., Birkhäuser Verlag).
[20] T. Ogita, S. Oishi and Y. Ushiro, Fast verification of solutions for sparse monotone matrix

equations. Computing Suppl., 15 (2001), 175–187.
[21] T. Ogita, S. Oishi and Y. Ushiro, Computation of sharp rigorous componentwise error

bounds for the approximate solutions of systems of linear equations. Reliable Computing, 9
(2003), 229–239.

[22] T. Ogita, S.M. Rump and S. Oishi, Accurate sum and dot product. SIAM J. Sci. Comput.,
26 (2005), 1955–1988.

[23] S. Oishi, Fast enclosure of matrix eigenvalues and singular values via rounding mode con-
trolled computation. Linear Alg. Appl., 324 (2001), 133–146.

[24] S. Oishi, K. Tanabe, T. Ogita and S.M. Rump, Convergence of Rump’s method for inverting
arbitrarily ill-conditioned matrices. J. Comp. Appl. Math., 205 (2007), 533–544.

[25] S. Oishi and S.M. Rump, Fast verification of solutions of matrix equations. Numer. Math.,
90 (2002), 755–773.

[26] J. Rohn, A Handbook of Results on Interval Linear Problems. Internet text available at
http://www.cs.cas.cz/rohn/handbook/

[27] S.M. Rump, A note on epsilon-inflation. Reliable Computing, 4 (1998), 371–375.
[28] S.M. Rump, Approximate inverses of almost singular matrices still contain useful informa-

tion. Forschungsschwerpunktes Informations- und Kommunikationstechnik, Technical Re-
port 90.1, Hamburg University of Technology, 1990.

[29] S.M. Rump, Computer-Assisted Proofs and Self-Validating Methods. Accuracy and Relia-
bility in Scientific Computing (Chapter 10), SIAM, Philadelphia, PA, 2005.

[30] S.M. Rump, Fast and parallel interval arithmetic. BIT, 39 (1999), 534–554.
[31] S.M. Rump, INTLAB—INTerval LABoratory. Developments in Reliable Computing,

T. Csendes ed., Kluwer Academic Publishers, Dordrecht, 1999, 77–104,
http://www.ti3.tu-harburg.de/rump/intlab/.

[32] S.M. Rump, Kleine Fehlerschranken bei Matrixproblemen. Universität Karlsruhe, Ph.D.
thesis, 1980.

[33] S.M. Rump, Validated solution of large linear systems. Computing Suppl., 9 (1993), 191–212.
[34] S.M. Rump, Verification methods for dense and sparse systems of equations. Topics in Val-

idated Computations—Studies in Computational Mathematics, J. Herzberger ed., Elsevier,
Amsterdam, 1994, 63–136.

[35] S.M. Rump, Verification of positive definiteness. BIT Numerical Mathematics, 46 (2006),
433–452.

[36] S.M. Rump and T. Ogita, Super-fast validated solution of linear systems. J. Comp. Appl.
Math., 199 (2007), 199–206.

[37] S.M. Rump, T. Ogita and S. Oishi, Accurate floating-point summation, Part I: Faithful
rounding. SIAM J. Sci. Comput., 31 (2008), 189–224.

[38] S.M. Rump, T. Ogita and S. Oishi, Accurate floating-point summation, Part II: Sign, K-fold
faithful and rounding to nearest. SIAM J. Sci. Comput., 31 (2008), 1269–1302.

[39] V. Strassen, Gaussian elimination is not optimal. Numer. Math., 13 (1969), 354–356.

[40] J.-G. Sun, Rounding-error and perturbation bounds for the Cholesky and LDLT factoriza-
tions. Linear Alg. Appl., 173 (1992), 77–97.

[41] T. Yamamoto, Error bounds for approximate solutions of systems of equations. Japan J.
Appl. Math., 1 (1984), 157–171.

