
Japan J. Indust. Appl. Math., 26 (2009), 145–167 Area 〈2〉

Application of the Krawczyk–Moore–Jones Algorithm

to Electric Circuit Analysis and Its Further Development

Kohshi Okumura

Faculty of Applied Information Science
Hiroshima Institute of Technology, Hiroshima, Japan
E-mail: o.kohshi@gmail.com

Received March 31, 2008

Revised November 26, 2008

This paper surveys applications of Krawczyk–Moore–Jones’s algorithm and presents its
further developments. The application is focused on nonlinear electric circuit analysis.
The further developments are described on parallel KMJ algorithm, Gray code KMJ
algorithm and KMJ processor.

Key words: interval operation, Krawczyk–Moore–Jones’s algorithm, parallel algorithm,
FPGA implementation, Gray code, all solutions

1. Introduction

The harmonic balance method (abbreviated as HB method) is classical and has
been used for the mode analysis of nonlinear oscillations in physical systems [1].
In the HB method the determining equation of amplitudes and phases for each
frequency component becomes nonlinear simultaneous equations, in which each
equation takes the polynomial form of f(x) =

∑
k akxα1k

1 · · ·xαnk
n . In recent years,

the analysts of nonlinear electric and electronic circuits pay a special attention to
the HB method and try to study the precise bifurcation analysis [42, 43, 44, 45, 46].
This is most likely because of the development of computer algebra software such
as Maple and Mathematica.

Another aspect in electric circuit analysis is on the load-flow problems in a
power network. In the power network in order to determine the voltage at each
node we need the solutions of specified load-flow equation that is a set of quadratic
equations f(x) =

∑
i,j aijxixj with many variables. In particular, finding multiple

solutions has become a recent topic because voltage instability occurs when the
power network has heavy load, namely, when the load flow equation has possible
multiple solutions of the voltages.

Although it is also classical, the last problem to be described here is to de-
termine DC (direct current) operating points of nonlinear resistive circuits. This
problem is reduced to solving the specified nonlinear simultaneous equation. In
this case the nonlinear part of the equations is mostly given by the specific form
f(x) =

∑
i aifi(xi) because the circuit equation is described by two terminal el-

ements of nonlinear resistors. Usually fi(xi) is an exponential or monotonically
increasing function.

146 K. Okumura

All these three problems in electric circuits or networks are reduced to finding
all real solutions in a given region. For that purposes usually Newton or Newton-
type method are being used even now. However, when we use Newton method, we
encounter the following common questions:
(a) How can we set the starting point?
(b) Whether or not all solutions in the specified region can be determined?
(c) When no solution exists in the given region, how can its nonexistence be

decided?
By contrast to Newton or Newton-type method, there is the powerful method

using the interval operation [2, 3, 8]. It is called the interval Newton method [3,
4, 5, 6, 7]. In 1978 there came out the computer oriented strong algorithm devel-
oped by R. Moore and S. Jones [11]. This algorithm was originally proposed by
R. Krawczyk [9]. We call this algorithm the Krawczyk–Moore–Jones’s algorithm,
abbreviated as the KMJ algorithm. When a nonlinear equation of n variables is to
be solved by the KMJ algorithm, the initial region specified as an n-dimensional
rectangular region is partitioned successively into smaller subregions, determining
whether or not a unique solution exists in the subregion. Thus, it is possible in
principle that all solutions in the initial region can be determined. This proce-
dure makes the KMJ algorithm more powerful and useful for the above questions
(a) to (c).

With the KMJ algorithm being a turning point, some modified versions and
applications have been appeared from the mathematical point of view [13, 20] as
well as the engineering viewpoint [18, 21]. The KMJ algorithm takes the Jacobi-
type iteration. After this, the Gauss–Seidel version is proposed [15, 16]. In Ref. [19]
the Gauss–Seidel version was first applied to find all the DC operating points in
nonlinear resistive circuits although the number of variables was two in the example.
The comparison of Gauss–Seidel version with the algorithm was made by applying
both iteration types to the load-flow equation with 8 variables [23, 26]. By denot-
ing nonlinear resistive characteristic term by fi(xi) and the other linear term by
li(x1, . . . , xn) the circuit equation is modified into the type fi(xi) = li(x1, . . . , xn).
To this type of interval nonlinear equation Ref. [22] proposed iterative procedure
to find all the DC operating points in a given region. Further Ref. [24] gave an im-
proved version of interval method for DC operating points due to extended division
operation and the method described in Ref. [5], where the interval Jacobian matrix
is represented by the sum of diagonal matrix formed by the diagonal elements and
the other matrix by remaining elements.

In the time domain-analysis of switched nonlinear circuits one of the main
problems consists in the calculation of the zero of strongly nonlinear function f(t)
(t: time) within a given time interval. For this purpose Ref. [25] compares interval
Newton’s algorithm with Krawczyk’s one.

In the KMJ algorithm we need several computational tests to find “the safe
starting region” [10, 14]. The non-existence tests, the existence tests and the conver-
gence tests are of essential importance. Specifically, the non-existence test, namely
whether or not the interval function includes zero, is simple. Being combined the

Application of the Krawczyk–Moore–Jones Algorithm 147

test with the method of linear programming, the KMJ algorithm has been able
to find all DC operation points in higher computational speed [27, 28]. These
specific algorithms are powerful if the number of nonlinear terms is less than that
of linear terms.

Practically, however, when the KMJ algorithm is applied to the determining
equation with many terms each of which is comprised of many variables as stated
before, it requires tremendously fast computing as well as vast amounts of memory.
To overcome the defects, the KMJ algorithm has been so far modified from the
standpoint of sequential computation. In other words the KMJ algorithm has its
own limitation as far as we are interested in a sequential algorithm.

In order to improve this difficult situation the parallelisation of the KMJ algo-
rithm is proposed [32]. In this survey first we outline the parallel KMJ algorithm
that has not been attained those days in the field of interval analysis. The paral-
lelisation is carried out in MIMD computer. The algorithm is parallelised naturally
through the sequential algorithm of the original KMJ algorithm. The effectiveness
of the parallel implementation will be shown.

Secondly, the KMJ algorithm takes a lot of computing time for large initial
region because of the many number of the iterative bisections of the regions. If
we are able to calculate the upper and lower bounds of the interval from the most
significant bits, we can make the computational cost decrease and are able to cal-
culate in arbitrary precision. For this purpose, Gray code KMJ algorithm has been
proposed [33, 37, 35, 36, 38].

Recent research to achieve high performance with field-programmable gate
arrays (FPGA)-based computing are now accelerating [41]. If the KMJ algorithm
processor will become possible, the reduction of computational cost will be able to
be attained. In this sense, the implementation of the KMJ algorithm by FPGA are
surveyed [39, 40, 38].

2. KMJ algorithm

2.1. Interval operation and Krawczyk function
We denote by I(Rn) the set of n-dimensional rectangles. Let X ∈ I(R), Y ∈

I(R) be the real closed intervals X = [x, x], Y = [y, y]. The interval operation is
defined by

X + Y = [x + y, x + y], X − Y = [x − y, x − y],

X · Y = [min{xy, xy, xy, xy},max{xy, xy, xy, xy}],
X/Y = [min{x/y, x/y, x/y, x/y},max{x/y, x/y, x/y, x/y}], Y �� 0.

The mid point m(X), the width w(X) and the absolute value of X are defined by

m(X) =
1
2
(x + x), w(X) = x − x,

|X| = max{|x|, |x|}.

148 K. Okumura

We denote the set of interval matrices by I(Rn×n). The interval vector X ∈
I(Rn×1) and its midpoint m(X) ∈ Rn×1 are represented by

X = (X1,X2, . . . , Xn)t, Xk ∈ I(R), k = 1, . . . , n,

m(X) = (m(X1),m(X2), . . . ,m(Xn))t,

where “t” denotes the transposition. An interval matrix A ∈ I(Rn×n) and its norm
are defined by

A = (Aij), Aij ∈ I(R), i, j = 1, 2, . . . , n,

‖A‖ = max
i

m∑
j=1

|Aij |.

The inclusion monotonic interval extension F (X) of f(x) ∈ Rn×1 is defined by

F (X) = (F1(X), F2(X), . . . , Fn(X))t.

A natural interval extension of the real function is performed by replacing the real
variables with the corresponding interval variables. The arithmetic operation is
also replaced with corresponding interval operation. The Jacobian matrix of f(x)
and its interval extension are written by f ′(x) = (f ′

ij(x)) and F ′(X) = (F ′
ij(X)),

i, j = 1, 2, . . . , n, respectively. The Krawczyk operator for the equation f(x) = 0
is defined by

K(X) = y − Y f(y) + [I − Y F ′(X)](X − y),

y = m(X), Y = [m(F ′(X))]−1,

where I is the n × n identity matrix. The conditions to confirm the existence of
the solution in X is called Moore-test shown below [12, 17]:
(1) If F (X) �� 0, then no solution exists in X.
(2) If K(X) ∩ X = ∅, then no solution exists in X, where ∅ is empty set.
(3) If K(X) ⊆ X and ‖I − Y F ′((X))‖ < 1, then a unique solution exists in X.

2.2. KMJ algorithm finding all zeros of f(x)
Here we show KMJ algorithm in the following:

S1. Set X to X initial. Set list T to be empty.
S2. Test the region X by computing F (X) and K(X).

(i) If no solution exist in X, i.e., F (X) �� 0 or K(X)∩X = ∅, then go to S4.
(ii) If a unique solution exists, namely K(X) ⊆ X and ‖I−Y F ′((X))‖ < 1

are satisfied, then we apply Newton method to f(x) = 0 and find the
solution by taking m(x) as the starting point. And go to S4.

(iii) If neither of the above conditions is satisfied, then go to S3.
S3. Bisect the region X according to the rules below, i.e., X = X̂ ∪ X̌. Add the

remaining region X̌ to list T and set X to X̂; go to S2.

Application of the Krawczyk–Moore–Jones Algorithm 149

S4. Test list T .
(i) If list T is empty, then terminate.
(ii) If list T is not empty, then set X to region in list T , delete this region

from list T and go to S2.
The bisection rule: Bisect X in the coordinate direction which maximizes

w(Xk), i.e.,

X̂ = (X1, . . . , Xk, . . . , Xn), Xk = [xk,m(Xk)],

X̌ = (X1, . . . ,Xk, . . . , Xn), Xk = [m(Xk), xk].

3. Parallel KMJ algorithm

3.1. KMJ algorithm parallelised in MIMD computer
Here we describe briefly the parallel KMJ algorithm. In our case paralleli-

sation is carried out in MIMD computer. Namely, we parallelise the procedure
of sequential KMJ algorithm on message passing parallel computer systems. The
memory is local to a processor and messages must be exchanged between the local
memory of the other processors. Efficient communication is very important to this
message passing implementation. We show the procedure implemented by a general
master-slave algorithm.

Let us consider N processing elements denoted by PEi (i = 0, . . . , N − 1).
These are separated to one master and N − 1 slave;

Master : PE0,

Slave : PEi , i ∈ S, S = {1, 2, . . . , N − 1}. (1)

The master process is responsible for coordinating the work of the others and the
slave processes do not communicate with one another. That is, the communication
is limited to

C0→i[message] or Ci→0[message], i ∈ S, (2)

where the communication from PEi to PEj is denoted by Ci→j [message] and
message denotes the contents of communication, i.e., a region “X,” a flag
“Terminate” or “Request.”

The master PE0 has the list T and requests the slaves to test the region. When
one task by a slave is completed, the master sends other region to the slave for the
next task. Once all tasks have been handed out, termination messages are sent
instead. The procedure of slaves are shown below.

Algorithm for slaves PEi, i ∈ S

Si1. Get the region Xi from master PE0 (C0→i[X]).
Si2. Test the region Xi by computing F (Xi) and K(Xi).

(i) If there are no solutions in Xi, then go to Si4.
(ii) If there exists unique solution in Xi, then find a solution and go to Si4.
(iii) If neither of the above two conditions is satisfied, then go to Si3.

150 K. Okumura

Si3. Bisect the region Xi = X̂i ∪ X̌i. Send the region X̌i back to the master
PE0 (Ci→0[X̌i]) and set Xi to X̂i; go to Si2.

Si4. Request the next region from the master (Ci→0[Request]) and go to Si5.
Si5. Wait for another task.

(i) If the master sends a new region (C0→i[X] or C0→i[X̌j]), then set Xi to
the new region and go to Si2.

(ii) If the master sends a termination message (C0→i[Terminate]), then the
slave terminates the process.

The procedure of the master PE0 is described in detail below. List W is the
list of waiting slave PEi. The number of element in the list W is denoted by |W |.
Algorithm for master PE0

S01. Set the region X to X initial and send the region X to the slave PE1

(C0→1[X]). Set list T to empty and add remaining slaves PEi (i = 2, . . . , N−1)
to list W .

S02. Wait for the messages from slaves.
(i) If the slave PEi, i ∈ S sends the region X̌i (Ci→0[X̌i]), then go to S03.
(ii) If the slave PEi, i ∈ S requests a new region (Ci→0[Request]), then go

to S04.
S03. Test list W .

(i) If W is not empty, then send X̌i to a slave PEj in list W (C0→j [X̌i])
and delete PEj form list W .

(ii) If list W is empty, add the region X̌i to list T and go to S02.
S04. Test list T .

(i) If list T is not empty, then set X to a region in list T , delete this region
from list T and send the region to PEi (C0→i[X]); go to S02.

(ii) If list T is empty, then go to S05.
S05. Test list W for termination.

(i) If |W | < N − 2, then add PEi to list W and go to S02.
(ii) If |W | = N − 2, then send termination messages to all slaves

(C0→i[Terminate], i ∈ S), and terminate.
The flow chart of the parallel KMJ algorithm is shown in Fig. 1. First, the

master send the given region to PE1 and go to the state “Wait.” On the other hand
the slaves starts from the state “Start.” In this case, the message of instruction
is Ci→0[Request] or C0→i[Terminate] which are implemented by a communication
of an integer flag. The messages of region are C0→i[X], Ci→0[X̌i] and C0→j [X̌i]
which consist of 2n real numbers.

3.2. Performance results
We apply the parallel KMJ algorithm to the determing equation with eight un-

knowns given in Ref. [32]. This determining equation has at most 37 nonlinear terms
derived from the determining equation derived from the circuit equation (the set of
the nonlinear ordinary differential equations) in dealing with the nonlinear oscilla-
tion in three-phase circuit. The procedure is implemented on a distributed memory

Application of the Krawczyk–Moore–Jones Algorithm 151

Fig. 1. The flow chart of parallel KMJ algorithm for finding all solutions.

parallel processor system Hitachi SR2201 which has a 3-dimensional crossbar net-
work and whose transmission rate between two processors is 300 megabytes/s. The
performance of one processing element is 0.3 GFLOPS. In parallel algorithm it is of
utmost importance to be able to assess the speed gain expected from the operation
of processors in parallel. In order to test the effect of communication, we compare
the computing time of the parallel KMJ algorithm with two processing elements to
that of the sequential counterpart. In this parallel implementation, one of the two
processing elements is master and the other is slave. The result of performance is
shown in Table 1. We can see from this result that the effect of communication
defined by

1 − computing time with 1 PE (not parallelised)
computing time with 2 PEs (parallelised)

is about 1.8 %. The computing time by the parallel KMJ algorithm is shown in
Fig. 2. From the figure we can see that increasing the number of processors leads
to decrease in computing time.

Table 1. Efficiency of communication.

PE Time [s]
1 PE (not parallelised) 2.13 ×105

2 PEs (parallelised) 2.17 ×105

152 K. Okumura

Fig. 2. Computing time and number of processors.

The speed-up ratio of a parallel algorithm [31] defined by

computing time with 2 PEs
computing time with i PEs

, i = 4, 8, 16, 32, 64

shows the efficiency with respect to the case of two processing elements and is shown
in Table 2. In general, because one of the processing elements is used for master,
the theoretically optimal speedup in the parallelised algorithm is proportional to
the number of slaves

(number of processing elements) − 1. (3)

In the case of 4, 8 and 16 PEs, Table 2 shows that the performance achieves the
theoretically optimal speed-up. However, the over concentration of communication
to master makes the performance worse when the number of PEs is 64.

Table 2. Speedup by parallel computation.

PE Time [s] Speedup
2 2.17 × 105 —
4 7.19 × 104 3.0
8 3.10 × 104 7.0

16 1.45 × 104 15.0
32 7.05 × 103 30.5
64 3.62 × 103 59.9

We have briefly presented the parallel KMJ algorithm and have demonstrated
its effectiveness, being compared with the sequential one. Furthermore, by saving
the communication time between processing elements and idle time, we realize an

Application of the Krawczyk–Moore–Jones Algorithm 153

efficient implement in message passing parallel computer. Several improvements
of the parallel KMJ algorithm can be seen also in Ref. [32]. It suggests a method
of optimizing the idle and communication time, realizes the further decrease of
communication by distributing master work and confirms the effect.

4. Gray code KMJ algorithm

4.1. Gray code
Gray code [33] is a representation of natural numbers. This code has a property

that two successive values differ in only one digit. This property has long been used
in electrical engineering to facilitate error correction in digital communications such
as cable TV systems.

Recently, Tsuiki [37] has reported another aspect of Gray code. He uses Gray
code expansion of real numbers to define computability of real functions. The
expansion is an infinite sequence of {0, 1} in which at most one undefinedness is
allowed. The topological property of the code enables digit sequential arithmetics
from the most significant digits (abbreviated as MSD).

Here is an algorithm to covert natural binary code B(n) to Gray code G(n),
where B(n) and G(n) are the array of n bits in the usual binary representation.
The algorithms of converting natural binary code to Gray code is given by G(0) :=
B(0), G(i) := B(i− 1)⊕B(i) (i = 1, . . . , n− 1), where ⊕ denotes exclusive or. The
algorithm to convert Gray code to binary code is given simply by B(0) := G(0),
B(i) := B(i − 1) ⊕ G(i) (i = 0, 1, . . . , n − 1). By introducing undefined bits ⊥ the
real interval can be expressed.

The objectives of KMJ algorithm using Gray code is to demonstrate the reduc-
tion of computational cost to obtain all solutions with arbitrary precision. Namely,
the seemingly multiple roots in usual method can be discriminated rigorously. In
this section the arbitrary precision KMJ algorithm is provided by employing the
operation of Gray code interval and some numerical examples are given.

4.2. Gray code interval
We define a Gray code interval XGnx

using a pair of Gray codes as follows:

X = [X,X] ↔ XGnx
≡ [xGLnx

, xGUnx
]. (4)

where “↔” represents the correspondence between the closed interval X and the
Gray code interval XGnx

. Gray code xGnx
can be expressed by

xGnx
= (xGSxGS′) · · ·x(−2)x(−1).x0x1 · · ·xnx−1xnx

↔ (x, x), (5)

where the first sign bit xGS is defined by xGS = 1 (if x > 0), xGS = 0 (if x < 0),
xGS = ⊥1 (if x < 0 < x) and the second sign bit xGS′ is always set to 1.

154 K. Okumura

The xGLnx
and xGUnx

are Gray code and satisfy xGLnx
= X and xGUnx

= X.
As an example, let us represent the interval X = [0.75, 0.78125] by Gray code.
We have{

xGLnx
= (11)0.101000000⊥1⊥2 ↔ (768, 770)2−10 = (0.75, 0.75195),

xGUnx
= (11)0.101001000⊥1⊥2 ↔ (798, 800)2−10 = (0.77929, 0.78125).

(6)

The Gray code expression of xGLnx
and xGUnx

has a common bits xi (−1 ≤ i ≤ 4)
and sign bit. Hence we can represent xGLnx

and xGUnx
by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xGLnx
= (11)0.10100︸ ︷︷ ︸

i

0000⊥1⊥2︸ ︷︷ ︸
l

,

xGUnx
= (11)0.10100︸ ︷︷ ︸

i

1000⊥1⊥2︸ ︷︷ ︸
l

.
(7)

If xGLnx
and xGUnx

are close, the upper bits of them are same in Gray code
representation. Using this property, we are able to efficiently represent the Gray
code interval by common upper bits ixG and remaining lower bits lxG and lxG . Here
we define the upper i bits by

ixG = (11)0.10100⊥1⊥2 ↔ (48, 50)2−6 = (0.75, 0.78125).

From the definition, the Gray code ixG satisfies ixG ⊂ X. We define |ixG | by the
number of bits except the sign bits, ⊥1 and ⊥2. In this example |ixG | is equal to 6.
Next, as for the lower bits of Eq. (7) we represent the part by

{
lxG = [1]000⊥1⊥2,

lxG = [0]000⊥1⊥2.
(8)

The first bit of lxG and lxG is the special bit which corresponds to the ⊥1 of the
upper bits ixG . We define |lxG | by the number of bits except the ⊥1 and ⊥2 of
lxG or lxG . By ixG , lxG , lxG the Gray code interval can be represented. This
representation leads us to the efficient calculation of interval arithmetics because
the common bits ixG can be reused in the processes of calculation. Fig. 3 shows
the effect of |lxG | using the example given in (7). The two-headed arrow shows
the interval X. The dotted lines and solid thin lines are upper bound and lower
bound, respectively. The part of ixG represents the minimal interval which include
the interval X. In this case the interval X equals to ixG . According to the increase
of |lxG | the precision of xGLnx

and xGUnx
grows.

Application of the Krawczyk–Moore–Jones Algorithm 155

Fig. 3. Representation of an interval by different |lxG |. The two-headed arrow shows

the interval X. The dotted lines and solid thin lines are upper bound and lower

bound, respectively. The part of ixG represents the minimal interval which include

the interval X. In this case the interval X equals to ixG . According to the increase
of |lxG | the precision of xGLnx and xGUnx grows.

4.3. Gray code arithmetic
Let the given two input Gray codes be aG, bG and let a two-operand interval

arithmetic operation be “◦.” Using the Gray code we define arithmetic operations
cG = aG ◦ bG where cG denotes the output Gray code. Let

A = [A,A] = [a − 1, a + 1]2na ↔ aG,

B = [B,B] = [b − 1, b + 1]2nb ↔ bG,

C = [C,C] = [c − 1, c + 1]2nc ↔ cG

be the interval representations of the Gray codes aG, bG, cG respectively, where
na, nb and nc are called the scaling exponent. We define Gray code cG as the
Gray code of maximum scaling exponent nc (i.e., of minimum interval width of C)
which satisfies

A ◦ B ⊂ C. (9)

The algorithm that performs addition using Gray code expansion is given in Ref. [37]
and the algorithms for other arithmetics have been reported in Ref. [38, 35].

4.4. Required accuracy for performing Moore-test
The Gray code interval is serially computed from MSB. Hence we can stop the

computation at the moment when we get enough accuracy. In order to estimate the
condition F (X) �� 0, we have only to estimate the sign bit of the interval bounds of
F (X). That is, when an interval F (X) which is a coordinate of F (X) is represented
by interval bounds [fGLnf

, fGUnf
], the following propositions are satisfied:

fGLnf
> 0 or fGUnf

< 0 =⇒ F (X) �� 0,

fGLnf
< 0 and fGUnf

> 0 =⇒ F (X) � 0.

156 K. Okumura

In consequence, we can stop the calculation of F (X) at the accuracy that the
sign bit of the interval bounds fGLnf

and fGUnf
are determined. Thus, when

all the sign bits of the interval bounds of F (X) are determined, we can stop the
MSB first calculation of F (X). In almost same way, we can attain the required
accuracy for K(X).

4.5. Bisection procedure
The bisection of the region can be done with the least computational cost by

using the property of the Gray code interval. After the region X is updated, F (X)
and K(X) are efficiently computed by using the MSB first computation. Using
the shrinking property, we can update efficiently Gray code interval operation. The
method of bisection of interval is given in Ref. [36].

4.6. Examples
4.6.1. Multiple operating points of nonlinear circuit

We apply the proposed method to a circuit equation. Fig. 4 shows the well-
known nonlinear circuit with two Esaki diodes. The circuit equation is

f1(V1, V2) = E − RI1(V1) − (V1 + V2) = 0, (10)

f2(V1, V2) = I1(V1) − I2(V2) = 0, (11)

where the characteristics of Esaki diodes are assumed to be represented by

I1(V1) = 2.5V 3
1 − 10.5V 2

1 + 11.8V1, (12)

I2(V2) = 0.43V 3
2 − 2.69V 2

2 + 4.56V2. (13)

We fix the circuit parameter E = 30.0 and R = 13.3 and set the initial region
X = ([−8, 8], [−8, 8]), i.e.,

ix1G = ix2G = (⊥11)⊥2⊥⊥,

{
lx1G = lx2G = [1]1⊥1⊥2,

lx1G = lx2G = [0]1⊥1⊥2.

Fig. 4. Circuit with Esaki diode.

Application of the Krawczyk–Moore–Jones Algorithm 157

Table 3. Comparison of computational cost with interval computation with fixed

accuracy bit |lx| and no reuse.

|lx| (bit) 4 10 20
Computational cost (×108 bit addition) 13.74 2.804 3.834

All 9 solutions can be found by the Gray code KMJ algorithm. The computational
cost which is converted to the Gray code addition cost is 1.556×108 bit addition [35].
In order to clarify the efficiency of the Gray code KMJ algorithm, we apply interval
computation with fixed accuracy bit |lx| without reuse of computation (see Table 3).
We can confirm that the computational cost is considerably reduced by using the
proposed method.

4.6.2. Finding all solutions with high accuracy
By the Gray code KMJ algorithm, we compute with very high accuracy all the

solutions of a simultaneous nonlinear equation.

⎧⎪⎨
⎪⎩

f1 = (x1 − 1)2 + ε − x2 = 0,

f2 = x2
1 + x2 − 1 = 0

(ε = 0.6403143403040989).

(14)

The solutions can not be separately obtained by the ordinary double floating point
operation. However, the Gray code KMJ algorithm gives us the separate solutions
as follows:

solution 1 ix1 = (11)0.1101001 . . . 010011⊥1⊥2

↔ (0.6125360615 . . . , 0.6125360652 . . .),

ix2 = (11)0.1010111 . . . 111000⊥1⊥2

↔ (0.7904426418 . . . , 0.7904426455 . . .),

solution 2 ix1 = (11)0.1101001 . . . 01000⊥1⊥2

↔ (0.6125360652 . . . , 0.6125360727 . . .),

ix2 = (11)0.1010111 . . . 11100⊥1⊥2

↔ (0.7904426380 . . . , 0.7904426455 . . .).

The solution ix1 has the accuracy of 30 bit and ix2 that of 29 bit. The computational
cost is about 20% when reusing the common bits, compared with the case not
reused. It is shown by this example that the reduction in the computational cost
in the search process of the solution is possible by reusing of the common bits of
interval representation by Gray code.

158 K. Okumura

5. Hardware approach to KMJ algorithm

Although the KMJ algorithm is a powerful software, the main disadvantage is
its speed. This algorithm requires tremendously large amount of interval operation.
To overcome the speed limitation of the software, specific hardware support is
required. There are several works in which processors for interval computation
have been designed [29, 30]. Because these processors are specified to interval
computation, they can execute the arithmetic operations very fast. Nevertheless,
the problem of designing specific hardware to perform the KMJ algorithm has not
been studied as yet by means of logic circuits.

In recent years field-programmable gate arrays (FPGA) has gained attention
and has demonstrated its potential power to various fields of computation [41].
The FPGA has possibility to realize the hardware implementation of the KMJ
algorithm.

This section specialises briefly in an approach to the hardware implementa-
tion of the KMJ algorithm presented in Ref. [39]. We have designed logic cir-
cuits of Moore-test, have implemented it to the FPGA and have realized the KMJ
algorithm.

5.1. Outline of the System
The configuration of the system is shown in Fig. 5. The system consists of

CPU in AT-compatible PC and FPGA board on PCI bus. The Moore-test processor
executes the part which contains interval computations, that is, the processor gets
a region from CPU and tests the existence and nonexistence of solutions in the
region. On the other hand, the CPU executes the part of real number operations,
that is, the bisection of region and Newton method.

Fig. 5. The outline of Krawczyk algorithm and configuration of the system. The exist-

ence of solutions are tested by Moore-test processor. The functions F (X) and

K(X) is the interval extension of equations and Krawczyk function, respectively.

The region B is the initial region for Moore-test.

Application of the Krawczyk–Moore–Jones Algorithm 159

The Moore-test processor consists of five units illustrated in Fig. 6. The func-
tions F (X) and K(X) are directly implemented in the processor as logic circuits.
Arithmetic Unit This unit executes operations of both floating-point number

and interval number. Both operations use the same unit in common in order
to reduce the number of Logic Cells (abbreviated as LCs) in FPGA. The
output values are stored in registers.

Testing Unit This unit executes the Moore-test. This unit has also some inner
modules to compare the floating-point numbers.

Controller This unit controls Arithmetic Unit and Testing Unit in order to
calculate the values of F (X), K(X) and ‖I − Y F ′(X)‖.

Registers This unit feeds the values and intervals into Arithmetic Unit and stores
the calculated data from ALU. This unit also outputs the values and region
data directly to Arithmetic Unit and Testing Unit, and receives data directly
from the above two unit.

PCI Bus Interface This unit controls signals between PCI bus and the main
part of this processor.

Fig. 6. The outline of configuration of Moore-test processor. The functions F (X) and

K(X) are directly implemented in the processor as logic circuits.

160 K. Okumura

5.2. Arithmetic unit
We use the floating-point number with 1 sign bit, n bits for exponent in excess

2n−1 notation and m bits for normalised mantissa. The number m, n can be
decided according to the actual demand of the desired equations to be solved and
the limitation of the FPGA to be used. As a basic operation, this unit has two sets
of floating-point number adder, two set of floating-point number multipliers and
one set of floating-point number divider. They can execute operations in parallel.
This unit also has some additional unit to execute interval calculation using the
same floating-point number unit as the one floating-point number.

5.2.1. Interval operation unit
In order that interval operations are executed in the same (or similar) number

of clocks as floating-point number operations, we need the additional modules,
namely some pre-processing and post-processing modules to be inserted before and
after the basic operation. The followings are a brief description of the configuration
of the Arithmetic Unit when it works as interval operation:
Addition Additions can be performed as simple two sets of floating-point number

operations. Hence there is no need of pre-processing and post-processing. The
action of Arithmetic Unit is shown in Fig. 7. Resister stores the upper values
a and b and the lower values a and b. Adder1 and Adder2 calculate a + b and
a + b, and store them in Resister as shown in Fig. 7.

Subtraction The pre-processor for interval subtraction is composed of two in-
verters and one multiplexer. Interval subtraction needs the inversion of the

Fig. 7. Configuration of interval addition.

Application of the Krawczyk–Moore–Jones Algorithm 161

sign of the subtracting value and the exchange of the lower bound and the
upper bound.

Multiplication It is possible to let in advance the four possible endpoints xy,
xy, xy, xy define the lower and upper bounds of multiplication XY . The
result depends on the signs of X and Y and has two cases. For each case the
circuit is designed. These multiplications are realized with two floating-point
number multipliers by changing the inputting operands according to the signs
of the bounds [39].

Division Interval division generally needs four sets of floating-point number di-
vider. However, no general interval division is executed when we deal with
polynomial equations.

5.3. Testing unit
5.3.1. Checking of relations in Moore-test

After the calculations of F (X), K(X) and ‖I − Y F ′(X)‖, the existence and
nonexistence of a solution are tested by the four relations in Moore-test. The fol-
lowings (a) to (d) are the relations to be tested with respective logics. The checking
is done component-wise by using comparator. (a) F (X) �� 0, (b) K(X) ∩ X = ∅,
(c) K(X) ⊆ X, (d) ‖I − Y F ′(X)‖ < 1. Since the norm ‖I − Y F ′(X)‖ is calcu-
lated, this relation can be examined by only being compared with the number 1.

5.3.2. Comparator
There are also Comparators in this system in order to examine the above

relations. This comparator includes the inner circuit that outputs 0 or 1 according
to the result (output 0: if a > b, 1: if a < b). Using the result, the whole circuit
outputs less or greater values of the two input operands.

5.4. Controller
This unit executes the whole computation by controlling Arithmetic Unit,

Testing Unit and sets of registers. By means of this controller, the data fetched
from the registers are transfered to Arithmetic Unit, and the data which Arithmetic
Unit outputs are stored directly into the registers.

5.4.1. Control over interval computation
The Moore-test processor must execute both float-pont number and interval

computation. Here explanation is limited to the control over the interval compu-
tation, which is rather complicated than the control over floating-point number
computation because Done signals that each Adder transfers to Controller may be
generated in the different clock. Fig. 8 displays the addition of two intervals A and
B as an example. The figure between state1 and state2 illustrates the process of
control over interval computation as follows:
1. When state1 becomes active, Controller generates the instructions and trans-

mits them to the registers which holds the data needed to calculate, and the
registers gives the needed values to ADDER2 as well as ADDER1, receiving
the signal. Controller also turns on the switch of ADDER1 and ADDER2,

162 K. Okumura

Fig. 8. Control over interval operation.

and both of them prepares for the calculation which starts in the next
clock, receiving instructions and data. At the same time Controller goes to
waiting state.

2. ADDER1 and ADDER2 starts calculating using the operands from the regis-
ters, and use several clocks for adding the two operands.
There are the following three cases to send the signal to the Controller.

3. (1) After several clocks, ADDER1 and ADDER2 finish the calculation at
the same time, and store the calculated results into the registers. They
also gives Controller signals (Done1 and Done2), which inform Controller
that the calculation of the both module are finished simultaneously.

(2) After a few clocks, ADDER1 finishes the calculation (ADDER2 is still
running), and stores the calculated results in the registers. ADDER1 also
gives Controller the signal Done1, which get the state forward to waiting2.
And after more several clocks, ADDER2 finishes the calculation and gives
the Controller the signal Done2.

(3) After a few clocks, ADDER2 finishes the calculation, (ADDER1 is still
running), and stores the calculated results in the registers. ADDER2 also
gives Controller the signal Done2, which get the state forward to waiting1.
And after more several clocks, ADDER1 finishes the calculation and gives
the Controller the signal Done1.

4. Having received both of Done1 and Done2, Controller put its state forward
to the next state (state2).

5. Controller continues the same action explained in the above items from 1 to 4.

Application of the Krawczyk–Moore–Jones Algorithm 163

5.4.2. Control over Testing Unit
Control over the Testing Unit is simpler than that of Arithmetic Unit because

this unit outputs the result in the same clock that starts the test.
First, Controller transfers an instruction signal to the registers which hold the

necessary regions or values to be tested. Second, Controller transfers the start
signal to Testing Unit. Then last, Testing Unit gives back the result of the test to
Controller. Controller decides whether to execute the next. This process is shown
in Fig. 9.

Fig. 9. Control over Testing Unit.

5.4.3. Series of controls
By executing the controls of arithmetic operation and related tests including

Moore-test, it becomes possible to calculate F (X), K(X) and ‖I−Y F ′(X)‖, and
to examine the specified subregion.

The relations (1) F (X) �� 0, (2) K(X) ∩ X = ∅, (3) K(X) ⊆ X and
(4) ‖I − Y F ′(X)‖ < 1, are checked in time series, respectively.

As soon as the judgement of the relation (1) to (4) is done in the middle of the
process, for example, in the check of relation (1), JudgeDone signal is generated,
the result of the information is transmitted to CPU, and the state of Controller
goes back to the initial state instead of continuing the rest of the process.

5.5. Example
As an example, we design the Moore-test processor for the following equation:{

f1(x) = x2
1 + x2

2 − 1 = 0,

f2(x) = x2
1 − x2 = 0.

(15)

164 K. Okumura

The interval extension F (X) and F ′(X) are as follows:

F (X) =

(
X2

1 + X2
2 − 1

X2
1 − X2

)
, F ′(X) =

(
2X1 2X2

2X1 −1

)
. (16)

The arithmetic calculations F (X), F ′(X) and K(X) are designed in the processor.
Particularly the processes of designing K(X) is illustrated in Fig. 10. These figures
show the order of calculations implemented in the processor. As some of the values
are used repeatedly (e.g., Y), the values must be computed in order.

Fig. 10. Calculation of K(X). The power shows the number of operations.

Based on the number of LCs in FPGA, we decided to use 8 bits for exponent
and 13 bits for the significand (n = 8, m = 13 shown in Table 4). Because 3 bits are
used for sign bit, guard bit and rounding bit, the number of the total bits needed
for each arithmetic operation are 16. The number of clock cycles needed to execute
floating-point number operations are as follows: [adder] 8 clock cycles, [multiplier]
6 clock cycles, [divider] 6 clock cycles.

Application of the Krawczyk–Moore–Jones Algorithm 165

Table 4. Expression of floating point number.

exponent (8bits) sign + significand (14bits)
excess 27 signed magnitude

The circuit of Moore-test processor is installed into the FPGA (EPF10K250
AGC599-1) with PCI interface circuit. The percentage of LCs used and the fastest
frequency were as follows:
Percentage of LCs used 75 % (which corresponds to 9,134 LCs in EPF10K250

AGC599-1). PCI interface takes around 5 % in the percentage.
Fastest frequency 17.21 MHz.

It is confirmed that this system operated correctly as follows. Given the initial
area (X1,X2) = ([−2.00, 2.00], [−2.00, 2.00]), this system outputs the two following
regions as the region with a unique solution.

(X1,X2) = ([0.75, 1.00], [0.50, 0.75]), ([−1.00,−0.75], [0.50, 0.75]).

The process of finding the subregions that contain a unique solution is illustrated
in Fig. 11. The number in the figure means the order of the tests of the region.

Fig. 11. Process of finding all solutions.

The hatched two subregions (No. 4 and No. 21) are the safe-starting regions
from the midpoints of which Newton method starts on the side of computer to
obtain the unique solution. This work was published in 2001. In recent research
Gray code interval arithmetics are going to be implemented on FPGA [38, 40].
FPGA promises more improved computer technology of the KMJ algorithm.

166 K. Okumura

6. Conclusion

The KMJ algorithm has been surveyed in so far as the applications to the
field of electric and electronic circuit analysis. Although the KMJ algorithm is very
powerful and attractive method, the researchers in this field who try to use this
algorithm are rather few in Japan as well as in the world over. This may be because
the existence of the KMJ algorithm is not well known in the society of engineering,
although mathematicians who specialise in interval analysis know it. What must
be done now is that we inform a lot of engineering researchers of the existence of
this strong algorithm.

Acknowledgement. The parallel KMJ algorithm, the Gray code KMJ algo-
rithm and the KMJ algorithm processor have been studied by a lot of members of
the author’s research group at Kyoto University. In particular, the author expresses
his deepest gratitude to Associate Professor T. Hisakado and the doctor course grad-
uate student A. Yonemoto for these researches. Further, he has been collaborated
by many master course and undergraduate students at his research group, whom
he also thanks so much for the programming and the numerical experiment.

References

[1] C. Hayashi, Nonlinear Oscillations in Physical Systems. McGraw-Hill, New York, 1964.
[2] T. Sunaga, Theory of an interval algebra and its application to numerical analysis. RAAG

Memoirs, 2 (1958), 547–564.
[3] R.E. Moore, Interval Analysis. Prentice-Hall, Inc., Englewood Cliffs, 1966.
[4] R.E. Moore, Methods and Applications of Interval Analysis. SIAM, Philadelphia, 1979.
[5] G. Alefeld and J. Herzberger, Introduction to Interval Computations. Academic Press, New

York, 1983.
[6] A. Neumaier, Interval Method for Systems of Equations. Cambidge University Press, 1990.
[7] L.V. Kolev, Interval Methods for Circuit Analysis. World Scientific Pub. Co., 1993.
[8] S. Markov and K. Okumura, The contribution of T. Sunaga to interval analysis and reliable

computing. Developments in Reliable Computing, T. Cendes (ed.), Kluwer Academic Pub.,
1999, 167–188.

[9] R. Krawczyk, Newton-Algorithm zur Bestimmung von Nullstellen mit Fehlershranken. Com-
puting, 4 (1969), 187–201.

[10] R.E. Moore, A test for existence of solutions to nonlinear systems. SIAM J. Numer. Anal.,
14 (1977), 611–615.

[11] R.E. Moore and S.T. Jones, Safe starting regions for iterative methods. SIAM J. Numer.
Anal., 14 (1977), 1051–1065.

[12] R.E. Moore, A computational test for convergence of iterative methods for nonlinear sys-
tems. SIAM J. Numer. Anal., 15 (1978), 1194–1196.

[13] M.A. Wolfe, A modification of Krawczyk’s algorithm. SIAM J. Numer. Anal., 17 (1980),
376–379.

[14] R.E. Moore, Interval methods for nonlinear systems. Computing Supple., 2 (1980), 113–120.
[15] E. Hansen and S. Sengupta, Bounding solutions of systems of equations using interval

analysis. BIT, 21 (1981), 203–211.
[16] R.E. Moore and L. Qi, A successive interval test for nonlinear systems. SIAM J. Numer.

Anal., 19 (1982), 845–850.
[17] L. Qi, A note on the Moore test for nonlinear systems. SIAM J. Numer. Anal., 19 (1982),

851–857.
[18] K. Okumura, S. Kagaya and A. Kishima, An algorithm for searching roots of nonlinear

equation by interval analysis. Jour. of IECE, J65-A (1982), 1296–1297.

Application of the Krawczyk–Moore–Jones Algorithm 167

[19] L.V. Kolev, Finding all solutions of non-linear resistive circuit equations via interval analysis.
Int. J. Cir. Theor. and Appl., 12 (1984), 175–178.

[20] J.M. Shearer and M.A. Wolfe, An improved form of the Krawczyk–Moore algorithm. Applied
Math. Comp., 17 (1985), 229–239.

[21] K. Okumura, S. Saeki and A. Kishima, Improvement of algorithm using interval analysis
for solution of nonlinear circuit equations. 69-A (1986), 489–496.

[22] L.V. Kolev and V.M. Mladenov, An interval method for finding all operating points of
nonlinear resistive circuits. Int. J. Cir. Theor. and Appl., 18 (1990), 257–267.

[23] K. Okumura, Several applications of interval mathematics to electrical network analysis.
Kokyuroku No. 832, RIMA Kyoto University, 1993, 23–32.

[24] L.V. Kolev and V.M. Mladenov, An interval method for global non-linear DC circuit
analysis. Int. J. Cir. Theor. and Appl., 22 (1994), 233–241.

[25] N. Femia, A robust and fast convergent interval analysis method for the calculation of
internally controlled switching instants. IEEE Trans. CAS-I, Fundamental Theory and
Applications, 43 (1996), 191–199.

[26] K. Okumura, Recent topics of circuit analysis, an application of interval arithmetic. J. of
System Control Information Society of Japan, 40 (1996), 393–400.

[27] K. Yamamura, H. Kawata and A. Tokue, Interval solution of nonlinear equations using
linear programing. BIT Numerical Mathematics, 38 (1998), 186–199.

[28] K. Yamamura and S. Tanaka, Finding all solutions of systems of nonlinear equations using
the dual simplex method. BIT Numerical Mathematics, 42 (2002), 214–230.

[29] M.J. Sculte, Variable-precision, interval arithmetic processors. Application Specific Process-
ing, Kluwer Academic Publishers, Boston, 1997, 1–28.

[30] M.J. Sculte and E.E. Swartzlander Jr., A family of variable-precision, interval arithmetic
processors. IEEE Trans. on Computers, 49 (2000).

[31] D. Kuck, The Structure of Computers and Computations, Vol. 1. Wiley, New York, 1978, 33.
[32] T. Hisakado and K. Okumura, An approach to parallelization of Krawczyk’s method. Jour.

of ISCIE, 15 (2002), 495–501.
[33] F. Gray, Pulse code communications. U.S. Patent 2 632 058, March 17, 1953.
[34] P. Horowitz and W. Hill, The Art of Electronics, 2nd edition. Cambridge University Press,

1989.
[35] T. Hisakado, M. Hamada, A. Yonemoto and K. Okumura, Interval arithmetic using Gray

code. Proc. MWSCAS, 3 (2004), 391–394.
[36] T. Hisakado and K. Okumura, Moore test using Gray code. IEEE Proc. ISCAS, 2005,

2803–2806.
[37] H. Tsuiki, Real number computation through Gray code embedding. Theoretical Computer

Science, 284 (2002), 467–485.
[38] A. Yonemoto, T. Hisakado, M. Goto and K. Okumura, On-line arithmetic using Gray code

and its FPGA implementation. Proc. ECCTD, 2 (2003), 317–320.
[39] T. Hisakado, T. Nishimura and K. Okumura, Hardware implementation of Krawczyk algo-

rithm with FPGA. Tecnical Report of IEICE, NLP2001-43, 2001, 19–26.
[40] H. Nishimura, T. Hisakado and K. Okumura, Design and FPGA implementation of bit serial

Gray code adder. IEICE, Annual Convension Report A-3-4, 2005, 69.
[41] D. Buell, T. El-Ghazawi, K. Gaj and V. Kindratenko, High-performance reconfigurable

computing. Computer, IEEE Computer Society, 40 (2007).
[42] C. Piccardi, Bifurcations of limit cycles in periodically forced nonlinear systems—The

harmonic balance approach. IEEE Trans. Circuits Syst. I, 41 (1994), 315–320.
[43] M. Basso, R. Genesio and A. Tesi, A frequency method for predicting limit cycle bifurcations.

Nonlinear Dynamics, 13 (1997), 339–360.
[44] J.L. Moiola and G. Chen, Hopf bifurcation analysis, a frequency domain approach. Series

on Nonlinear Science, Series A, Vol. 21, L.O. Chua (ed.), World Scientific, Singapore, 1996.

[45] F. Bonani and M. Gilli, Analysis of stability and bifurcations of limit cycles in Chua’s circuit
through the harmonic balance approach. IEEE Trans. Circuits Syst. I, 46 (1999), 881–890.

[46] V. Lanza, M. Bonnin and M. Gilli, On the application of the describing function technique
to the bifurcation analysis of nonlinear systems. IEEE Trans. Circuits Syst. II, 54 (2007),
343–347.

