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A method for numerical solution of Volterra integral equations of the second kind with a
weakly singular kernel based on the double exponential (DE) transformation is proposed.
In this method we first express the approximate solution in the form of a Sinc expansion
based on the double exponential transformation by Takahasi and Mori in 1974 followed
by collocation at the Sinc points. We also apply the DE formula to the kernel integration.
In every sample equation a numerical solution with very high accuracy is obtained and
a nearly exponential convergence rate exp(−cM/log M), c > 0 in the error is observed
where M is a parameter representing the number of terms in the Sinc expansion. We
compared the result with the one based on the single exponential (SE) transformation by
Riley in 1992 which made us confirm the high efficiency of the present method.
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1. Introduction

In the present paper we consider a Volterra integral equation of the second
kind with a weakly singular kernel of the form

y(x) = g(x) + Lαy(x), x ≥ 0, (1.1)

where Lα denotes a weakly singular linear Volterra operator

Lαu(x) =
∫ x

0

k(x, ξ)
(x− ξ)α

u(ξ) dξ, 0 < α < 1. (1.2)

y(x) is the solution to be determined and g(x) and k(x, ξ) are given functions.
Throughout the present paper we assume that g(x) and k(x, ξ) are analytic on
0 ≤ ξ ≤ x, and we fix some positive constant X and solve the given equation over
0 < x < X. α is a parameter which determines the order of singularity at the right
edge point ξ = x and is assumed to be 0 < α < 1. Since the integral kernel has this
sort of singularity the equation (1.1) is said to have a weakly singular kernel.
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In general, the smoothness of the function g(x) and that of k(x, ξ) determine
the smoothness of the solution on x > 0. It is known that, under the assumption
for the analyticity of g and k, the solution y(x) of (1.1) is weakly singular at the
left edge point of the interval of integration (0, x) [1], i.e. its derivative behaves

y′(x) = O

(
1
xα

)
, x→ 0+. (1.3)

Since the singularity of the kernel in equation (1.1) will give some influence to the
accuracy of the numerical solution, it will be helpful for us to have some knowledge
about the singular behavior of the exact solution as mentioned above if we expect
a high order convergence of the numerical method.

The purpose of the present paper is to present a method for numerical solution
of Volterra integral equation of the type (1.1) using the Sinc collocation method
based on the double exponential (DE) transformation. In 1992 B.V. Riley [5] pro-
posed a Sinc collocation method for numerical solution of the equation (1.1) using
the transformation x = Xet/(1 + et). In the present paper we also give a method
similar to that by Riley. However, there is a significant difference between our
method and the method by Riley, i.e. we used the DE transformation proposed
by H. Takahasi and M. Mori in 1974 [10] instead of x = Xet/(1 + et). It will be
shown that by using the DE transformation the efficiency of the numerical solution
presents a remarkable improvement.

In the present paper we will follow the notation as in [5] for easy reference.

2. DE transformation

In this section we summarize the basic properties of the double exponential
(DE) transformation. In the present paper we apply the DE transformation to
two different components in the process of solving (1.1). The first component is
expansion of the solution of equation (1.1) in terms of the Sinc functions, and the
second component is numerical evaluation of the kernel integral (1.2).

First we introduce the DE transformation for the integral equation (1.1). Since
the sinc function is defined over −∞ < t < ∞ we need some transformation from
−∞ < t <∞ onto 0 < x < X. For this purpose we employ the DE transformation

x = ψX(t) =
X

2
tanh

(
π

2
sinh t

)
+
X

2
, (2.1)

or conversely

t = ψ−1
X (x) = log

(
1
π

log
(

x

X − x

)
+

√
1
π2

(
log

x

X − x

)2

+ 1

)
. (2.2)
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Then we have from (2.1)

ψX(t) = X
exp
(

π
2 sinh t

)
exp
(

π
2 sinh t

)
+ exp

(−π
2 sinh t

) (2.3)

and
dψX(t)
dt

= X
π cosh t(

exp
(

π
2 sinh t

)
+ exp

(−π
2 sinh t

))2 . (2.4)

Since the decay of derivative (2.4) is doubly exponential for large |t| as∣∣∣∣dψX(t)
dt

∣∣∣∣ = O

(
exp
(
−π(1 − ε)

2
exp|t|

))
, t→ ±∞, (2.5)

the transformation (2.1) is called the double exponential transformation [10]. ε is
an arbitrarily small positive constant due to the increase by cosh t in the numerator
of (2.4) for large |t|. Since ε is required only for mathematically rigorous discussion
we set ε = 0 in actual computation.

Note that the array of points tk = kh, k = 0,±1,±2, . . . which lie equi-distantly
on the entire real axis with an equal mesh size h will be mapped by ψX(t) onto an
array of points xk = ψX(kh) which lie on the finite interval 0 < x < X. We call
these points the Sinc points based on the DE transformation.

Next we consider application of the DE transformation to numerical evaluation
of the kernel integral (1.2). In this case the interval of integration is 0 < ξ < x and
hence we have only to replace X in (2.3) with x:

ξ = ψx(τ) = x
exp
(

π
2 sinh τ

)
exp
(

π
2 sinh τ

)
+ exp

(−π
2 sinh τ

) . (2.6)

Let the integral which we want to evaluate be∫ x

0

f(x, ξ) dξ. (2.7)

We assume here that f(x, · ) is regular and bounded on 0 < x and f( · , ξ) is
integrable on 0 < ξ < x. In addition we assume that f(x, ψx(τ))ψx

′(τ) is regular
on the strip domain

|Im τ | < dx (dx > 0) (2.8)

in the τ plane. Note that dx depends on x. If we apply variable transformation
ξ = ψx(τ) to (2.7) and integrate using the trapezoidal formula with an equal mesh
size h̃ we have the following double exponential (DE) formula for (2.7) [10]:

∫ x

0

f(x, ξ) dξ = h̃

∞∑
k=−∞

f(x, ψx(kh̃))ψ′
x(kh̃) + Ede(h̃),

Ede(h̃) = O

(
exp
(
−2πdx

h̃

))
.

(2.9)
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Ede(h̃) in (2.9) is the discretization error generated when (2.7) is integrated using
the DE formula.

If we write

uk =
exp
(

π
2 sinh kh̃

)
exp
(

π
2 sinh kh̃

)
+ exp

(−π
2 sinh kh̃

) (2.10)

then we see that

xk = ψx(kh̃) = xuk (2.11)

and

ψ′
x(kh̃) =

(
dξ

dτ

)
τ=kh̃

= x
π cosh τ(

exp
(

π
2 sinh τ

)
+ exp

(−π
2 sinh τ

))2
∣∣∣∣∣
τ=kh̃

= x(π cosh kh̃)uk(1 − uk) (2.12)

hold at the Sinc points ξk = ψx(kh̃) = xuk, k = 0,±1,±2, . . . . Also we have
from (2.6)

x− ξ = x
exp
(−π

2 sinh τ
)

exp
(

π
2 sinh τ

)
+ exp

(−π
2 sinh τ

) , (2.13)

and hence

x− ξk = x(1 − uk) = x
exp
(−π

2 sinh kh̃
)

exp
(

π
2 sinh kh̃

)
+ exp

(−π
2 sinh kh̃

) . (2.14)

3. DE-Sinc approximation

In this section we give an overview of the Sinc expansion and describe how we
approximate the solution y(x) of the equation (1.1) defined over a finite interval
0 < x < X in the form of a Sinc expansion.

3.1. Sinc cardinal series
As is well known the sinc function is defined

sinc(t) =
sinπt
πt

, −∞ < t <∞. (3.1)

Suppose that a function v(t) is regular on the strip domain

|Im t| < d (d > 0) (3.2)

and satisfies

lim
t→±∞ v(t) = 0. (3.3)
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Then, it is known that under some additional mild analytical conditions v(t)
can be expressed in terms of the following sinc cardinal expansion using the sinc
function (3.1):

v(t) =
∞∑

k=−∞
v(kh) sinc

(
t− kh

h

)
+ Esinc(h), Esinc(h) = O

(
exp
(
−πd
h

))
. (3.4)

See [6, 8, 9] and references therein about the details of these conditions. The last
term Esinc(h) is the discretization error due to the sinc expansion and we see that
this error decreases very quickly as the mesh size h becomes small. If we write the
sum in the right hand side

vh(t) =
∞∑

k=−∞
v(kh) sinc

(
t− kh

h

)
, (3.5)

then vh(jh) = v(jh) holds, and hence vh(t) is an interpolation to v(t) based on the
points tk = kh, k = 0,±1, . . . . We also see that vh(t) converges to v(t) as h→ 0.

3.2. Sinc functions over a finite interval
As seen from (3.1) the function sinc(t) is defined over the infinite interval

−∞ < t < ∞. From this function we define the basis functions over the finite
interval 0 < x < X using the inverse function ψX

−1(x) of the DE transformation
(2.3) in the following form:

S(j, h,X)(x) = sinc
(
ψ−1

X (x) − jh

h

)
, j = 0,±1,±2, . . . . (3.6)

The basis functions (3.6) are characterized by the parameter h, and we write them
S(j, h,X)(x) and capitalize as Sinc in order to discriminate them against the orig-
inal function sinc(t). Since

S(j, h,X)(xk) = S(j, h,X)(ψX(kh)) = sinc
(
ψ−1

X (ψX(kh)) − jh

h

)

= sinc(k − j) =
sinπ(k − j)
π(k − j)

(3.7)

holds, the basis functions (3.6) satisfy an orthogonal relation

S(j, h,X)(xk) = δkj (3.8)

where δkj is the Kronecker’s delta. If we apply the inverse transformation to (3.4)
we have the following Sinc expansion over 0 < x < X:

V (x) =
∞∑

k=−∞
V (xk)S(k, h,X)(x) + Esinc(h), (3.9)

where

V (x) = v(ψ−1
X (x)), xk = ψX(kh). (3.10)
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3.3. Sinc expansion of the solution
Now we are ready to approximate the solution y(x) of equation (1.1) in the form

of a Sinc expansion. Since y(x) is defined on the finite interval 0 < x < X we first
need to transfer the finite interval 0 < x < X onto the infinite interval −∞ < t <∞
and, in addition, to make it satisfy (3.3) in order for the Sinc expansion (3.4) to
be valid. For this purpose we define a function Y (x) corresponding to the solution
y(x) of (1.1) in the following form:

Y (x) = y(x) −
(
y(0) +

y(X) − y(0)
X

x

)
. (3.11)

We see Y (x) satisfies

Y (0) = Y (X) = 0. (3.12)

This condition corresponds to (3.3). Therefore Y (x) can be expressed in terms
of the basis functions S(k, h,X), k = −∞, . . . ,∞ in the following form of Sinc
expansion in high accuracy if h is small:

Z∞,∞(Y, h)(x) ≡
∞∑

j=−∞
Y (ψX(jh))S(j, h,X)(x). (3.13)

We assume here more specifically that, for some positive constant α > 0, Y (x)
satisfies

|Y (x)| ≤

⎧⎪⎪⎨
⎪⎪⎩
C1x

1−α, 0 < x ≤ 1
2
X,

C ′
1(X − x),

1
2
X < x ≤ X.

(3.14)

The behavior on 0 < x ≤ X/2 in (3.14) comes from the fact that Y (x) approaches
to 0 as x1−α (x→ 0+) corresponding to (1.3), while the behavior on X/2 < x ≤ X

comes from the fact that Y (x) approaches to 0 at x = X without any singularity
as seen from (3.11). Then we can see that after we carry out DE transformation
(2.3) Y (ψX(t)) presents DE decay

|Y (ψX(t))| =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
O

(
exp
(
−π

2
(1 − α)e|t|

))
, t→ −∞,

O

(
exp
(
−π

2
e|t|
))

, t→ +∞.

(3.15)

When we use the expansion (3.13) for actual numerical computation we need
to truncate the Sinc expansion appropriately at some lower limit k = −M and at
some upper limit k = N :

ZM,N (Y, h)(x) ≡
N∑

j=−M

Y (ψX(jh))S(j, h,X)(x). (3.16)
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In the present situation, as seen from (3.15), the decay of the function Y (ψX(t))
in the neighborhood of 0, the left edge point, is slower than the decay in the
neighborhood of X, the right edge point, and hence we choose M and N so that
M ≥ N holds. Therefore, as in [5], we choose M , the larger number of terms of
Sinc expansion, as a parameter in terms of which the performance of the present
method is represented. Thus, since we truncate (3.16) at k = −M we have a
truncation error

Etrunc(M) = Z∞,∞(Y, h)(x) − ZM,N (Y, h)(x)

= O

(
exp
(
−π

2
(1 − α) exp(Mh)

))
(3.17)

from (3.15). This truncation should be carried out in such a way that the trun-
cation error Etrunc(M) be approximately equal to the discretization error Esinc(h)
in (3.4), i.e.

exp
(
−πd
h

)
= exp

(
−π

2
(1 − α) exp(Mh)

)
, (3.18)

which results in the following relation between the mesh size h and the number of
terms M :

h =
1
M

log
2dM
1 − α

. (3.19)

On the other hand if we truncate the sum (3.16) at k = N we have a truncation error
E′

trunc(N) = O
(
exp
(−π

2 expNh
))

. This truncation should be done in such a way
that this error be approximately equal to Etrunc(M) in (3.17), i.e. (1−α) exp(Mh) =
exp(Nh), which results in the following relation between M and N :

N =
�
M +

1
h

log(1 − α)
�

+ 1. (3.20)

� � denotes that fraction is discarded. Thus, if we first choose the lower limit
M , next the mesh size h to satisfy (3.19) and finally the upper limit N to satisfy
(3.20), then from (3.18) and (3.19) we obtain the following error bound for the
approximation of Y (x) in the form of (3.16) [7]:

|Y (x) − ZM,N (Y, h)(x)| ≤ C2 exp
(
− πdM

log(2dM/(1 − α))

)
. (3.21)

Note that from (3.8) ZM,N (Y, h)(x) satisfies

ZM,N (Y, h)(ψX(kh)) = Y (ψX(kh)), k = −M, . . . , N (3.22)

so that it is an interpolation to Y (x).
d is a parameter appearing in (3.2) and depends on the analyticity of Y (ψX(t)).

It is known that in case of the DE transformation (2.1) d satisfies d ≤ π/2 [10].
However, it is usually difficult to get the exact value of d in practical applications,
and in the examples in Section 8 we use d = π/2.
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3.4. DE-Sinc collocation method
Here we have come to the step where we consider an approximation to the

solution y(x) of the integral equation (1.1) in terms of the basis functions

S(j, h,X), j = −M, . . . , N, 1 and x/X (3.23)

in the following form:

CM,N (y, h)(x) = g(0) +
N∑

j=−M

Y (ψX(jh))S(j, h,X)(x) + (y(X) − g(0))
x

X
. (3.24)

That is, we replaced Y (x) in (3.11) with the Sinc expansion (3.16). We also used
y(0) = g(0). This function interpolates y(x) at x = 0, ψX(jh) (j = −M, . . . , N)
and X as seen from (3.8), i.e. CM,N (y, h)(x) satisfies

CM,N (y, h)(x) = y(x), x = 0, ψX(jh) (j = −M, . . . , N), X. (3.25)

As we already mentioned we first choose the lower limit M , next compute the
mesh size h = 1

M log(2dM/(1 − α)) and finally take the upper limit N =
�
M +

1
h log(1 − α)

�
+ 1. Then from (3.11), (3.24) and (3.21) we see that the error of the

approximation (3.24) satisfies

|y(x) − CM,N (y, h)(x)| ≤ C3 exp
(
− πdM

log(2dM/(1 − α))

)
. (3.26)

This indicates that as M becomes large the error converges to 0 very quickly.
From this behavior of CM,N (y, h), we see that if we write

yM,N (x) = g(0) +
N∑

j=−M

cjS(j, h,X)(x) + cN+1
x

X
(3.27)

and determine the coefficients cj appropriately, yM,N (x) will approximate the so-
lution y(x) of (1.1) in high precision. The unknown value y(X) at the right edge is
included in the coefficients cN+1 as y(X) − g(0). The coefficients cj in the Sinc
expansion yM,N (x) can be determined by the Sinc collocation method in such
a way that yM,N (x) is forced to satisfy (1.1) at the Sinc points xj = ψX(jh)
(j = −M, . . . , N), xN+1 = X. We call the method DE-Sinc collocation method.
The details of the DE-Sinc collocation method will be discussed in Section 5.
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4. Integration of the kernel by the DE formula

In this section we consider numerical integration of the kernel (1.2). We regard
integral (1.2) as a definite integral over the fixed interval (0, x) and apply the DE
formula with a mesh size h̃. Then from (2.9) we have∫ x

0

k(x, ξ)
(x− ξ)α

y(ξ) dξ

= xh̃
∞∑

j=−∞

k(x, xuj)
xα(1 − uj)α

y(xuj)π cosh(jh̃)uj(1 − uj) + Ede(h̃), (4.1)

Ede(h̃) = O

(
exp
(
−2πdx

h̃

))
. (4.2)

uk is defined in (2.10). Note that the coefficients in the discretization error differ
by a factor of two between Esinc(h) in (3.4) and Ede(h̃) in (4.2).

We see that k(x, ξ)y(ξ)/(x− ξ)α satisfies

∣∣∣∣ k(x, ξ)(x− ξ)α
y(ξ)

∣∣∣∣ ≤
⎧⎪⎪⎨
⎪⎪⎩
C4, 0 < ξ ≤ 1

2
x,

C
′
4(x− ξ)−α,

1
2
x < ξ ≤ x.

(4.3)

If we apply the DE transformation to (4.1) we see that

∣∣∣∣ k(x, ψx(t))
(x− ψx(t))α

y(ψx(t))ψx
′(t)
∣∣∣∣ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
O

(
exp
(
−π(1 − ε)

2
e|t|
))

, t→ −∞

O

(
exp
(
−π(1 − ε)

2
(1 − α)e|t|

))
, t→ +∞

(4.4)
holds conversely to (3.15). In actual computation we need to truncate the infinite
sum into a finite sum. Suppose that we truncate the infinite sum in the right hand
side of (4.1) at some lower limit j = −Ñ and at some upper limit j = M̃ :

xh̃

M̃∑
j=−Ñ

k(x, xuj)
xα(1 − uj)α

y(xuj)π cosh(jh̃)uj(1 − uj). (4.5)

Since, as seen from (4.4), in the present case the decay of the integrand in the
neighborhood of x, the right edge point, is slower, in contrast to (3.15), than the
decay in the neighborhood of 0, the left edge point, M̃ ≥ Ñ holds. And hence we
should choose here M̃ as the parameter in terms of which the performance of the
present DE formula is represented. Furthermore, in order to compute (3.27) and
(4.5) with the same value of M we take M = M̃ , so that M appears as the lower
limit in (3.27) while as the upper limit in (4.5).
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If we equate the discretization error in (4.2) and the truncation error due to
(4.5) under the assumption that M is fixed as the same value in the expansion
(3.27) we have the following relation between h̃ and M :

h̃ =
1
M

log
4dxM

1 − α
. (4.6)

Remember that, since k(x, ψx(t)) includes x, dx in (4.6) depends on x. Therefore
the truncation of the sum at the lower limit should be done in the same way as
(3.20) at j = −Ñ where

Ñ =
�
M +

1
h̃

log(1 − α)
�

+ 1. (4.7)

We define here

Lα
Ñ,M

yM,N (x) = x1−αh̃

M∑
j=−Ñ

k(x, xuj)yM,N (xuj)π cosh(jh̃)uj(1 − uj)1−α. (4.8)

Then, if we write the error term (4.2) in the integral as a function of M we have
the following inequality for the error due to approximation by the DE formula:

∣∣Lαy − Lα
Ñ,M

y
∣∣ ≤ C5 exp

(
− 2πdxM

log(4dxM/(1 − α))

)
. (4.9)

If d ≤ 2dx (0 < x < X) holds this error can be neglected compared with the error
(3.26) of the Sinc expansion with the same value of M . And hence, we assume
hereafter that

d ≤ 2dx, 0 < x < X (4.10)

holds and ignore the error (4.9).
Note that, as seen from (2.10), uj in (4.5) depends only on h̃ but not on x.

Therefore, we do not have to evaluate the major part of the integrand repeatedly
for different x in the right hand side of (4.5) if k(x, ξ) does not depend on ξ or
k(x, ξ) is a function of the form ξβ(x − ξ)γ (β > −1, γ > α − 1). Also, in actual
computation of (4.5), we should compute 1 − uj by using (2.14) in order to avoid
loss of significant digits by cancellation in the neighborhood of uj = 1.

5. Approximate solution by the DE-Sinc collocation method

In this section we apply the DE-Sinc collocation method to the approximate
solution of (1.1).

When we apply the collocation method we first choose M in (3.27) as the upper
limit of (4.8), next compute the mesh size as h̃ = 1

M log(4dM/(1− α)), and finally
take the lower limit Ñ =

�
M + 1

h̃
log(1 − α)

�
+ 1.
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In order to determine the coefficients cj in the expansion (3.27) we replace y(x)
in (1.1) with yM,N (x) in (3.27) and x with the Sinc point xi. Then we have the
following system of equations at each collocation point xi:

yM,N (xi) = g(xi) + Lα
Ñ,M

yM,N (xi), i = −M, . . . , N + 1. (5.1)

If we replace yM,N (xi) with the right hand side of (3.27) and define f0(x) = 1 and
f1(x) = x/X we have

g(0) +
N∑

j=−M

cjS(j, h,X)(xi) + cN+1
xi

X
− g(0)Lα

Ñ,M
f0(xi)

−
N∑

j=−M

cjL
α
Ñ,M

S(j, h,X)(xi) − cN+1L
α
Ñ,M

f1(xi) = g(xi), (5.2)

which can be reduced to

ci +
xi

X
cN+1 −

N∑
j=−M

Lα
Ñ,M

S(j, h,X)(xi)cj − Lα
Ñ,M

f1(xi)cN+1

= g(xi) + g(0)
(
Lα

Ñ,M
f0(xi) − 1

)
(5.3)

owing to (3.8). This equation can be written in the form of an (M + N + 2)-nd
order matrix equation

(AM,N − EM,N )c = g, (5.4)

where

AM,N =

⎛
⎜⎜⎜⎜⎜⎝

I

x−M/X

x−M+1/X
...

xN/X

0 · · · 0 1

⎞
⎟⎟⎟⎟⎟⎠ (5.5)

and I is the unit matrix. The (i, j) elements eij of the matrix EM,N are given

eij = Lα
Ñ,M

S(j, h,X)(xi), i = −M, . . . , N + 1, j = −M, . . . , N, (5.6)

ei,N+1 = Lα
Ñ,M

f1(xi), i = −M, . . . , N + 1. (5.7)

c and g are vectors

c = (c−M , . . . , cN+1)T (5.8)

and

g = (g−M , . . . , gN+1)T , (5.9)
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where the i-th element gi of g is

gi = g(xi) + g(0)
(
Lα

Ñ,M
f0(xi) − 1

)
, i = −M, . . . , N + 1. (5.10)

If we solve this system of linear equations for c and substitute the solution for cj
in (3.27) we have a numerical solution yM,N (x).

6. Error bound

In this section we derive inequalities which represent a typical error behavior
of the approximate solution by the DE-Sinc method.

First we try to derive a bound of the error at each Sinc point xi. From (1.1)
and (5.1) we see that

CM,N (y, h)(xi) − yM,N (xi) = y(xi) − yM,N (xi) = Lαy(xi) − Lα
Ñ,M

(xi)yM,N (xi)

=
{
Lαy(xi) − Lα

Ñ,M
CM,N (y, h)(xi)

}
+ Lα

Ñ,M
{CM,N (y, h)(xi) − yM,N (xi)} (6.1)

because at the Sinc point CM,N (y, h)(xi) = y(xi) holds from (3.25). If we transpose
the second term in the rightmost side to the leftmost side and write the result in a
matrix form, we have from (3.24), (3.25) and (3.27)

(AM,N − EM,N )(b − c) = Lαy − Lα
Ñ,M

CM,N (y, h), (6.2)

and hence

(AM,N − EM,N )(b − c) =
{
Lαy − Lα

Ñ,M
y
}

+ Lα
Ñ,M

{y − CM,N (y, h)}, (6.3)

where c is defined in (5.8) and

b = (Y (x−M ), . . . , Y (xN ), Y (X) − g(0))T . (6.4)

Note that (b−c)i = Y (xi)−ci is the error at the Sinc point xi. Lαy and Lα
Ñ,M

(y, h)
are vectors whose i-th elements are Lαy(xi) and Lα

Ñ,M
CM,N (y, h)(xi), respectively.

We write here

μM = ‖(AM,N − EM,N )−1‖. (6.5)

In the present paper ‖ · ‖ denotes the infinity vector norm and the associated matrix
norm. From (6.3) we see that

‖b − c‖ ≤ μM

{∥∥Lαy − Lα
Ñ,M

y
∥∥+

∥∥Lα
Ñ,M

{y − CM,N (y, h)}∥∥} (6.6)

holds. And hence from (4.9), which can be ignored under the assumption (4.10),
and from (3.26) we finally have a bound for the maximum error at the Sinc points:

max
−M≤i≤N+1

|y(xi) − ci| ≤ C6μM exp
(
− πdM

log(2dM/(1 − α))

)
. (6.7)

This represents a nearly exponential convergence.
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If an estimate of μM is available we immediately have an error bound from
(6.7). It is not impossible to get a bound of μM = ‖(AM,N −EM,N )−1‖ in a
mathematically rigorous manner, but it is usually difficult or unrealistic as is dis-
cussed in [5]. Instead, in the present paper we monitor the value of μM when we
actually solve (5.4) and judge whether the numerical solution obtained is reliable
or not. If μM is not too large we can say that the solution obtained is reliable.

In order to solve the system of linear equations (5.4) we employed the LU
decomposition code DECOMP from the book [2]. DECOMP computes ‖AM,N −
EM,N‖ which we denotes ANORM as well as an estimate of ‖(AM,N − EM,N )−1‖
which we denote AINORM, and returns COND = ANORM ∗ AINORM as an es-
timate of the condition number of the matrix AM,N − EM,N . Although AINORM
usually gives a good estimate of μM DECOMP does not return it, and hence we
modified DECOMP so that it also returns AINORM. In Table 1 in Section 8 we
show the value of COND and AINORM when we solved the equation for Example 1.
We note here that there is a small difference between the definition of the matrix
norm in the present method and that used in DECOMP. See [4] for detailed dis-
cussion about the difference.

In order to get a bound of the error at an arbitrary point x we use

|y(x) − yM,N (x)| ≤ |y(x) − CM,N (y, h)(x)| + |CM,N (y, h)(x) − yM,N (x)|. (6.8)

Here we note that it can be shown [5] that the Sinc functions S(j, h,X) satisfy

N∑
j=−M

|S(j, h,X)(x)| ≤ C7 logM (6.9)

for large M , and hence

|CM,N (y, h)(x) − yM,N (x)|

=

∣∣∣∣∣
N∑

j=−M

(y(xj)S(j, h,X)(x) − cjS(j, h,X)(x)) + (y(X) − g(0) − cN+1)
x

X

∣∣∣∣∣
≤

N∑
j=−M

|y(xi) − cj | |S(j, h,X)(x)| + |y(X) − g(0) − cN+1|

≤ C8 logM‖b − c‖ (6.10)

holds. Then from (3.26), (6.7) and (6.8) we finally obtain

|y(x) − yM,N (x)| ≤ C9μM logM exp
(
− πdM

log(2dM/(1 − α))

)
(6.11)

for all 0 ≤ x ≤ X under the assumption (4.10).
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7. SE transformation

In 1992 B.V. Riley [5] proposed a method for solving Volterra integral equations
with weakly singular kernel based on the transformation

x = ψ
(S)
X (t) = X

exp(t)
1 + exp(t)

. (7.1)

In this case the derivative dψ(S)
X (t)/dt behaves

dψ
(S)
X (t)
dt

= X
exp(t)

(1 + exp(t))2
= O (exp(−|t|)) , t→ ±∞. (7.2)

Since this decay is singly exponential we call (7.1) the single exponential (SE)
transformation.

Let S(S)(j, h,X) be the Sinc function based on the SE transformation and
write

y
(S)
M,N (x) = g(0) +

N∑
j=−M

c
(S)
j S(S)(j, h,X)(x) + c

(S)
N+1

x

X
. (7.3)

In case of the SE transformation we first choose M and compute h, N and h̃ as
follows [5]:

h =

√
πd

(1 − α)M
, N = �(1 − α)M� + 1, h̃ =

√
2πd

(1 − α)M
. (7.4)

Then, if we replace DE transformation with SE transformation and apply the
Sinc collocation method developed in the preceding sections with the parameters
selected above, we obtain a numerical solution y

(S)
M,N (x) in (7.3). In [5] it is also

proved that the maximum error of the numerical solution y
(S)
M,N (x) at the Sinc

points x(S)
i = ψ

(S)
X (ih) satisfies

max
−M≤i≤N+1

∣∣y(x(S)
i

)− c
(S)
i

∣∣ ≤ C10

√
M exp

(−√πd(1 − α)M
)

(7.5)

and that the error at an arbitrary point x satisfies

∣∣y(x) − y
(S)
M,N (x)

∣∣ ≤ C11

√
M logM exp

(−√πd(1 − α)M
)

(7.6)

for all 0 ≤ x ≤ X.
Riley [5] derived an estimate μM ≤ 4 under certain assumptions, so that (7.5)

and (7.6) do not include μM . But these assumptions have some ambiguous expres-
sion such as “for all M in a practical range.” And hence we did not adopted the
method of proof in [5] and instead we monitored μM during numerical computation
of solution.
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8. Numerical examples

In this section we apply the method developed in the previous sections to two
examples.

In order to obtain numerical solutions we need to solve (M +N + 2)-nd order
system of linear equations for c as is already mentioned. We employed the LU
decomposition code DECOMP for that purpose and solved the problems with
quadruple precision arithmetic because we want to emphasize the high preci-
sion of the numerical solution obtained by the present method. We used Fujitsu
Fortran compiler whose machine epsilon in quadruple precision arithmetic is about
9.63 × 10−35. In every example we used d = π/2.

Since in both examples the exact solution y(x) is known, we computed the error

max
−M≤i≤N+1

|y(xi) − yM,N (xi)| (8.1)

of the approximate solution yM,N (xi) based on the DE transformation at the Sinc
points xi (i = −M,−M+1, . . . , N+1). Also we computed the error of the solution
based on the SE transformation

max
−M≤i≤N+1

∣∣y(x(S)
i

)− y
(S)
M,N

(
x

(S)
i

)∣∣ (8.2)

at the Sinc points x(S)
i (i = −M,−M + 1, . . . , N + 1).

Example 1.

y(x) =
√
x+

πx

2
−
∫ x

0

y(t)√
x− t

dt, 0 ≤ x ≤ X,

exact solution: y(x) =
√
x.

This problem is from [5]. In Fig. 1 we show the error (8.1) with X = 1 and
with X = 8 for M = 2, 4, 8, 16, 32 and 64. The curve marked as DE (X = 1) is
for the error by the present method based on the DE transformation with X = 1,
while the curve marked as DE (X = 8) is for the error with X = 8. This shows
that our method gives a good solution even for X as large as 8. In this figure we
also find a curve marked as SE (X = 1) which shows the error by the method based
on the SE transformation with X = 1. In this figure the convergence behavior
(6.7) of the error to zero with the DE transformation and also (7.5) with the SE
transformation are clearly observed. It is apparent that the convergence rate by
the DE transformation is much faster than that by the SE transformation.

In Table 1 we show COND, an estimate of the condition number, and
AINORM, an estimate μM , of the matrix AM,N − EM,N returned by DECOMP
in case of the DE transformation with X = 1. In this table we see that μM =
‖(AM,N − EM,N )−1‖ is kept reasonably small even for M as large as 64.
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Fig. 1. Maximum error in Example 1.

Table 1. COND and AINORM for the matrix AM,N − EM,N by the DE-Sinc method

in Example 1.

M COND (DE) AINORM (DE)
2 1.55e + 01 3.37e + 00
4 2.73e + 01 4.01e + 00
8 6.08e + 01 6.00e + 00
16 1.54e + 02 8.78e + 00
32 5.39e + 02 1.68e + 01
64 1.74e + 03 3.16e + 01

In case of X = 1 we divided the interval 0 ≤ x ≤ X = 1 into 1000 equal sub-
intervals with mesh size 0.001 and computed also the error |y(xi) − yM,N (xi)| on
the equal mesh xi = i/1000, 1 ≤ i ≤ 999 for each M . In Table 2 we show the
maximum error on the Sinc mesh Xj = ψ(jh), j = −M, . . . , N and that on the
equal mesh together with the points at which the maximum is attained.

In Fig. 2 we show the graph of the exact solution y(x) =
√
x as well as those

of the numerical solutions with M = 2 and M = 4. The solid curve corresponds
to y(x), the dotted curve to M = 2 and the broken curve to M = 4. We see that
even with M = 4 we obtain a fairly good numerical solution. As M becomes larger
the numerical solution approximates y(x) better, and with M = 8 we are almost
unable to discriminate the numerical solution from the exact solution on the graph.
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Table 2. The point and the error at which the maximum is attained on DE-Sinc mesh

and on equal mesh in Example 1.

on DE-Sinc mesh on equal mesh
M at x error at x error
2 0.994 2.70e − 02 0.828 7.03e − 02
4 0.500 4.05e − 03 0.741 1.39e − 02
8 0.832 1.23e − 04 0.912 4.27e − 04
16 0.715 1.59e − 07 0.790 6.62e − 07
32 0.628 7.15e − 13 0.681 3.64e − 12
64 0.573 1.15e − 22 0.452 6.99e − 18

Fig. 2. Exact solution y =
√

x and the numerical solutions for M = 2 and M = 4 in

Example 1.

Example 2.

y(x) = x2 +
∫ x

0

(10 exp(−(x− t)) − 6 exp(−2(x− t)))y(t) dt, 0 ≤ x ≤ X,

exact solution: y(x) =
15 exp(4x)

112
+

4 exp(−3x)
189

− x2

6
− 17x

36
− 67

432
.
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In 2003 Muhammad and Mori [3] proposed a method for indefinite numerical
integration based on the DE transformation, and in 2005 M. Muhammad et al. [4]
applied this method to numerical solution of Volterra integral equations of the
second kind with a regular kernel. On the other hand, even if α = 0 holds in (1.1),
i.e. the equation in question is a Volterra integral equation with a regular kernel,
the present method can of course be applied to numerical solution of the equation.
Example 2 is a problem which meets the situation. We set α = 0 and chose the
parameters as follows:

h =
1
M

log(2dM), h̃ =
1
M

log(4dM), N = Ñ = M + 1. (8.3)

We solved the problem with X = 1 using the present method and the one proposed
by Muhammad et al. [4] for M = 2, 4, 8, 16, 32, 64, 96 and 128. In Fig. 3 we
show the error of numerical solution by these two methods as well as the error by
the method based on the SE transformation which we marked as SE-Sinc. DE-Sinc
indicates the error by the present method, while DE-indef indicates the error by
the method in [4]. We see that the methods based on the DE transformation give
a good result, although the present method presents a slightly better convergence.
In Table 3 we show COND and AINORM obtained by the DE-Sinc method in
Example 2. From this table we see that μM is kept small also in this problem.

Fig. 3. Maximum error in Example 2.
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Table 3. COND and AINORM for the matrix AM,N − EM,N by the DE-Sinc method

in Example 2.

M COND (DE) AINORM (DE)
2 1.39e + 02 1.86e + 01
4 3.18e + 02 4.40e + 01
8 3.90e + 02 3.79e + 01
16 3.92e + 02 2.24e + 01
32 3.90e + 02 1.20e + 01
64 4.39e + 02 7.76e + 00
128 4.94e + 02 4.91e + 00
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