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Modeling of Quality Parameter Values for Improving Meshes
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A novel quasi-statistical approach to improve the quality of triangular meshes is presented.
The present method is based on modeling of an event of the mesh improvement. This
event is modeled via modeling of a discrete random variable. The random variable is
modeled in a tangent plane of each local domain of the mesh. One domain collects several
elements with a common point. Values of random variable are calculated by modeling
formula according to the initial sampling data of the projected elements with respect to
all neighbors of the domain. Geometrical equivalent called potential form is constructed
for each element of the domain with a mesh quality parameter value equal to the modeled
numerical value. Such potential forms create potential centers of the domain. Averaging
the coordinates of potential centers of the domain gives a new central point position.
After geometrical realization over the entire mesh, the shapes of triangular elements are
changed according to the normal distribution. It is shown experimentally that the mean
of the final mesh is better than the initial one in most cases, so the event of the mesh
improvement is likely occurred. Moreover, projection onto a local tangent plane included
in the algorithm allows preservation of the model volume enclosed by the surface mesh.
The implementation results are presented to demonstrate the functionality of the method.
Our approach can provide a flexible tool for the development of mesh improvement
algorithms, creating better-input parameters for the triangular meshes and other kinds of
meshes intended to be applied in finite element analysis or computer graphics.

Key words: random variable modeling, randomness, triangulation, mesh quality parame-
ter, mesh improvement

1. Introduction

The purpose of the present section is to give a survey of mesh improvement
algorithms and show the score of our method. The mesh improvement is almost
an obligatory step for obtaining a valid finite element mesh. In spite of a flurry of
activities in the field of the mesh modification, the mesh improvement remains a
difficult and computationally expensive problem.

There are many improvement techniques for the optimal point placement (see [1]
and references therein). Most of them are based on the idea of the local optimization
and require the improvement of such mesh quality parameters as aspect ratio (AR),
area, etc. Global mesh optimization has been also studied recently [2]. In spite of
the well-known fact that a local enhancement does not often provide reliable results,
local methods are preferable in many applications with a rather large set of polygons,
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because the computational time is much less than that of global-based techniques.
In fact, these methods can be called deterministic. Recently, an implementation
of the statistical approach to the mesh quality parameter modeling was discussed
in [3]. The aspect of the suggested idea is adjusted in the present paper. For
practical applications, it is necessary that the results of a mesh improvement allow
the construction of the topologically correct meshes. However, it is very difficult
or even impossible to generate a mesh with elements corresponding exactly to the
ideal mesh quality parameter values (in the case of triangular mesh equal to unity
values) if topology is strictly preserved. The goal of the presented research is to evoke
an event of the shape improvement of the triangles with respect to the topological
structure of the mesh by producing the elements with the normal distribution of
selected mesh quality parameter values. Gaussian distribution function is taken in
the modeling formula to achieve the global consistency of the event. Local modeling
and the realization of few numbers temper the randomness that may occur. Proposed
method can be used in a pre-processing stage for subsequent studies (finite element
method (FEM [4]), computer graphics (CG), etc.) based on triangle meshes by
providing the better-input parameters for these processes.

In order to point out some properties of the suggested method and to show
that its concept is totally different from existing ones, let us here briefly overview
the methods of the mesh improvement related to computer-aided design (CAD) and
computer-aided engineering (CAE) applications.

There are two main ways of improving the mesh quality: (1) modification of
the mesh topology by inserting or deleting nodes, or by local reconnection (though
it is sometimes necessary to minimize the changes in the topology of a surface) and
(2) smoothing technique. In [5], a smoothing technique is defined as a means of
correcting poorly shaped elements; that is, smoothing is an operation for producing
elements that closely resemble theoretical elements.

Laplacian smoothing [6, 7] and its variations are the earliest of mesh improve-
ment methods. In this technique, nodes are moved into the areas of poorly condi-
tioned elements of the mesh. The Laplacian algorithm locates an offending node
and moves it to the centroid of the surrounding nodes for improving the shape of the
elements. On some non-convex domains, nodes can be pulled outside the boundary.
An angle smoother in 2D, which tends to mount torsion springs between nodes and
to minimize the system energy, was proposed in [8]. In optimization-based methods
so-called the cost function is minimized, instead of moving each node in the basis
of some geometric characteristic as done in Laplacian and angle-based smoothing.
There are several kinds of the cost functions: minimum (maximum) angle [9, 10],
aspect ratio [11] and distortion metrics [12, 13, 14]. While optimization-based meth-
ods are very effective to avoid the invalid elements, the computational time is much
longer than that of Laplacian and angle-based techniques. Therefore in [9, 12] the
authors advocate that a combined Laplacian/optimization-based approach should
be applied. In the physically based methods, it is assumed that nodes are moved
under the influence of some forces so that the shape of the incident elements is im-
proved. In [15, 16], the authors consider a mesh as a system of springs that exert
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repulsive or attractive forces. In the methods [17, 18], nodes are moved to attain
equilibrium at centers of bubbles. Some physically based methods can be classified as
the optimization-based techniques. For instance, in [19] the forces at each node are
considered. The simulation of these forces and the minimum energy configuration
are defined by using an optimization procedure.

In the recent years, CG community has paid more attention to the mesh smooth-
ing based on a signal processing approach, pioneered by Taubin in 1995 [20]. Rational
filters offer an approach to the mesh smoothing [21], where a Laplacian operator and
a curvature operator are used to remove undesirable noise. Subdivision schemes are
an alternative approach to the problem. Nevertheless, subdivision schemes [22] are
able to deal with the arbitrary topology but not with the arbitrary connectivity, as
mentioned by Kobbelt et al. in [23].

Despite the many practical applications of triangle meshes in CG, there are ap-
plications, which require well-shaped triangulations, for example a texture mapping
technique. In FEM applications not only accuracy of calculations but also the speed
may be sacrificed. Still well-shaped triangulations may be useful as mentioned in [24]
“forty-odd years after the invention of the finite element method, our understanding
of the relationship between mesh geometry, numerical accuracy, and stiffness matrix
conditioning remains incomplete, even in the simplest cases.” If a mesh is created for
FEM applications, it is very important to control the mesh gradation smoothness.
Shape elements have a strong influence on a discretization error. When the mesh gra-
dations are not smooth, the discretization error of the neighboring elements changes
markedly. From the physical point of view, this means that the relative stiffness of
neighboring elements also changes significantly, which may cause problems in many
tasks. For instance, all transient simulations (metal forming problems like forging,
extrusion, rolling, etc., where the mesh of the workpiece evolves to represent the
material flow) and heat transfer processes are concerned with tracking phenomenon
that propagates through the domain. If stiffness changes are too large, propaga-
tion information can be made to reflect back incorrectly in the opposite direction,
just as would occur when a stress wave hits the interface of materials of different
stiffness [25]. One of the main properties of our quasi-statistical approach is that a
uniform (homogeneous) mesh in the sense of the distribution of the element shapes
is received that is more amenable to some numerical calculations. In general, our
method allows the reduction in the number of very low quality elements avoiding
overly good elements. It is achieved by means of a mesh uniformity and improvement
of the average AR of a mesh if topology does not restrict. The method is designed
to improve the geometrical shape of the mesh faces without distorting the discrete
surface too much. In a special case when the neighbour elements of the mesh are
still very bad, which can be recognized after one or two iterations of our algorithm,
we use topological modification. Our method can be interpreted as a kind of the
smoothing technique using modeling of the mesh quality parameters.

The use of the quasi-statistical modeling for the triangular mesh improvement
is discussed in this paper. The rest of the paper is organized as follows. The expla-
nation of the concept of the present approach is given in Section 2. The geometrical
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realization of quasi-statistical modeling is introduced in Section 3. Section 4 presents
some examples and discussion on the properties of the method. Section 5 contains
concluding remarks.

2. Concept of the present approach

Suppose a triangular mesh generated by some existing algorithm is given. As-
sume that all points are correctly connected in a topological structure depending
on the initially given coordinates of the points. Such topology defines geometrical
properties of the generated mesh. If a parameter of mesh quality is chosen, for
example, the area, the minimum (maximum) angle, aspect ratio, or others, then a
real number (a value of this parameter) can be put in accordance with each element
of the mesh. These numbers can be regarded as random and one can perform a
sampling analysis to check the mean value, the deviation and the distribution his-
togram. The normal distribution is the most widely used distribution to describe
random variables. This is a reason for the selection of Gaussian distribution for
our modeling of the mesh quality parameter values. We can put the aspect of the
normal distribution appearance into the basis of the suggested approach and model
the mesh improvement process. Our target can be formulated in terms of a random
event as improving a mesh so that the mean value of the mesh quality parameter
values becomes better. We have only two possibilities—if desired event occurs, then
event indicator equals 1 and if it does not occur, then it is 0.

It is a commonly used way in statistics to model an event through the modeling
of a random variable. Therefore, we are planning to model a random variable with
Gaussian distribution with respect to the initially given topology and the geometry
of the mesh in order to cause a desirable event of the mesh improvement. The
solution of the constructed equation (4) introduced below is based on n determined
numbers of the initial mesh quality parameter values. It gives us n values of a
random variable, which is being modeled. This random variable ξ has Gaussian
function laid in the equation as its distribution function. The general classification
of the transformations for a random variable modeling was suggested in [26]. We
omit here the precise description of the derivation of the suggested formula for the
modeling step. Values of ξ are calculated for each element from a local domain,
which we call a star, collecting all elements with a common node. A geometrical
operation in a tangent plane of a local domain is then provided for the connection
between the geometry and n received values of modeling random variable. Basic
scheme of this procedure is demonstrated in Fig. 1. The left drawing corresponds
to the initial probability density function f(x) of the mesh elements of one star
and the right drawing corresponds to the desired probability density function g(y).
Distribution functions F (x) and G(y), which correspond to density functions f(x)
and g(y), have to satisfy the following parity F (ai) = G(a∗

i ) for any initial value
ai of the mesh quality parameter in order to model a new value a∗

i . Notice, that
there are some cases when two or more different values from the initial distribution
can be modeled into one new value a∗

i of the random variable with the normal
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Fig. 1. Illustration of the algorithm implementation for one star.

distribution. Actually, it happens because we solve a discrete case of the equation,
i.e. Fj(ai) = Gh(a∗

i ). Thus, several different values ai and al may come into one
subinterval. Another important point here is that the geometrical realization of
the modeled value a∗

i changes the modeled value itself. This change after the
geometrical realization is permitted because the modeled value a∗

i is considered
as a kind of statistical weight. After the entire mesh is treated, all the stars are
considered and the geometrical realization is completed, more elements will have
the new mesh quality parameter values near the peak of the normal distribution.

The AR is a main criterion chosen for further investigation of the algorithm.
The AR value of each element of a current star is calculated in the tangent plane
of this star, where 3D coordinates of the local boundary vertices are projected onto
the plane (see [27]), and defined as a length of the longest edge divided by the length
of the shortest edge of a triangle element. Such definition of the AR determines a
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range of values from 1 to the maximum value, i.e. probabilistic space X = [1, amax].
One can apply the probabilistic analysis over intervals (nj , nj+1] (for some integer
number k, where n0 = 1, . . . , nk = amax), for the AR values equal to a1, . . . , an

for a current star. Statistical parameters such as the deviation D from the average
value M can be found as follows:

M =
∑n

i=1 ai

n
, D =

∑n
i=1(ai − M)2

n
. (1)

The histogram values fj are as:

fj = |{i : nj ≤ nj+1}|. (2)

Probability values Fj for the AR values ai lying inside the interval (n0, nj+1] are
calculated by formula (3).

Fj =
|{i : ai ≤ nj+1}|

n + 1
. (3)

Empirical distribution number Fj calculated by formula (3) is assigned to all
values ai : ai �→ Fj(i) = Fj . Finally, with the deviation D from the average M
and probabilities Fj , one can produce new values a∗

1, . . . , a
∗
n of the mesh quality

parameter modeled by formula:

a∗
i =

√
−2D ln(1 − Fj) + 1. (4)

This modeling formula is applied to the elements of each operating star. Geo-
metrical equivalent of the new values derived from this formula is constructed and
determined in the tangent plane as shown in the bottom parts of Fig. 1. We call
this geometrical equivalent a potential form or a geometrical realization. The way
of a potential form construction will be explained in the next section. Ideologi-
cally, the left-hand part of Fig. 1 corresponds to the sampling data defined using
formulas (1)–(3) while its right-hand part concerns the modeling of the new mesh
quality parameter values for the neighbouring elements of each star by formula (4).
Now imagine that this procedure is applied to each star. When all the points are
investigated, we may check the final quality of the mesh by formulas (1)–(3) taking
all N mesh elements into consideration. Finally, forming a histogram for these N

elements, we can identify, whether the desired event occurs or not.

3. Geometrical equivalent of modeled values

As we already mentioned, the construction of the potential forms in our quasi-
statistical approach is implemented in a tangent plane of a local domain (star). The
geometrical realization introduced here conforms to the corresponding projections
of the mesh elements. The new mesh quality parameter values are modeled by
formula (4) for such projections of the operating star. These values are judged as
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quasi-statistical weights of the initial elements with respect to a star. Improving a
mesh with predefined potential mesh quality parameter values a∗

1, . . . , a
∗
n, we need

to generate a topologically correct mesh in a star according to these values. To
achieve this goal, we construct the potential forms for each triangle of a star. The
potential forms define potential centers of a star. The new position of the central
point of the star is calculated by averaging the coordinates of all potential centers
of the star. Fig. 2 illustrates the geometrical realization process. We call such
proceeding an operation on a star.

Fig. 2. Geometrical realization of modeling values: (a) an initial star; (b) potential forms

(grey), C is a potential center; (c) the improved star.

Below, we explain the construction of a potential form for a triangular mesh
element of a star on its fixed boundary edge. This potential form is a geometrical
equivalent of a new mesh quality parameter value derived from probabilistic point
of view.

Consider a star in a tangent plane with n triangular elements as shown in
Fig. 2 (a). Suppose that the boundary edges are fixed and the only one inner
point of the star can freely slide within this plane. For each element with the
fixed boundary edge AB, we find a new position of the inner point C (potential
center) according to value a∗

i calculated by formula (4), see Fig. 2 (b). Such a
position provides a potential shape ABC of this triangular element, which is an
ideal one from probabilistic point of view with respect to the shapes of the current
element’s neighbors. Actually, there are various shapes of a triangular element
corresponding to given AR value a∗

i even with a fixed edge of the element. From
given values a∗

i and fixed side AB, we determine a minimum side of the potential
triangle computing AB/a∗

i . It means we make an assumption that AB is a length
of a maximum side of the potential element. This assumption is permitted by
modeling step with Gaussian distribution, which already includes randomness that
may occur at this stage as well as at the stage of the projection. Then draw a
circle with radius r = AB/a∗

i and the center B forming many new triangles ABC
(Fig. 3 (a)). Again, we need to select only one among them. We maximize the
minimum angle α adjacent to AB in order to find one point C as a potential center.
Fig. 3 (a) demonstrates that the angle α is maximal when the line AC is tangent
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Fig. 3. Construction of the potential center C for one element of the star: (a) potential

form for one modeled value (maximization of the minimum angle); (b) varying

the radius r when the modeled value ranges; (c) the final locus of the points C.

to the circle. Thus, a potential form is constructed for one mesh element.
Although we do not know what value of a∗

i comes out during modeling, we
need to understand all geometrical solutions that will be necessary to define a
geometrical equivalent of the modeled value a∗

i . Thus allow the modeled value
a∗

i ranges over the probabilistic space X. As the radius r changes, we receive a
set of triangles based on AB with opposite angles C with 90 degree, i.e. the case
when AC is tangent to the circle, see Fig. 3 (b). So, the opposite points of such
triangles form the semicircle based on the diameter AB (Fig. 3 (c)). For example,
the point C corresponding to the intersection of the semicircle AB and the height h,
is appropriate to value a∗

i =
√

2, where h = AB/2. We conclude that semicircle AB
corresponds to the range of the modeled value a∗

i from
√

2 to amax, where amax = ∞,
if C = B or C = A. Notice also that the point C = C′ corresponds to the ideal case
of equilateral triangle, where a∗

i = 1 and the height h = AB
√

3/2. So, the rest of the
range of the modeled value a∗

i , i.e. from 1 to
√

2, is defined by the upper segment
of the height h. Summarily, Fig. 3 (c) depicts the locus of the points C, when
the length AB of the potential element ABC is fixed, but corresponding modeled
number a∗

i is varied. In real situation we select only one position of the point C
for the given AB with regard to one modeled value a∗

i , which is uniquely defined
by formula (4) for this mesh element of the star. Finally, constructing potential
centers C for all neighboring elements of the star and averaging the coordinates
of these points we determine the new coordinates of the central point of the star
(Fig. 2 (c)) and a new point placement is completed.

Notice that each element will be considered three times in different stars. The
reason is that a mesh element has three nodes in connectivity. This provides uni-
form change from star to star. Finally, the smoothness of each pair of neighbors of
the mesh is guaranteed by produced formula for modeling of random variable with
Gaussian distribution, which is implemented in each star. Usually other methods
consider each element with the same possibility of changing its shape quality, deriv-
ing many high quality elements at the expense of some others. Refusing such kind of
situation, we assign to each element different possibilities and finally generate more
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homogeneous mass of the uniform-quality elements in opposite to well-known mesh
improvement techniques. Formula (4) can be interpreted as a connection between
desired mesh quality and real possibilities of the mesh geometry and topology.

Fig. 4 shows three variants of the histograms of values fj calculated for in-
vestigated mesh fragment: an initial histogram of the mesh, the histogram of the
improved mesh after method application according to all a∗

i = 1 and according
to modeled values by formula (4). The length of the fragmentation of an interval
corresponding to probabilistic space X is the same over entire model. The number
of subintervals is very large on the Fig. 4 (a), where initial distribution is shown,
but it is about three times less on the Figs. 4 (b) and 4 (c) than on the Fig. 4 (a).
Light grey color regards to improved mesh after one iteration and dark grey—after
two iterations. From the histograms we see that the distribution of AR values in
case (c) is closer to normal distribution than in case (b) and the curve intents to
centre at the ideal value 1. The average value M is improved in both cases.

Fig. 4. Frequency histograms ((x) axis—the number of the intervals of the AR value

range X = [1.0, max]; (y) axis—the number of the mesh elements): (a) the initial

(M = 2.84, D = 5.76), (b) according to a∗
i = 1 (1 iteration step. M = 1.45,

D = 0.34; 2 iteration steps M = 1.34, D = 0.06), (c) according to formula (4)

(1 iteration step. M = 1.78, D = 0.51; 2 iteration steps. M = 1.68, D = 0.37).

4. Examples and merits of the algorithm

First, the usage of the projection operation together with quasi-statistical mod-
eling allows preservation of all curvatures of the mesh geometry and main features
of the given 3D object, while the mesh is smoothly improved without any additional
criteria in the suggested algorithm for such surface preservation. It is a remark-
able merit of the approach that is approved by our experimental results. Visual
justification of one example can be found in Fig. 5. With the nearly same mean
M = 1.5, the difference in volume between the initial model and the improved one
is about 0.027% in case of using our technique and 0.37% after applying Laplacian
smoothing. Moreover, in opposite to present method Laplacian algorithm continues
smoothening the surface if more iterations are applied.

Next, as shown in Fig. 4, the implementation of the quasi-statistical modeling
with another formula for the calculation can be used providing other results with
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Fig. 5. Volume and surface preservation: (a) an intial model, (b) the proposed method,

(c) Laplacian smoothing.

the same approach. For example, if a∗
i = 1, it becomes similar to the Laplacian

smoothing algorithm, which produces mostly equilateral elements by placing each
point into the centroid of a star.

According to these two remarks, quasi-statistical modeling does not only pro-
vide smooth change from one element to another in the mesh improvement stage,
but in addition it is a flexible independent tool for mesh processing. It can be
combined with already existing methods not only in the mesh improvement but
also, for example, in the mesh simplification case. We consider randomness as an
invariant under the mesh improvement process. This approach offers the following
opportunities: developing different mesh improvement algorithms based on quasi-
statistical modeling, considering meshes of any kind, selecting various mesh quality
criteria parameters, realizing potential geometries with arbitrary choice of a star
or by any special rule. For example, three variations of the present geometrical
realization with potential forms are developed: Gentle Enhancement Algorithm
(GEA), “Wave” and “Triangle-tail.” Here we demonstrate only the GEA results to
support the introduced explanation of the suggested concept.
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Experimental results of applying the GEA are demonstrated in Figs. 6–8. In
the GEA, each star is selected according to the node’s indices of the initial mesh
generation. The described operation on a star is applied for each chosen star.
Modeled values a∗

i for each star are realized in the way explained ibid. Modeling
random variable ξ with Gaussian distribution is incarnated into the generated mesh.
It is clear that the angles and the AR values have a correlation. Thus improving
one parameter will cause corresponding distribution for other parameter. While
most mesh elements have the AR values in the right-side neighbourhood of unity,
the minimum angle values are normally distributed in the left-side neighbourhood
of 60 degrees and maximum angle values—in the right-side of 60 degrees.

Fig. 6. Fragment of the mesh (the model “Detail,” 13967 triangles) and the histograms

of the distribution of the mesh element’s angles ((x) axis—the number of the

angle intervals; (y) axis—the number of the mesh elements): (a) before use

of GEA, M = 1.56. (b) after use of the GEA, M = 1.53. Processing time

4.0 sec. 1 iteration.

Table 1 shows statistics of the mesh angles for the model “Detail.” All cal-
culations are produced on Microsoft Windows XP, Pentium III, 1000 MHz/128 MB
RAM.

Table 1. Mesh angle statistic. The model “Detail.”

Initial mesh Using GEA
Average value Angle range Average value Angle range

Min angle (degree) 40.69 5.25–59.62 41.38 6.02–59.87
Max angle (degree) 86.44 60.65–166.75 83.86 60.21–164.02
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Fig. 7. Fragment of the mesh (the model “ballJoint,” 68000 triangles) and the histogram

of AR distribution ((x) axis—the number of the intervals of the AR value range

X = [1.0, max]; (y) axis—the number of the mesh elements): (a) the initial mesh,

M = 1.84, D = 0.33; (b) the same fragment after the use of the GEA, M = 1.50,

D = 0.16. Processing time 30 sec. 1 iteration.

Fig. 8. Fragment of the mesh (model “horse,” 96966 triangles) and the histogram of

AR distribution ((x) axis—the number of the intervals of the AR value range

X = [1.0, max]; (y) axis—the number of the mesh elements): (a) the initial

mesh, M = 1.73, D = 0.63; (b) the same fragment after the use of the GEA,

M = 1.49, D = 0.36. Processing time 50 sec. 1 iteration.
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In this paper we consider only triangle mesh improvement. Similar algorithm
development is possible for other kinds of meshes (quadrilateral, mixed, solid).
Some of the algorithms have been already realized.

Also from the result shown in Fig. 9, we can see that our technique can be
applied for graded meshes and still produces a good mesh in terms of the mesh
element control, reducing the number of low quality elements. In some complicated
models, the worst value of the mesh quality parameter can deteriorate, but it only
signifies the problematic areas of the mesh. The elements with high aspect ratio
values are called the “tail” elements. They can be treated separately by topological
improvement. Collapsing of such elements is done if allowed by requirements. Our
algorithm works effectively in one or two iterations and it is developed for such
direct application. For information, the effectiveness of the concept will be naturally
decreased with the number of iterations.

Fig. 9. The test model of smoothing graded mesh. (a) The initial mesh, M = 2.46;

(b) AR histograms distribution ((x) axis—AR value, range AR = [1.0, max];

(y) axis—the number of the mesh elements); (c) the mesh after Laplacian

smoothing, 100 iterations, M = 1.6; (d) the mesh after using GEA, 2 iterations,

M = 1.5.

5. Concluding remarks

In this paper, a new approach based on an implementation of quasi-statistical
modeling for the triangular mesh improvement is investigated. Modeling of random
variables with normal distribution based on random numbers and initial topology
of the mesh is discussed. We select Gaussian function as a function appropriate for
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the distribution of all random numbers to form uniform meshes. The operation on
a star is proposed for incarnation of modeling random variable. From a point of
view of geometrical realization, our method can be used as a kind of the smoothing
technique where the probabilistic direction of the point placement is calculated. One
or two iteration steps of the algorithm are enough to attain the most effective results
of the mesh improvement. This property can be also stated as a meaning advantage
of the proposed method. Projection operation preserves the mesh geometry, volume
and features of 3D objects. The suggested algorithm exhibits the satisfactory time
performance. The computational complexity of the approach is almost linear in the
number of points of the model according to the experiments.

Quasi-statistical modeling allows considering various mesh quality require-
ments and any kinds of meshes. Proposed method can be considered as an analogy
with the simulation of the mesh improvement process through modeling of an event
of mesh improvement. The further investigation may be devoted to the question
of increasing possibility for such an event in opposite to experiments we have done
till now. Many elliptic partial differential equations ideally require meshes with
quasi-equilateral triangles (with the AR not so close to the ideal value). This kind
of meshes is often desired in the field of simulation, for fluid flow or anisotropic dif-
fusion for instance. It leaves subjects to be investigated depending on your demand
for the mesh quality parameter.

Our technique can be used as a correction step for improving the mesh qual-
ity in the mesh simplification process. We applied this technique for the mesh
simplification as a correction step for improving the mesh quality. In addition,
this approach is currently being applied to isotropic meshes, but the application
of it can be extended to anisotropic meshes (for instance, transient turbulent flow
simulation) and to the meshes with various quality requirements.
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