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This paper investigates the existence of traveling fronts and their propagation speeds
for the two component higher order autocatalytic reaction-diffusion systems with any
diffusion coefficients. Our elementary analysis of the vector fields in the phase space gives
the estimate of the minimal propagation speeds in terms of the order of autocatalysis and
the diffusion coefficients.
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1. Introduction

Autocatalytic reaction-diffusion systems including the Brusselator [20], the
Field–Noyes model [7] and the Gray–Scott model [11], have stimulated an extensive
amount of theoretical studies on waves and patterns produced by chemical reac-
tions (see for example, [15]). One of the basic elements responsible for chemical
pattern formation is traveling waves which describe the development of chemical
processes. The papers by Needham et al. ([2]–[5], [16]–[19]) studied extensively the
traveling waves in autocatalytic reactions. Focant and Gallay [8] and Hosono and
Kawahara [14] also discussed the traveling waves for the mixed order autocatalytic
two component systems and their minimal propagation speeds. The similar type of
traveling waves appears in the combustion problem and the speeds of combustion
waves were discussed by the several authors ([9], [23] and the references therein).
Our concern is traveling fronts and their speeds for the higher order autocatalytic
reaction-diffusion system of the form:

{
ut = d1uxx − k1uv

m,

vt = d2vxx + k2uv
m,

(1)

where u and v are concentrations of the reactant and the autocatalyst respectively,
d1 and d2 are diffusion coefficients, and k1 and k2 are any positive constants.

Then, traveling front solutions for (1) are defined as follows. The nonnegative
bounded functions of the form (u(x, t), v(x, t)) = (U(z), V (z)) with z = x − ct are
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said to be traveling front solutions for (1) when they satisfy the equations

{
d1U

′′ + cU ′ − k1UV
m = 0,

d2V
′′ + cV ′ + k2UV

m = 0,
(2)

with the boundary conditions

P− ≡ (U(−∞), V (−∞)) = (0, v0), P+ ≡ (U(+∞), V (+∞)) = (u0, 0). (3)

Here u0 and v0 are positive, and ′ denotes d/dz. This condition is imposed so that
on the far right there is only reactant and on the far left there is only autocatalyst,
and these two states should be the critical states of the system (2).

By applying the comparison argument, Takase and Sleeman [22] proved that
there exists the minimal wave speed c∗ such that traveling front solutions for (1)
exist for each c ≥ c∗ assuming that u0 is sufficiently small for m > 1. The purpose
of this paper is to discuss the properties of the minimal wave speed c∗, especially
the dependence of c∗ on the parameters m, d1 and d2 for arbitrarily fixed u0 > 0.
The method of the proofs employed here is the shooting argument which looks for
the connection orbits of (2) and (3) in the 3-dim phase space. Throughout this
paper, we always assume that m > 1 without notice.

In the next section, we present the preliminary results required for the later
discussions. In Section 3, we investigate the existence of traveling fronts for (1) and
their minimal propagation speeds when 0 < d1 < d2. In Section 4, we study the
same problem when d1 > d2 > 0.

2. The preliminary results

We first write the equations in the dimensionless form. Introducing the dimen-
sionless dependent variables ũ = u/u0, ṽ = v/(ru0) with r = k2/k1 and scaling the
independent variables by t̃ = k1(ru0)mt, x̃ =

√
k1(ru0)

m
x, we write (1) as

{
ut = d1uxx − uvm,

vt = d2vxx + uvm,
(4)

where ˜ is omitted for the simplicity of notations. We may also suppose that
either of d1 and d2 is 1 by scaling the independent variable x. The corresponding
traveling equations are

{
d1U

′′ + cU ′ − UV m = 0,
d2V

′′ + cV ′ + UV m = 0,
(5)

with the boundary conditions

P− ≡ (U(−∞), V (−∞)) = (0, β), P+ ≡ (U(+∞), V (+∞)) = (1, 0). (6)

Here β is a constant to be determined.
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We already know the following properties of the traveling front solutions for
(4), that is, the solutions of (5) and (6).

Proposition 1 ([3]). Assume that there exists a traveling front solution
(U(z), V (z)) for (4). Then it satisfies the followings for all z ∈ R.
(i) 0 < U < 1, 0 < V < 1.
(ii) 0 < U ′ < +∞, −∞ < V ′ < 0.

(iii) U + V − 1

⎧⎨
⎩
> 0, for d2 > d1 ≥ 0,
= 0, for d1 = d2,
< 0, for d1 > d2 ≥ 0.

Furthermore, limz→−∞(U(z), V (z)) = (0, 1), that is β = 1, and c > 0.

For the equal diffusion case: d1 = d2 = 1, we know the following theorem.

Theorem 2 ([21]). Assume that d1 = d2 = 1. Then, there exists some pos-
itive c∗1 such that only for each c ≥ c∗1, (1) has a unique traveling front solution.
Furthermore, the minimal wave speed c∗1 satisfies that

2
m(m+ 1)

≤ c∗1
2 ≤ 2

(m− 1)m
. (7)

For the extreme case: d1 = 0, we may assume d2 = 1 without loss of generality,
and have the following result.

Theorem 3 ([13]). Assume that d1 = 0, d2 = 1. Then, there exists c∗0 such
that only for each c ≥ c∗0, (1) has a unique traveling front solution. Furthermore,
the minimal wave speed c∗0 satisfies

1
m
< c∗0

2 ≤ 1
m− 1

. (8)

For another extreme case: d2 = 0, we may assume d1 = 1 without loss of
generality, and easily have the following result.

Theorem 4. Assume that d1 = 1, d2 = 0. Then, there exists a unique
traveling front solution for (1) for each positive c.

Proof. See Appendix.

In the next two sections, on the basis of these results, we discuss the general
case that the both diffusion coefficients are not zero. To do so, we require some
definitions and the Wazewski theorem which was formulated by Dunbar [6]. Let
y(z;y0) be a solution of the initial value problem

y′ = f(y), y(0) = y0, (9)

where ′ = d/dz, y,y0 ∈ R
n, and f(y) is Lipschitz continuous. Set y(z;y0) = y0 · z

and V ·Z = {y0 · z : y0 ∈ V , z ∈ Z}. Given W ⊆ R
n, let W− = {y0 ∈W : any z >

0, y0 · [0, z) �⊂ W}. W− is called the immediate exit set. Given Σ ⊆ W , let
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Σ 0 = {y0 ∈ Σ : there is an z0 = z0(y0) such that y0 · z0 /∈ W}. For y0 ∈ Σ 0,
define T (y0) = sup{z : y0 · [0, z] ⊆W}, which is called an exit time. We denote the
closure of a set W by cl(W ).

Proposition 5 ([6]). Suppose
1) If y0 ∈ Σ and y0 · [0, z] ⊆ cl(W ), then y0 · [0, z] ⊆W .
2) If y0 ∈ Σ, y0 · z ∈ W and y0 · z /∈ W−, then there is an open set Vz about

y0 · z disjoint from W−.
3) Σ = Σ0, Σ is compact, and Σ intersect an orbit of (9) only once in W .

Then the mapping F (y0) = y0 · T (y0) is homeomorphism from Σ to its image
on W−.

A set W ⊆ R
n satisfying (1) and (2) in Proposition 5 is called a Wazewski set.

3. The case 0 < d1 < d2

For d1 ≥ 0 and d2 > 0, the system (4) can be written as

{
ut = duxx − uvm,

vt = vxx + uvm.
(10)

by the change of the independent variable x, where d = d1/d2. Then the traveling
equations for (10) are

{
dU ′′ + cU ′ − UV m = 0,
V ′′ + cV ′ + UV m = 0.

(11)

The boundary conditions are specified by (6) with β = 1.
Adding the above two equations and integrating the resulting equation, we

have the relation dU ′ + V ′ + c(U + V − 1) = 0 with the aid of the boundary
condition (6). Set X = U + V − 1. Proposition 1 assures that X is positive when
0 < d < 1. Then (11) is reduced to the first order system

⎧⎪⎪⎨
⎪⎪⎩
X ′ = − c

d
X −

(
1
d
− 1

)
W,

V ′ = W,

W ′ = −cW − (1 − V +X)V m.

(12)

The boundary conditions are

(X(−∞), V (−∞),W (−∞)) = (0, 1, 0),

(X(+∞), V (+∞),W (+∞)) = (0, 0, 0).
(13)
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Introducing the new dependent variables by

q = V , p =
q′

q
, (14)

we can write (12) as ⎧⎪⎪⎨
⎪⎪⎩
X ′ = − c

d
X −

(
1
d
− 1

)
pq,

q′ = pq,

p′ = −p(p+ c) − (1 − q +X)qm−1.

(15)

For later use, we denote (15) in the vector form as u′ = fd(u) with u = (X, q, p),
and u(z;u0) denotes a solution of (15) satisfying u(0;u0) = u0.

We should note that the singularity (0, 0, 0) of (12) is split into two critical
points P0 = (0, 0, 0) and Pc = (0, 0,−c) in (15). Thus, (15) has three critical points
P0 = (0, 0, 0), Pc = (0, 0,−c) and P1 = (0, 1, 0). The properties of these critical
points are as follows. P1 = (0, 1, 0) has the 1-dim unstable manifold and the 2-dim
stable manifold. P0 = (0, 0, 0) is a topologically stable node. Pc = (0, 0,−c) has
the 2-dim stable manifold and the 1-dim unstable manifold.

Now our problem is to find an orbit of (15) connecting P1 = (0, 1, 0) with
P0 = (0, 0, 0) or with Pc = (0, 0,−c), which lies entirely in Ω+ = {(X, q, p) : X >

0, 0 < q < 1, p < 0}. Here, let Ud(c) be the part of the unstable manifold of
P1 lying in Ω+, whose existence will be assured in Section 3.2. Our main goal of
this section is to find the values of c for which Ud(c) approaches P0 = (0, 0, 0) or
Pc = (0, 0,−c).
3.1. The property of the vector field

We first discuss the property of the vector field of (15) and the behavior of
the unstable manifold Ud(c). To do this, we require the information on the case of
d = 0. For d = 0, the first equation of (15) gives X = −pq/c and (15) is reduced to

{
q′ = pq

p′ = −p(p+ c) −
(
1 − q − pq

c

)
qm−1,

(16)

which has three critical points (0, 0), (1, 0) and (0,−c). The proof of Theorem 3
assures the followings. There exists a unique orbit of (16) connecting (1, 0) to (0,−c)
if c = c∗0 and to (0, 0) if c > c∗0. This orbit can be represented by p = ψc(q) < 0 for
0 < q < 1, and it satisfies that ψc(1) = 0 for c ≥ c∗0, ψc∗0 (0) = c∗0, and ψc(0) = 0
for c > c∗0. For c∗0, let Ω∗

0 be the set {(q, p) : 0 < q < 1, ψc∗0 (q) < p < 0}. Then any
orbit of (16) starting from a point in Ω∗

0 stays in Ω∗
0 for z ≥ 0 and converges to

the critical point (0, 0) as z → ∞. Also, it holds that ψ′
c(1) = 1/c, which is easily

derived from the linearized analysis of the critical point (1, 0). By the use of the
orbit p = ψc(q), we introduce the region Ω1 defined by

Ω1 ≡
{

(X, q, p) : 0 < X < −1
c
ψc(q)q, 0 < q < 1, ψc(q) < p < 0

}
.
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Then, the boundary of Ω1, denoted by ∂Ω1, consists of the followings:

S1 =
{

(X, q, p) : 0 < q < 1, X = −ψc(q)
q

c
, ψc(q) < p < 0

}
,

S2 =
{

(X, q, p) : 0 < q < 1, 0 < X < −ψc(q)
q

c
, p = ψc(q)

}
,

S3 = {(X, q, p) : 0 < q < 1, X = 0, ψc(q)q < p < 0},
S4 =

{
(X, q, p) : 0 < q < 1, 0 < X < −ψc(q)

q

c
, p = 0

}
,

J1 = {(X, q, p) : 0 < q < 1, X = 0, p = 0},
J2 = {(X, q, p) : 0 < q < 1, X = 0, p = ψc(q)},
J3 =

{
(X, q, p) : 0 < q < 1, X = −ψc(q)

q

c
, p = 0

}
,

J4 =
{

(X, q, p) : 0 < q < 1, X = −ψc(q)
q

c
, p = ψc(q)

}
,

I0 = {(X, q, p) : X = 0, q = 0, ψc(0) < p < 0},
P0, P1 and Pc.

That is,

∂Ω1 =

(
4⋃

i=1

Si

)
∪
(

4⋃
i=1

Ji

)
∪ I0 ∪ P0 ∪ P1 ∪ Pc.

Here, note that I0 = ∅ for any c > c∗0.

Proposition 6. Let d be fixed in (0, 1) and c ≥ c∗0. Any orbit of (15) starting
from a point u0 ∈ Ω1, denoted by u(z;u0), stays in Ω1 for all z ≥ 0.

Proof. P0, P1 and Pc are critical points and I0 is an invariant manifold, so
that u(z;u0) cannot reach any point of the set I0 ∪ P0 ∪ P1 ∪ Pc in a finite time.
To prove that u(z;u0) cannot leave Ω1 through Si (i = 1, . . . , 4), it suffices to show
that the inner products of the outward normal ni of Si and the vector field fd are
all negative.

We begin with S1. On S1, n1 = (1, (1/c)(ψc(q) + qψ′
c(q)), 0). Hence we have

n1 · fd = − c

d
X −

(
1
d
− 1

)
pq + pq

1
c
(ψc + qψ′

c)

=
1
d
ψq − 1

d
pq +

pq

c
(c+ ψc + qψ′

c) ≤
pq

c
(c+ ψc + qψ′

c).

It follows from (16) that

qψ′
c(q) = −(ψc + c) − 1

ψc

(
1 − q − ψcq

c

)
qm−1,

which gives

n1 · fd ≤ − pq

cψc

(
1 − q − ψcq

c

)
qm−1 < 0 for any u ∈ S1.
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On S2, n2 = (0, ψ′
c(q),−1). Hence we have

n2 · fd = ψ′
cpq + p(p+ c) + (1 − q +X)qm−1

= −ψc(ψc + c) −
(

1 − q − ψcq

c

)
qm−1

+ ψc(ψc + c) + (1 − q +X)qm−1

=
(
X +

ψcq

c

)
qm−1 < 0 for any u ∈ S2.

On S3, n3 = (−1, 0, 0), so that

n3 · fd =
c

d
X +

(
1
d
− 1

)
pq =

(
1
d
− 1

)
pq < 0, for any u ∈ S3.

Similarly, on S4, n4 = (0, 0, 1), so that

n4 · fd = −p(p+ c) − (1 − q +X)qm−1 = −(1 − q +X)qm−1 < 0,

for any u ∈ S4.

For the remaining part of the boundary Ji (i = 1, . . . , 4), we have to examine
the orbit u(z;u0) for u0 ∈ Ji. For u0 = (0, q0, 0) ∈ J1, we see that

u(z;u0) = u0 + u′(0;u0)z +
1
2
u′′(0;u0)z2 + (h.o.t)

= u0 + fd(u0)z +
1
2
Dfd(u0)u′(0;u0)z2 + (h.o.t)

= (0, q0, 0) + (0, 0,−(1 − q0)qm−1
0 )z

+
1
2
(1 − q0)qm−1

0

((
1
d
− 1

)
q0,−q0, c

)
z2 + (h.o.t),

where Dfd(u) is the Jacobi matrix of fd(u). This shows that X(z;u0) > 0 and
p(z;u0) < 0 for sufficiently samll positive z, so that any orbit u(z;u0) for u0 ∈ Ω1

cannot traverse J1. Similar argument assures that the same result holds for J2, J3

and J4. This completes the proof. �

3.2. The local property of Ud(c)
We next discuss the local behavior of Ud(c) near the critical point P1. The

linearization of (15) at P1 becomes⎛
⎜⎜⎝

− c

d
0 1 − 1

d
0 0 1
−1 1 −c

⎞
⎟⎟⎠ . (17)

Its characteristic equation becomes

g(λ, c, d) ≡
(
λ+

c

d

)
fc(λ) −

(
1
d
− 1

)
λ = 0, (18)
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with fc(λ) = (λ2 + cλ− 1). This can be factorized as

g(λ, c, d) = (λ+ c)
(
λ2 +

c

d
λ− 1

d

)

= (λ+ c)(λ− λd
−(c))(λ− λd

+(c)),

where λd
−(c) = −(1/(2d))(c +

√
c2 + 4d) < 0 < λd

+(c) = −(1/(2d))(c −√
c2 + 4d).

Therefore, (17) has two negative eigenvalues −c and λd
−(c), and one positive eigen-

value λd
+(c). For d = 1, we see that λ1

± = (1/2)(−c ± √
c2 + 4) are zeros of

fc(λ). Moreover, it is obvious that λd
+(c) is strictly monotone decreasing with

respect to d > 0, since λd
+(c) = −(1/(2d))(c − √

c2 + 4d) = 2/(
√
c2 + 4d + c).

The eigenvector pd
+(c) corresponding to the eigenvalue λd

+(c) is given by pd
+(c) =

(−fc(λd
+(c)), 1, λd

+(c)) for d > 0.
Thus we have the following two propositions.

Proposition 7. Let c be fixed positive. For d > 0, Ud(c) has the tangential
direction pd

+(c) = (−fc(λd
+(c)), 1, λd

+(c)) at P1, and λd
+(c) and fc(λd

+(c)) are both
strictly monotone decreasing with respect to d. Therefore, it holds that if 0 < d < 1,

0 = fc(λ1
+(c)) < fc(λd

+(c)) < fc(λ0
+(c)) =

1
c
λ0

+(c). (19)

and if d > 1,

−1 = fc(0) < fc(λd
+(c)) < fc(λ1

+(c)) = 0. (20)

Proof. We already see that λd
+(c) is strictly monotone decreasing with respect

to d, so that the monotonicity of fc(λd
+) with respect to d are also obvious because

fc′(λ) = 2λ+ c > 0 for any λ > 0. This completes the proof. �

Proposition 8. Let d be fixed positive. For c > 0, λd
+(c) is strictly monotone

decreasing with respect to c, and

∂

∂c
fc(λd

+(c))
{
< 0, for 0 < d < 1,
> 0, for d > 1.

(21)

Proof. The expression λd
+ = −(1/(2d))(c − √

c2 + 4d) directly shows that

(∂/∂c)λd
+ =−λd

+/
√
c2 +4d<0. Since (∂/∂c)fc(λd

+(c))=2(d−1)
(
2λd

+(c)2
)/√

c2 +4d,
(21) is obvious, so that the proof is completed. �

We next show that Ud(c) enters Ω1. Since Ud(c) has the tangential direction
pd

+ at P1, the projection of Ud(c) to the plane X = 0 has a slope λd
+ and the

projection of Ud(c) to the plane p = 0 has a slope −f(λd
+). On the other hand,

the boundary surfaces p = ψc(q) and X = −ψc(q)q/c have slopes λ0
+ = 1/c and

−λ0
+/c, respectively at q = 1. Therefore, the inequalities (19) assures that Ud(c)

enters Ω1. Thus, from Proposition 6 we can conclude that Ud(c) stays in Ω1 for all
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z ∈ R. There exists no critical point in Ω1 and q′ = pq < 0, so that q → 0. This
implies that X(q) → 0 as q → 0, and hence Ud(c) approaches cl(I0), which consists
of the ordinary points I0 and the critical points P0 and Pc. Therefore Ud(c) has to
approach P0 or Pc. In fact, the following lemma holds.

Lemma 9. Assume that 0 < d < 1. Then, for each c ≥ c∗0, there exists an
orbit of (15) which connects P1 with P0.

Proof. It suffices to show that Ud(c) cannot approach to Pc as z → ∞ for
c = c∗0 because Ω1 does not contain Pc for any c > c∗0. Assume that c = c∗0 in
the following. We first choose u0 = (X0, q0, p0) ∈ Ud such that p0/(q0 − 1) <
ψc(q0)/(q0 − 1), which is possible since

lim
q0→1

p0

q0 − 1
= λd

+ < λ0
+ =

1
c

= lim
q0→1

ψc(q0)
q0 − 1

.

Let q0 be (q0, p0) and (q(z;q0), p(z;q0)) be the solution of (16) satisfying
(q(0;q0), p(0;q0)) = q0. Then, q0 ∈ Ω∗

0 , so that (q(z;q0), p(z;q0)) stays in Ω∗
0

for all z ≥ 0 and converges to (0, 0) as z → ∞. We can represent this orbit by
p = ψ̃c(q), (0 ≤ q ≤ q0), where ψ̃c(0) = 0 and ψ̃c(q0) = p0. Now we define the
region Ω̃1 by

{
(X, q, p) : 0 < X < −(1/c)ψ̃c(q)q, 0 < q < q0, ψ̃c(q) < p < 0

}
. Re-

peating the same arguments in the proof of Proposition 6, we conclude that Ud(c)
stays in Ω̃1 for all z ≥ 0 and converges to (0, 0, 0) as z → ∞ because ψ̃c(q) → 0 as
q → 0. This completes the proof. �

3.3. The existence of the orbit connecting P1 and Pc

In this subsection, we shall prove the existence of the orbit connecting P1 and
Pc with the aid of the Wazewski theorem. In order to apply the Wazewski theorem,
we rewrite the system (15) as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

X ′ = − c

d
X −

(
1
d
− 1

)
pq,

q′ = pq,

p′ = −p(p+ c) − (1 − q +X)qm−1,

c′ = 0,

(22)

which is simply denoted by the vector notation: U′ = F(U) with U = (u, c) =
(X, q, p, c), and U(z;U0) denotes a solution of (22) which satisfies U(0;U0) = U0.
This system has three critical manifolds P̃0(c) = (0, 0, 0, c), P̃1(c) = (0, 1, 0, c) and
P̃2(c) = (0, 0,−c, c). In R

4, we shall construct the Wazewski set for (22).
Let Wc be

Wc = {u = (X, q, p) : 0 ≤ X ≤ 1, lc(p) ≤ q ≤ 1, −c ≤ p ≤ 0},
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where lc(p) is defined by

lc(p) =

⎧⎪⎨
⎪⎩
(

1
k

(p+ c)
)1/(m−1)

, −c ≤ p ≤ − c
2
,

qk, − c
2
≤ p ≤ 0,

with qk = (c/(2k))1/(m−1). We also define W̃ by W̃ = {U = (u, c) : u ∈ Wc, c1 ≤
c ≤ c2}, where c1 and c2 are any constants satisfying 0 < c1 < c2 and will be speci-
fied later. The boundary of W̃ is consists of ∂W̃1 = {U = (u, c) : u ∈ ∂Wc, c1 ≤ c ≤
c2} and ∂W̃2 =

⋃2
i=1{U = (u, c) : u ∈ int(Wc), c = ci}, that is, ∂W̃ = ∂W̃1 ∪ ∂W̃2.

Here, for each fixed c, int(Wc) and ∂Wc denote the interior and the boundary of Wc

in R
3, respectively. ∂Wc consists of two critical points P1 and Pc, and the following

surfaces Hi
c (i = 1, 2, . . . , 6) and the one dimensional invariant manifold Jc.

H1
c = {(X, q, p) : 0 ≤ X ≤ 1, q = lc(p), −c < p ≤ 0},

H2
c = {(X, q, p) : 0 ≤ X ≤ 1, 0 < q ≤ 1, p = −c},

H3
c = {(X, q, p) : 0 ≤ X ≤ 1, q = 1, −c < p < 0},

H4
c =

{
(X, q, p) : 0 ≤ X ≤ 1,

c

2k
< q ≤ 1, p = 0

}
\ P1,

H5
c = {(X, q, p) : X = 0, lc(p) < q < 1, −c < p < 0},

H6
c = {(X, q, p) : X = 1, lc(p) < q < 1, −c < p < 0},

Jc = {(X, q, p) : 0 < X ≤ 1, q = 0, p = −c}.

That is, ∂Wc is the disjoint union of these sets, and expressed as

∂Wc =

(
6⋃

i=1

Hi
c

)
∪ Jc ∪ P1 ∪ Pc.

Set H̃i = {(u, c) : u ∈ Hi
c, c1 ≤ c ≤ c2} for i = 1, 2. Then, we have the

proposition.

Proposition 10. For sufficiently large positive k, the immediate exit set W̃−

of W̃ is the disjoint union of H̃1 and H̃2, that is,

W̃− = H̃1 ∪ H̃2, H̃1 ∩ H̃2 = ∅,

for any c1 and c2 satisfying 0 < c1 < c2.

Proof. It is obvious that ∂W̃2 is not an immediate exit set because int(Wc)
is open in R

3 and {(u, c) : c = ci} (i = 1, 2) are invariant manifolds. Therefore, it
suffices to discuss ∂W̃1. We denote the outward normal of ∂W̃1 by ñ.
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Let us first consider H̃1. For −c < p ≤ −c/2, q = lc(p), which implies
p = kqm−1 − c (0 < q ≤ qk). This gives ñ = (0,−k(m − 1)qm−2, 1, 1) on H̃1 for
−c < p ≤ −c/2. Thus, noting that 0 ≤ X ≤ 1 in cl(W̃ ), we have

ñ · F = −k(m− 1)pqm−1 − p(p+ c) − (1 − q +X)qm−1

= −k(m− 1)pqm−1 − kpqm−1 − (1 − q +X)qm−1

= −mkqm−1

(
p+

1
mk

(1 − q +X)
)

≥ mkqm−1

(
c

2
− 2
mk

)
> 0,

if we choose k > 4/(mc1). For −c/2 < p < 0, q = qk > 0, so that on H1
c we

see that ñ · F = −pqk > 0. On E1 = {(X, q, p, c) : 0 ≤ X ≤ 1, q = qk, p =
0, c1 ≤ c ≤ c2}, we have Ũ′ = F̃ = (−(c/d)X, 0,−(1 − qk +X)qm−1

k , 0). Hence for
Ũ0 = (X0, qk, 0, c0) ∈ E1

q
(
z : Ũ0

)
= q

(
0 : Ũ0

)
+ q′

(
0 : Ũ0

)
z +

1
2
q′′
(
0 : Ũ0

)
z2 +O(z3)

= qk +
1
2
p′
(
0 : Ũ0

)
q
(
0 : Ũ0

)
z2 +O(z3)

= qk − 1
2
(1 − qk +X0)qm

k z
2 +O(z3) < qk,

for any sufficiently small positive z, since we can choose k so large as qk =
(c0/(2k))1/(m−1) < 1/2. Therefore, we know that H̃1 is the immediate exit set.

Next, let us consider H̃2. Since ñ = (0, 0,−1,−1) on H̃2, we see that

ñ · F = p(p+ c) + (1 − q +X)qm−1 = (1 − q +X)qm−1 > 0

for q �= 1 or X �= 0. On E2 = {(X, q, p, c) : X = 0, q = 1, p = −c, c1 ≤ c ≤ c2},
F̃ = (((1/d) − 1)c,−c, 0, 0), so that

p′′ = −(2p+ c)p′ − (m− 1)(1 +X)qm−2q′ +mqm−1q′ −X ′qm−1

= −(m− 1)q′ +mq′ −X ′ = q′ −X ′ = −c−
(

1
d
− 1

)
c = − c

d
< 0.

Hence, for Ũ0 = (0, 1,−c, c) ∈ E2 we have

p
(
z : Ũ0

)
= p

(
0 : Ũ0

)
+ p′

(
0 : Ũ0

)
z +

1
2
p′′
(
0 : Ũ0

)
z2 +O(z3)

= −c− c

2d
z2 +O(z3) < −c,

for any sufficiently small positive z. Thus we also know that H̃2 is the immediate
exit set. The disjointness of H̃1 and H̃2 is obvious.
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Similarly, we can show that any orbit starting from

W̃+ =

{
U = (u, c) : u ∈

6⋃
i=3

Hi
c, c1 ≤ c ≤ c2

}
,

enters immediately into int
(
W̃
)

for any c1 and c2 satisfying 0 < c1 < c2, which
completes the proof. �

Now, we shall prove the following lemma.

Lemma 11. Assume that 0 < d < 1. Then, there exists some positive con-
stant c∗d (< c∗0 ) such that, for c = c∗d, (15) has an orbit connecting P1 with Pc.

Proof. We first consider the case that m ≥ 2, which assures that F(U) of the
system (22) is Lipschitz continuous. In order to apply the Wazewski theorem, we
first identify Σ as follows. Let uc = (Xc, qc, pc) be a point on the unstable manifold
Ud(c) for each c satisfying c1 ≤ c ≤ c2, where qc is chosen sufficiently close to 1
and satisfies 0 < qc < 1. Set Σ = {Uc = (uc, c) : c1 + ε ≤ c ≤ c2 − ε} ⊂ W̃

with sufficiently small ε > 0. Then Σ is compact and intersects a trajectory of
(22) only onces. W̃ is seen to be a Wazewski set. In fact, (1) in Proposition 5 is
trivially satisfied since W̃ is closed. If Uc ∈ Σ , Uc · z ∈ W̃ and Uc · z /∈ W̃−,
then Uc · z ∈ int(W̃ ) ∪ ∂W̃2 ∪ (

∂W̃1 \ W̃−). The definition of Σ assures that
Uc · z /∈ ∂W̃2. Here we note that ∂W̃1 \ W̃− = W̃+ ∪ W̃ 0 with W̃ 0 = {(u, c) : u ∈
(Jc ∪ P1 ∪ Pc), c1 ≤ c ≤ c2}. In the proof of Proposition 10 we already see that
the direction of the vector field is inward on W̃+, so that Uc · z /∈ W̃+. Since W̃ 0

consists of the invariant manifold and the critical points, it is also obvious that
Uc · z /∈ W̃ 0. Therefore, it holds that Uc · z ∈ int(W̃ ), which assures (2).

Now, we consider the behavior of Ud(c) for large c and for small c > 0. For
any c ≥ c∗0, Lemma 9 asserts that Ud(c) approaches to P0 as z → ∞. This assures
that Ud(c) has to leave Wc through H1

c for c ≥ c∗0. Of course, it cannot traverse
H2

c before it hits H1
c because H1

c is the immediate exit set of Wc. Thus we see
that any orbit starting from Uc ∈ Σ hits H̃1 with an exit time T (Uc) for c ≥ c∗0.
Since the slope of the projection of Ud(c) to the p-q plane at P1 is λd

+(c) which
approaches to 1/

√
d as c → 0, there exists some small positive c1′ such that Ud(c)

intersects the plane p = −c for c ∈ (0, c1′], which implies that Ud(c) goes out from
Wc through H2

c . Hence we see that an orbit starting from Uc ∈ Σ hits H̃2 with an
exit time T (Uc) for any c ∈ (0, c1′]. Choose c1 + ε = c1

′ and c2 − ε = c∗0. Then,
if Σ = Σ0, Proposition 5 says that F (Σ ) is the continuous image of the connected
set Σ on W̃− = H̃1 ∪ H̃2. On the other hand, we have shown in the above that
F (Uc) ≡ Uc·T (Uc) ∈ H̃1 for c = c1+ε, F (Uc) ∈ H̃2 for c = c2−ε and H̃1∩H̃2 �= ∅,
which contradicts the connectedness of F (Σ ). Therefore, Σ �= Σ0, so that there
exists a point Uc∗ = (uc∗ , c

∗) ∈ Σ such that the solution U(z;Uc∗) = (u(z;uc∗), c∗)
of (22) stays in int(W̃ ) for all z > 0.

Next, we show that u(z;uc∗) gives an orbit connecting P1 with Pc. Note
that u(z;uc∗) stays in int(Wc∗) for all z > 0 and there is no critical point in
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int(Wc∗). In int(Wc∗), q′ = pq < 0 so that q(z;uc∗) → 0 as z → ∞. This
assures that p(z;uc∗) → −c∗ as z → ∞ since 0 ≤ lc∗(p) < q in int(Wc∗) and
lc∗(p) = 0 if and only if p = −c∗. We choose now sufficiently large positive z1 such
that −c∗ ≤ p(z;uc∗) ≤ −c∗/2 for all z ≥ z1. It easily follows from the second
equation of (22) that q(z;uc∗) ≤ q(z1;uc∗)e−(c∗/2)(z−z1). The first equation of (22)
is integrated as

X(z) = e−(c∗/d)(z−z1)

(
X(z1) −

(
1
d
− 1

)∫ z

z1

e(c
∗/d)(ζ−z1)p(ζ)q(ζ) dζ

)
, (23)

where we omit the dependency of the initial value uc∗ for simplicity. By using the
above estimates of p and q, we have the following inequality.

X(z) ≤ e−(c∗/d)(z−z1)

(
X(z1) +

(
1
d
− 1

)
c∗q(z1)

∫ z

z1

e(c
∗/d)(ζ−z1)e−(c∗/2)(ζ−z1) dζ

)

≤ e−(c∗/d)(z−z1)

(
X(z1) +

(
1
d
− 1

)
c∗q(z1)

∫ z

z1

e(1/d−1/2)c∗(ζ−z1) dζ

)

≤ e−(c∗/d)(z−z1)

(
X(z1) +

2(1 − d)
2 − d

q(z1)
[
e(1/d−1/2)c∗(z−z1) − 1

])

≤ e−(c∗/d)(z−z1)X(z1) + e−(1/2)c∗(z−z1)q(z1),

which asserts that X(z) → 0 as z → ∞. Thus we conclude that limz→∞ u(z;uc∗) =
Pc∗ . It is obvious that limz→−∞ u(z;uc∗) = P1 since uc∗ ∈ Ud(c∗).

For the case that 1 < m < 2, in order to assure the Lipschitz continuity of
F(U), we introduce another change of the dependent variables by

q̂ = V m−1, p̂ =
q̂′

q̂
, (24)

which rewrite the system (12) as follows.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
X ′ = − c

d
X − 1

m− 1

(
1
d
− 1

)
p̂q̂1/(m−1),

q̂′ = p̂q̂,

p̂′ = − 1
m− 1

p̂(p̂+ (m− 1)c) − (m− 1)
(
1 − q̂1/(m−1) +X

)
q̂.

(25)

Here, the critical points of this system are P̂0 = (0, 0, 0), P̂1 = (0, 1, 0), and P̂0 =
(0, 0,−(m−1)c). We write (25) in the vector form as û′ = f̂d(û) with û = (X, q̂, p̂),
and û(z; û0) denotes a solution of (25) satisfying û(0; û0) = û0. Now f̂d(û) is
Lipshitz continuous. It follows from (14) and (24) that

q = q̂1/(m−1), p =
1

m− 1
p̂. (26)

This relation assures the one to one correspondence between orbits of (15) in the
phase space Ω+ and orbits of (25) in Ω̂+ = {(X, q̂, p̂) : X > 0, 0 < q̂ < 1, p̂ < 0}.
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Through this correspondence, the whole of the above arguments for m ≥ 2 is valid
also for 0 < m < 1 since Propositions 6, 7, 8, 10 and Lemma 9 hold for m > 1, and
hence we know the existence of some c∗ such that for c = c∗ (25) has a solution
û(z; û0) satisfying limz→−∞ û(z; û0) = P̂1 and limz→∞ û(z; û0) = P̂c∗ . Again,
through the correspondence (26), for this c∗ we have obtained the orbit of (12)
connecting P1 with Pc∗ . Choosing c∗d = c∗, we complete the proof. �

Remark 1. It follows from the proof of Lemma 11 that the traveling front
solution of (11) obtained above, denoted by (Ud(z; c∗), Vd(z; c∗)), decays to (1, 0)
exponentially as z → ∞.

Thus, we have established the existence of the traveling front solution of (11)
and (6) for c ≥ c∗0 and c = c∗d. In the next subsection, we shall prove that c∗d is the
minimal wave speed of traveling front solutions and state the main theorem.

3.4. The properties of the connection orbit
We first discuss the existence of connection orbits of (15) for any c > c∗d. We

can express the orbit of (15) obtained in Lemma 11 as (X, q, p) = (X∗(q), q, p∗(q))
(0 ≤ q ≤ 1) in the phase space, since q′ = pq < 0 in Ω+. Here we note that
p∗(0) = −c∗d,

p∗′(q) = −p
∗(p∗ + c∗d) + (1 − q +X∗)qm−1

p∗q
, (27)

and

X∗′(q) = −c
∗
d

d

X∗

p∗q
−
(

1
d
− 1

)
, (28)

By the use of this orbit, the region Ω∗ is defined, similarly as Ω1, by

Ω∗ ≡ {(X, q, p) : 0 < X < X∗(q), 0 < q < 1, p∗(q) < p < 0}.

The boundary of Ω∗ is given by

∂Ω∗ =

(
4⋃

i=1

S∗
i

)
∪
(

4⋃
i=1

J∗
i

)
∪ I∗0 ∪ P0 ∪ P1 ∪ Pc∗d ,

where

S∗
1 = {(X, q, p) : 0 < q < 1, X = X∗(q), p∗(q) < p < 0},
S∗

2 = {(X, q, p) : 0 < q < 1, 0 < X < X∗(q), p = p∗(q)},
S∗

3 = {(X, q, p) : 0 < q < 1, X = 0, p∗(q) < p < 0},
S∗

4 = {(X, q, p) : 0 < q < 1, 0 < X < X∗(q), p = 0},
J∗

1 = {(X, q, p) : 0 < q < 1, X = 0, p = 0},
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J∗
2 = {(X, q, p) : 0 < q < 1, X = 0, p = p∗(q)},
J∗

3 = {(X, q, p) : 0 < q < 1, X = X∗(q), p = 0},
J∗

4 = {(X, q, p) : 0 < q < 1, X = X∗(q), p = p∗(q)},
I∗0 = {(X, q, p) : X = 0, q = 0, −c∗d < p < 0}.

Proposition 12. Let d be fixed in (0, 1). For each c > c∗d, any orbit of (15)
starting from a point u0 ∈ Ω∗, denoted by uc(z;u0), stays in Ω∗ for all z ≥ 0.

Proof. The proof of Proposition 6 can be applied to this proposition with the
minor changes by noting that c > c∗d. In fact, on S∗

1 , X = X∗(q), so that n∗
1 =

(1,−X∗′, 0). Here, n∗
i are the outward normal of the surfaces S∗

i (i = 1, 2, 3, 4).
Hence, using (28) we have

n∗
1 · fd = − c

d
X −

(
1
d
− 1

)
pq −X∗′pq

= − c

d
X∗ −

(
1
d
− 1

)
pq +

{
c∗d
d

X∗

p∗q
+
(

1
d
− 1

)}
pq

=
1
d

(
c∗dp
p∗

− c

)
X∗ <

1
d
(c∗d − c)X∗ < 0,

for any u = (X, q, p) ∈ S∗
1 .

On S∗
2 , p = p∗(q), so that n∗

2 = (0, p∗′(q),−1). We then have

n∗
2 · fd = p∗′pq + p(p+ c) + (1 − q +X)qm−1

= −p∗(p∗ + c∗d) − (1 − q +X∗)qm−1

+ p∗(p∗ + c) + (1 − q +X)qm−1

= p∗(c− c∗d) + (X −X∗)qm−1 < 0,

for any u ∈ S∗
2 . The remaining part of the proof is the same as that of Proposition 6.

This completes the proof. �

Lemma 13. Let d be fixed. Then, for each c > c∗d, there exists an orbit of
(15) connecting P1 with P0 lying in Ω+. For each positive c < c∗d, there exists no
orbit of (15) connecting P1 with P0 or Pc.

Proof. It follows from Proposition 8 that for each c > c∗d, Ud(c) enters Ω∗.
Then Proposition 12 assures that the orbit corresponding to Ud(c) cannot leave Ω∗.
Hence, it must approach to P0 as z → ∞ since q′ = pq < 0 in Ω∗ and the critical
point Pc does not belong to cl(Ω∗), which proves the first half of this lemma.

Assume that for some c∗ < c∗d, there exists an orbit connecting P1 with Pc for
c = c∗. Then Proposition 8 asserts the existence of an orbit connecting P1 with
P0 for c = c∗d because of c∗d > c∗. This contradicts the uniqueness of the orbit
corresponding to Ud(c). Next, assume that for some c∗ < c∗d, there exists an orbit
connecting P1 with P0 for c = c∗. Then, we can choose c2 − ε = c∗ in place of
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c∗0 in the proof of Lemma 11, so that from Lemma 11, we see the existence of an
orbit connecting P1 with Pc for c = c∗d

′ (< c∗ < c∗d). Thus, the first part of this
lemma again asserts that the existence of an orbit connecting P1 with P0 for c = c∗d,
which leads us to the contradiction. This proves the last half of the assertion, which
completes the proof. �

Lemmas 11 and 13 allow us to call c∗d the minimal wave speed of traveling front
solutions.

Remark 2. It follows from the proof of Lemma 13 that c∗d is determined
uniquely. Also, for each c ≥ c∗d, the traveling front solution of (11) exists uniquely
except translation since Ud(c) is the unique orbit entering P1 as z → −∞.

Next, we consider the d-dependence of connection orbits.

Lemma 14. Let d ∈ (0, 1) be fixed. Then, for each d̄ ∈ (d, 1), there exists an
orbit of (15) connecting P1 with P0 in Ω+.

Proof. We first show that for each fixed c > 0, Ud(c) lies strictly below the
surface S0 = {(X, q, p) : 0 < q < 1, X = −pq/c, p < 0} for any d ∈ (0, 1). The
normal vector n0 of S0 is (c, p, q), so that

n0 · fd = c

{
− c

d
X −

(
1
d
− 1

)
pq

}
+ p2q + q

{
−p(p+ c) − (1 − q +X)qm−1

}

= −(1 − q +X)qm < 0,

for any u = (X, q, p) ∈ S0. This implies that any orbit lying in Ω+ cannot tra-
verse S0 from the region X < −pq/c to X > −pq/c. On the other hand, Ud(c) is
represented near P1 by

(X(q), q, p(q)) = (0, 1, 0) − (−fc(λd
+(c)), 1, λd

+(c))h+ o(h))

for sufficiently small positive h. Therefore,

X(q) + p(q)
q

c
= fc(λd

+(c))h− (1 − h)λd
+(c)

h

c
+ o(h)

=
(
fc(λd

+(c)) − λd
+(c)
c

)
h+ o(h) < 0,

since Proposition 7 assures that fc(λd
+(c))/λd

+(c) < fc(λ0
+(c))/λ0

+(c) = 1/c. Thus
we know that Ud(c) lies strictly below S0 near P1 and hence cannot traverse S0

in Ω+.
We again consider the region Ω∗ and prove that Ud̄(c∗d) stays in Ω∗ for all z

for d̄ ∈ (d, 1). For simplicity, we denote c∗d by c∗ in the following. Proposition 7
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assures that Ud̄(c∗) enters Ω∗ for d̄ > d. On the surface S∗
1 , using (28) with c∗d = c∗,

we have

n∗
1 · fd̄ = −c

∗

d̄
X −

(
1
d̄

− 1
)
pq −X∗′pq

= −c
∗

d̄
X∗ −

(
1
d̄

− 1
)
pq +

{
c∗

d

X∗

p∗q
+
(

1
d
− 1

)}
pq

= −c∗
(

1
d̄

− 1
d

p

p∗

)
X∗ −

(
1
d̄

− 1
d

)
pq

≤ −
(

1
d̄

− 1
d

)(
c∗X∗ + pq

)
< 0,

for any u = (X, q, p) ∈ S∗
1 , since Ud(c∗) stays in the region below S0 where X∗ <

−pq/c∗.
On S∗

2 , p = p∗(q), so that n∗
2 = (0, p∗′(q),−1). We then have

n∗
2 · fd = p∗′pq + p(p+ c∗) + (1 − q +X)qm−1

= −p∗(p∗ + c∗) − (1 − q +X∗)qm−1

+ p∗(p∗ + c∗) + (1 − q +X)qm−1

= (X −X∗)qm−1 < 0,

for any u ∈ S∗
2 . By repeating the same argument as in Proposition 12, we can

conclude that Ud̄(c∗) stays in Ω∗ for all z for d̄ ∈ (d, 1).
Next, assume that Ud̄(c∗) connects P1 with Pc∗ . We can express this orbit by

(Xd̄(q), q, pd̄(q)) (0 ≤ q ≤ 1). Since Ud̄(c∗) stays in Ω∗ for 0 < q < 1, it holds that
0 < Xd̄(q) < X∗(q) and p∗(q) < pd̄(q) < 0 for 0 < q < 1. We should note that

Xd̄(0) = X∗(0) = Xd̄(1) = X∗(1) = 0,

pd̄(0) = p∗(0) = −c∗, pd̄(1) = p∗(1) = 0,
(29)

and

Xd̄
′(1) = −fc∗(λd̄

+(c∗)), X∗′(1) = −fc∗(λd
+(c∗)),

pd̄
′(1) = λd̄

+(c∗), p∗′(1) = λd
+(c∗).

(30)

Since p∗(q) and pd(q) satisfy

d

dq
p∗ = −p

∗(p∗ + c∗) + (1 − q +X∗)qm−1

p∗q
,

and

d

dq
pd̄ = −pd̄(pd̄ + c∗) + (1 − q +Xd)qm−1

pd̄q
,
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respectively, we have

d

dq
(p∗ − pd̄) = −1

q
(p∗ − pd̄) −

(
1 − q +X∗

p∗
− 1 − q +Xd̄

pd̄

)
qm−2

= −a(q)
q

(pd̄ − p∗) + b(q),

where a(q) = 1 − ((1 − q + X∗)qm−2)/(p∗pd̄) and b(q) = −(qm−2/pd̄)(X∗ − Xd̄).
This can be solved as

p∗(q) − pd̄(q) = eA(q)

(
p∗(q1) − pd̄(q1) +

∫ q

q1

e−A(q′)b(q′) dq′
)
, (31)

where A(q) = − ∫ q

1/2
a(q′)/q′ dq′. A(q) is evaluated as follows. By using (29) and

(30), we see that

Xd̄(q) = −fc∗(λd̄
+(c∗)

)
(q − 1) + o(q − 1),

X∗(q) = −fc∗(λd
+(c∗)

)
(q − 1) + o(q − 1),

pd̄(q) = λd̄
+(c∗)(q − 1) + o(q − 1),

p∗(q) = λd
+(c∗)(q − 1) + o(q − 1).

These expressions easily prove that there exists sufficiently small ε > 0 such that

a(q) < 1 − C1

1 − q
for q ∈ [1 − ε, 1),

with some positive constant C1. Hence, we have

−a(q)
q

>
C1 − (1 − q)

(1 − q)q
>
C1 − ε

1 − q
> 0,

for q ∈ [1 − ε, 1), so that

A(q) = −
∫ q

1/2

a(q′)
q′

dq′ = −
∫ 1−ε

1/2

a(q′)
q′

dq′ −
∫ q

1−ε

a(q′)
q′

dq′

> A(1 − ε) +
∫ q

1−ε

C1 − ε

1 − q′
dq′ = A(1 − ε) + (C1 − ε) log

(
ε

1 − q

)
.

Thus, we have obtained the required inequality

eA(q) > eA(1−ε)elog (ε/(1−q))C1−ε

= eA(1−ε)

(
ε

1 − q

)C1−ε

. (32)

Now, take the limit q → 1 in (31). Noting that (29) and (32), we obtain the
relation

p∗(q1) − pd̄(q1) +
∫ 1

q1

e−A(q′)b(q′) dq′ = 0.
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Then, take the limit q1 → 0 in the above relation. By (29), we finally conclude that

∫ 1

0

e−A(q′)b(q′) dq′ = 0,

which is impossible because b(q) > 0 for 0 < q < 1. This proves that Ud̄(c∗) starting
from P1 cannot approach Pc∗ as z → ∞. Therefore, it must approach P0 as z → ∞.
This completes the proof. �

Lemmas 11 and 13 assure that the existence of a unique connection orbit of
(15) only for each c ≥ c∗d, that is, c∗d is the minimal wave speed. Furthermore, with
the aid of Lemma 14 we can show that c∗̄

d
< c∗d for d̄ > d. In fact, Lemma 14 asserts

that for c = c∗d there exists an orbit connecting P1 with P0 for d̄ > d, so that c∗̄
d
≤ c∗d

if d̄ > d. If c∗d = c∗̄
d
, the definition of c∗̄

d
implies that Ud̄(c∗̄d) connects P1 with Pc∗̄

d
.

This is a contradiction. Combining these results, we obtain the following theorem.

Theorem 15. Assume that 0 < d < 1. Then, there exists some c∗d, such that
a traveling front solution for (10) exists uniquely (except translation) only for each
c ≥ c∗d. Furthermore, the minimal wave speed c∗d is strictly monotone decreasing
with respect to d, and it satisfies that c∗1 < c∗d < c∗0.

Proof. It suffices for us to prove that c∗1 < c∗d. For d = 1, the system (15)
becomes ⎧⎪⎨

⎪⎩
X ′ = − c

d
X,

q′ = pq,

p′ = −p(p+ c) − (1 − q +X)qm−1.

(33)

The first equation of (33) with the boundary condition (13) gives that X ≡ 0.
Therefore, we consider the problem in the invariant manifold X = 0 in cl(Ω+),
which is denoted by Ω0 = {(X, q, p) : X = 0, 0 < q < 1, p < 0}. In Ω0, (33) is
reduced to {

q′ = pq,

p′ = −p(p+ c) − (1 − q)qm−1.
(34)

The system (34) has three critical points P 0
0 = (0, 0), P 0

1 = (1, 0) and P 0
c = (0,−c)

in the (q, p)-space. At P 0
1 = (1, 0), the eigenvalues are λ1

1(c) < 0 and λ1
+(c) > 0,

and hence P 0
1 has the 1-dim unstable manifold U1(c). The slope of U1(c) at q = 1

is λ1
+(c).
Now, consider the region Ω∗

1 = {(q, p) : 0 < q < 1, p∗(q) < p < 0}, where
(X∗(q), q, p∗(q)) is the same as before. We should note that p∗(1) = 0, p∗(0) = −c∗d
and p∗′(0) = λd

+(c∗d). The boundary of Ω∗
1 consists of C = {(q, p) : 0 < q < 1, p =

p∗(q)}, l1 = {(q, p) : 0 < q < 1, p = 0}, l2 = {(q, p) : q = 0, −c∗d < p < 0}, P0 P1

and Pc. Let us examine the behavior of the orbit U1(c∗d). Since λ1
+(c∗d) < λd

+(c∗d)
by (19), U1(c∗d) enters Ω∗

1 . The argument in the proof of Lemma 14 with X = 0
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Fig. 1. The position of the front x(t) of u(x(t), t) = 1/2 (0 ≤ t ≤ 1000) for

d = 0 (pp50), 0.2 (pp502), 0.4 (pp504), 0.6 (pp506), 0.8 (pp508), 1.0 (pp51),

m = 5.

verifies that the inner products of the vector field (34) with c = c∗d and the outward
normal on C, l1 and l2 are all negative, so that that U1(c∗d) cannot leave Ω∗

1 for all
z. This assures the existence of the connection orbit of (34) approaching P0 or Pc

for c = c∗d, which implies that c∗1 ≤ c∗d for any fixed d ∈ (0, 1). If c∗1 = c∗d, choose d′

satisfying d < d′ < 1. Then c∗1 ≤ c∗d′ and c∗d′ < c∗d. This is a contradiction. Hence
we have c∗1 < c∗d, which completes the proof. �

Fig. 1 shows the numerical result of the propagation speeds of the traveling
fronts obtained by solving the evolutional system (10) with the appropriate initial
data of the step function type. This result illustrates numerically the last assertion
of Theorem 15.

4. The case d1 > d2 > 0

The condition d1 > d2 > 0 implies d = d1/d2 > 1. Then, it follows from
Proposition 1 that X = U + V − 1 < 0. Hence, for d > 1, our problem is to find
an orbit of (15) connecting P1 = (0, 1, 0) with P0 = (0, 0, 0) or with Pc = (0, 0,−c),
which lies entirely in Ω− = {(X, q, p) : X < 0, 0 < q < 1, p < 0}. Repeating the
similar arguments in Section 3, we can prove the existence of the connection orbits.
Therefore, we discuss only the different points from the case that 0 < d < 1.

In order to examine the local behavior of the unstable manifold Ud(c) near P1,
it suffices to refer to the statements for d > 1 in Propositions 7 and 8. They assert
that Ud(c) has the tangential direction pd

+(c) = (−fc(λd
+(c)), 1, λd

+(c)) at P1. Since
fc(λd

+(c)) is negative, Ud(c) enters Ω−.
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To discuss the global behavior of Ud(c), we require the connection orbit of (15)
for d = 1, which was already considered in the proof of Theorem 15. For d = 1,
we have the system (34), and we know that there exists a unique orbit connecting
P 0

1 with P 0
0 for c > c∗1 and with P 0

c for c = c∗1, which was assured in the proof
of Theorem 2. Now, we denote this unique orbit by (q, φc(q)) for c ≥ c∗1, which
satisfies

d

dq
φc = −φc(φc + c) + (1 − q)qm−1

φcq
. (35)

Let us define the region Ω−
1 by

Ω−
1 ≡ {(X, q, p) : q − 1 < X < 0, 0 < q < 1, φc(q) < p < 0}.

Then, the boundary ∂Ω−
1 of Ω−

1 consists of the followings:

S−
1 = {(X, q, p) : 0 < q < 1, X = q − 1, φc(q) < p < 0},
S−

2 = {(X, q, p) : 0 < q < 1, q − 1 < X < 0, p = φc(q)},
S−

3 = {(X, q, p) : 0 < q < 1, X = 0, φc(q) < p < 0},
S−

4 = {(X, q, p) : 0 < q < 1, q − 1 < X < 0, p = 0},
S−

5 = {(X, q, p) : q = 0, −1 ≤ X < 0, p1(0) ≤ p ≤ 0},
J−

1 = {(X, q, p) : 0 < q < 1, X = 0, p = 0},
J−

2 = {(X, q, p) : 0 < q < 1, X = 0, p = φc(q)},
J−

3 = {(X, q, p) : 0 < q < 1, X = q − 1, p = 0},
J−

4 = {(X, q, p) : 0 < q < 1, X = q − 1, p = φc(q)},
I−0 = {(X, q, p) : X = 0, q = 0, φ1(0) < p < 0},
P0, P1 and Pc.

That is,

∂Ω1 =

(
5⋃

i=1

S−
i

)
∪
(

4⋃
i=1

J−
i

)
∪ I−0 ∪ P0 ∪ P1 ∪ Pc.

Here, note that J0 = ∅ for any c > c∗0. We have the followings which correspond
to Proposition 6 and Lemma 9 respectively.

Proposition 16. Let d > 1 and c ≥ c∗1. Any orbit of (15) starting from a
point u0 ∈ Ω−

1 , denoted by u(z;u0), stays in Ω−
1 for all z ≥ 0.

Proof. We only consider S−
1 and S−

5 . S−
5 is an invariant manifold, so that

u(z;u0) cannot reach any point of this surface. On S−
1 , the outward normal n−

1 is
(−1, 1, 0), so that the inner product

n−
1 · fd =

c

d
X +

(
1
d
− 1

)
pq + pq =

c

d
(q − 1) +

1
d
pq < 0.
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Hence, u(z;u0) cannot leave Ω−
1 through S−

1 . To prove the remaining part, it
suffices for us to follow the argument in the proof of Proposition 6 by replacing ψc

with φc. This completes the proof. �

Lemma 17. Assume that d > 1. Then, for each c ≥ c∗1, there exists an orbit
of (15) which connects P1 with P0.

Proof. Since 0 < λd
+ < λ1

+ and −1 = fc(0) < fc(λd
+) < fc(λ1

+) = 0, Ud(c)
enters Ω−

1 . Then Proposition 16 assures that q → 0 as z → ∞, since q′ = pq < 0
in Ω−

1 . The first equation of (15) gives (23) with c in place of c∗, so that we have

|X(z)| ≤ e−(c/d)(z−z1)

(
|X(z1)| +

∫ z

z1

e(c/d)(ζ−z1)|p(ζ)|q(ζ) dζ
)

≤ e−(c/d)(z−z1)|X(z1)| + d

c
Mpq(z1),

for any z, z1 satisfying z > z1, where Mp = max0≤q≤1|φc(q)|. Taking the limit
z → ∞ in the above inequality, we have limz→∞|X(z)| ≤ (d/c)Mpq(z1). Again
take the limit z1 → ∞. Then we see limz→∞|X(z)| = 0. This implies that Ud(c)
must approach cl(I−0 ), which assures that Ud(c) approach P0 or Pc as z → ∞. To
show that Ud(c) cannot approach to Pc as z → ∞ for any c ≥ c∗1, it suffices for
us to repeat the corresponding part of the proof of Lemma 9. This completes the
proof. �

We define W−
c by

W−
c = {u = (X, q, p) : q − 1 ≤ X ≤ 0, lc(p) ≤ q ≤ 1, −c ≤ p ≤ 0}.

This plays the same role as Wc in the Subsection 3.3, and we can construct the
Wazewski set W̃− = {U = (u, c) : u ∈ W−

c , c1 ≤ c ≤ c2} for the extended system
(22). By noting that X < 0 and 1 − q + X > 0, the whole arguments in the
Subsection 3.3 with c∗1 in place of c∗0 are valid for d > 1. Thus we have

Lemma 18. Assume that d > 1. Then, there exists some positive constant c∗d
(< c∗1 ) such that, for c = c∗d, (15) has an orbit connecting P1 with Pc.

Remark 3. Remark 1 is also valid for d > 1.

In order to prove that c∗d is the minimal wave speed, we introduce the region
Ω∗

− by Ω∗ with the reversed inequality with respect to X, that is,

Ω∗
− ≡ {(X, q, p) : X∗(q) < X < 0, 0 < q < 1, p∗(q) < p < 0},

where (X∗(q), q, p∗(q)) denotes the orbit connecting P1 with Pc for c = c∗d. Then,
the boundary of Ω∗

− is given by

∂Ω∗
− =

(
4⋃

i=1

S−∗
i

)
∪
(

4⋃
i=1

J−∗
i

)
∪ I−∗

0 ∪ P0 ∪ P1 ∪ Pc∗d ,
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Fig. 2. The dependency of c∗d on δ = 1/d (log-log scale).

where S−∗
i , J−∗

i (i = 1, 2, 3, 4) and I−∗
0 are S−

i , J−
i (i = 1, 2, 3, 4) and I−0 with p∗(q)

in place of φc(q). Proposition 8 assures that Ud(c) enters Ω∗
− for any c > c∗d, and

then applying the arguments of the proofs of Proposition 12 and Lemma 13 to Ω∗
−,

we see

Lemma 19. Let d > 1 be fixed. Then, for each c > c∗d, there exists an orbit
of (15) connecting P1 with P0 lying in Ω∗

−. For each positive c < c∗d, there exists
no orbit of (15) connecting P1 with P0 or Pc.

As for the d-dependence, unfortunately, Proposition 7 asserts that Ud̄(c) does
not enter Ω∗

− for any d̄ > d > 1. Therefore, except the monotone decreasing prop-
erty of c∗d with respect to d, we have the similar result of Theorem 15 for d > 1.

Theorem 20. Assume that d > 1. Then, there exists some c∗d, such that a
traveling front solution for (10) exists uniquely (except translation) for each c ≥ c∗d.
Furthermore, the minimal wave speed c∗d satisfies that c∗d < c∗1 ≤ √

2/(m(m− 1)).

5. Concluding remarks

For all d1 ≥ 0 and d2 > 0, we have shown the existence of the minimal wave
speed c∗d > 0 such that the traveling front solutions exist for any c ≥ c∗d.

As for the front profile, we have seen that the solutions of (5) with the minimal
wave speed c∗d decay to (U, V ) = (1, 0) exponentially as z → ∞. We can also see that
the the solutions of (5) with the speed c > c∗d decay to (U, V ) = (1, 0) algebraically
as z → ∞. This can be proved by the routine work of the local analysis of the
(15) near P0 with the aid of the center manifold theory (see, for example [12]).
Of course, it is obvious that any traveling front solutions decay to (U, V ) = (0, 1)
exponentially as z → −∞.
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Fig. 3. The dependency of c∗d on m (d = 10, 1 ≤ m ≤ 12).

We have also discussed the dependence of c∗d on the diffusion coefficients and the
order of autocatalytic reactions. When d > 1, unfortunately we cannot establish the
monotone dependence of the minimal wave speed on d. However, Fig. 2 shows that
the minimal wave speed c∗d is monotone decreasing with respect to the parameter
d for m = 2 (cm2.dat) and m = 5 (cm5.dat). This is obtained numerically by the
shooting method which follows the unstable manifold of the critical point P1 of (15).
Also, this numerical result shown in Fig. 2 suggests that c∗d =

√
δ {σ(m) + o(1)},

where δ = 1/d. Fig. 3 shows that he minimal wave speed c∗d is monotone decreasing
with respect to the parameter m for d = 10. The justifications of these numerical
results require the further study.

6. Appendix

We give the proof of Theorem 4. For d1 = 1 and d2 = 0, (5) becomes

{
U ′′ + cU ′ − UV m = 0,
cV ′ + UV m = 0.

(36)

Adding these two equations and integrating the result with the aid of (6), we have

U ′ + c(U + V − 1) = 0,

so that (36) is reduced to the first order system

⎧⎨
⎩
U ′ = −c(U + V − 1),

V ′ = −1
c
UV m,

(37)
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which has two critical points P+ = (1, 0) and P− = (0, 1). From Proposition 1, we
see that U + V < 1 and U ′ > 0. This shows c > 0. Hence we look for an orbit
connecting P+ and P− which lies entirely in Ω0 = {(U, V ) : 0 < U < 1, 0 < V <

1, U + V < 1} for c > 0.
The eigenvalues of the linearized equation of (37) about the critical point P−

are λ± = (1/2)[−c ± √
c2 + 4 ]. The corresponding eigenvectors are t(cλ±,−1),

respectvely. Since cλ+ = (c/2)(
√
c2 + 4 − c) = 2/(

√
1 + 4/c2 + 1) < 1, the 1-dim

unstable manifold U0 through P− enters Ω0. We easily see that this U0 must stay
in Ω0 for all z ∈ R. In fact, on the boundary l1 = {(0, V ) : 0 < V < 1}, the vector
field of (37) is (c(1 − V ), 0), and it is (0, U(1 − U)m) on l2 = {(U, V ) : 0 < U <

1, U + V = 1}. These imply that the vector fields on l1 and l2 are directed to the
inside of Ω0. The boundary l3 = {(U, 0) : 0 ≤ U ≤ 1} is an invariant manifold.
Thus we know that U0 cannot traverse the boundary of Ω0 and stays in Ω0. Noting
that there is no critical point in Ω0 and U ′ > 0, we can conclude that U0 must
approach P+ as z → +∞. This completes the proof. �
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