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Sufficient conditions for permanence of a general periodic single-species system with
periodic impulsive perturbations are obtained via comparison theory of impulsive
differential equations. An application is given to the periodic impulsive logistic system.
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1. Introduction

Impulsive phenomena appear widely in the real world. For example, in fishery,
human actions on fish resources (harvesting or planting) are seasonal or occur in
regular pulses; To finish a vaccination process of disease (such as Hepatitis B etc.),
doses usually should be taken several times and there must be some fixed time
intervals between two doses; People may use the pesticides to kill the pest at some
certain moments instead of using it continuously; Chemical treatment of disease
cannot be done continuously since it destroys both infected and healthy cells, and
so on. To study the dynamics of such kind of processes, it is important to consider
these perturbations impulsively. Impulsive differential equations are suitable for the
mathematical simulations of such evolutionary processes whose states are subject
to sudden changes at certain moments. Recently, there has been some investiga-
tions considering realistic impulsive effects in population dynamics, such as inputs
of substrates [2], birth [3, 11, 13], chemotherapeutic treatments [4], pest control [8]
or planting and harvesting of species [9] and vaccinations against disease [12] etc.
Usually, it is difficult to analyze the impulsive differential equations arisen from
applications due to numerous theoretical and technical difficulties except that in
some cases the models can be rewritten as simple discrete-time mapping or differ-
ence equations when the corresponding continuous models can be solved explicitly,
eg. [2, 13]. This is the reason that numeric simulations are frequently used in ap-
plications. Recently, many investigations focus on the global dynamics of impulsive
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systems, see, for example [6, 9, 10, 14, 16, 17].
In this paper, we will consider the following nonlinear impulsive system in R+.

x′(t) = x(t)f(t, x(t)), t �= τk, k ∈ N, (1.1)

�x(τk) = bkx(τk), k ∈ N, (1.2)

where N is the set of positive integers, τ0 � 0 < τ1 < · · · < τk < τk+1 < · · · ,
�x(τk) = x(τ+

k ) − x(τk). (1.1) may describe the variation of population number
of an isolated species, for example, some kind of fish species. (1.2) describes the
human exploit activities which are considered as impulsive perturbations of the
species since harvesting or planting of species is actually seasonal or occurs in
regular pulses.

Suppose that system (1.1), (1.2) satisfies the following conditions (A1)–(A4).
(A1) (1.1) is ω-periodic and (1.2) is T -periodic, i.e.,

f(t + ω, x) ≡ f(t, x), t ∈ R, (1.3)

T is the least positive constant such that there are l τks in the interval
(0, T ) and

τk+l = τk + T , bk+l = bk, k ∈ N. (1.4)

(A2) f( · , x) ∈ PC[R,R] and PC[R,R] = {φ : R �→ R, φ is continuous for t �=
τk, φ(τ+

k ) and φ(τ−
k ) exist and φ(τk) = φ(τ−

k ), k ∈ N}.
(A3) f(t, · ) is differentiable and ∂f/∂x ≤ 0.
(A4) 1 + bk > 0, bk �= 0, k ∈ N .

(1.3) in (A1) shows that the variation of the population number x(t) is
ω-periodic, which may be related to the periodically changing of environment. This
can describe the periodically changing possibility of regeneration of the species and
the periodic changing of the resources maintaining the evolution of the population.
(1.4) shows that impulsive effects on the population are T -periodic. Naturally, this
period is distinct from ω, the period of the change of environment. Even when
we want to carry out the perturbations according to the period ω, we cannot do
it since we do not know ω exactly. (A3) shows the species is density dependent.
When bk > 0, the perturbation stands for planting of the species, while bk < 0
stands for harvesting. Denote

γ � ω

T
.

We suppose that conditions (A1)–(A4) always hold in this paper. By the basic
theories of impulsive differential equations in [1, 5], system (1.1), (1.2) has a unique
solution x(t) = x(t, x0) ∈ PC[R,R] for each initial value x(0) = x0 ∈ R+ and
further x(t) > 0, t ∈ R+ if x(0) = x0 > 0 because of 1 + bk > 0 in (A4).

As a general single-species impulsive system, system (1.1), (1.2) includes many
basic impulsive systems such as the logistic system studied by Liu and Chen [9]:

x′(t) = x(t)(r(t) − a(t)x(t)), t �= τk, k ∈ N, (1.5)

�x(τk) = bkx(τk), k ∈ N, (1.6)
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all the non-delay cases of single-species Lotka–Volterra system in [15], the model of
respiratory dynamics in [6], the “food-limited” population growth model and the
Michaelis–Menton single species growth model listed in [7] with γ = 1, i.e., the
periods of environment changing and impulsive perturbations are the same.

When γ is rational, [9] showed that system (1.5), (1.6) has a unique positive
periodic solution, which is a global attractor of all positive solutions if the following
condition holds.

μ =
∏

0<τk<T

(
1

1 + bk

)γ

e−
∫ ω
0 r(τ) dτ < 1. (1.7)

And if (1.7) is reversed, then the zero solution is a global attractor. When γ is
irrational, system (1.5), (1.6) has no periodic solutions. [9] established sufficient
conditions for the positive solutions of system (1.5), (1.6) attracting each other
and suggested that system (1.5), (1.6) has a positive global attractor which is not
periodic. This is quite different from the corresponding continuous system. How-
ever, to guarantee the existence of a positive global attractor, permanence should
be established. Permanence is also biologically important since it demonstrates the
stability of the system from the biological point of view and means that the density
or the number of individuals of species is ultimately bounded both below and above
by some positive constants independent of initial values.

The purpose of this paper is to establish permanence conditions for the general
impulsive system (1.1), (1.2) and then as an application show that system (1.5),
(1.6) is permanent with condition (1.7). This ensures the existence result of a global
attractor suggested by Conjecture 3 in [9].

2. Permanence

We first give the definition of permanence.

Definition 2.1. System (1.1), (1.2) is called permanent iff there exist posi-
tive constants M > δ which are independent of initial values, such that any positive
solution x(t) of system (1.1), (1.2) satisfies

δ ≤ lim inf
t→∞ x(t) ≤ lim sup

t→∞
x(t) ≤ M .

From Definition 2.1, we can see that permanence means that each positive
solution is ultimately bounded both above and below by some positive constants
independent of the initial values of solution.

We now establish the ultimate lower bound of system (1.1), (1.2). If we express
nT , n ∈ N , by making use of ω, the following lemma is obviously valid.

Lemma 2.1. For any n ∈ N , nT can be expressed by ω as

nT = qnω + sn,

where qn ∈ N ∪ {0}, sn ∈ R+, 0 ≤ sn < ω. Moreover, limn→∞ qn = ∞ and
limn→∞ n/qn = γ.
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Remark 2.1. If there exists n0 ∈ N such that sn0 = 0, then γ is rational.
And if sn > 0 for any n ∈ N , then γ is irrational.

Theorem 2.1. If

μ =
∏

0<τk<T

(
1

1 + bk

)γ

e−
∫ ω
0 f(τ,0) dτ < 1, (2.1)

then there exists a δ > 0 such that

lim inf
t→∞ x(t) ≥ δ,

where x(t) is any solution of system (1.1), (1.2) with initial value x(0) = x0 > 0.

Proof. By (2.1) the continuity of f(t, · ) and the Lebesgue Theorem, we can
choose δ1 > 0 be sufficiently small such that

∏
0<τk<T

(1 + bk)γe
∫ ω
0 f(τ,δ1) dτ > 1.

As a consequence, by Lemma 2.1, there exist sufficiently small θ > 0 and sufficiently
large n0 ∈ N such that

∏
0<τk<T

(1 + bk)n/qne
∫ ω
0 f(τ,δ1) dτ > 1 + θ, (2.2)

for n ≥ n0. Denote

h = min
{

0, min
τ∈[0,ω]

{f(τ, δ1)}
}

, H = max
{

0, max
τ∈[0,ω]

{f(τ, δ1)}
}

.

Thus h ≤ 0 ≤ H. We will prove the result as the following two steps. We may
suppose that x0 ≤ δ1 since Step 1 can be skipped if x0 > δ1.

Step 1. There exists a t0 > 0 such that x(t0) > δ1.

Suppose on the contrary that

x(t) ≤ δ1,

for all t ≥ 0. Then by (1.1) and (A3), we have

x′(t) ≥ x(t)f(t, δ1), t ≥ 0, t �= τk, k ∈ N.
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By the comparison result of scalar impulsive differential equations [1, 5], Lemma 2.1
and (2.2), we find that

x(nT ) ≥ x0

∏
0<τk<nT

(1 + bk)e
∫ nT
0 f(τ,δ1) dτ

= x0

∏
0<τk<nT

(1 + bk)e
∫ qnω
0 f(τ,δ1) dτe

∫ qnω+sn
qnω

f(τ,δ1) dτ

= x0

∏
0<τk<T

(1 + bk)neqn

∫ ω
0 f(τ,δ1) dτe

∫ sn
0 f(τ,δ1) dτ

= x0

( ∏
0<τk<T

(1 + bk)
n

qn e
∫ ω
0 f(τ,δ1) dτ

)qn

e
∫ sn
0 f(τ,δ1) dτ

≥ x0e
hω(1 + θ)qn ,

for n ≥ n0. Hence x(nT ) → ∞ as n → ∞, which is a contradiction. Thus there
exists a t0 > 0 such that x(t0) > δ1.

Step 2. Establish a positive ultimate lower bound δ ≤ δ1.

Let t0 > 0 such that x(t0) > δ1. If x(t) ≥ δ1 for all t ≥ t0, then our aim is
obtained for any positive constant δ ≤ δ1. We shall consider those solutions which
leave region {x | x ≤ δ1} and reenter it. Let t1 = inf{t > t0 | x(t) ≤ δ1}. Then
x(t) > δ1, t ∈ [t0, t1) and x(t1) ≥ δ1. Suppose that t1 ∈ (n1T, (n1 + 1)T ] for some
n1 ∈ N ∪ {0}. Let b = min

{∏
t≤τk≤T (1 + bk)

∣∣ t ∈ [0, T ]
}
. By (2.1), as (2.2), we

can choose an m ∈ N , m > γ such that

∏
0<τk<T

(1 + bk)γ/(1+γ/m)e
∫ ω
0 f(τ,δ1) dτ > 1 + θ

and

beh(ω+T )−Hω(1 + θ)m/γ−1 > 1.

Denote n2 = (n1 + 1 + m). By Lemma 2.1, we have

n2 − n1 − 1
qn2 − qn1+1

=
mω

mT + sn1+1 − sn2

≥ mω

mT + ω
=

γ

1 + γ/m

and

qn2 − qn1+1 =
1
ω

((n2 − n1 − 1)T + sn1+1 − sn2) ≥
1
ω

(mT − ω) =
m

γ
− 1.
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We claim that there must exist t2 ∈ (t1, n2T ] such that x(t2) > δ1. Otherwise,
x(t) ≤ δ1 for t ∈ (t1, n2T ]. Thus by

x′(t) ≥ x(t)f(t, δ1), t ∈ (t1, n2T ], t �= τk, k ∈ N,

we have

x(n2T )

≥ x(t1)
∏

t1≤τk<n2T

(1 + bk)e
∫ n2T
t1

f(τ,δ1) dτ

= x(t1)
∏

t1≤τk≤(n1+1)T

(1 + bk)
∏

(n1+1)T<τk<n2T

(1 + bk)

× e
∫ (n1+1)T
t1

f(τ,δ1) dτ
e
∫ qn2ω
qn1+1ω

f(τ,δ1) dτ

× e
− ∫ qn1+1ω+sn1+1

qn1+1ω
f(τ,δ1) dτ

e
∫ qn2ω+sn2
qn2ω

f(τ,δ1) dτ

≥ δ1be
h(ω+T )−Hω

( ∏
0<τk<T

(1 + bk)(n2−n1−1)/(qn2−qn1+1)e
∫ ω
0 f(τ,δ1) dτ

)qn2−qn1+1

≥ δ1be
h(ω+T )−Hω

( ∏
0<τk<T

(1 + bk)γ(1+γ/m)e
∫ ω
0 f(τ,δ1) dτ

)qn2−qn1+1

≥ δ1be
h(ω+T )−Hω(1 + θ)qn2−qn1+1

≥ δ1be
h(ω+T )−Hω(1 + θ)m/γ−1

> δ1,

which is a contradiction. Thus there exists t2 ∈ (t1, n2T ] such that x(t2) > δ1. Let
t3 = inf{t > t1 | x(t) > δ1}. Then x(t) ≤ δ1 for t ∈ (t1, t3].

Let b1 = min
{∏

t1≤τk<t2
(1 + bk)

∣∣ 0 < t1 < t2 ≤ (m + 1)T
}

and δ =
min

{
δ1, δ1b1e

h(m+1)T
}
. Obviously, δ is independent of any positive solution. Note

that x(t1) ≥ δ1, we have for any t ∈ (t1, t3],

x′(t) ≥ x(t)f(t, δ1), t �= τk, k ∈ N

and

x(t) ≥ x(t1)
∏

t1≤τk<t

(1 + bk)e
∫ t
t1

f(τ,δ1) dτ

≥ δ1b1e
h(t−t1)

≥ δ1b1e
h(m+1)T

≥ δ.

Since x(t+3 ) > δ1, the same argument can be continued. We can conclude that
x(t) ≥ δ for all t ≥ t0. The proof is complete. �
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Remark 2.2. (2.1) can be rewritten as
∏

0<τk<T (1 + bk)γe
∫ ω
0 f(τ,0) dτ > 1.

By the proof of Theorem 2.1, we can see that it means biologically that when the
quantity of the species is sufficiently small, then incorporating with the impulsive
perturbations and the the intrinsic growth of the species, the average per capital
increasing rate in one natural cycle is greater than 1.

Next, we establish the ultimate upper bound of system (1.1), (1.2). Sup-
pose that

lim
M→∞

∫ ω

0

f(τ,M) dτ = −∞. (2.3)

Then we can choose M1 > 0 be sufficient large such that

μ1 =
∏

0<τk<T

(1 + bk)γe
∫ ω
0 f(τ,M1) dτ < 1. (2.4)

Using (2.4), the ultimate upper bound can be established by the method similar to
the proof of Theorem 2.1. In fact, in Step 1, we can prove that there exists t0 > 0
such that x(t0) < M1. Otherwise, we will lead to a contradiction, x(nT ) → 0
instead of x(nT ) → ∞ in the proof of Theorem 2.1. And then in Step 2, we can
establish ultimate upper bound M similarly. Hence we have the following theorem.
Its proof will be omitted.

Theorem 2.2. Suppose that (2.3) holds. Then there exists a constant M > 0
such that x(t) ≤ M for t sufficiently large, where x(t) is any solution of system
(1.1), (1.2) with x(0) = x0 > 0.

Theorems 2.1 and 2.2 establish the permanence of system (1.1), (1.2).

Theorem 2.3. Suppose that (2.1) and (2.3) hold. Then system (1.1), (1.2)
is permanent.

3. Application

The permanence conditions (2.1) and (2.3) give some simple conditions on the
parameters of system (1.1), (1.2). Thus our results can be directly applied to the
special cases of basic single species impulsive systems such as the logistic system
(1.5), (1.6) in [9], all the non-delay cases of single-species Lotka–Volterra system in
[15], the model of respiratory dynamics in [6], the “food-limited” population growth
model and the Michaelis–Menton single species growth model listed in [7].

To illustrate it clearly, we now consider system (1.5), (1.6) as an example.
Suppose that (1.5) is ω-periodic, (1.6) is T -periodic, i.e.,

r(t + ω) ≡ r(t), a(t + ω) ≡ a(t), t ∈ R, (3.1)



64 X. Liu and Y. Takeuchi

T is the least positive constant such that there are l τks in the interval (0, T ) with

τk+l = τk + T , bk+l = bk, k ∈ N (3.2)

and further

r( · ), a( · ) ∈ PC[R,R]. (3.3)

The following restrictions on system (1.5), (1.6) are natural from the biological
meanings.

a(t) ≥ 0, t ∈ R+, (3.4)

1 + bk > 0, bk �= 0, k ∈ N. (3.5)

We suppose that (3.1)–(3.5) are satisfied basically by system (1.5), (1.6). Then
obviously, (A1)–(A4) hold. Using Theorem 2.3, we have the following result.

Theorem 3.1. Suppose that (1.7) and

∫ ω

0

a(τ) dτ > 0 (3.6)

hold. Then system (1.5), (1.6) is permanent.

Proof. Condition (1.7) is exactly (2.1) for system (1.5), (1.6). By (3.6), (2.3)
obviously holds. Thus the result follows directly from Theorem 2.3. The proof is
complete. �

The ultimate upper bound of system (1.5), (1.6) is established in [9] by the
method of Lyapunov function, which relies on

r(t) > 0, a(t) > 0, t ∈ R+. (3.7)

Condition (3.7) means that the birth rate is always larger than death rate and the
density dependance always exists. It may be unreasonable for some species living
in a periodic changing environment, for example, birth may take place seasonally.
In this paper, condition (3.7) is replaced by (3.4) and (3.6), which only contain
restrictions for a(t). In fact, condition (1.7) already has restrictions for r(t). We
can see clearly that there are no positive restrictions for r(t) and a(t): r(t) may be
negative for some t, which is reasonable for species with seasonal birth and only
a(t) ≥ 0 is necessary. Hence the conditions and results are quite reasonable. Even
when r(t) < 0 for all t > 0, which is reasonable for endangered species, Theorem 3.1
suggests that the species could be permanent if bk and T are large enough. In this
sense, impulsive planting is helpful for protecting the species from extinction.

When γ is rational, based on (3.7), [9] proved that if (1.7) holds, system (1.5),
(1.6) has a unique positive global attractor which is a positive periodic solution. The
system is then obviously permanent. Theorem 3.1 shows that with this condition
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and condition (3.6), system (1.5), (1.6) is permanent whether γ is rational or not.
Hence Theorem 3.1 ensures the existence of a positive global attractor suggested
in [9, Conjecture 3]. With condition (1.7), [9] proved that the positive solutions
of system (1.5), (1.6) attracts each other in the sense of lower limit. Thus the
permanence result in this paper also strongly suggests that the global attractivity
results in [9, Conjectures 1 and 2] are valid. Since the positive global attractor
of system (1.5), (1.6) is not periodic, which is different from the corresponding
continuous system, it is interesting to study further its structure.

Acknowledgement. We thank the referee and Prof. M. Mimura for their sug-
gestions that improved the presentation of this paper.
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