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An integrodifference model that describes the spread of invading species on a periodically
fragmented environment is analyzed to derive an asymptotic speed of range expansion.
We consider the case that the redistribution kernel is given by an exponentially damping
function and the population growth is subject to a Ricker function in which the intrinsic
growth rate is specified by a spatially periodic step-function. We first derive a condition for
successful invasion of a small propagule, and then provide a mathematical formula for the
rate of spread. Based on the speeds calculated from the formula for various combinations
of parameter values, we discuss how the habitat fragmentation influences the invasion
speed. The speeds are also compared with the corresponding speeds when the dispersal
kernel is replaced by a Gaussian.
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1. Introduction

When a species invades a new area, the success of invasion and its rate of spread
are determined by interplay among dispersal, population growth, interactions with
other species or environmental heterogeneity. Since the pioneer work of Skellam
[38], various theoretical models have been developed to analyze spatio-temporal
patterns of biological invasion. Earlier studies of invasion used reaction-diffusion
equations on a homogeneous one-dimensional space, in which reproduction and
movement are assumed to occur continuously and the movement is subject to ran-
dom dispersal (Fisher [8], Skellam [38], Okubo [29], Bramson [4], Okubo and Levin
[30]). Recently, newer models in various mathematical frameworks including in-
tegral kernel-based models (van den Bosch et al. [3], Mollison [26], Slatkin [39],
Weinberger [42], Kot et al. [20], Metz et al. [25]), stratified diffusion model (Shige-
sada et al. [36], Shigesada and Kawasaki [34], [35]), cell-automata model (Shaw [33],
Hastings [12], Ellner et al. [7], Kawasaki et al. [16]), and individual-based model
(Higgins et al. [15]) have been developed in order to accommodate complex features
in real ecosystems such as long distance dispersal, life-history of organisms, spatio-
temporal heterogeneity, or demographic stochasticity (Hastings et al. [13]). Among
them, the integrodifference model has been gaining growing attention for its ease
in incorporating the life history of organisms with nonoverlapping generations and
various types of dispersal kernel (Kot et al. [20], Veit and Lewis [41], Clark [6],
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Higgins and Richardson [14], Neubert and Caswell [27], Neubert et al. [28], Takasu
et al. [40], Lewis and Pacala [22], Kot et al. [21], Lewis et al. [23]). However, few
studies have examined the influence of spatial heterogeneity on the rate of spread
in the framework of the integrodifference model.

Spatial heterogeneity in the invaded environment would have profound influ-
ence on the rate of spread as pointed out in a handful of empirical studies (Hastings
et al. [13], Williamson and Harrison [45], With [46]). In the framework of reaction-
diffusion equations, there have been a number of work that studied propagating
waves in periodic media and proved the existence of the asymptotic front speed
(Gartner and Freidlin [11], Freidlin [9], [10], Xin [47]). Recently Weinberger [43]
presented a more general and strict mathematical formula for the asymptotic speed
in periodically varying environments (see also Berestycki et al. [2], Berestycki and
Hamel [1]). In the ecological context, Shigesada et al. [37] first presented a reaction-
diffusion model for the spread of a single species in a patchy environment with
periodic variations in diffusivity and growth rate and investigated how fragmenta-
tion of a favorable habitat could retard the rate of spread (see also Shigesada and
Kawasaki [34], Kinezaki et al. [18], [17], Lutscher et al. [24]).

In this paper, we try to address the effect of spatial heterogeneity on invasions
in the framework of the integrodiffence model. Our model involves an exponentially
damping dispersal kernel and a spatially heterogeneous environment consisting of
alternating favorable and unfavorable patches. Using computer simulations, we
first demonstrate that when the trivial solution of the model is locally unstable, an
initially localized population evolves to a propagating wave, in which the frontal
pattern varies from year to year, but the average frontal speed tends to be constant.
We further employ a heuristic method to obtain a mathematical formula for the
average frontal speed. The speed calculated from the formula is illustrated as a
function of the quality and the size of the unfavorable patch. Based on these results,
we discuss how the environmental fragmentations influence the rate of spread of
invasive species. Finally we examine how the speeds change when the dispersal
kernel is replaced by a Gaussian kernel.

2. Model

Let us consider a single-species invasion in a one-dimensional environment, in
which favorable and unfavorable habitats are alternately arranged in an infinite
expanse of space. We assume that generations of the species are non-overlapping,
so that individuals undergo reproduction and immediately die thereafter, as seen
in an insect population with one generation each year. Then offspring redistribute
according to a dispersal kernel, k(x, y), which represents the probability density
function for the location x to which an individual at y disperses. The redistributed
offspring become adults within the same year, and reproduce their offspring. Thus
if we denote by Nt(x) the population density at location x at the start of the
t-th generation, the population density Nt+1(x) at location x and generation t + 1
is given by summing up the population density over all location y, at which an



Integrodifference Model for a Fragmented Environment 5

individual is produced and then dispersed to location x (Kot et al. [20]):

Nt+1(x) =
∫ ∞

−∞
k(x, y)F (Nt(y), y)Nt(y) dy −∞ < x < ∞, t = 0, 1, 2, . . . , (1)

where F (Nt(y), y) is the per capita population growth rate at location y, which
generally depends on both the population density and location y. Here we use the
following growth function, which is modified from the Ricker equation [31]:

F (Nt, x) = er(x)−qNt (2)

where qNt represents the effect of intraspecific competition on the reproduction
rate and r(x) is the intrinsic growth rate at location x. In order to incorporate
the heterogeneity of the patchy environment, we assume that r(x) is given by a
periodic step function as follows (see Fig. 1):

r1 for nL − L1 ≤ x < nL (3a)
r(x) =

{
r2 for nL ≤ x < nL + L2 (3b)

where L1 and L2 respectively are the widths of the favorable and unfavorable habi-
tats, and L = L1 + L2. The intrinsic growth rates in the favorable and unfavorable
habitats are assigned as r1 and r2, respectively. Note that r1 should be positive,
and r2 is lower than r1 and can be negative. When r1 = r2, our model reduces to
an integrodifference model in a homogeneous environment.

Fig. 1. A periodically fragmented environment. Favorable and unfavorable habitats with

widths L1 and L2, and intrinsic growth rates r1 and r2, respectively, are arranged

alternately in one-dimensional space.

As for the dispersal kernel, we adopt an exponentially damping function,

k(x, y) =
1
2d

exp
(
−|x − y|

d

)
(4)

which can be derived under the assumption that dispersers move randomly and
settle at a constant rate during sufficiently long dispersal period (Broadbent and
Kendall [5], Williamson [44]). As the initial condition, we impose:

N0

2x0
for |x| ≤ x0 (5a)

N0(x) =

⎧⎨
⎩

0 for |x| > x0 (5b)
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Fig. 2. Invasion condition in parameter space (r2, L2) for L1 = 0.8, r1 = 1 and d = 1. In

the hatched region, invasion succeeds. r∗2 = −0.855, L∗
2 = 1.9855.

where N0 is the number of organisms initially introduced in a small domain of
−x0 ≤ x ≤ x0. Now that an integrodifference model for a periodically frag-
mented environment is constructed by (1) with (2)–(5), we first examine the sta-
bility property of the trivial solution by analyzing the linearized equation of (1)
about Nt(x) = 0. Thus we obtain the following stability criteria:

The trivial solution is unstable,

if er2 ≥ 1, or (6a)

if er2 < 1 and L1 >
2d√

er1 − 1
Tan−1

{√
1 − er2√
er1 − 1

tanh
(√

1 − er2
L2

2d

)}
. (6b)

In other words, we may expect that a small number of introduced organisms will
succeed in invasion if (6) holds; otherwise, the invasion will fail. In Fig. 2, the
borderline for successful invasion is plotted in parameter space (r2, L2) for L1 = 0.8
and r1 = 1. From this figure, we can see that if either r2 is larger than a threshold,
r∗2 , or L2 is less than a threshold, L∗

2, invasion always succeeds. Furthermore, when
L2 is increased to infinity, (6b) is reduced to

L1 >
2d√

er1 − 1
Tan−1

√
1 − er2√
er1 − 1

. (7)

This means that if the width of the favorable patch L1 is large enough to satisfy
(7), invasion succeeds no matter how large the width of the unfavorable patch L2

is. Moreover, even when the unfavorable patch is extremely hostile, i.e., r2 = −∞
as well as L2 = ∞, invasion succeeds if

L1 >
2d√

er1 − 1
Tan−1 1√

er1 − 1
, (8)

which coincides with the condition for persistence in a finite patchy domain with
absorbing boundaries as previously derived by Kirk and Lewis [19].
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Fig. 3. A propagating wave that satisfies equation (1) with (2)–(5). Parameters are

chosen as r1 = 1, r2 = 0, L1 = 5, L2 = 5, q = 1, d = 1, x0 = 1/2, and N0 = 0.2.

x∗
t indicates the location at which the population density of generation t reaches

a threshold, N∗.

Based on these results, we first carry out numerical simulations of the model
for various parameter values. For the sake of simplicity, here we introduce the
following variable transformation:

N ′
t = qNt, x′ =

x

d
, L′

1 =
L1

d
, L′

2 =
L2

d
and L′ =

L

d
. (9)

Substituting (9) into (1)–(5) and omitting the primes, we have formally the same
equation as (1)–(5) in which q and d are substituted by 1. Therefore we subsequently
put q = d = 1 without loss of generality. From simulations, we found that when
(6) does not hold, the solution will eventually becomes zero, so that invasion fails.
On the other hand, when (6) is satisfied, the solution evolves into a propagating
wave as shown in Fig. 3, where the population increases faster in the favorable
habitats and slower in the unfavorable ones so that leading edge of the population
continuously expands. It should be noted, however, the shape of the wave front
varies with generation time, unlike the case of a traveling periodic wave as seen
in the corresponding reaction-diffusion model, in which two successive waves are
completely superimposed by shifting their mutual locations by one spatial period
at every certain time interval (Shigesada et al. [37]). Nevertheless from a broader
viewpoint, it looks like that the range expands at a roughly constant rate. To
examine this point more precisely, here we define an instantaneous speed from time
t to time t + 1 as x∗

t+1 − x∗
t , where x∗

t is the location of the front at which the
population density Nt(x) reaches a certain threshold of detection, N∗. By taking
the average of the instantaneous speeds over time, we define the average frontal
speed as,

c̃ = lim
t→∞

1
t

t∑
t′=1

(x∗
t′ − x∗

t′−1) = lim
t→∞

x∗
t

t
. (10)

Fig. 4 shows the instantaneous speed, x∗
t′ −x∗

t′−1, against t, which apparently varies
from generation to generation. However, we found that the right hand side of (10)
converges to a constant as t goes to infinity.
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Fig. 4. Frontal speed as a function of generation time t. Closed circles are the

instantaneous speed x∗
t+1 − x∗

t , and the solid curve is the average of the

instantaneous speed over t generations. Parameters are the same as in Fig. 3.

3. Mathematical formula for the average frontal speed—A heuristic
method

Here we present a heuristic method to derive the average frontal speed. Con-
sider the case where (6) is satisfied so that the solution of (1) with (2)–(5) evolves
to a propagating wave with average frontal speed c. We focus on the leading edge
of the wave, where the population density is small. Then (1) can be approximated
by the following linearized equation:

nt+1(x) =
∫ ∞

−∞
k(x, y)R(y)nt(y) dy, (11)

where

er1 for nL − L1 ≤ x < nL (12a)
R(x) =

∂F

∂Nt
(0, x) =

{
er2 for nL ≤ x < nL + L2 (12b)

In analogy to the reaction-diffusion model in a periodic patchy environment (Shige-
sada et al., 1984, Shigesada and Kawasaki, 1996), here we seek a solution of (11)
in the following form:

nt(x) = e−s(x−ct)g(x) , (13a)

g(x + L) = g(x), (13b)

where s is an auxiliary positive constant. For simplicity, we further confine ourselves
to the case that nt(x) together with dnt/dx are continuous with respect to x. From
(13a), we have a relation,

nt+1(x) = escnt(x). (14)
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By substituting (14) into (11), we have

escnt(x) =
∫ ∞

−∞
k(x, y)R(y)nt(y) dy, (15)

We further substitute the dispersal kernel (4) into (15) to obtain:

escnt(x) =
1
2

∫ x

−∞
e−x+yR(y)nt(y) dy +

1
2

∫ ∞

x

e−y+xR(y)nt(y) dy. (16)

Differentiate the both sides of (16) with respect to x twice. Then we have the
following 2nd-order differential equation,

n′′
t (x) = (1 − e−scR(x))nt(x). (17)

By substituting (13a) into (17) and rearranging the resultant equation, we get a
differential equation for g(x) as follows:

g′′(x) − 2sg′(x) + {s2 − (1 − e−scR(x))}g(x) = 0. (18)

Since R(x) is a periodic step function as defined in (12a), the general solution of
(18) for nL − L1 < x < nL + L2 is given by:

g1(x) = A1e
(s+q1)x + B1e

(s−q1)x for nL − L1 ≤ x < nL (19a)
g(x) =

{
g2(x) = A2e

(s+q2)x + B2e
(s−q2)x for nL ≤ x < nL + L2 (19b)

where A1, A2, B1, and B2 are arbitrary constants and, q1 and q2 are given by

q1 =
√

1 − e−scer1 , q2 =
√

1 − e−scer2 . (20)

Since we assumed that g(x) is periodic with spatial period L and that nt(x) and
dnt/dx are continuous with respect to x, the following equations hold at the bound-
ary of the favorable and unfavorable habitats:

g1(0) = g2(0), g1(−L1) = g2(L2),

g′1(0) = g′2(0), g′1(−L1) = g′2(L2).
(21)

Thus, substituting (19a) into (21), we have the following simultaneous equations:

⎛
⎜⎜⎜⎜⎝

1 1 −1 −1

e−(s+q1)L1 e−(s−q1)L1 −e(s+q2)L2 −e(s−q2)L2

q1 −q1 −q2 q2

q1e
−(s+q1)L1 −q1e

−(s−q1)L1 −q2e
(s+q2)L2 q2e

(s−q2)L2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

A1

B1

A2

B2

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0
0
0
0

⎞
⎟⎟⎠ . (22)
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(a) (b)

Fig. 5. Average frontal speeds calculated from mathematical formula (24) (solid curves)

and from numerical simulations (closed circles) as functions of L2. Other

parameters are chosen as (a) r2 = 0.5, 0,−0.5 and −1, L1 = 0.8, r1 = 1, q = 1

and d = 1. (b) r2 = 0.5, 0,−1 and ∞, L1 = 5, r1 = 1 and d = 1.

Since at least one of A1, A2, B1 and B2 should not be zero, by putting the deter-
minant of the matrix of (22) to be zero, we have a dispersion relation between c

and s as follows:

cosh(sL) = cosh(q1L1) cosh(q2L2) +
q2
1 + q2

2

2q1q2
sinh(q1L1) sinh(q2L2). (23)

If c has a real root of (23) for a positive s, it should be a candidate of the average
frontal speed. Following Weinberger [43] (see also Discussion section), we expect
that the minimal value among the candidates of c(s) gives the speed stably realized
as a solution of (1):

c̄ = min
0<s<∞

c(s). (24)

To verify this, we calculate the speed from formula (24) for various combina-
tions of L1, L2, r1 and r2. Fig. 5 (a) illustrates the average speed as a function of L2

for varying values of r2 with L1 = 0.8 and r1 = 1. The solid curves and the closed
circles are theoretical and numerical results, respectively. Similarly, Fig. 5 (b) de-
picts the average speeds calculated for the same parameter sets as above except
that L1 is increased to 5. On the other hand, Fig. 6 shows the average speed as a
function of r2 for varying L2 with L1 = 5 and r1 = 1. Fig. 7 illustrates the average
speed as a function of r1 for varying values of r2 with L1 = 5 and L2 = 80. As seen
from all these figures, we can confirm that mathematical formula (24) perfectly fits
with the average frontal speeds numerically calculated.

Finally it should be pointed out that when both L1 and L2 are sufficiently
small, the dispersion relation (23) can be expressed in an explicit form as follows:

c ≈ 1
s

(
log

er1L1 + er2L2

L1 + L2

)
+ log

1
1 − s2

for L1, L2 � 1. (25)
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Fig. 6. Average frontal speeds calculated from mathematical formula (24) (solid curves)

and from numerical simulations (closed circles) as functions of r2. Other

parameters are chosen as L2 = 10, 80 and 150, L1 = 5, r1 = 1, q = 1 and

d = 1.

Fig. 7. Average frontal speeds calculated from mathematical formula (24) (solid curves)

and from numerical simulations (closed circles) as functions of r1. Other

parameters are chosen as r2 = 0,−1,−2 and −∞, L1 = 5, L2 = 80, q = 1

and d = 1.

where approximation formulae, sinh z ≈ z and coshx ≈ 1 + z2/2 for small z, are
used. Thus if we define er̄ as an arithmetic average of er(x):

er̄ =
er1L1 + er2L2

L1 + L2
, (26)

(25) appears to have the same form as the dispersion relation in a homogeneous
environment (see Kot et al. [20]), in which the intrinsic growth rate is given by r̄.

4. Discussion

There have been many elaborate works for range expansion of invading species
using integrodiffrence equations (see Introduction section). However, they all dealt
with a homogeneous environment. To our knowledge, the present work is the first



12 K. Kawasaki and N. Shigesada

to examine propagating waves in a periodic environment in the framework of in-
tegrodifference equation. We used a technique similar to that employed in the
reaction-diffusion model by Shigesada et al. [37] and explicitly derived a math-
ematical formula for the average frontal speed. In the propagating waves that
occurs in the integrodifference model, the frontal pattern changes from generation
to generation so that it does not conform to the traveling periodic wave as seen
in the reaction-diffusion model in a rigorous sense. This may be attributable to
the fact that in the integrodifference model, time is restricted to be discrete. In
fact, if (L1 +L2)/c̄ would happen to be an integer, the same frontal pattern should
appear in every (L1 +L2)/c̄ generations. In any event, we could successfully derive
a formula for the speed that exactly fit with the speed numerically obtained. In-
cidentally, Weinberger [43] previously obtained a mathematical formula for speed
in general periodic media in the framework of recursions of the form nt+1 = Q[nt].
The formula was derived under some hypotheses, among which Q is assumed to be
an order-preserving operator in the sense that if u(x) ≤ v(x) at every point, then
Q[u] ≤ Q[v]. Recently, Robbins and Lewis [32] rigorously analyzed an integrod-
ifference model with an order-preserving operator, in which both the growth rate
and the dispersal kernel vary with the habitat type. Although our formula is for-
mally included in Weinberger’s general formula, we numerically found that it holds
without the order-preserving hypothesis. For example, in the cases of r1 = 2.5, 3
and 4 in Fig. 7, the order-preserving hypothesis is not satisfied, because the Ricker
recruitment function, Nte

r1−Nt , in the favorable habitat is not monotone increasing
with Nt and has a hump to the left of the carrying capacity r1, and the width of fa-
vorable habitat, L1 = 5, is fairly large. Nevertheless, the solution of (1) advances in
the form of (13a) at the leading edge, while far behind the front the spatio-temporal
patterns exhibit periodic or chaotic oscillations. More rigorous mathematical justi-
fication of our heuristic formula, done in collaboration with H. Weinberger, will be
described elsewhere.

Hereafter, we discuss the characteristic features of the results as shown in
Section 3 from an ecological point of view. Let us look at Fig. 5 (a). For each
r2, the average speed sharply decreases when L2 increases from zero to around 10,
after which it reaches a plateau, if r2 is larger than a certain number, i.e. −0.855
which corresponds to r∗2 in Fig. 2. In contrast, when r2 is smaller than r∗2 , the
speed falls to zero if L2 exceeds a certain value, which correspond to the value
of L2 on the invasion condition curve at r2 in Fig. 2 (i.e., invasion condition (6)
fails). On the other hand, when L1 is increased to 5 (see Fig. 5 (b)), the speed
quickly decreases at first and then tends to a positive asymptote, never falling to
zero, no matter how large L2 is. Conversely, Fig. 6 illustrates how the average
speed is influenced by r2 for various values of L2. As r2 decreases from 1, the speed
sharply decreases and soon reaches plateau. This means that when the intrinsic
growth rate r2 has a sufficiently large negative value, further decreases in r2 has
little effect on the average speed. Combining these results, we can say that even
when both L2 and −r2 increase to infinity, the speed asymptotically approaches a
positive constant, as long as r1 and L1 satisfy (8). Fig. 7 shows how the speeds
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Fig. 8. Average frontal speeds in the integrodifference model with a Gaussian kernel as a

function of L2 (closed circles). Parameters chosen are r2 = 0.5, 0,−1,−10,−100

and −∞, L1 = 5, r1 = 1, q = 1 and σ = 1.68. Because of the limit of

computational accuracy, simulations for r2 = −100 and −∞ are feasible only

up to L2 = 80 and 50, respectively.

increases with increases in r1 while other parameters are fixed constant. For each
value of r2, the average speed increases almost linearly with r1 except when r1 is
small. This result is somewhat similar to the case in a homogeneous environment,
in which the speed is approximately given by c ≈ dr1 for large values of r1 (see
Shigesada and Kawasaki [35]).

Although we have restricted ourselves to (4) for the dispersal kernel, we finally
ask how the average speed is changed when the dispersal kernel (4) is replaced by
a Gaussian:

k(x, y) =
1√

2πσ2
exp

{
− (x − y)2

2σ2

}
. (27)

Unfortunately, we are not able to find an analytical formula for the average speed for
the Gaussian kernel. Thus we carry out numerical simulations of (1) with (2), (3)
and (27), and find a propagating wave similar to that for the case of the exponential
kernel. Fig. 8 gives the speed corresponding to Fig. 5 (b), where all parameters
except σ are the same as in Fig. 5 (b), while σ is chosen in such a way that the
speed on the y axis, namely, the speed in the homogenous environment, are the
same between the two models. As in the case of the exponentially bounded kernel,
the speed monotonically decreases with increases in L2. However, this tendency is
more prominent in the case of the Gaussian kernel: Most outstanding difference is
that in Fig. 8, the curve for r2 = −∞ comes closer to the x axis as L2 is increased
(although numerical simulation is possible only up to L2 = 50, owing to the limit
of computational accuracy), while the speed in Fig. 5 (b) never reaches zero at the
limit of r2 = −∞ and L2 = ∞. These results imply that if two invasive species with
an exponential kernel and a Gaussian kernel expand their range at the same speed in
a homogeneous environment, fragmentation of environment prevents invasion more
effectively for the species with the Gaussian kernel than that with the exponential
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kernel, and this tendency becomes more prominent as the unfavorable habitat is
wider or harsher for survival.

Acknowledgments. We acknowledge Mr. Mitsugu Hisatomi for his valuable
cooperation in the early stage of the present analyses. We are also very grateful
to Dr. Hans Weinberger and Dr. Frithjof Lutscher for his important comments
on our manuscript. This study was supported by the Grant-in-Aid for Scientific
Research Fund from the Japan Ministry of Education, Science, Culture and Sports
(no. 18570029).

References

[ 1 ] H. Berestycki and F. Hamel, Front propagation in periodic excitable media. Communications
on Pure and Applied Mathematics, 55 (2002), 949–1032.

[ 2 ] H. Berestycki, N. Nadirashvili and F. Hamel, The speed of propagation for KPP type
problems. I: Periodic framework. Journal of the European Mathematical Society, 7 (2005),
173–214.

[ 3 ] F. van den Bosch, R. Hengeveld and J.A.J. Metz, Analyzing the velocity of animal range
expansion. J. Biogeography, 19 (1992), 135–150.

[ 4 ] M. Bramson, Convergence of solutions of the Kolmogorov equation to traveling waves. Mem.
Am. Math. Soc., 285 (1983), 1–190.

[ 5 ] S.R. Broadbent and D.G. Kendall, The random walk of Trichostrongylus retortaeformis.
Biometrics, 9 (1953), 460–466

[ 6 ] J.S. Clark, Why trees migrate so fast: confronting theory with dispersal biology and the
paleorecord. Am. Nat., 152 (1998), 204–224.

[ 7 ] S.P. Ellner, A. Sasaki, Y. Haraguchi and H. Matsuda, Speed of invasion in lattice population
models: pair-edge approximation. J. Math. Biol., 36 (1998), 469–484.

[ 8 ] R.A. Fisher, The wave of advance of advantageous genes. Annals of Eugenics. (Lond.), 7
(1937), 355–369.

[ 9 ] M.I. Freidlin, On wavefront propagation in periodic media. Stochastic Analysis Applications,
(ed. M. Pinsky) Advances in Probability and Related Topics, 7, M. Dekker, New-York, 1984,
147–166.

[10] M.I. Freidlin, Limit theorems for large deviations and reaction-diffusion equations. Ann.
Probab., 13 (1985), 639–675.

[11] J. Gartner and M.I. Freidlin, On the propagation of concentration waves in periodic and
random media. Soviet Math. Dokl., 20 (1979), 1282–1286.

[12] A. Hastings, Models of spatial spread: Is the theory complete? Ecology, 77 (1996),
1675–1679.

[13] A. Hastings, K. Cuddington, K.F. Davies, C.J. Dugaw, S. Elmendorf, A. Freestone,
S. Harrison, M. Holland, J. Lambrinos, U. Malvadkar, B.A. Melbourne, K. Moore, C. Taylor
and D. Thomson, The spatial spread of invasions: new developments in theory and evidence.
Ecology Letters, 8 (2005), 91–101.

[14] S.I. Higgins and D.M. Richardson, Predicting plant migration rates in a changing world:
The Role of Long-Distance Dispersal. Am. Nat., 153 (1999), 464–475.

[15] S.I. Higgins, D.M. Richardson and R.M. Cowling, Modeling invasive plant spread: The role
of plant-environment interactions and model structure. Ecology, 7 (1996), 2043–2054.

[16] K. Kawasaki, F. Takasu, H. Caswell and N. Shigesada, How does stochasticity in colonization
accelerate speeds of invasion in a cellular automaton model? Ecol. Res., 21 (2006), 334–345.

[17] N. Kinezaki, K. Kawasaki and N. Shigesada, Spatial dynamics of invasion in sinusoidally
varying environments. Population Ecology, 48 (2006), 263–270.

[18] N. Kinezaki, K. Kawasaki, F. Takasu and N. Shigesada, Modeling biological invasions into

periodically fragmented environments. Theor. Popul. Biology, 64 (2003), 291–302.
[19] R.W. Van Kirk and M.A. Lewis, Integrodifference models for persistence in fragmented

habitats. Bull. Math. Biology, 59 (1997), 107–137.



Integrodifference Model for a Fragmented Environment 15

[20] M. Kot, M.A. Lewis and F. van den Driessche, Dispersal data and the spread of invading
organisms. Ecology, 77 (1996), 2027–2042.

[21] M. Kot, J. Medlock, T. Reluga and D.B. Walton, Stochasticity, invasions, and branching
random walks. Theor. Popul. Biology, 66 (2004), 175–184.

[22] M.A. Lewis and S. Pacala, Modeling and analysis of stochastic invasion processes. J. Math.
Biol., 41 (2000), 387–429.

[23] M.A. Lewis, M.G. Neubert, H. Caswell, J.S. Clark and K. Shea, A guide to calculating
discrete-time invasion rates from data. In Conceptual ecology and invasion biology: Recip-
rocal approaches to nature (eds. M.W. Cadotte, S.M. McMahon and T. Fukami), Springer,
2006, 169–192.

[24] F. Lutscher, M.A. Lewis and E. McCauley, Effects of heterogeneity on spread and persistence
in rivers. Bull. Math. Biology, 68 (2006), 2129–2160.

[25] J.A.J. Metz, D. Mollison and F. van den Bosch, The dynamics of invasion waves. The
Geometry of Ecological Interactions: Simplfying Spatial Complexity (eds. O. Dieckmann,
R. Law and J.A.J. Metz), Cambridge University Press, 2000, 482–512.

[26] D. Mollison, Spatial contact model for ecological and epidemic spread. J. Rol. Stat. Soc. B,
39 (1977), 283–326

[27] M.G. Neubert and H. Caswell, Demography and dispersal: calculation and sensitivity anal-
ysis of invasion speed for structured populations. Ecology, 81 (2000),1613–1628.

[28] M.G. Neubert, M. Kot and M.A. Lewis, Invasion speeds in fluctuating environments. Proc.
R. Soc. Lond. B, 267 (2000), 1603–1610.

[29] A. Okubo, Diffusion and Ecological Problems: Mathematical Models. Springer-Verlag, New
York, 1980.

[30] A. Okubo and S.A. Levin, Diffusion and Ecological Problems: New Perspectives (second
edition). Springer-Verlag, New York, 2001.

[31] W.E. Ricker, Stock and recruitment. J. Fisheries Research Board of Canada, 11 (1954),
559–623.

[32] T.C. Robbins and M.A. Lewis, Modeling population spread in heterogeneous environments
using integrodifference equations. preprint, 2006.

[33] M.W. Shaw, Modeling stochastic processes in plant pathology. Annu. Rev. Phytopathol, 32
(1994), 523–544.

[34] N. Shigesada and K. Kawasaki, Biological Invasions; Theory and Practice. Oxford University
Press, 1997.

[35] N. Shigesada and K. Kawasaki, Invasion and species range expansion: effects of long-distance

dispersal. Dispersal Ecology (eds. J.M. Bullock, R.E. Kenward and R.S. Hails), Blackwell,
Oxford, 2002, 350–373.

[36] N. Shigesada, K. Kawasaki and Y. Takeda, Modeling stratified diffusion in biological inva-
sions. Am. Nat., 146 (1995), 229–251.

[37] N. Shigesada, K. Kawasaki and E. Teramoto, Traveling periodic waves in heterogeneous
environments. Theor. Popul. Biology, 30 (1986), 143–160.

[38] J.G. Skellam, Random dispersal in theoretical populations. Biometrika, 38 (1951), 196–218.
[39] M. Slatkin, Gene flow and selection in a cline. Genetics, 75 (1973), 733–756.
[40] F. Takasu, N. Yamamoto, K. Kawasaki, T. Togashi, Y. Kishi and N. Shigesada, Modeling

the expansion of an introduced tree disease. Biological Invasions, 2 (2000), 141–150.
[41] R.R. Veit and M.A. Lewis, Dispersal, population growth, and the Allee effect: dynamics of

the house finch invasion of eastern North America. Am. Nat., 148 (1996), 255–274.
[42] H.F. Weinberger, Long-time behavior of a class of biological models. SIAM J. Math. Anal.,

13 (1982), 353–396.
[43] H.F. Weinberger, On spreading speeds and traveling waves for growth and migration models

in a periodic habitat. J. Math. Biol., 45 (2002), 511–548.
[44] E.J. Williamson, The distribution of larvae of randomly moving insect. Austral. J. Biol. Sci.,

14 (1961), 598–604.
[45] E.J. Williamson and S. Harrison, The Biotic and abiotic limits to the spread of exotica

revegetation species in oak woodland and serpentine habitats. Ecol. Appl., 12 (2002), 40–51.
[46] K.A. With, The landscape ecology of invasive spread. Cons. Biol., 16 (2002), 1192–1203.
[47] J. Xin, Front propagation in heterogeneous media. SIAM Review, 42 (2000), 161–230.




