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Strategic Coloring of a Graph
Bruno Escoffier, Laurent Gourvès, and Jérôme Monnot

Abstract. We study a strategic game in which every node of a graph is owned by a
player who has to choose a color. A player’s payoff is 0 if at least one neighbor selected
the same color; otherwise, it is the number of players who selected the same color. The
social cost of a state is defined as the number of distinct colors that the players use. It
is ideally equal to the chromatic number of the graph, but it can substantially deviate
because every player cares about his own payoff, however bad the social cost may be.
Following previous work in [Panagopoulou and Spirakis 08] on the Nash equilibria of
the coloring game, we give worst-case bounds on the social cost of stable states. Our
main contribution is an improved (tight) bound for the worst-case social cost of a Nash
equilibrium, as well as the study of strong equilibria, their existence, and how far they
are from social optima.

1. Introduction

We study a vertex-coloring game defined as follows: given a simple graph G =
(V,E), each vertex is a player who has to choose (deterministically) one color
out of n = |V |. The vertices are then colored according to the players’ choices. A
player’s payoff is 0 if he selected the same color as one of his neighbors. Otherwise,
it is the number of vertices with the same color as the one he has chosen. (The
study of this game is motivated by an application given in Section 1.2.) This game
was introduced in [Panagopoulou and Spirakis 08], in which the authors studied
its set of pure strategy Nash equilibria, denoted by PNE(G). Nash equilibria are
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sustainable and rational states of the game. Interestingly, PNE(G) is nonempty
for every graph G, and there exists a polynomial-time procedure to compute an
element of PNE(G) [Panagopoulou and Spirakis 08].

However, Nash equilibria are known to deviate from a socially optimal state in
many situations (e.g., the prisoner’s dilemma). The social cost associated with a
graph G and a strategy profile σ, denoted by SC(G, σ), is defined as the number
of distinct colors selected by the players. Panagopoulou and Spirakis give upper
bounds on SC(G, σ) when σ ∈ PNE(G). These bounds depend on several parame-
ters of the graph and often match known bounds on the chromatic number of G.

We continue the work done in [Panagopoulou and Spirakis 08] and give im-
proved bounds on SC(G, σ) when σ ∈ PNE(G). We also study the set of pure strong
equilibria of the vertex-coloring game, denoted by PSE(G). A strong equilibrium
[Aumann 60] is a state in which no unilateral deviation by a nonempty coalition
of players is profitable to all its members. This solution concept refines the pure
strategy Nash equilibrium, and it is more sustainable. In this paper we mainly
show that a strong equilibrium always exists but that it is NP-hard to com-
pute one. In addition, we provide upper bounds on the social cost SC(G, σ) when
σ ∈ PSE(G).

1.1. Previous Work and Contributions

The vertex-coloring problem is a central optimization problem in graph theory
(see, for instance, [Krarup and de Werra 82, de Werra and Gay 94]), and several
games based on it exist in the literature. In [Bodlaender 91], a two-player game
is studied in which given a graph, an ordering on the set of vertices, and a finite
set of colors C, the players in turn assign a color c ∈ C to the uncolored vertex
that comes first in the ordering and such that two neighbors have distinct colors.
Bodlaender considers several variants of the game (e.g., a player loses if he cannot
move) and focuses on the existence of a winning strategy.

In [Chaudhuri et al. 08], the authors study a coloring game defined by a set of
available colors and a graph G = (V,E) in which each node represents a player.
The game is played in rounds; in each round, the players choose a color simulta-
neously. A player’s payoff is 0 if one of his neighbors has chosen the same color,
and 1 otherwise. The main result in [Chaudhuri et al. 08] is that for a coloring
game played on a network of n vertices with maximum degree Δ, if the num-
ber of colors available to each vertex is Δ + 2 or more, and if each player plays
a simple greedy strategy, then the coloring game converges in O(log n) steps
with high probability. The game addressed by Chaudhuri et al. was initiated in
[Kearns et al. 06], whose authors performed an experimental study. A possible
motivation of the game is a scenario in which faculty members wish to schedule
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classes in a limited number of classrooms and must avoid conflicts with other
faculty members [Kearns et al. 06].

The coloring game studied in [Panagopoulou and Spirakis 08] and the game
introduced in [Kearns et al. 06, Chaudhuri et al. 08] differ mainly in the definition
of a player’s payoff. In [Panagopoulou and Spirakis 08], a player gets 0 if one of his
neighbors selects the same color, and otherwise, his payoff is the number of play-
ers choosing the same color. The other difference is that n colors are available to
each node. This paper is mainly dedicated to this model (an edge-coloring game
is also investigated). The motivation given in [Panagopoulou and Spirakis 08]
is the analysis of a local search algorithm for the vertex-coloring problem with
provably good worst-case distance of local optima to global optima. Interest-
ingly, the authors choose to illustrate their results via a game-theoretic analysis
whereby local optima correspond to the Nash equilibria of the coloring game.

Nevertheless, the coloring game has applications in selfish routing in particular
networks [Crescenzi et al. 01, Afrati et al. 05, Erlebach and Jansen 98, Bampas
et al. 09] in which every player has to choose a facility (i.e., a wavelength, a
time slot) that is not used by another player with which he is incompatible (a
detailed motivation is given in Section 1.2). Then most results in [Panagopoulou
and Spirakis 08] are seen as bounds on the loss of efficiency in stable states of a
strategic game, and it has been the topic of many papers since the seminal papers
[Koutsoupias and Papadimitriou 99] and [Roughgarden and Tardos 02]. Recently,
in [Crescenzi et al. 01], the authors used this coloring game in a distributed
setting.

It is proved in [Panagopoulou and Spirakis 08] that every Nash equilibrium
of the vertex-coloring game is a feasible, and locally optimal, vertex coloring
of G. It is noteworthy that a feasible coloring (in particular a social optimum)
is not necessarily a Nash equilibrium. However, at least one social optimum
of the vertex-coloring game is a Nash equilibrium. As we will see later, this
property does not hold for strong equilibria. It is also shown in [Panagopoulou
and Spirakis 08] that a Nash equilibrium σ of the vertex-coloring game on a
graph G = (V,E) satisfies

SC(G, σ) ≤ min
{

Δ2(G) + 1,
n + ω(G)

2
,
1 +

√
1 + 8m

2
, n − α(G) + 1

}
, (1.1)

where n = |V |, ω(G) is the clique number of G (maximum size of a clique),
m = |E|, α(G) is the stability number of G (maximum size of a stable set),
NG (v) is the neighborhood of a vertex v (its set of adjacent vertices in G), dG (v)
is the degree of v in G, Δ(G) is the maximum degree, and

Δ2(G) = max
v∈V

max{dG (u) : u ∈ NG (v) and dG (u) ≤ dG (v)}.
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General Graphs Bipartite Graphs Trees

NE
U.B. χ (G )+1

2 +

√
m − χ (G )2 −1

4 3/2 +
√

m − 3/4 1 + log(n)

L.B. = U.B. = U.B. = U.B.

SE
U.B. Δ2 (G) + 1 χ(G) − 1 + loga

(
n

χ (G )−1

)
1 + log(n) 1 + log(n)

L.B. = U.B. 1 + (χ(G) − 1) logχ (G ) n = U.B. = U.B.

Table 1. Upper (U.B.) and lower (L.B.) bounds on the social cost in NE (Nash
equilibria) and SE (strong equilibria). In the upper bound for strong equilibria in
general graphs, a = χ(G)/(χ(G) − 1). Note that this allows us to show that the
SPoA is at most ln(n)(1 + o(1)).

We separate the bounds given in (1.1) into three groups according to the
dominant parameter: (a) Δ2(G), (b) n, and (c) m. Hence we obtain

(a) SC(G, σ) ≤ Δ2(G) + 1,

(b) SC(G, σ) ≤ min
{

n + ω(G)
2

, n − α(G) + 1
}

,

(c) SC(G, σ) ≤ 1 +
√

1 + 8m
2

.

It is not difficult to prove that the bounds given in (a) and (b) are tight for every
value of Δ2(G) ≥ 2, ω(G) ≥ 2, or α(G) ≥ 2. Since a Nash equilibrium must be a
social optimum in the (independent) cases Δ2(G) = 1, ω(G) ≤ 1, and α(G) = 1,
we will always assume χ(G) ≥ 2 (the case χ(G) = 1 corresponds to ω(G) = 1).
However, the bound (c) is not sharp, as we will see in Theorem 2.2.

In this article, we first deal with Nash equilibria, in Section 2. We propose
a graph characterization of Nash equilibria, and based on this characterization,
we propose tight bounds depending on m and χ(G) for the number of colors
used in a Nash equilibrium, improving the bound given in [Panagopoulou and
Spirakis 08]. Then, we show that the situation greatly improves in trees, since in
this case, the number of colors in a Nash equilibrium is only logarithmic.

In Section 3, we study strong equilibria in the same spirit: we propose a graph
characterization and prove almost tight bounds on the number of colors used in
a strong equilibrium. This allows us to derive that the strong price of anarchy
(SPoA), the worst-case value of SC(G, σ)/χ(G) for σ ∈ PSE(G), is logarithmic.
The bounds obtained in Sections 2 and 3 are summarized in Table 1.

We conclude this article in Section 4 with some additional results dealing with
k-strong equilibria (strong equilibria for coalitions of size at most k) for the
vertex-coloring game, new payoff functions that can alleviate the social cost, and
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an edge-coloring game (the same game up to the fact that we want to color the
edges of the input graph).

1.2. Motivation of the Coloring Game

We are given a set of n users of a network such that every user i wants to con-
nect one source node si to a destination node ti via a given (fixed) path. The
connection is made using a particular facility (e.g., a time slot or a wavelength).
To avoid packet losses or simply guarantee the consistency of data, it is assumed
that two users can use the same facility to establish a connection if their respec-
tive source–destination paths are disjoint. These restrictions occur, for example,
in SS/TDMA network switches [Crescenzi et al. 01, Afrati et al. 05] and optical
tree networks [Erlebach and Jansen 98].

Several optimization problems related to the above routing problem have been
addressed. In a centralized setting, the goal is to devise an algorithm that groups
connections in order to minimize the number of facilities used or to maximize the
number of connections for a limited number of available facilities. This article
deals with the case that the connections are not monitored by a central algorithm.
Instead, each user chooses which facility to use in order to establish his own
connection. Then we consider a strategic game in which all users (the players)
have the same strategy space, a set Σ = {1, . . . , n}, representing the facilities.
Then i plays j means that the facility j is used to send a packet along the path
si − ti .

A possible configuration is one in which a single facility per user is used. It
corresponds to a very poor utilization of the resource if several connections can
be made simultaneously. In the worst case, n facilities are used while only one
suffices. Thus we consider the case in which the agents are incentivized to use a
minimal number of facilities as follows: the facilities are opened serially by their
nonincreasing number of users. Hence it is in every user’s interest to select the
facility used by the largest number of players.

This situation is represented as a strategic vertex-coloring game on a graph
of incompatibility G = (V,E). Each node of V is controlled by a player with
strategy set Σ = {1, . . . , n} (also called the set of colors), and there is an edge
(i, i′) in E iff the paths si − ti and si ′ − ti ′ overlap. A facility is represented by a
color, and the payoff of a user is the number of users that use the same facility
as himself.

In [Bampas et al. 09], the authors study a similar game in which several paths
connecting si to ti may exist. Hence the strategy of a player is composed of a
path and a facility.
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1.3. Notation and Definitions

1.3.1. Graph theory. We use standard notation in graph theory. A stable set is a
subset of pairwise nonadjacent vertices. A stable set S is maximal if for every
vertex x ∈ V \ S, S ∪ {x} is not a stable set. The stability number α(G) is the
maximum size of a stable set. A coloring is a partition of V into stable sets
S = (S1 , . . . , Sq ). The chromatic number χ(G) is the minimum size of a coloring.
It is well known (see, for instance, [Berge 73]) that

χ(G) ≥ ω(G) and χ(G)α(G) ≥ n. (1.2)

1.3.2. Strategic games. A strategic game Γ is a tuple 〈N, (Σi)i∈N , (ui)i∈N 〉, where N

is the set of players and Σi is the strategy set of player i. Each player i has to
choose a strategy in Σi . Then ×i∈N Σi is the set of all possible pure states (or
strategy profiles) of the game. We study only pure strategy states, so we often
omit the word “pure.” The function ui : ×i∈N Σi → R is the utility function
of player i (the higher, the better); σi denotes the strategy of player i in the
strategy profile σ ∈ ×i∈N Σi . For a subset of players N ′ ⊂ N , σN ′ (respectively,
σ−N ′) refers to σ restricted to (respectively without) the strategies of N ′. Hence,
given two states σ′ and σ, σ′′ = (σ−N ′ , σ′

N ′) denotes the state in which σ′′
i =

σi if i ∈ N \ N ′ and σ′′
i = σ′

i if i ∈ N ′. We often use the following simplified
notation: σi and σ−i instead of σ{i} and σ−{i}. Finally, σ′ = (σ−i , j) denotes
the state in which σ′

i = j and σ′
i′ = σi ′ for every i′ �= i. A state σ is a pure Nash

equilibrium if for every i ∈ N and every strategy j ∈ Σi , ui(σ−i , j) ≤ ui(σ). Hence
no player has an incentive to deviate unilaterally from a pure Nash equilibrium. A
strategy profile σ is a strong equilibrium if for every nonempty subset of players S

and every assignment σ′, at least one player i ∈ S satisfies ui(σ−S , σ′
S ) ≤ ui(σ).

In other words, no joint deviation by a coalition can be (strictly) profitable
to all its members. A k-strong equilibrium is defined similarly for coalitions
involving at most k players. In particular, Nash equilibria and strong equilibria
are respectively 1-strong and |N |-strong equilibria.

The social cost of a strategy profile σ for the game Γ is a real number that
characterizes how costly σ is to the whole set of players. It is denoted by SC(Γ, σ)
(we will sometimes omit Γ if it is unnecessary to include it). Hence the social
cost is minimized for some states called social optima. The price of anarchy
(PoA) [Koutsoupias and Papadimitriou 99] for pure Nash equilibria is defined
as the worst-case value of maxσ∈P N E (Γ) SC(Γ, σ)/SC(Γ, σ∗) over all instances of
the game, where PNE(Γ) is the set of all pure Nash equilibria of Γ and σ∗ is a
social optimum. The price of anarchy captures the cost incurred by the lack of
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coordination between players. The strong price of anarchy (SPoA) [Andelman
et al. 09] is defined similarly: just replace PNE(Γ) by PSE(Γ) (the set of all pure
strategy strong equilibria of Γ) in the previous definition.

1.3.3. The vertex-coloring game. The vertex-coloring game is a strategic game in
which N = V and Σi = {1, . . . , n} for all i. The utility of player i in σ is
ui(σ) = |{i′ ∈ V : σi ′ = σi}| if {i′ ∈ N (i) : σi ′ = σi} = ∅ and ui(σ) = 0 other-
wise. To every state σ corresponds a coloring S(σ) defined as (S1(σ), . . . , Sq (σ)),
where Sj (σ) = {i ∈ V : σi = j}.

Let PNE(G) (respectively, PSE(G)) be the set of all pure Nash equilibria (re-
spectively, pure strong Nash equilibria) of the vertex-coloring game for a simple
graph G. It is known that PNE(G) �= ∅, but to our knowledge, nothing is known
about the existence of strong equilibria.

Given a simple graph G = (V,E), a social optimum of the vertex-coloring game
is an optimal coloring. Hence, the optimal social cost is the chromatic number
χ(G).

We always assume that |S1(σ)| ≥ · · · ≥ |Sq (σ)| and for j = 1, . . . , q, fσ (j) de-
notes a player with strategy j in σ (if any). Then by definition we have the
following property.

Property 1.1. For every Nash equilibrium σ of a simple graph G, the following
(in)equalities hold:

(i) For every j = 1, . . . , q, for every i ∈ Sj(σ), ui(σ) = |Sj(σ)|. We de-
duce that ufσ (1)(σ) ≥ · · · ≥ ufσ (q)(σ).

(ii) For every j, j′ ∈ {1, . . . , q}, for every i ∈ Sj(σ), i′ ∈ Sj ′(σ), j ≤ j′
implies that ui(σ) ≥ ui′(σ).

(iii) n =
∑q

j=1 ufσ (j)(σ).

2. Nash Equilibria

We propose a graph characterization of the Nash equilibria of the vertex-coloring
game that will be useful in deriving bounds on social costs in Nash equilibria.
Given a coloring S = (S1 , . . . , Sq ), where |S1 | ≥ · · · ≥ |Sq |, the mapping g (de-
pending on S) from {1, . . . , q} to {1, . . . , q} is defined as g(j) = min{i : |Si | =
|Sj |}. For instance, we get g(1) = 1, and if the stable sets of S have distinct
sizes, then g(j) = j.
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Theorem 2.1. Let G = (V,E) be a simple graph. The state σ is a Nash equilibrium
of G for the vertex-coloring game iff for every i = 1, . . . , q, the stable set Si(σ)
is maximal in Gg(i), where Gt is defined as the subgraph of G induced by St(σ) ∪
· · · ∪ Sq (σ).

Proof. Consider a simple graph G = (V,E), an instance of the vertex-coloring
game. Let σ be a Nash equilibrium with corresponding coloring S(σ) = (S1(σ),
. . . , Sq (σ)). Let i ∈ {1, . . . , q} and consider a player j ∈ Sk for some k ≥ g(i),
k �= i. Since |Si(σ)| = |Sg(i)(σ)| ≥ |Sk (σ)|, the fact that player j does not want
to deviate to set Si(σ) implies that j is adjacent to some vertex in Si(σ). Then
we deduce that Si(σ) is a stable set maximal in Gg(i) .

Conversely, let S = (S1 , . . . , Sq ) be a coloring of G with |S1 | ≥ · · · ≥ |Sq | and
such that Si is a stable set maximal in Gg(i) . Consider the state σ in which
player j ∈ Si plays strategy σj = i (thus Si(σ) = Si) and assume for the sake
of a contradiction that σ is not a Nash equilibrium. This means that there is a
player j ∈ Si who can unilaterally replace his strategy by k such that uj (σ−j , k) >

uj (σ). Hence we deduce that Sk ∪ {j} is a stable set of G and |Sk | ≥ |Si |. We
obtain a contradiction, since on the one hand, g(k) ≤ k ≤ i, and on the other
hand, Sk (σ) is supposed to be a stable set maximal in Gg(k) .

Using Theorem 2.1, we can improve the bound of the PoA given in
[Panagopoulou and Spirakis 08] according to the parameter m (see inequality
(1.1)).

Theorem 2.2. For simple graphs G on m edges with chromatic number χ(G) ≥ 2,
the social cost of a Nash equilibrium σ satisfies

SC(G, σ) ≤ χ(G) + 1
2

+

√
m − (χ(G) + 1)(χ(G) − 1)

4
. (2.1)

This bound is tight for every χ(G) ≥ 2 and arbitrarily large m.

Proof. Consider a simple graph G = (V,E) on m edges with chromatic num-
ber χ(G) ≥ 2, an instance of the vertex-coloring game. Let σ be a Nash equi-
librium with corresponding coloring S(σ) = (S1(σ), . . . , Sq (σ)) and social cost
SC(G, σ) = q. We suppose that q ≥ χ(G) + 1, since otherwise, PoA = 1. Assume
r = |S1(σ)| ≥ · · · ≥ |Sq (σ)|. For i = 1, . . . , r, let Gi be the subgraph of G induced
by the stable sets of S(σ) of size i (Gi can be empty for some i) and let pi be
the number of stable sets of S(σ) of size i. Using Theorem 2.1, the number of
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edges of G is at least

m ≥
r∑

i=1

ipi(pi − 1)
2

+
r∑

i=1

ipi

⎛
⎝q −

i∑
j=1

pj

⎞
⎠ . (2.2)

To see why this holds, notice that since the pi stable sets of size i of S(σ)
are also maximal in Gi (using Gi ⊆ Gg(j ) , where |Sj (σ)| = i, and Theorem 2.1),
there are at least ipi(pi − 1)/2 edges in Gi (for every v ∈ V (Gi), dGi (v) ≥ pi − 1).
Moreover, let Sj (σ) be a stable set of S(σ) of size i. Each stable set Sj ′(σ) of
S(σ) of size strictly greater than i is maximal in Gg(j ′) , leading to the conclusion
that there are at least i(q −∑i

j=1 pj ) edges between the vertices of Sj (σ) and
the graph Gi+1 ∪ · · · ∪ Gr .

Now let p′2 =
∑r

i=2 pi ; recall that q =
∑r

i=1 pi . Thus inequality (2.2) becomes

m ≥
r∑

i=1

ipi(pi − 1)
2

+
r∑

i=1

ipi

⎛
⎝q −

i∑
j=1

pj

⎞
⎠

=
r∑

i=2

ipi(pi − 1)
2

+
r∑

i=2

ipi

⎛
⎝q −

i∑
j=1

pj

⎞
⎠+

p1(p1 − 1)
2

+ p1(q − p1)

≥
r∑

i=2

pi(pi − 1) + 2
r∑

i=2

pi

r∑
j=i+1

pj +
p1(p1 − 1)

2
+ p1(q − p1)

=
r∑

i=2

p2
i + 2

r∑
i=2

r∑
j=i+1

pipj −
r∑

i=2

pi +
p1(p1 − 1)

2
+ p1(q − p1)

=

(
r∑

i=2

pi

)2

−
r∑

i=2

pi +
p1(p1 − 1)

2
+ p1(q − p1)

= (p′2)
2 − p′2 +

p1(p1 − 1)
2

+ p1(q − p1)

= p′2(p
′
2 − 1) +

p1(p1 − 1)
2

+ p1(q − p1).

Finally, observe that we obtain p1 + p′2 = q by construction, and p1 ≤ ω(G) ≤
χ(G) ≤ q − 1, since G1 is a clique from Theorem 2.1 (thus p1 = ω(G1) ≤ ω(G),
q ≥ χ(G) + 1 by hypothesis, and χ(G) ≥ ω(G) from inequality (1.2)). Hence,
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we deduce

m ≥ p′2(p
′
2 − 1) +

p1(p1 − 1)
2

+ p1(q − p1) = (p1 + p′2)
2 +

p2
1

2
− p1

(
q − 1

2

)
− q

= q2 +
p2

1

2
− p1

(
q − 1

2

)
− q ≥ q2 − q +

χ(G)2

2
− χ(G)

(
q − 1

2

)

=
(

q −
(

χ(G) + 1
2

))2

+
(χ(G) + 1)(χ(G) − 1)

4
.

In fact, the mapping z(x) = q2 + x2

2 − x(q − 1
2 ) − q (see the second line in the

above inequalities with x = p1) is decreasing for x ≤ q − 1
2 . Since p1 ≤ χ(G) ≤

q − 1 ≤ q − 1
2 , we deduce that z(p1) ≥ z(χ(G)).

Hence we obtain

SC(G, σ) ≤ χ(G) + 1
2

+

√
m − (χ(G) + 1)(χ(G) − 1)

4
,

and inequality (2.1) follows.
Now let us prove that inequality (2.1) is tight for some graphs. Let γ ≥ 2, and

for k ≥ 1, consider the graph Hγ
k on n = 2k + γ vertices and

m = k2 + k(γ − 1) +
γ(γ − 1)

2

edges described as follows:

� V (Hγ
k ) = {xi, yi : i = 1, . . . , k} ∪ {v1 , . . . , vγ },

� (xi, yj ) ∈ E(Hγ
k ) if i �= j and i, j = 1, . . . , k,

� (v1 , yj ) ∈ E(Hγ
k ) for j = 1, . . . , k, and (vi, xj ) ∈ E(Hγ

k ) for i = 2, . . . , γ and
j = 1, . . . , k,

� (vi, vj ) ∈ E(Hγ
k ) for 1 ≤ i < j ≤ γ.

For instance, we can observe that H2
k is isomorphic to Kk+1,k+1 − kK2 , where

Kk+1,k+1 is the complete bipartite graph for which each part of the bipartition
has k + 1 vertices. An example for k = 3 and γ = 2 is given in Figure 1.

It is easy to prove that the optimal social cost is γ (i.e., χ(Hγ
k ) = γ) and that

σ is a Nash equilibrium with social cost SC(G, σ) = k + γ, where σxi
= σyi

= i for
i = 1, . . . , k and σvj

= k + j for j = 1, . . . , γ. Since

m = k2 + k(γ − 1) +
γ(γ − 1)

2
=
(

k +
(

γ − 1
2

))2

+
(γ + 1)(γ − 1)

4
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v1 v2

x1 y1

x2 y2

x3 y3

H2
3

Figure 1. The bipartite graph H2
3 on 8 vertices and 13 edges.

and SC(G, σ) = k + γ, we deduce that

m =
(

SC(G, σ) −
(

χ + 1
2

))2

+
(χ + 1)(χ − 1)

4
,

and the tightness follows.

For instance, for connected bipartite graphs with m ≥ 1 edges, we ob-

tain SC(G, σ) ≤ 3
2 +

√
m − 3

4 , which is an improvement on the bound given in
[Panagopoulou and Spirakis 08].

Theorem 2.2 states that the bound of 3
2 +

√
m − 3

4 is tight in bipartite graphs
(the lower bound is obtained with a bipartite graph).

To conclude this section, we tackle the problem in which the graph G is a tree

and show that the social cost drops significantly, from 3
2 +

√
m − 3

4 in bipartite
graphs to log(n) + 1. This bound being tight, we obtain as a conclusion that the
PoA in trees is log(n)+1

2 .

Theorem 2.3. In trees, the social cost of a Nash equilibrium is at most log(n) + 1.
This bound is tight for arbitrarily large n.

Proof. We first prove the upper bound. Let σ be a Nash equilibrium whose
corresponding coloring is S(σ) = (S1(σ), . . . , Sq (σ)). We assume that |S1(σ)| ≥
|S2(σ)| ≥ · · · ≥ |Sq (σ)| ≥ 1. We show by recurrence that for all i = 1, . . . , q − 1,
|Si(σ)| ≥ 2q−1−i . Note that if this is true, we get

n =
q∑

i=1

|Si(σ)| ≥ 1 +
q−1∑
i=1

2q−1−i = 2q−1 ,

and then q ≤ 1 + log(n).
The inequality |Si(σ)| ≥ 2q−1−i is obviously true for i = q − 1. Suppose that it

is true for i = j + 1, . . . , q − 1. Then since σ is a Nash equilibrium, every vertex
in Sl(σ) is adjacent to at least one vertex in each Sk (σ) for k < l. Then the
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forest induced by the vertices in Sj (σ) ∪ · · · ∪ Sq (σ) contains at least
∑q

i=j+1(i −
j)|Si(σ)| edges. Since in the forest the number of edges is at most one less than
the number of vertices, i.e.,

∑q
i=j |Si(σ)| − 1, we get

q∑
i=j

|Si(σ)| − 1 ≥
q∑

i=j+1

(i − j)|Si(σ)|

⇐⇒ |Sj (σ)| ≥ 1 +
q∑

i=j+1

(i − j − 1)|Si(σ)| (2.3)

=⇒ |Sj (σ)| ≥ 1 + (q − j − 1) +
q−1∑

i=j+1

(i − j − 1)2q−1−i ,

where (2.3) uses our recurrence and the fact that |Sq | ≥ 1.
Let us now simplify the expression N =

∑q−1
i=j+1(i − j − 1)2q−1−i :

N =
q−j−2∑

i=0

(q − j − 2 − i)2i = (q − j − 2)(2q−j−1 − 1) −
q−j−2∑

i=0

i2i .

Now we use the fact (which can be easily verified) that
∑k

i=0 i2i = 2 + (k −
1)2k+1 holds for every k. This gives

N = (q − j − 2)(2q−j−1 − 1) − 2 − (q − j − 3)2q−j−1 = 2q−j−1 − (q − j).

Then inequality (2.3) gives |Sj (σ)| ≥ 2q−j−1 .
To prove tightness, we consider the trees Tk (k ≥ 0) on 2k+1 vertices built

inductively as follows: T0 obviously has two vertices {u, v} and one edge (u, v).
Set S0 = {u} and S1 = {v}. Then Tk+1 is built from Tk by adding a stable
set Sk+2 of size 2k+1 = |V (Tk )| and a perfect matching between Sk+2 and the
vertices of Tk . Then Tk+1 is a tree whose leaves are Sk+2. Figure 2 illustrates
the construction of trees T0 and T1 .

S0S0 uu

S1S1 vv

T0 T1

S2v1 u1

Figure 2. Two trees T0 and T1 .
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Now consider the tree Tk and the coloring (Sk+1 , Sk , . . . , S1 , S0). Obviously,
by construction, for every i ≥ 0, Si+1 is a maximal stable set in Ti . Hence Theo-
rem 2.1 shows that the state corresponding to this coloring is a Nash equilibrium.
It uses k + 2 colors, where n = 2k+1. Hence it uses log(n) + 1 colors.

3. Strong Equilibria

First of all, let us show that in studying strong equilibria, we can restrict ourselves
to coalitions in which all the players of the coalition choose the same color (in
their new strategy), since every coalition S for this game can be decomposed
into several coalitions Si that group the players that switch to the same color.
Moreover, the coalition S is improving (i.e., the utility of each member of the
coalition increases) iff each coalition Si is improving. More precisely, we have the
following result.

Proposition 3.1. Let G = (V,E) be a simple graph and σ a state of G for the vertex-
coloring game. There is an improving coalition of σ iff there is an improving
coalition S of σ in which all the players of S play the same color (after improve-
ment).

Proof. One direction is trivial. So let us prove the other direction. Let σ be a state
of G and let S ′ be an improving coalition of σ that from state σ reaches state
σ′ = (σ−S ′ , σ′

S ′). Let us prove that there is another improving coalition S of σ

such that all the players of S play the same color.
Let us sort the players of σ in decreasing order of utility u1(σ) ≥ · · · ≥ un (σ)

and let i be the smallest index of players in S ′, i.e., i = min S ′. Consider S = {j :
σ′

j = σ′
i}, that is, the set of players that play the same color as i in state σ′. We

have S = S�(σ′) for some �. We claim that S is an improving coalition of σ. So
let σ′′ = (σ−S , σ′

S ) be the resulting state.
By construction, for every j ∈ S ∩ S ′, we have uj (σ′′) = uj (σ′) > uj (σ) be-

cause S ′ is an improving coalition. Now let j be a player in S \ S ′ (which plays
color � in σ and σ′′) and consider two cases:

� S�(σ) ⊆ S�(σ′′). In this case, we deduce that uj (σ′′) > uj (σ) because
S�(σ′′) \ S�(σ) �= ∅.

� S�(σ) � S�(σ′′). We deduce that there is a player k such that σk = � and
σ′

k = �′ �= �. Thus k ≥ i by construction of i = min S ′. Now to obtain a
contradiction assume that uj (σ′′) ≤ uj (σ). Since uj (σ′′) = uj (σ′) = ui(σ′) >
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ui(σ), this implies uj (σ) > ui(σ). Since uk (σ) = |S�(σ)| = uj (σ), we obtain
k < i. Hence we get a contradiction, and then uj (σ′′) > uj (σ).

In conclusion, S is an improving coalition of σ in which all the players of S

play the same color �.

As a consequence of Proposition 3.1, we need only consider coalitions of size
at most α(G).

For strong equilibria, we can state a graph characterization similar to Theorem
2.1 by replacing “maximal stable set” by “maximum stable set.” Actually, we no
longer need the mapping g.

Theorem 3.2. Let G = (V,E) be a simple graph. The state σ is a strong equilibrium
of G for the vertex-coloring game iff for every i = 1, . . . , q, for every j ∈ Si(σ), we
get uj (σ) = α(Gi), where Gi is the subgraph of G induced by Si(σ) ∪ · · · ∪ Sq (σ).

Proof. Consider a simple graph G = (V,E), an instance of the vertex-coloring
game. Let σ be a strong equilibrium. To obtain a contradiction, assume that there
exist i ∈ {1, . . . , q} and j ∈ Si(σ) such that uj (σ) �= α(Gi). Then σ is also a Nash
equilibrium, and S(σ) = (S1(σ), . . . , Sq (σ)) is a coloring. Thus, uj (σ) < α(Gi),
since Si(σ) is a stable set of Gi and uj (σ) = |Si(σ)| by (i) of Property 1.1. Let
S∗ be a stable set of Gi of maximum size and let σ′ be the state in which
σ′

j = σj if j /∈ S∗ and σ′
j = q + 1 if j ∈ S∗. Using (i) and (ii) of Property 1.1,

we get for every player � ∈ S∗ that u�(σ′) = |S∗| = α(Gi) > uj (σ) ≥ u�(σ), since
if � ∈ Si ′(σ), then i′ ≥ i. Hence players in S∗ may form a coalition and benefit,
which is impossible, since σ is a strong equilibrium.

Conversely, assume that for every i = 1, . . . , q, for every j ∈ Si(σ), we get
uj (σ) = α(Gi), and to obtain a contradiction, suppose that σ is not a strong
equilibrium. Thus there is a coalition S ⊆ V that from state σ reaches state σ′.
Let i0 = min{i : Si(σ) ∩ S �= ∅} and consider a player � ∈ Si0 (σ). By construc-
tion, 0 < u�(σ′) = |Sj (σ′)| with σ′

� = j. Hence Sj (σ′) is a stable set of G and of
Gi0 by construction of i0 . We deduce that u�(σ′) ≤ α(Gi0 ) = u�(σ), which is a
contradiction.

In particular, Theorem 3.2 gives a proof of the existence of strong equilibria
and a procedure to find them. On the other hand, it also shows that finding a
strong equilibrium within polynomial time is impossible unless P = NP.

Corollary 3.3. Finding a strong equilibrium of the vertex-coloring game is not solv-
able in polynomial time unless P = NP.
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Proof. Let G = (V,E) be a simple graph. Given a strong equilibrium σ, it follows
that S = arg max{|Si(σ)| : Si(σ) ∈ S(σ)} is a maximum stable set in G by The-
orem 3.2. The result follows because the problem of finding a maximum stable
set is NP-hard [Garey and Johnson 79].

In Section 4.1, we will tackle the case of k-strong equilibria, i.e., strong equi-
libria restricted to coalitions of size at most k. We will show in particular that
for k = 2, 3, finding such an equilibrium is polynomial, while the problem is left
open for k ≥ 4.

When the chromatic number is 1, that is, when G contains no edge, the PoA
(and then the SPoA) of the vertex-coloring game is 1. Thus we focus on graphs
G with χ(G) ≥ 2. In [Panagopoulou and Spirakis 08], it is shown that at least
one optimal coloring is a Nash equilibrium. For the strong equilibrium, that is
not the case.

Proposition 3.4. For every k ≥ 2, there are some graphs with chromatic number k

such that no optimal coloring is a strong equilibrium.

Proof. For k ≥ 2, consider the split graph Gk = (Kk, S2k ;Ek ) on 3k vertices, where
Kk = {x1 , . . . , xk} is a clique of size k and S2k = {y1 , z1 , . . . , yk , zk} is a stable set
of size 2k. Moreover, each vertex xi ∈ Kk is linked to the two vertices yi, zi ∈ S2k .
See Figure 3 for an example of graphs G2 and G3 .

Clearly, S2k is the unique maximum stable set of Gk . Indeed, a stable set of
Gk has at most one vertex of Kk , since Kk is a clique and if a stable set has one
such vertex, then it has at most 2k − 2 vertices of S2k . Thus, using Theorem 3.2,
we see that the strategy profile σ defined by σi = 1 if vi ∈ S2k and σxj

= 1 + j

for j = 1, . . . , k is the unique strong equilibrium using k + 1 colors. On the other
hand, χ(Gk ) = k, since χ(Gk ) ≥ ω(Gk ) = |Kk | = k and a coloring using k colors
is given, for instance, by

S∗ =
(
(S2k \ {y1 , z1}) ∪ {x1}, {y1 , z1} ∪ {x2}, {x3} . . . , {xk}

)
.

Now we study the SPoA of the vertex-coloring game according to parame-
ters Δ2(G), n, and m. From inequality (1.1), we deduce that PoA ≤ (Δ2(G) +

K2

S4

G2

K3

S6

G3

Figure 3. Graphs G2 and G3 .
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1)/χ(G) for graphs with chromatic number χ(G) and PoA ≤ (Δ2(G) + 1)/2 for
general (nontrivial) graphs. In fact, as a corollary of Proposition 3.5 (see below),
we deduce that this bound is tight for χ(G) = 2 and for every value Δ2(G) ≥ 2.
More precisely, we prove that according to the parameter Δ2(G), the SPoA and
the PoA of the vertex-coloring game are equal.

Proposition 3.5. The social cost of a strong equilibrium of the vertex-coloring game
is at most Δ2(G) + 1 for simple bipartite graphs G on n vertices. This bound
is tight even if we consider the class of trees and arbitrarily large values of
Δ2(G).

Proof. To see this, we just revisit the proof of Theorem 2.3 and consider the
same trees Tk on 2k+1 vertices and the Nash equilibrium σ corresponding
to the coloring {Sk+1 , Sk , . . . , S1 , S0}. This state is in fact a strong equilib-
rium. Indeed, since there is a perfect matching in Tk between the vertices in
Sk+1 and the other vertices, obviously α(Tk ) ≤ |Sk+1 |, meaning that Sk+1 is
a maximum stable set in Tk . Using an obvious recurrence, the characteriza-
tion of Theorem 3.2 shows that σ is a strong equilibrium of Tk . It uses k + 2
colors.

Finally, let us prove that Δ2(Tk ) = k + 1. It is easy to observe that the (unique)
vertex in S0 and the (unique) vertex in S1 have degree k + 1 in Tk and are the
unique vertices of maximum degree in Tk . So Δ(Tk ) = k + 1, and since Δ2(Tk ) =
Δ(Tk ) (there is an edge between the two vertices in S0 and S1), σ uses Δ2(Tk ) + 1
colors.

However, note that Proposition 3.5 does not imply that in trees, every Nash
equilibrium is a strong equilibrium. For instance, in P2k+1 (the induced path on
n = 2k + 1 vertices), from Theorem 3.2 it is easy to prove that there is only one
strong equilibrium corresponding to the optimal coloring (i.e., SPoA(P2k+1) = 1
for every k ≥ 1). On the other hand, in P6k+1 on vertex set {1, . . . , 6k + 1}, for
every k ≥ 1, the state σ defined by σ3i+1 = 1 for i = 0, . . . , 2k, σ3i+2 = 2 and
σ3i+3 = 3 for i = 0, . . . , 2k − 1, is a Nash equilibrium using three colors (and
then it is not a strong equilibrium).

Now we analyze the SPoA of the vertex-coloring game according to the param-
eter n (the number of vertices). In [Panagopoulou and Spirakis 08], it is indicated
that the PoA of the game is at least n

4 + 1
2 (even in bipartite graphs). Here we

prove that the SPoA of the vertex-coloring game is much better. In trees, we
already know that the SPoA is exactly (1 + log(n))/2. We prove in the following
that this bound of O(log n) is in fact also an upper bound for the SPoA of the
vertex-coloring game in general graphs.
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Theorem 3.6. The social cost of a strong equilibrium in the vertex-coloring game is
at most

χ(G) − 1 + loga

(
n

χ(G) − 1

)
,

where a = χ(G)/(χ(G) − 1) for every simple graph G on n vertices with chro-
matic number χ(G) ≥ 2.

Consequently, in graphs of n vertices, the SPoA is at most ln(n) + o(ln(n)).

Proof. Let G = (V,E) be a simple graph on n vertices with χ(G) ≥ 2, an in-
stance of the vertex-coloring game, and let σ be a worst strong equilibrium with
corresponding coloring S(σ) = (S1(σ), . . . , Sp+χ(G)−1(σ)) with value SC(G, σ) =
p + χ(G) − 1. One can assume that p ≥ 2 (since otherwise, p = 1, and we de-
duce that SC(G, σ) = χ(G)). Moreover, observe that

p+χ(G)−1∑
j=p+1

ufσ (j )(σ) ≥ χ(G) − 1,

since ufσ (j )(σ) ≥ 1 for a Nash equilibrium, where we recall that fσ (j) is a player
with strategy j in σ. Thus, we obtain

SC(G, σ) = p + χ(G) − 1 and −
p+χ(G)−1∑

j=p+1

ufσ (j )(σ) ≤ −(χ(G) − 1). (3.1)

Now let us focus on the p players {fσ (1), . . . , fσ (p)}. Using item (i) of Property
1.1, inequality (1.2), and Theorem 3.6, we get for every j = 1, . . . , p that

ufσ (j )(σ) = α(Gj ) ≥
n −∑j−1

i=1 ufσ (i)(σ)
χ(Gj )

≥ n −∑j−1
i=1 ufσ (i)(σ)
χ(G)

,

since on the one hand, Gj has n −∑j−1
i=1 ufσ (i)(σ) vertices, and on the other

hand, χ(Gj ) ≤ χ(G). Thus, we obtain for every j = 1, . . . , p that

ufσ (j )(σ) +
1

χ(G)

j−1∑
i=1

ufσ (i)(σ) ≥ n

χ(G)
. (3.2)

By multiplying inequality (3.2) by
(

χ(G)−1
χ(G)

)p−j

and summing over j =
1, . . . , p, the left part of this inequality becomes

p∑
j=1

(
χ(G) − 1

χ(G)

)p−j

ufσ (j )(σ) +
p∑

j=1

(
χ(G) − 1

χ(G)

)p−j 1
χ(G)

j−1∑
i=1

ufσ (i)(σ), (3.3)
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while the right part of this inequality is

n

χ(G)

p∑
j=1

(
χ(G) − 1

χ(G)

)p−j

= n

(
1 −

(
χ(G) − 1

χ(G)

)p)
. (3.4)

Now let us study the quantity (3.3). We get
p∑

j=1

(
χ(G) − 1

χ(G)

)p−j

ufσ (j )(σ) +
p∑

j=1

(
χ(G) − 1

χ(G)

)p−j 1
χ(G)

j−1∑
i=1

ufσ (i)(σ)

=
p∑

i=1

(
χ(G) − 1

χ(G)

)p−i

ufσ (i)(σ) +
1

χ(G)

p−1∑
i=1

ufσ (i)(σ)
p∑

j=i+1

(
χ(G) − 1

χ(G)

)p−j

=
p∑

i=1

(
χ(G) − 1

χ(G)

)p−i

ufσ (i)(σ) +
1

χ(G)

p−1∑
i=1

ufσ (i)(σ)
p−i−1∑
j=0

(
χ(G) − 1

χ(G)

)j

=
p∑

i=1

(
χ(G) − 1

χ(G)

)p−i

ufσ (i)(σ)

+
1

χ(G)

p−1∑
i=1

ufσ (i)(σ) × χ(G)

(
1 −

(
χ(G) − 1

χ(G)

)p−i
)

=
p∑

i=1

(
χ(G) − 1

χ(G)

)p−i

ufσ (i)(σ) +
p−1∑
i=1

ufσ (i)(σ) −
p−1∑
i=1

(
χ(G) − 1

χ(G)

)p−i

ufσ (i)(σ)

=
p∑

i=1

ufσ (i)(σ).

Using equalities (3.1) and item (i) of Property 1.1, we get

n − (χ(G) − 1) ≥ n −
p+χ(G)−1∑

j=p+1

ufσ (j )(σ) =
p∑

i=1

ufσ (i)(σ).

Hence from this last equality, quantities (3.3) and (3.4), and inequality (3.2), we
obtain

n − (χ(G) − 1) ≥ n

(
1 −

(
χ(G) − 1

χ(G)

)p)
,

which is equivalent to

p ≤ loga

(
n

χ(G) − 1

)
, where a =

χ(G)
χ(G) − 1

. (3.5)

Thus, using inequality (3.5) and equality (3.1), we deduce that

SC(G, σ) ≤ loga

(
n

χ(G) − 1

)
+ χ(G) − 1. (3.6)
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For the bound on the SPoA given as a function of n in the statement of the
theorem, let us consider the function f(x) = x ln(x/(x − 1)) defined on [2, n].
Using the fact that ln(x/(x − 1)) < 1/(x − 1), we get that f ′(x) = ln(x/(x −
1)) − 1/(x − 1) is negative and then that f(x) ≥ f(n) = n ln(n/(n − 1)) = 1 +
o(1). Since the SPoA is at most 1 + ln(n)/f(χ(G)), we get the bound ln(n) +
o(ln(n)).

Since in a simple graph on n vertices there are m ≤ n(n − 1)/2 edges, we
deduce from Theorem 3.6 that the SPoA is at most 2 ln(m) + o(ln(m)). From
the lower bound in trees, we also get that in (connected) graphs on m edges, the
SPoA is at least log(m)/2 + o(log(m)).

Using Theorem 3.6 and the lower bound in trees, we deduce that the SPoA
of the vertex-coloring game equals 1

2 log n + 1
2 in bipartite graphs on n ver-

tices. This is a notable improvement relative to the PoA, since it is observed
in [Panagopoulou and Spirakis 08] that the PoA is at least n

4 + 1
2 for bipartite

graphs.
Dealing with the bound of Theorem 3.6 depending on both χ(G) and n, we

can produce a lower bound that is not tight but close to being so.

Proposition 3.7. For every integer γ ≥ 2, there are some simple graphs G on n

vertices with chromatic number χ(G) = γ admitting a strong equilibrium with
social cost at least 1 + (γ − 1) logγ n.

Proof. Let γ ≥ 2 and consider the graphs Gp for p ≥ 1 built inductively as
follows:

� The vertex set of G1 is X1
1 ∪ · · · ∪ X1

γ ∪ {x1 , . . . , xγ }, where each block X1
i

for i = 1, . . . , γ comprises a collection X1
i,j of size γ − 1; each group X1

i,j has
size 1. Thus, we obtain X1

i = ∪γ−1
j=1X

1
i,j , where |X1

i,j | = 1. Finally, (x, y) ∈
E(G1) if x ∈ X1

i,j and y ∈ X1
i ′,j ′ and i �= i′, j �= j′; (xi, y) ∈ E(G1) if y ∈

X1
j ∪ {xj} and i �= j. Figure 4 illustrates the construction of G1 for γ = 3.

� Given Gp with p ≥ 1, Gp+1 contains Gp , and we add a set of vertices
Xp+1

1 ∪ · · · ∪ Xp+1
γ , where each block Xp+1

i for i = 1, . . . , γ comprises a col-
lection Xp+1

i,j of size γ − 1; each group Xp+1
i,j has size γp . Thus, we obtain

Xp+1
i = ∪γ−1

j=1X
p+1
i,j , where |Xp+1

i,j | = γp . Finally, (x, y) ∈ E(Gp+1) \ E(Gp)

if x ∈ Xq
i,j and y ∈ Xq ′

i ′,j ′ with q = p + 1 or q′ = p + 1 and i �= i′, j �= j′;
(xi, y) ∈ E(Gp+1) \ E(Gp) if y ∈ Xp+1

j and i �= j.
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x1 x2
x3

X1
1

X1
2

X1
3

X1
1,1 X1

2,1
X1

3,1

X1
1,2 X1

2,2
X1

3,2

G1

Figure 4. The graph G1 for γ = 3.

It is easy to prove that for all p ≥ 1, |V (Gp)| = γ(1 +
∑p

�=1
∑γ−1

j=1 |X�
i,j |) =

γ
(
1 + (γ − 1)

∑p
�=1 γ�−1

)
= γp+1. Thus

p = logγ (|V (Gp)|) − 1. (3.7)

It is easy to see that by construction, Sp+1 = (Sp+1
1 , . . . , Sp+1

γ−1 ), where Sp+1
j =

∪γ
i=1X

p+1
i,j for j = 1, . . . , γ − 1 is a coloring of Gp+1 \ Gp for p ≥ 1 and S1 =

(S1
1 , . . . , S1

2γ−1), where S1
j = ∪γ

i=1X
1
i,j for j = 1, . . . , γ − 1 and S1

γ−1+j = {xj} for
j = 1, . . . , γ is a coloring of G1 . Thus, Sp+1 = (Sp+1 , . . . ,S1) is a coloring of
Gp+1. Let us prove that Sp+1 corresponds to a strong equilibrium of Gp+1 by
induction on p. For p = 0, G1 has γ2 vertices, and it is easy to observe that
α(G1) = γ. Indeed, on the one hand, X1

i are stable sets of size γ for i = 1, . . . , γ,
and on the other hand, every stable set S such that S � X1

i and S ∩ X1
i �= ∅ for

some i satisfies |S ∩ X1
i | ≤ 1 for every i = 1, . . . , γ.

Thus, since |S1
1 | = · · · = |S1

γ−1 | = γ, it follows that S1
1 , . . . , S1

γ−1 are disjoint
maximum stable sets of G1 ; moreover, by construction, G1 [S1

γ ∪ · · · ∪ S1
2γ−1 ] is

a clique Kγ . Hence using Theorem 3.2, we conclude that S1 corresponds to a
strong equilibrium of G1 . Now let us assume that Sp corresponds to a strong
equilibrium of Gp for p ≥ 1 and let us prove that Sp+1 corresponds to a strong
equilibrium of Gp+1 for p ≥ 1. Using similar arguments as previously, we can
show that α(Gp+1) = γp+1 (for instance, every set Xp+1

i for i = 1, . . . , γ is a
maximum stable set). Thus, since Sp+1 is a coloring of Gp+1 \ Gp that uses only
stable sets of size γp+1, we derive from Theorem 3.2 that Sp+1 corresponds to a
strong equilibrium of Gp+1 \ Gp , and using the inductive hypothesis on Gp , the
expected result follows.
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Thus, the coloring of Gp with p ≥ 1, Sp = (Sp , . . . ,S1), uses (γ − 1)(p − 1) +
2γ − 1 = (γ − 1)p + γ colors. Let σ be the worst strong equilibrium of Gp with
value SC(σ). We deduce that SC(σ) ≥ (γ − 1)p + γ; using (3.7), we obtain

SC(σ) ≥ (γ − 1)(logγ |V (Gp)|) + 1. (3.8)

Now let us prove that S∗ = (S∗
1 , . . . , S

∗
γ ), where S∗

i = Xp
i for i = 1, . . . , γ − 1 is

an optimal coloring of Gp for each p ≥ 1. The coloring S∗ uses γ colors, and we
have ω(Gp) ≥ γ, since the subgraph induced by {x1 , . . . , xγ } is a clique of Gp ;
hence, using inequality (1.2), we get

χ(Gp) = γ. (3.9)

Finally, using inequality (3.8) and equality (3.9), the expected result follows.

4. Final Results and Concluding Remarks

4.1. k-Strong Equilibria for k ≤ 3

In Sections 2 and 3, we provided a characterization of Nash equilibria and strong
equilibria respectively. A natural question is to provide such a characterization
for k-strong equilibria, a solution concept that is in between Nash equilibria and
strong equilibria. We answer this question by giving a slightly more complex
characterization when k ≤ 3.

First we give a result similar to Proposition 3.1 for improving a k-coalition
(coalition of size at most k) when k ≤ 3.

Proposition 4.1. Let k ≤ 3, let G = (V,E) be a simple graph, and let σ be a state of
G for the vertex-coloring game. There is an improving k-coalition of σ iff there
is an improving k-coalition S of σ such that all the players of S play the same
color.

Proof. Let σ be a state of G and let S ′ be an improving coalition of size 3 of σ

that from state σ reaches state σ′ = (σ−S ′ , σ′
S ′) (the case |S ′| ≤ 2 can be dealt

with in a similar way). We assume that |S ′| = 3 and that at least two players of
S ′ play distinct colors . Let us prove that there is another improving 3-coalition
S of σ such that all the players of S play the same color.

As in the proof of Proposition 3.1, let us sort the players of σ in de-
creasing order of utility u1(σ) ≥ · · · ≥ un (σ) and let i be a player in S ′ that
has lexicographically the largest utility in σ and (in case of tie) the smallest
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l1 l2 l3 l5l4 l6

r1 r2 r3 r5r4 r6

Figure 5. A graph G without an improving 4-coalition S in which all the players
of S play the same color.

number of players of S ′ playing σ′
i = �; so i ∈ arg max{uj (σ) : j ∈ S ′}, and if

uj (σ) = ui(σ) with j ∈ S ′ and σ′
j = �′, then |S�(σ′) ∩ S ′| ≤ |S� ′(σ′) ∩ S ′|. Con-

sider S = {j ∈ S ′ : σ′
j = �}, that is, the set of players of S ′ that play the same

color as i in state σ′. We have S ⊆ S�(σ′). We claim that S is an improv-
ing 3-coalition of σ. So let σ′′ = (σ−S , σ′

S ) be the resulting state. Note that
|S�(σ′′)| ≥ |S�(σ′)| = ui(σ′) > ui(σ) ≥ uj (σ) for all j ∈ S ′. Hence S is indeed an
improving coalition if S�(σ′′) is a stable set.

Suppose that S�(σ′′) is not a stable set. Then there exists a player k ∈ S ′ with
σk = � and σ′

k �= � (he leaves S�(σ)). By the choice of i and the fact that S ′ is
improving, we have |S�(σ′)| = ui(σ′) > ui(σ) ≥ uk (σ) = |S�(σ)|. Since k leaves �

is σ′, the only possibility to have |S�(σ′)| > |S�(σ)| is that the two other players
i and j in S ′ play � in σ′. But then we have ui(σ) = uk (σ), and k would have
been chosen instead of i according to the second criterion in the lexicographic
order.

Proposition 4.1 cannot be extended to improving 4-coalitions (a more complex
example shows that this result holds for improving k-coalitions, for every k ≥ 4).
To see this, consider the bipartite graph G = (L,R;E), where L = {l1 , . . . , l6}
and R = {r1 , . . . , r6}, depicted in Figure 5. This graph G is a K6,6 minus edges
linking l4 (respectively, r4) to {r1 , r2 , r3} (respectively, {l1 , l2 , l3}) and edges
(l5 , r6), (r5 , l6).

Let σ be the state corresponding to the coloration (S1(σ), S2(σ), S3(σ), S4(σ)),
where S1(σ) = {l1 , l2 , l3} ∪ {r4}, S2(σ) = {r1 , r2 , r3} ∪ {l4}, S3(σ) = {l5 , r6},
and S4(σ) = {r5 , l6}.

For every a ∈ {l5 , l6} and b ∈ {r5 , r6}, the set Sa,b = {l4 , a, r4 , b} is an im-
proving 4-coalition that from σ reaches state σ′, where σ′

l4
= σ′

a = 1 and
σ′

r4
= σ′

b = 2; hence the resulting coloring is (S1(σ′), S2(σ′), S3(σ′), S4(σ′)), where
S1(σ′) = {l1 , l2 , l3 , l4 , a}, S2(σ′) = {r1 , r2 , r3 , r4 , b}, S3(σ′) = {r5 , r6} \ {b}, and
S4(σ′) = {l5 , l6} \ {a}. We will show that the sets Sa,b form the unique improving
4-coalition of σ.
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Note that α(G) = 6, since G is bipartite and admits a perfect matching. More-
over, all the stable sets of size at least 5 are included in L or R by construction of
G. Now let S ′′ be an improving coalition of size (at most) 4 of σ leading to state
σ′′. Necessarily, S ′′ ∩ (S1(σ) ∪ S2(σ)) �= ∅, because on the one hand, S1(σ) and
S2(σ) are maximal stable sets (with respect to the inclusion) in G, and on the
other hand, the subgraph induced by S3(σ) ∪ S4(σ) has stability number equal
to 2 (it is a 2K2). So two situations can occur:

� S ′′ ∩ {l4 , r4} �= ∅. By symmetry of G, assume l4 ∈ S ′′; since ul4 (σ
′′) >

ul4 (σ) = 4, we have |S�(σ′′)| ≥ 5, where σ′′
l4

= �; thus S�(σ′′) ⊆ L. If r4 ∈ S ′′,
then � = 1 and S ′′ = Sa,b for some a, b because |S ′′| ≤ 4 and |S�(σ′′)| ≥ 5.
Now assume r4 /∈ S ′′. Then � ∈ {3, 4}, because |S ′′| ≤ 4 and |S�(σ′′)| ≥ 5.
Hence S ′′ ∩ {r5 , r6} �= ∅, and we obtain a contradiction, because we must
have |S ′′ \ R| ≤ 3, |S3(σ) ∩ L| = |S4(σ) ∩ L| = 1 and |S�(σ′′)| ≥ 5.

� S ′′ ∩ (S1(σ) ∪ S2(σ)) �= ∅ and S ′′ ∩ {l4 , r4} = ∅. By symmetry of G, assume
li ∈ S ′′ with i ≤ 3; since uli (σ

′′) > uli (σ) = 4, we have |S�(σ′′)| ≥ 5, where
σ′′

li
= �; thus S�(σ′′) ⊆ L. We must have � ∈ {3, 4}, because |S ′′| ≤ 4 and

|S�(σ′′)| ≥ 5. Hence as previously, we obtain a contradiction, because we
must have |S ′′ \ R| ≤ 3, |S3(σ) ∩ L| = |S4(σ) ∩ L| = 1, and |S�(σ′′)| ≥ 5.

In conclusion, there are some graphs with one improving 4-coalition but with-
out an improving 4-coalition in which all the players of the coalition play the
same strategy.

Given a coloring S = (S1 , . . . , Sq ) (sorted in order of nonincreasing size), let us
define for every j = 1, . . . , q and for every i ≤ j, the graph G̃i,j as the subgraph
of G induced by Si ∪ Si+1 ∪ . . . ∪ Sj . Let us also recall that Gj is the subgraph
of G induced by Sj (σ) ∪ · · · ∪ Sq (σ) and g(j) is the smallest index i such that
|Si | = |Sj |.

Theorem 4.2. Let k ≤ 3. Let G = (V,E) be a simple graph. The state σ corre-
sponding to a coloring S = (S1 , . . . , Sq ) is a k-strong equilibrium of G for the
vertex-coloring game iff for every j = 1, . . . , q, we have the following conditions:

� For every i < j such that |Si | ≤ |Sj | + k − 1, the size of a maximum stable
set containing Sj in G̃i,j is at most |Si |.

� If |Sj | < k, then Sj is a maximum stable set in Gj .

� If |Sj | ≥ k then Sj is a maximal stable set in Gg(j ).
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Proof. Consider a simple graph G = (V,E), an instance of the vertex-coloring
game. Let σ be a k-strong equilibrium defining a coloring S(σ) = (S1(σ), . . . ,
Sq (σ)) (sorted in order of nonincreasing size). Since σ is a Nash equilibrium,
item 3 immediately follows from the characterization of Nash equilibria. Also,
if there is a stable set S∗ of size greater than |Sj | in Gj , then |Sj | + 1 players
belonging to S∗ can form a coalition of size |Sj | + 1 ≤ k and play the same color
(say a new one). Their utility will be |Sj | + 1, greater than the utility they had
previously (at most |Sj |, since the vertices are in Gj ). The first item can be
proven similarly. Let S∗ be a stable set of G̃i,j containing Sj and of size |Si | + 1,
for some i < j such that |Si | ≤ |Sj | + k − 1. Then a coalition of at most k players
can change their minds and choose Sj , obtaining a utility |Si | + 1 greater than
the one they had before.

Now we prove that these conditions are sufficient. Assume that we have a state
inducing a coloring satisfying the three items, and let there exist a coalition of
size t ≤ k in the game improving the utility of each of its players. Let i∗ be the
smallest index i such that Si contained a player from the coalition before they
changed their minds. As mentioned in Proposition 4.1 and since k ≤ 3, we can
assume that these players choose the same new strategy, i.e., they are now in
the same stable set. Then there are two cases. First, assume that this stable set
is a new one (they choose a new color). Then the players of the coalition have a
utility t, greater than the one they had before. Hence t > |Si∗ |, which is absurd
from the second item.

So the players of the coalition choose an existing color Sj . They receive utility
|Sj | + t, greater than |Si∗ | by hypothesis. Since by the third item, Sj was maximal
in Gg(j ) , we know that each player of the coalition was in a stable set of size
greater than |Sj |. But |Si∗ | < |Sj | + t ≤ |Sj | + k, and there exists in G̃i∗,j a stable
set containing Sj of size at least |Si∗ | + 1, in contradiction with the first item.

Note that all the items given in the characterization can be tested in polyno-
mial time, provided that k is a fixed constant.

Now we prove that starting from a feasible coloring, computing a 3-strong equi-
librium can be done in O(n3) steps, each step corresponding to an improvement
for a coalition of at most three players. So computing a k-strong equilibrium for
k = 1, 2, 3 can be done in polynomial time. For k = 1, the result is already known
from [Panagopoulou and Spirakis 08], since the authors proved that a Nash equi-
librium (i.e., a 1-strong equilibrium) can be found in O(nα(G)) steps. We believe
that the result holds for every constant k ≥ 1, but we are unable to prove this.

Proposition 4.3. A 3-strong equilibrium of the vertex-coloring game can be computed
in polynomial time.
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Proof. Let Sj (σ) be the set of all nodes playing color j in the state σ. Let π be a
permutation of the colors such that |Sπ (1)(σ)| ≥ |Sπ (2)(σ)| ≥ · · · ≥ |Sπ (n)(σ)|. We
define ∇σ as a vector of length n whose jth coordinate ∇σ

j is equal to |Sπ (j )(σ)|
(the size of the jth-largest set). Here the coordinates corresponding to sets Si(σ)
(or equivalently to colors among {1, . . . , n}) not used in σ are set to 0.

A 3-strong equilibrium can be computed as follows: start from the strategy
profile associated with a proper coloring (e.g., one color per node) and while
it is possible, modify the strategy of at most three players such that each of
them benefits. The modification of the strategy of two players is done only if
the modification of the strategy of one player is not possible. Similarly, the
modification of the strategy of three players is done only if the modification
of the strategy of one or two players is not possible. Moreover, we can restrict
ourselves to particular modifications, i.e., those consisting in selecting a subset
of players and assigning them the same color using Proposition 4.1.

Let us denote by σ0 the initial state, while σr is the state after r improving
steps. Then σ0 is a proper coloring, and every subsequent state is also a proper
coloring. Then ui(σr ) ≥ 1 for every player i and state σr . We consider the po-
tential function Φ(σ) =

∑n
i=1 ui(σ)2 =

∑n
j=1

(∇σ
j

)3 . We are going to prove that
Φ(σr ) < Φ(σr+1) for every r.

Suppose that the strategy of only one player, say player 1, is modified. Then
∇σr

and ∇σr + 1
differ in only two coordinates, corresponding to the set that

player 1 has left and the one that he has joined. The sizes of these sets, denoted
by b and a respectively, have decreased and increased by 1 unit respectively.
We deduce that Φ(σr+1) − Φ(σr ) = (a + 1)3 + (b − 1)3 − a3 − b3 = 3a2 + 3a −
3b2 + 3b. Since a + 1 > b, because player 1 has increased his utility, we get that
Φ(σr+1) − Φ(σr ) > 0.

Suppose that the strategy of only two players, say players 1 and 2, has been
modified. Players 1 and 2 play in σr+1 a color, say j. Let us suppose that a

players selected color j in σr (if a = 0, then this color j is not used in σr ), and
then a + 2 players select this color in σr+1. Suppose that b players, including
player 1, use color j′ in σr . If b ≤ a, then player 1 could alone play j instead of j′

and benefit. If b ≥ a + 2, then player 1 does not benefit in changing his strategy.
We deduce that b = a + 1. Suppose that c players, including player 2, use a color
j′′ in σr . With similar arguments, we have c = a + 1. If players 1 and 2 play a
different color in σr , then

Φ(σr+1) − Φ(σr ) = (a + 2)3 + 2 × a3 − 2 × (a + 1)3 − a3 = 6a + 6 > 0.

If players 1 and 2 play the same color in σr , then

Φ(σr+1) − Φ(σr ) = (a + 2)3 + (a − 1)3 − (a + 1)3 − a3 = 12a + 6 > 0.
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Suppose that the strategy of three players, say players 1, 2, and 3, has been
modified. Players 1, 2, and 3 play in σr+1 a color, say j. As previously, let us
suppose that a players selected color j in σr (if a = 0, then this color j is a
new one). Let us suppose that a players selected color j in σr , and then a + 3
players select this color in σr+1. For at least two players in {1, 2, 3}, say 1 and
2, the utility in σr is at least a + 2, since otherwise, a profitable deviation by
only two players exists. For these players, the utility in σr is at most a + 2, since
otherwise, the deviation is not profitable. For the third player (player 3), the
utility in σr is either a + 2 or a + 1, but not less, since otherwise, there would
exist a profitable deviation by this single player. So for the first case we have

Φ(σr+1) − Φ(σr ) = (a + 3)3 + 3 × (a + 1)3 − 3 × (a + 2)3 − a3 = 6 > 0.

For the second case, we have

Φ(σr+1) − Φ(σr ) = (a + 3)3 + (a + 1)3 − 2 × (a + 2)3 = 6a + 12 > 0.

Since n ≤ Φ(σ) ≤ n3 for every state σ and each profitable deviation induces a
strict increase of the potential function, we deduce that the algorithm terminates
after O(n3) steps (and the result is a 3-strong equilibrium).

To conclude, finding a profitable deviation by at most three players can be
done in polynomial time: for every subset of at most three players (

(
n
3

)
choices)

and every color (n choices), check whether replacing the current color of every
member of the subset by the selected color is profitable (done in O(n2) steps).

Proposition 4.3 is proved via a potential function argument; that is, one can
assign a real positive value to every state that is O(n3). Interestingly enough, it
can be shown that a similar approach would not work for coalitions of size at
most k, where k ≥ 4. Indeed, in this case, the weight associated to a stable set
of size i has to be exponential in i.

4.2. Alleviating the Social Cost with a New Utility Function

In the model of [Kearns et al. 06, Chaudhuri et al. 08], a player’s payoff is 0 if one
of his neighbors uses the same color and 1 otherwise. Then a player is satisfied
if he is in a stable set, however large the set is. With social cost considerations
in mind (and supposing that n colors are available), this payoff function would
be very expensive (a trivial coloring using n colors is a Nash equilibrium). In the
model of [Panagopoulou and Spirakis 08], the players are incentivized to be in a
large stable set because their payoff grows with the size of their set. As we have
seen, this payoff function ensures better bounds on the social cost (compared to
the previous model).
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An interesting question would be to provide a different utility function in order
to improve the global efficiency of the system.1

In trying to overcome the limits of the adopted utility function, we propose
the following one. Instead of considering the size of a stable set, we consider
the number of edges incident to a stable set. Formally, given a simple graph
G = (V,E) and a strategy profile σ, the utility of player i in σ now becomes
ui(σ) =

∑
vj :σj =σi

d(vj ) if {vj : σj = σi} is a stable set, and 0 otherwise.
It is easy to see that the characterization of a strong equilibrium is the same

for this new utility function: instead of considering maximum stable sets, we just
have to consider maximum-weight stable sets, where the weight of a stable set
is the sum of the degrees of the vertices it contains. More precisely, a state σ

corresponding to a coloring S(σ) = (S1(σ), . . . , Sq (σ)) (the sets being sorted in
order of nondecreasing weight) is a strong equilibrium iff for every i, Si(σ) is a
maximum-weight stable set in Gi .

Using this utility function, we get a simple but nice result for bipartite graphs.

Proposition 4.4. Using the above utility function, every strong equilibrium is an
optimum coloring in bipartite graphs.

Proof. To see this, let (V1 , V2) be a bipartition of the graph. Then every edge is
adjacent to a vertex in V1 (and to one in V2), and hence the weight of both V1

and V2 is m, so they both are maximum-weight stable sets. Conversely, every
maximum-weight stable set Ṽ is such that (Ṽ , V \ Ṽ ) is a bipartition, since Ṽ

has to be adjacent to every edge (otherwise, its weight would be at most m − 1).
So, using the characterization, every strong equilibrium has only two colors (or
one if the graph has no edge).

This is a nice improvement compared to the bound of θ(log(n)) for the initial
utility function. Unfortunately, this does not generalize to χ(G) ≥ 3.

Proposition 4.5. Using the above utility function, the SPoA is at least (log(n/3) +
1)/3 in 3-colorable graphs.

Proof. We consider a graph Gt with n = 3 × 2t vertices. There are three stable sets,
S1 , S2 , S3 , of size 2t . We divide Si into t + 1 groups of vertices V i

0 , V i
1 , . . . , V i

t ,

1 We exclude the following solution, which requires one to solve an NP-hard problem: com-
pute an optimal coloring; give 1 to the players who follow this optimum and give 0 to the
others.
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where |V i
q | = 2q−1 for q �= 0 (and |V i

0 | = 1). We have an edge between a vertex
in V i

q and a vertex in V j
l iff q �= l (and i �= j).

Now let us find the maximum-weight stable set. By symmetry, each stable set
Si is adjacent to 2m/3 edges. But there are 2q−1+p−1 edges between a group V i

q

and a group V j
p (j �= i); hence a group V i

q is adjacent to
∑

p �=q 2q+p−2 edges. If
we look at stable sets that contain vertices from different Si , the heaviest one is
then S1 = V 1

t ∪ V 2
t ∪ V 3

t : each V i
t is adjacent to 2 × 4t−1 edges, and then S1 is

adjacent to 6 × 4t−1 edges. The total number of edges in the graph is

m = 6
t∑

i=1

4i−1 = 6 · 4t − 1
3

= 2
(
4t − 1

)
.

Thus S1 is adjacent to more than two-thirds of the edges and is consequently
the unique heaviest stable set of the graph.

Every strong equilibrium has S1 as first color. But removing S1 gives the graph
Gt−1 . Hence, by a recursive argument, the unique strong equilibrium of Gt has
t + 1 colors. Since χ(G) = 3, the SPoA is

t + 1
3

=
log(n/3) + 1

3
.

In our opinion, finding a utility function that alleviates the social cost is an
interesting question that deserves further research.

4.3. An Edge-Coloring Game

The edge-coloring problem on a simple graph G = (V,E) can be viewed as the
vertex-coloring problem on L(G), where L(G) is the line graph of G (each edge
ei ∈ E becomes a vertex xi of L(G) and there is an edge (xi, xj ) in L(G) if ei

and ej are adjacent in G). Here, for simplicity, we refer to the edge model. Thus,
an edge coloring M = (M1 , . . . ,Mq ) of a simple graph G = (V,E) is a partition
of E into matchings Mi . The minimum number of matchings partitioning the
edges of G is called the chromatic index of G and is denoted by χi(G). It is well
known that the chromatic index of every simple graph G of maximum degree
Δ(G) satisfies

Δ(G) ≤ χi(G) ≤ Δ(G) + 1. (4.1)

Hence, the edge-coloring game is the vertex-coloring game on line graphs. In
particular, Theorems 2.1 and 3.2 are valid when we replace vertex coloring
S(σ) = (S1(σ), . . . , Sq (σ)) by edge coloring M(σ) = (M1(σ), . . . ,Mq (σ)). Also,
Gi becomes the partial subgraph of G induced by Mi(σ) ∪ · · · ∪ Mq (σ). However,
now computing a strong equilibrium of the edge-coloring game is polynomial
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(using the characterization of Theorem 3.2), since it consists in finding induc-
tively a maximum matching of the current graph that is polynomial [Berge 73].
Finally, we always assume that Δ(G) ≥ 2, since otherwise, SC(G, σ) = χi(G) for
every Nash equilibrium σ of the edge-coloring game for graphs G with Δ(G) = 1.

Theorem 4.6. The PoA and the SPoA of the edge-coloring game are both equal to

2 − 1
Δ(G)

for simple bipartite graphs G. Moreover, these results hold even if we consider
the class of trees with arbitrarily large values of Δ(G).

Proof. Let G be a simple bipartite graph. Since we have Δ(L(G)) ≤ 2Δ(G) −
2 and Δ2(L(G)) ≤ Δ(L(G)), we deduce from the result of [Panagopoulou and
Spirakis 08] that for every Nash equilibrium σ of the edge-coloring game, we get

SC(G, σ) ≤ Δ2(L(G)) + 1 ≤ 2Δ(G) − 1.

On the other hand, Vizing’s theorem (see, for instance, [Berge 73]) states that
the value of a social optimum (i.e., the chromatic index) is Δ(G) for a bipartite
graph G. Thus, we get PoA(G) ≤ 2 − 1

Δ(G) . We prove the tightness for the SPoA,
since we always have SPoA ≤ PoA.

For p ≥ 1, consider the tree Tp+1 built as follows: r is the root of Tp+1, and it
has p + 1 neighbors x1 , . . . , xp+1. Each vertex xi has p other neighbors (distinct
from r), yi

1 , . . . , y
i
p . Thus,

Tp+1 = {(r, xi) : i = 1, . . . , p + 1} ∪ {(xi, y
i
j ) : i = 1, . . . , p + 1 and j = 1, . . . , p

}
.

Figure 6 gives an illustration for p = 3.

r

x1 x2 x3 x4

K1,4

T4

Figure 6. The tree T4 .
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We can easily prove that M1 , . . . ,Mp , where Mj = {(xi, y
i
j ) : i = 1, . . . , p + 1},

are p maximum matchings of Tp+1. In fact, Tp+1 can be viewed as the union of
p + 1 stars K1,p+1 sharing a common vertex r, where the center of the ith copy of
the star K1,p+1 is xi (see Figure 6 for p = 3, where a K1,4 is indicated in a dashed
box). Thus, since a matching of Tp+1 can share at most one edge with each copy
of K1,p+1, we deduce that every matching of Tp+1 has at most p + 1 edges.

In conclusion, using Theorem 3.2, the state σ where σ(xi ,y i
j ) = j for j = 1, . . . , p

and i = 1, . . . , p + 1, and σ(r,xi ) = p + i for i = 1, . . . , p + 1 is a strong equilib-
rium of Tp+1 using SC(σ) = 2p + 1 colors; since Δ(Tp+1) = p + 1, we deduce that
SC(σ) = 2Δ(Tp+1) − 1. Finally, since a social optimum uses Δ(Tp+1) colors (for
instance, M∗ = (M ∗

1 , . . . ,M ∗
p ), where

M ∗
i = {(r, xi)} ∪

{
(xj , y

j
i ) : j = 1, . . . , p + 1 and j �= i

}
is an optimal edge coloring of Tp+1), we get SPoA(Tp+1) ≥ 2 − 1/Δ(Tp+1).

On the other hand, if we restrict ourselves to regular bipartite graphs, then
every strong equilibrium is a social optimum for the edge-coloring game.

Proposition 4.7. A strong equilibrium for the edge-coloring game is a social optimum
for simple regular bipartite graphs G.

Proof. The proof is simple. It is well known that a simple k-regular bipartite graph
G = (V,E) has a perfect matching M1 [Berge 73]. Now, the partial subgraph
G1 = (V,E \ M1) is a (k − 1)-regular bipartite graph, and then it has a perfect
matching M2 . So by induction, the edge set E of G has a partition into k =
Δ(G) perfect matchings M = (M1 , . . . ,Mk ). Thus, using the edge version of
Theorem 3.2, we deduce that M is an edge coloring of G corresponding to a
strong equilibrium σ. Finally, using inequality (4.1), we get SC(G, σ) = Δ(G) ≤
χi(G), and then SC(G, σ) = χi(G). In fact, we have proved that every strong
equilibrium σ of G satisfies SC(G, σ) = χi(G).

We conclude this article by a final result on the SPoA of the edge-coloring
game in general graphs.

Theorem 4.8. The SPoA of the edge-coloring game is at most

1 − 1
Δ(G) + 1

+
1

Δ(G)
loga

(
m

Δ(G) − 1

)
,

where a = Δ(G)+1
Δ(G) for simple graphs G on m edges and of maximum degree

Δ(G) ≥ 2.
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Proof. Let G = (V,E) be a simple graph with |E| = m and of maximum degree
Δ(G) ≥ 2. Let σ be the worst Nash equilibrium of the edge-coloring game on
G. Using the equivalence between the edge-coloring game on G and the vertex-
coloring game on L(G), the line graph of G, we deduce from Theorem 3.6 the
following inequality:

SC(σ) ≤ loga

( |V (L(G))|
χ(L(G)) − 1

)
+ χ(L(G)) − 1, where a =

χ(L(G))
χ(L(G)) − 1

.

The function logz (x) e = 1/ ln z(x), where z(x) = x
x−1 , is decreasing on z(x) > 1

and then is increasing on x > 1 (since z(x) is decreasing). Thus, using inequality
(4.1) and χ(L(G)) = χi(G), we deduce that logz (χi (G)) ≤ logz (Δ(G)+1), since

2 ≤ Δ(G) ≤ χi(G) ≤ Δ(G) + 1.

Hence using |V (L(G))| = |E(G)| = m, we get

SPoA(G) ≤ 1
χi(G)

loga

(
m

χi(G) − 1

)
+ 1 − 1

χi(G)
, where a =

Δ(G) + 1
Δ(G)

.

Finally, using inequality (4.1) and Δ(G) ≥ 2, we obtain

SPoA(G) ≤ 1 − 1
Δ(G) + 1

+
1

Δ(G)
loga

(
m

Δ(G) − 1

)
,

where a = Δ(G)+1
Δ(G) , and the result follows.
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Routing?” J. ACM 49:2 (2002), 236–259.
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