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Bistability through Triadic Closure

Peter Grindrod, Desmond ]. Higham, and Mark C. Parsons

Abstract.  We propose and analyze a class of evolving network models suitable for de-
scribing a dynamic topological structure. Applications include telecommunication, on-
line social behavior, and information processing in neuroscience. We model the evolving
network as a discrete-time Markov chain and study a very general framework in which
edges conditioned on the current state appear or disappear independently at the next
time step. We show how to exploit symmetries in the microscopic, localized rules in or-
der to obtain conjugate classes of random graphs that simplify analysis and calibration
of a model. Further, we develop a mean field theory for describing network evolution.
For a simple but realistic scenario incorporating the triadic closure effect that has been
empirically observed by social scientists (friends of friends tend to become friends), the
mean field theory predicts bistable dynamics, and computational results confirm this
prediction. We also discuss the calibration issue for a set of real cellphone data, and
find support for a block model in which individuals are assigned to one of two distinct
groups having different within-group and across-group dynamics.

[. Motivation

A diverse range of application areas gives rise to large, complex interaction
patterns. In the field of network science, classes of random graphs have been
proposed and tested as models to capture the structure of these interactions
[Newman 10]. In many cases, the model may be viewed as an iterative procedure
that builds a network sequentially by randomly rewiring an existing structure
[Newman et al. 00, Wagner 03, Watts and Strogatz 98] or by adding nodes and
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links in order to “grow” a network [Barabdsi and Albert 99]. In these cases,
the object of interest, however, is the final, static, network. Our work differs
in that we wish to model a network structure that is inherently dynamic, with
edges appearing and disappearing between a fixed set of nodes. Such a scenario
arises naturally in many modern data-rich applications, for example telecom-
munication (who phoned whom each day), online social interaction (who in-
teracted with whom in a chat room), online retailing (people who bought this
book also bought) [Holme and Saraméki 12]. Attention has recently been paid
to the issue of extending traditional graph-theoretic concepts such as paths to
the time-dependent setting [Berman 96, Grindrod et al. 11, Holme 05, Kossinets
et al. 08, Tang et al. 10, Tang et al. 09] and related computational complexity
issues [Avin et al. 08, Clementi et al. 08, Clementi et al. 09]. There has also
been interest in the waiting times between link changes [Barabési 05, Zhao et
al. 11] and the emergence of communities [Bassett et al. 11, Mucha et al. 10].
Also, link prediction—estimating likely new connections a short time ahead—is
becoming recognized as an important task [Esfandiar et al. 10, Liben-Nowell and
Kleinberg 07, Lu et al. 10]. However, in this work we focus on the fundamental
issue of modeling and analyzing such networks directly and from first principles,
that is, on prescribing reasonable “laws of motion” and studying the potential
behaviors that can arise. Our target applications are digitally generated commu-
nication or online social interaction networks, and our interest lies in the changes
in the connectivity structure itself. Related work on adaptive networks [Gross
and Blasius 08] has studied scenarios in which the nodes are involved in their
own dynamical system that is coupled to the dynamic topology—for example,
in an epidemiological SIS model, susceptible (S) nodes may seek to avoid links
with nodes that are currently infected (I).

The main novel contributions in our work are (a) the introduction of the
concept of conjugate graphs, which can play an important role in understanding
and analyzing a model, (b) the derivation of a mean-field-theory approach to
summarizing long-term behavior, (¢) the introduction of a simple but realistic
nonlinear network-evolution model driven by the concept of triadic closure from
social science and to have shown that it admits bistable behavior, and (d) a
consideration of the issue of model calibration and a demonstration that the use
of a block model improves the fit for a voice call data set.

The presentation is organized as follows. In the next section, we introduce
a general stochastic framework and show how modeling and simulation can be
simplified by focusing on the dynamics of individual edges. We also illustrate
these ideas in the particular case that triadic closure is encouraged—friends of
friends tend to become friends. Section 3 then introduces the concept of conju-
gacy, which can be used to describe inherent symmetries in a model—the most
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natural example being the case that the dynamics do not depend on the choice
of node labeling. A mean field approach is described in Section 4 and applied
to the triadic closure model in Section 5. This model, and a more general block
version in which the nodes are partitioned into two distinct groups, are fitted to
voice call data in Section 6, and conclusions are given in Section 7.

2. Preliminaries

Throughout this work we focus on undirected graphs on n vertices with no loops,
which may be represented by symmetric binary n x n adjacency matrices. Here
A = (ai;) € R™*" has a;; = aj; = 1 if there is an edge from node i to node j and
has a;; = aj; = 0 otherwise, with all a;; equal to 0. Let S,, denote the set of all
such adjacency matrices and let 1 denote the adjacency matrix for the n-vertex
clique. If A € S,,, then 1 — A € S, is the adjacency matrix for the complementary
graph to that represented by A. Let R, denote the set of symmetric n x n
real matrices with all elements taking values in [0, 1], with zeros on the main
diagonal. So S,, C R,,. For real n x n matrices M; and M, the Hadamard (or
Schur) product, denoted by M; o My, is the matrix obtained by elementwise
multiplication, so that

(My o My)ij = (My)ij (Mz)i-

If Ay, Ay € S, then A o Ay € S,, represents the adjacency matrix for the graph
of common edges.

Following the treatment in [Grindrod and Higham 10], we use the phrase
evolving network model to describe a stochastic rule that generates a sequence
of networks represented by a sequence of adjacency matrices {Ak}i‘;n, where
each Ay belongs to S,. We say that A, represents the state of the evolving
network at the kth time step, ti, where t) <, < --- < tx are equally spaced
points in time. We emphasize that the number of network nodes, n, is fixed in
this approach. However, the effect of a node “joining” the network can be treated
by, for example, allowing the node to have connections only after an appropriate
time point. Similarly, a node may “leave” the network at some point in time if
it is guaranteed never to have any future links.

It is natural and analytically convenient to focus on Markovian models. We
therefore consider the case of a first-order evolving network model character-
ized by the conditional probability distribution for Aj.; given Aj, denoted by
P(Agy1 | Ag), defined for all pairs A1, Ar € S,,. The expected value of Ay 4
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given A; will be written as

(A | Ar) = ) Ap P(Apar | Ay).
Ari1€S,

By construction, (Ar+1 | Ar) € Ry, and the (7, j)th element of (A1 | Ax) con-
tains the conditional probability that the corresponding edge is present in Ay 1.

We will say that the first-order evolving network model P(Ay;1 | Ax) is edge
independent if given A;, information about the existence of any particular edges
in Agy1 has no effect on the probability that any other edge is in Ay, 1.

Under this assumption of edge independence, every element W € R,, defines
a random graph. The (i, j)th element of W gives the probability that the corre-
sponding edge is present, and we can construct the associated probability distri-
bution over S, say Py (A):

n

Py (A) = H (W)(A>71 (1- (W)z‘j)l_(A)”-

ij
i=1,j=i+1

For example, if we have p € (0,1), then pl € R,, represents a classical Erds—
Rényi/Gilbert random graph (usually denoted by G(n,p)), where each edge ex-
ists with independent probability p [Newman 10]. Let CL, ) € S, represent the
adjacency matrix for a circular lattice on n vertices, with each vertex connected
to its k nearest clockwise and its k nearest counterclockwise neighbors. Then for
any choice of constants 0 < ¢ <p <1, pCL, ;) is a partial lattice with every
edge present with independent probability p, while pCL,, ) +q(1 — CL(, 1)) is
a partial lattice with uniform “short cuts” in the spirit of the classical Watts—
Strogatz small-world model [Newman et al. 00, Watts and Strogatz 98].

By focusing on first-order edge-independent evolving-network models, we may
restrict our attention to matrix-valued functions

F:S,—R,. (2.1)

Any such mapping F generates a first-order edge-independent evolving-network
model for which

(Aps1 | Ak) = F(Ag). (2.2)
A particularly useful form for F(Ay) is
]:(Ak) = (1 — W(Ak)) oAy + Oé(Ak) o (1 — Ak), (23)

where «(A;) and w(Ay) are given mappings S, — R, representing condi-
tional birth rates and death rates respectively, as introduced in [Grindrod and
Higham 10]. Tt is straightforward to compute a path for such a Markov chain,
that is, a particular network sequence whose transitions respect the relevant edge
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birth and death rates. The following pseudocode summarizes this approach, given
an initial adjacency matrix Ay:

for k=0,1,2,...,
compute a(A;),w(A;) € R,
for all disjoint pairs i # j
if (Ag)i; = 0 then set
(Aj+1)ij = 1 with probability a(Ay);; (birth)
(Ag+1)ij = 0 with probability 1 — «(Ay);; (no change)
else we have (Ay);; = 1, so set
(Ag+1)ij = 0 with probability w(Ay);; (death)
(Ag+1)ij = 1 with probability 1 — w(Ay);; (no change)
end if
end for all pairs

end for k

In this formulation, n(n —1)/2 uniform pseudorandom numbers need to be
drawn on each iteration.

We finish this section by introducing a novel example that fits into this frame-
work. We consider the case that the death rate is a constant for all edges,

w(Ag)=w1, forw e (0,1), (2.4)
while the birth rates for edges not present in A; are given by
a(Ar) =61+ elo A7, (2.5)

for some constants § and e. We assume that 0 < § < 1, and to guarantee prob-
abilities in the range [0,1], that 0 < e(n —2) <1 —4.

This model reflects a situation whereby the more common the adjacencies
between two nonadjacent vertices in A, the more likely they are to become
adjacent in A, 1. In other words, in the social network case, somebody who is
not currently your friend, but who is currently a friend of many of your cur-
rent friends, has an enhanced chance of becoming your friend at the next step.
Forming new associations by the process of triangulating current adjacencies is
very natural within a number of applications. In social networks, two peers may
be likely to become introduced through common friends; in this context, the
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Figure 1. Edge density p;, in (2.7) extracted from four independent paths of the
Markov chain using the same model parameters and the same initial condition
(color figure available online).

mechanism is often referred to as triadic closure [Goodreau et al. 09, Kossinets
and Watts 06, Szell and S. Thurner 10]. In developing cognitive processing ca-
pability in the brain, triangulation increases efficiency of communication and
resilience, and overabundance of triangles has been observed in both anatomical
and functional studies [Bullmore and Sporns 09, He et al. 07, Liu et al. 08].

To create Figure 1, we simulated this model with n = 100 nodes and parameter
values

w=0.01, €=0.0005 ¢ =0.0004. (2.6)

The initial network was a sample of an Erdés—Rényi graph with expected edge
density p = 0.3; each possible edge exists with independent probability p. The
four jagged curves correspond to four independent paths of the Markov chain.
In each case, they show the evolution of the edge density

=N 1
bk = mz Zi>j(‘4k)ij’ (2~7)

up to time k = 1500.
We see in Figure 1 that with the same model parameters and the same initial
condition, the edge density for one path has increased to around 70%, while three
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other paths produce an edge density that decreases to around 5%. The analysis
that we develop in Sections 3 and 4 will explain this difference in behavior,
pointing out for the first time in this context that bistability arises naturally.

3. Classes of Conjugate Random Graphs

In this section, we show how symmetries in a model give rise to a natural defini-
tion of conjugacy. Assume that the mapping F in (2.1) characterizing a first-order
edge-independent evolving network can be extended to a mapping F : R, — R,.
We will see in Section 4 how this can be rather natural when we wish to replace
Ay by its own expected value. Let \ denote a parameter ranging over a domain
A within some suitable space. Let W : A — R,,. We will say that W (\) is a class
of conjugate random graphs for F if for each A € A, there exists a unique element
g(A) € A such that

W(g(\)) = F(W QX))

Hence the parameterized set {W(\) | A € A} C R, is positively invariant under
F. Moreover, the action of F on R, can be reduced to the action of g on A.

Suppose that F : R, — R,, also possesses some symmetries in the sense that
there is a subgroup of n x n permutation matrices H = {Q,} such that F is
invariant under each of these these permutations. More precisely,

‘7:(14) = QT}-(Q:TAQI) zv AecS,, Q €H.

Then F uses no extra a priori information about the vertices that distinguishes
one permutation in H from another. Now let W C R,, denote the subset of
random graphs in R, that are invariant under the symmetries in H, so that

QIWQ, =W,
forall W e W, @, € H. It then follows for W € F that
QrFW)Qr = F(Qr WQ,) = F(W).

Hence F maps W into W. So under a suitable parameterization, with some
A € A, the subset W is a possible class of conjugate random graphs for F.

In the simple case in which F is invariant under all possible permutations on
n vertices, we know that no subset of nodes is distinguished in any way. For
example, this will certainly be so whenever

FW)=Q:i(W)oQ(W)o---0Qs(W),
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where each of the Q;(W) : R, — R, is a polynomial in W. The random graph
W = pl is invariant under all such permutations; W is the set of such graphs,
parameterized by p € [0,1]. This situation represents an egalitarian scenario
whereby every node is the same and none is distinguished based on any a priori
information. So we treat all edge dynamics according to the same model.

Alternatively, we may have a block model in which prior considerations allow us
to divide the nodes onto two disjoint subsets. (The generalization to a finer parti-
tion is straightforward.) This could arise in a social network between individuals
from two sexes for instance, where it was posited that male—male, female—male
and female—female interactions follow different birth/death dynamics. Similarly,
there may be an elite and nonelite (officers and troops), or cultural, or functional
splitting of the vertices. To be concrete, suppose that all edges between all of
the first n; vertices satisfy a given identical dynamic; all edges between all of
the last ny = n — ny vertices satisfy a distinct given identical dynamic; and all
edges between all of the first ny vertices with all of the last ny vertices satisfy a
third given identical dynamic. Then F will be invariant under all permutations
@ that permute within the two subsets separately, and do not swap any vertices
between them. In that case, W is invariant with respect to all such permutations
if it has a symmetric block structure, say

if i =7,
if i #jand i,j <nq,
if i £ j and 4,5 > nq,

e =T« B )

if min{i,j} <mn; and max{i,j} > n;.

Then W is the set of such graphs, parameterized by three constants: A =
(p,g,) € [0,1° = A.

For such a block random graph W € W, the expected number of edges is given
by

ny(ng —1) na(ng — 1)
2 7 2

q+ninar.

We also recall that the Watts—Strogatz clustering coefficient for a node is de-
fined as the ratio of links between the vertices within its neighborhood to the
number of links that could possibly exist between them [Newman 10, Watts and
Strogatz 98]. In other words, for node B, it is the frequency with which a path
A — B —C is also involved in the closed loop A — B — C — A. The expected
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Watts—Strogatz clustering coefficient then has the form of the quotient

Tl1! 3 TLQ! 3 TllTLQ! 2 n2n1! 2
54 + AL Lo
(2!(n1 — 3P Ty — ) T2y — o) T 2y — 2" P

+n1(ng — Dngpr® + na(ng — 1)n1qr2>/

n1! 2 ’I’LQ! 2 ’fl1n2! 2 n2n1! 2
(2!(n1 3 T o0m, =31 Y2, — 2 T2, 21

+n1(n1 — Dnapr +ng(ng — l)mqr).

This expression has six terms in the denominator and six in the numerator,
representing respectively the expected number of open jaws (pairs of edges from
a central vertex to two other distinct vertices) and the expected number of those
open jaws that are complete triangles. Six terms arise because the central vertex
(of the open jaw) may be in either of the subsets, while the other two vertices
may be such that none, one, or both lie within the same subset.

In Section 6, we return to the concept of clustering coefficients as a means to
compare standard and block models on voice call data. The next two sections
focus on mean field theory.

4. A Mean Field Approximation for Evolving Networks

Our aim in this section is to develop a heuristic approach for analyzing the be-
havior of an edge-independent first-order evolving network, as defined in (2.2).
We begin with the simplifying assumption that A; can be adequately summa-
rized by its own expected graph, (A | X), given any prior information X, rather
than including all of the details of any particular value for A;. Then we may use
this expected value to calculate the consequent expectation, (Ay 1 | (A; | X)).

In reality, of course, each of the edges in A; is there or not, taking a binary
value. Hence by employing the expectation for Ay, the analysis is only an ap-
proximation. It will be particularly poor at times when the probability of edges
appearing is relatively small and/or the existence and distribution of just a few
edges has a critical effect: they cannot in reality be smeared out.

Alternatively, we may be given only (A; | X) € R,, as a random graph itself,
conditional on any previous information X, and we may wish to use our evolving
graph model to calculate an estimate for (A;;; | X), and so on. We should
calculate

(Aper | X) = ) F(A)P(A | X).
A €Sy
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Instead, we might calculate the approximation

(Ao | X) zf( S A P(A |X>> —F(A X)) (D)

Ap €S,

Remark 4.1. There is equality in (4.1) if the only nonlinearities in F involve the
multiplication of independent stochastic variables. In most cases, we will have to
consider the expected number(s) of some combinations of edges being present.
Here the edge-independence assumption is exactly what we need. For example,
the expected value of the number of mutual adjacencies (for any given pair
of vertices) involves a sum over all pairs of edges connecting to the possible
mutual adjacent vertex. These are mutually independent, and of course, the two
necessary edges within each term are mutually independent. Hence for this type
of F, with each term in the range involving only sums over independent events
each of which itself is a product over individual edges, (4.1) is exact. We refer to
(4.1) as a mean field approximation for the evolving graph.

Suppose that we may represent (Ay, | X) by some random graph, say Wy, €
R,,. Then using the mean field approximation, we simply iterate with F:

Wis1 =FWy), k=ko,ko+1,ko+2...,

to obtain (Ay | X) = Wy, for all k = kg, ko + 1, ko + 2, .... This iteration gener-
ates a sequence of expected values for the evolving network at all future time
steps, given the approximation for Ay, , but using the mean field approximation.

Now let us assume that W () is a conjugate random graph for F. If we have
Wi, = W(Ag,) for some A, € A, then we can iterate with g to produce a se-
quence

Ner1 =9(M\e), k=koko+1,ko+2,...,
and it follows that
(A | X) =W, =W(A), k=ko,ko+1,ko+2,....
Hence under the mean field approximation, a conjugate random graph is par-

ticularly useful, since it descends from the mean field iteration over R, to one
over A.
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5. Bistability through Triadic Closure

We now apply this mean field theory to the triadic closure model (2.4)-(2.5),
where

F(Ap) = (1 —@)A, + (1 — Ap) o (61 +€A7). (5.1)

It is easy to see by symmetry of the model (there being neither distinguished
vertices nor differences in the way vertices and edges are treated) that the Erdés—
Rényi graphs are possible conjugate random graphs for this mapping. Substitut-
ing (A | X) = pp1 for Aj as the heuristic mean field approximation, we obtain
the iteration py1 = g(pi), where

9(p) =1 =@)p+(1—p) (3 +e(n—2)p*). (5.2)
At equilibrium, we have py,1 = pr = p*, where

" (1—p*) (0 teln - 2)p*?) _

(5.3)

w

In the limit 6 — 0, there are three real roots p* if and only if @ < e(n — 2)/4.
The smallest is /(5 + @) + O(6%), representing a sparse graph with almost no
triangulation, where the random birth rate ¢ equilibrates with death rate w, and
the larger roots are at

1

3 + Yl m + 0(9),
where the nonlinear triangulation term equilibrates with the death rate @. More-
over, ¢'(p) > 0 for all p € [0,1] and g(0) = d. Hence in this regime, the two outer
steady states are stable for this iteration, while the middle root is unstable. Intu-
itively, with a low initial edge density, the triangulation rule cannot get started,
and the network remains sparse, whereas for a sufficiently high initial edge den-
sity, the network evolves into an e-dependent state. Figure 2 illustrates the case
of n =100, using model parameters given by (2.6). Here, we find stable fixed
points at 0.049 and 0.721, surrounding an unstable fixed point at p* = 0.229.
These values are consistent with the results summarized in Figure 1; in that ex-
periment, we deliberately chose an initial edge density very close to the unstable
level. Three paths have evolved toward the lower stable level of 0.049, and one
has been attracted to the upper stable level of 0.721. The mean field analysis
has correctly predicted that two broad classes of behavior are possible over this
timescale, and because we have started near the unstable level, the microscale
detail determines which of the two regimes dominates for any particular path.
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Figure 2. Graph of p (dashed) and (1 —p)(§ + e(n — 2)p*)/@ (solid): the fixed
points are at 0.049, 0.229, and 0.721. (Here n = 100 and parameter values are
taken from (2.6)) (color figure available online).

As a further test, the jagged curves in Figure 3 record the edge density along
three independent paths with the same model parameters (2.6), using initial
networks given by sampling an Erd6s—Rényi random graph with edge probability
p = 0.4. In this denser regime, all three paths have edge densities that evolve
toward the 0.721 level. The solid curve represents the mean field recurrence
from (5.2), with py = 0.4. We see that there is very good agreement when this
macroscopic quantity is computed directly from the full microscopic simulation
and from the mean field approximation. In other tests with initial networks
that were not Erdés—Rényi, we found that the mean field iteration gave a good
approximation if we started after a suitable “burn-in” period.

It is also informative to calculate, at each t;, the average Watts—Strogatz
clustering coefficient C}, defined as the clustering coefficient averaged over all
nodes. We may then compare its evolution with that of the edge density py.
Since the initial network and long-term networks are Erdés—Rényi graphs, we
will have have C}, = p;. there because p; represents the probability for triangle
closure. For the simulation in Figure 4, we see that C} increases slightly ahead
of Py, since initially random clusters strengthen before they infill at the higher
density. The individual, vertexwise, values of the clustering coefficient increase
in variance during the phase of rapid growth; see Figure 5.
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Figure 3. Jagged curves: edge density p; in (2.7) extracted from three indepen-
dent paths of the Markov chain using the same model parameters. Smooth curve:
mean field approximation from (5.2) (color figure available online).

To finish this section, we emphasize our belief that in order to understand
network formation and forecast network behavior, it is essential to have a class
of realistic dynamical models capable of replicating behavior seen in evolving
network structures. Indeed, if we merely observe evolving social and communi-
cation networks, then, as with any dynamical system, we see only some subset
of stable behavior. The bistability effect shown in this section confirms that a
single realization can give a misleading picture, and also opens up the possibility
of timely and targeted intervention—for example, a service provider may wish to
stimulate early activity to move the edge density into a region where the network
will then self-organize into a profitable, well-connected regime.

6. Application to Voice Call Data

In this section we consider an evolving network data set of pairwise mobile
phone communications during a period of the year when connections were on
the increase. We compare the unstructured (homogeneous) model and a block
model introduced in Section 3 by first calibrating them via the evolution of the
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Figure 4. Ratio of average clustering coefficient to edge density: Cy/pr (color
figure available online).

appropriate edge densities, and then examining how they predict the correspond-
ing possible evolution of the average Watts—Strogatz clustering coefficient.
Suppose that we observe an evolving random graph. By making an assumption
about F and selecting an appropriate subgroup of permutations @), we may derive
the mean field equations over W, which will involve the dynamical parameters
from F. From data, we can calculate the evolution of the coordinates A describing
W. By fitting these to the mean field model, we can estimate the unknown

L L 1 1 '

I w0 400 600 500 1000

Figure 5. Vertex-level clustering coeflicients as the network in Figure 4 evolves
(color figure available online).
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dynamical parameters. Then the choice of model may be validated or invalidated
by checking other evolving network metrics not used to do the calibration.

As an example, we study weeks 8 through 15 from the reality mining data
set given in [Eagle et al. 09], showing voice calls among around 150 people over
time. We consider the weekly call networks, summarizing which pairs of people
communicated during successive weeks.

Assuming initially that no individuals are distinctive in any way, we first fit the
simple three-parameter unstructured model in (5.1). Assuming a homogeneous
population, since F is invariant under all permutations, the mean field dynamics
act over W = {pl | p € [0,1]}. So, as described in Section 5, we have p;1 = g(pz)
for g in (5.2). From the data we can estimate pj via p; in (2.7), the density of
edges present. We have

i1 = (1= @)pi + (1= D) (0 + e(n — 2)p¢) + erry,

where the errors, erry, arise as an average over n(n — 1)/2 independent edge
processes, each of which must take binary values. Thus a Gaussian approximation
to the structure of the errors is reasonable, and the parameters may be fitted
with simple least squares. We note that the mean field approximation involves the
same parameters as the full microscale model. Because the mean field iteration
is scalar, this type of calibration is extremely inexpensive. Once the p; values
have been computed, we solve an overdetermined (K + 1) x 3 linear system. This
approach results in estimates (9, ¢,&) = (0.02170,0.00868,0.18399). In Figure 6,
we show pj. as well as the 5th and 95th percentiles arising from 200 simulations
with the full model, each starting from Ag and using the estimated dynamical
parameters. We see that the calibrated model provides an ensemble of simulations
about the actual data.

To test the accuracy of the approach in a controlled setting, we then simulated
data from the model and attempted to reverse engineer known parameter values.
We generated multiple synthetic data sets with 106 vertices over eight weeks,
with actual parameters (6, €,0) = (0.02170,0.00868, 0.18399). Typically, the least
squares approach produced errors of approximately 20% in all three parameters.

Now let us examine the performance of the model by considering the evolution
of the average Watts—Strogatz clustering coefficient Cj from week to week. For
an Erd6s—Rényi graph, we have C} = p; in expectation. In Figure 7, we see
that the model performs extremely poorly, since the observed values for C}, are
much higher than those achievable under the conditioned Erdés-Rényi mean
field evolution.

One explanation for this poor fit is that the population is not homogeneous,
which motivates us to consider a block random graph model of the type intro-
duced in Section 3 in order to increase the clustering within some subgroup and
thus increase the values for C}, overall while keeping the overall edge density low.
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Figure 6. Evolution of edge density by week from data (crosses), and also the
5th and 95th percentile values (diamonds) achieved via an ensemble of model
simulations, each using the fitted dynamical parameter values, and each starting
from As (color figure available online).

We partitioned the vertices into two sets: one of size n; = 92, and one of size
no = 14. This was done by summing the adjacency matrices into a single simi-
larity matrix and adopting a spectral clustering approach [Strang 08]; using the
Fiedler vector, we split across the greatest jump where both partitions contain
at least 10% of the nodes. In other applications this task might be done a priori
on grounds such as gender, functional role, or responsibility of the individuals,
and of course, other clustering algorithms could be used.

Assuming an identical birth and death dynamic for edges within each vertex
subset and between the subsets, then in the (p,q,r) notation of Section 3, the
mean field dynamic at the (k + 1)th time step becomes

per1 = (1 =@)pr + (1= pr)(6 + € ((n1 — 2)pj +nar})),
Trp1 = (1= &)k + (1= 1) (00 + & ((n1 — V)prri + (n2 — L)grry)),
Qi1 = (L= + (1 — qr)(8g + €4 ((n2 — 2)G; +mi7?)),
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Figure 7. Evolution of C), by week from data (crosses), and also the the 5th and
95th percentile values (diamonds) achieved via an ensemble of model simulations,
each using the fitted dynamical parameter values, and each starting from Ag
(color figure available online).

involving nine parameters. These nine degrees of freedom can be fitted using the
estimates for (pg, qi, rr). We obtain the overall edge density evolution shown in
Figure 8.

Now let us examine the performance of the block model by considering the
evolution of the Watts—Strogatz clustering coefficient C}. In Figure 9, we see
that the model performs far better than the unstructured version. This indicates
that there may well be some hierarchical stratification (such as the one proposed
here on the basis of a priori clustering) among the subjects. It would of course
be of interest to use further network properties in judging the calibration and
model fit, and, where feasible, to use the full microscale-based likelihood.

1. Discussion

The motivation for this work was to develop a framework for modeling and an-
alyzing dynamic connectivity structures. A successful model offers the potential



Grindrod et al.: Bistability through Triadic Closure 419

Edge Density: Stratified
0.13 ‘ ‘

0.12 . 1

0.1 R :

0.1 . i

* X
e

0.09- .

0.08

*
e

0.07 R i

0.06 - 1

0.05 1
X

0.04 1 1 1 1 1 1
8 9 10 11 12 13 14 15

Figure 8. Block model: evolution of edge density by week from data (crosses),
and also the 5th and 95th percentile values (diamonds) achieved via an ensemble
of block model simulations, each using the fitted dynamical parameter values,
and each starting from Ag (color figure available online).

to illustrate the range of possible behaviors and also to allow predictions un-
der various “what if” scenarios, such as spiking information (rumors, marketing,
stimulus) or making direct perturbations (disabling or enhancing specific vertices
or edges).

By introducing the concept of conjugate graphs and developing a mean field
theory, we have opened up the potential to approximate and calibrate the dy-
namics of observed networks. In particular, this can help us to identify when
a network is close to an unstable rest point, where stochastic details will be
important.

We illustrated the ideas on a simple but realistic nonlinear model based on a
small set of parameters that is amenable both to analysis and to calibration. In
this model, new edges are more likely to appear through successive triangulation
(in addition to random births and deaths). This is a natural dynamic that is
likely to enhance communication efficiency and resilience. However, our analysis
showed that given a lack of early stimulus, the networks will remain at a relatively
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Figure 9. Block model: Evolution of C} by week from data (crosses), and also
the 5th and 95th percentile values (diamonds) achieved via an ensemble of block
model simulations, each using the fitted dynamical parameter values, and each
starting from Ag (color figure available online).

sparse state—a sufficiently dense initial state is needed to produce well-clustered
long-time networks. There is, of course, great scope for many other classes of
evolving network mechanisms to be proposed, analyzed, and calibrated using
the ideas and tools developed here.
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