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Digraph Laplacian and the Degree
of Asymmetry

Yanhua Li and Zhi-Li Zhang

Abstract.  In this paper we extend and generalize the standard spectral graph theory
(or random-walk theory) on undirected graphs to digraphs. In particular, we introduce
and define a normalized digraph Laplacian (Diplacian for short) T' for digraphs, and
prove that (1) its Moore-Penrose pseudoinverse is the discrete Green’s function of the
Diplacian matrix as an operator on digraphs, and (2) it is the normalized fundamental
matrix of the Markov chain governing random walks on digraphs. Using these results,
we derive a new formula for computing hitting and commute times in terms of the
Moore—Penrose pseudoinverse of the Diplacian, or equivalently, the singular values and
vectors of the Diplacian.

Furthermore, we show that the Cheeger constant defined in [Chung 05] is intrinsically
a quantity associated with undirected graphs. This motivates us to introduce a metric,
the largest singular value of the skewed Laplacian V = (I' —=T'T)/2, to quantify and
measure the degree of asymmetry in a digraph. Using this measure, we establish several
new results, such as a tighter bound than that in [Chung 05] on the Markov chain
mixing rate, and a bound on the second-smallest singular value of T'.

[. Introduction

Graphs arising from many applications such as web and online social net-
works are directed, where the direction of the links contains crucial information.
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Random walks are frequently used to model certain dynamic processes on di-
rected or undirected graphs, for example, to reveal important network structural
information, such as the importance of nodes using the PageRank algorithm [Brin
and Page 98] and community structures using the spectral clustering algorithm
[Li et al. 12], or to study ways to explore complex networks efficiently.

Random walks on undirected graphs have been extensively studied and are
well understood (see [Lovédsz 93, Li et al. 11]). They are closely related to spec-
tral graph theory [Chung 06], which has produced powerful tools for studying
many important properties of undirected graphs that are of both theoretical and
practical significance. Well-known results include bounds on the Cheeger con-
stant and the mixing rate in terms of the second-smallest eigenvalue of the graph
Laplacian. On the other hand, there are relatively few similar studies on directed
graphs; see, for example, [Chung 05, Zhou et al. 05], where the authors circum-
vent the “directedness” of digraphs by converting them into undirected graphs
through symmetrization. Moreover, some initial attempts [Li and Zhang 10a, Li
and Zhang 12] have been made to extend random-walk theory to directed graphs
with applications in wireless networking.

In this paper we develop a spectral digraph theory. We introduce the no-
tion of the Diplacian, a direct generalization of the graph Laplacian for undi-
rected graphs, denoted by I'. Instead of using the node degrees as in the case
of undirected graphs, the Diplacian is defined using stationary probabilities of
the Markov chain governing random walks on digraphs. Furthermore, instead
of relying on the positive semidefiniteness of the graph Laplacian matrix for
undirected graphs, we establish a key connection between the Diplacian I' and
its Moore-Penrose pseudoinverse [Horn and Johnson 85], denoted by I'*, and
use the properties of this connection to prove several parallel results for random
walks on digraphs. In particular, we show that (1) the Moore—Penrose pseudoin-
verse I'" of the Diplacian is exactly the discrete Green’s function of the Diplacian
matrix T, acting as an operator on digraphs [Chung and Yau 00], and (2) I'*
is the normalized fundamental matriz [Aldous and Fill 99] of the Markov chain
governing random walks on digraphs.

Based on the connection between I'™ and the fundamental matrix, we show
how hitting and commute times can be directly computed in terms of the sin-
gular values and vectors of the Diplacian. This yields a more direct and efficient
way to compute hitting and commute times than existing methods based on the
fundamental matrix. More generally, our results suggest a “spectral digraph the-

)

ory” in which graph properties can be studied using the singular values of the
Diplacian in place of the eigenvalues of the Laplacian. In particular, our theory
of random walks on digraphs subsumes the existing theory of random walks on

undirected graphs as a special case.
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Furthermore, we show that the well-known Cheeger constant—generalized to
digraphs in [Chung 05]—is fundamentally a quantity intrinsic to undirected
graphs, since there are infinitely many digraphs with the same symmetrized
undirected graph. Hence, bounds based on the eigenvalues of the symmetrized
graph Laplacian do not uniquely capture the properties of digraphs. This leads
us to introduce the degree of asymmetry to capture the overall “directedness” of
digraphs, formally defined as follows: we express a Diplacian I in terms of a sym-
metric part L= (L' +T7)/2 and a skew-symmetric part V = (I — I'T) /2, where
L is the symmetrized graph Laplacian for digraphs introduced in [Chung 05], and
V is referred to as the skewed Laplacian for digraphs. The largest singular value
of V, 0max, is referred to as the degree of asymmetry, which provides a quanti-
tative measure of the asymmetry in digraphs. Many key properties of digraphs
can then be bounded by the eigenvalues of £ and the degree of asymmetry. For
instance, by accounting for the asymmetry of digraphs, we are able to obtain a
tighter bound than that in [Chung 05] on the irreversible Markov chain mixing
rate.

2. Preliminaries: Random Walks on Undirected Graphs

We use a triple G = (V, E, A) to denote an undirected and weighted graph on
the node set V = {1,2,...,n}. The n X n nonnegative weight matrix A = [a;;]
is symmetric, and it is defined in such a way that a;; = a;; > 0 if (¢, j) € F, and
a;j = aj; = 0 otherwise. For 1 <i < n, the degree of node i is d; = 23}21 aij.
The volume of G, denoted by vol(G), is defined as the sum of all node degrees,
d=>"",d;, that is, vol(G) = d.

A random walk on G is a Markov chain defined on G with transition probability
matrix P = [p;;|, where p;; = a;;/d;. Let D = diag[d;| be a diagonal matrix of
node degrees. Then P = D~' A. Without loss of generality, we assume that the
undirected graph G is connected, namely, any node can reach any other node
in G. Then it can be shown (see [Aldous and Fill 99]) that the Markov chain
is irreducible, and there exists a unique stationary distribution {¢1, ¢2,..., o, }.
Let ¢ = [¢i]1<i<n be the column vector of the stationary probabilities. Then
¢T P = ¢", where the superscript T represents the vector or matrix transpose.
Furthermore, this Markov chain on G is reversible, namely,

¢Lptj = ¢jpjt for every i7j7 (21)
and

< i=12,...,n (2.2)
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Following [Chung 06], we will use the normalized graph Laplacian instead of
the unnormalized version L = D — A. Given an undirected G, the normalized
graph Laplacian of G, which is also called the normalized Laplacian matrix of
G, is defined as follows:

L£L=DY*D-A)D Y2 =DY3(1 - P)DV2 (2.3)

A key property of the graph Laplacian for an undirected graph is that £ is
symmetric and positive semidefinite [Horn and Johnson 85]. Hence all eigenvalues
of £ are nonnegative real numbers. In particular, for a connected undirected
graph G, £ has rank n — 1 and has exactly one zero eigenvalue as its smallest
eigenvalue. Let A} =0 < Ay <--- <\, be the n eigenvalues of £ arranged in
increasing order, and let y;, 1 <14 < n, be the corresponding eigenvectors of unit
norm. In particular, one can show that the column eigenvector yu; of £ associated
with the eigenvalue A\; = 0 is given by

= ¢l/? = [\/QZ] - [*{g] . (2.4)

Define A=diag[\,...,\,], the diagonal matrix formed by the eigenvalues,

and U = [p1, ..., tn], an orthonormal matrix formed by the eigenvectors of L,
where UUT =UTU = 1. It is easy to see that the graph Laplacian £ admits
an eigendecomposition [Horn and Johnson 85, namely £ = UAUT. Using the
eigenvalues and eigenvectors of £, we can compute the hitting times and commute
times using the following formulas [Lovész 93]:

d /J%;j Wokei fke
Hy =S — (2 Bk 2.5
; ZM(C@. i (2:5)

k>1

and

2
d ( pri i j

cl-j:z< b i>, (26)
o1 Ak er d]

where p; is the jth entry of the column vector uy,.

3. Random Walk Theory on Digraphs

In this section, we develop the random walk theory for digraphs. In particular,
we generalize the graph Laplacian defined for undirected graphs, and introduce
the Diplacian matrix. We prove that the Moore—Penrose pseudoinverse of this
Diplacian is exactly equal to a normalized version of the fundamental matrix of
the Markov chain governing random walks on digraphs and show that it is also
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the Green’s function of the Diplacian. Using these connections, we illustrate how
hitting and commute times of random walks on digraphs can be directly com-
puted using the singular values and vectors of the Diplacian. We also show that
when the underlying graph is undirected, our results reduce to the well-known
results for undirected graphs. Hence, our theory includes undirected graphs as a
special case.

3.1. Random Walks on Directed Graphs and the Fundamental Matrix

As alluded to earlier, random walks can be defined not only on undirected graphs,
but also on digraphs. Let G = (V, E, A) be a weighted digraph defined on the
vertex set V' ={1,2,...,n}, where A is a nonnegative but generally asymmetric
weight matrix such that a;; > 0 if and only if the directed edge (or arc) (4,7)
belongs to E. As before, we will refer to A simply as the adjacency matrix of
G. For i=1,2,...,n, we define the out-degree of vertex i, dj = > i—1 aij, and
the in-degree of vertex i, d; = >7_, a;;. In general, d* # d~. However, we have
d=31 df =371 di =31, Y aij. As before, we refer to d as the volume
of the directed graph G, that is, vol(G) = d. For conciseness, in the following,
unless otherwise stated, we refer to the out-degree of a vertex simply as its degree,
and use d; for d; .

Let D = diag[d;] be a diagonal matrix of the vertex out-degrees, and define
P=D"1A. Then P = [p;;] is the transition probability matrix of the Markov
chain associated with random walks on G, where at each vertex i, a random walk
has probability p;; = a;;/d; of transiting from vertex ¢ to vertex j if (i,5) € E.
We assume that G is strongly connected, namely, there is a directed path from
each vertex ¢ to every other vertex j. Then the Markov chain P is irreducible, and
has a unique stationary probability distribution {¢;}, where ¢; > 0, 1 <1i < n,
namely, ¢’ P = ¢!, where ¢ = [¢1,...,¢,]" is the column vector of stationary
probabilities. In contrast to the case of undirected graphs, the Markov chain
associated with random walks on directed graphs is generally irreversible, and
(2.1) and (2.2) do not hold on undirected graphs.

For random walks on directed graphs, quantities such as hitting times and
commute times can be defined exactly as in the case of undirected graphs. How-
ever, since the normalized Laplacian matrix L is so far defined only for undirected
graphs, we cannot use the relations (2.5) and (2.6) to compute hitting times and
commute times for random walks on directed graphs. On the other hand, using
results from standard Markov chain theory, we can express the hitting times and
commute times in terms of the fundamental matrix. In [Aldous and Fill 99], the
authors define the fundamental matrix Z = [z;;] for an irreducible Markov chain
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with transition probability matrix P:
t=0

where pg-) is the (4, 7)th entry in the t-step transition probability matrix P! =
P .. P (t-fold product).

Let ® = diag[¢;] be the diagonal matrix containing the stationary probabilities
¢; on the diagonal and let J = [J;;] be the matrix of all 1’s, that is, J;; = 1 for

1<14,7 <n. We can express Z alternatively as the sum of an infinite matrix

series:
oo oo
Z=>Y (P'=J®)=> (P'-1¢"), (3.2)
t=0 t=0
where 1 = [1,...,1]7 is the column vector of all 1’s. Hence we have J =117
and 17® = ¢,

While the physical meaning of the fundamental matrix Z may not be obvious
from its definition (3.1) or (3.2), it plays a crucial role in computing various
quantities related to random walks, or more generally, various stopping-time
properties of Markov chains [Aldous and Fill 99]. For instance, the hitting times
and commute times of random walks on a directed graph can be expressed in
terms of Z as follows (see [Aldous and Fill 99]):

Hij = % (3.3)
j
and
Cy =222 =0 70 2 34

In (3.1) and (3.2), the fundamental matrix Z is defined as an infinite sum.
We show that Z in fact satisfies a simple relation (3.5), thus can be computed
directly using the standard matrix inverse.

Theorem 3.1. Let P be the transition probability matriz for an irreducible Markov
chain. Then its corresponding fundamental matriz Z as defined in (3.1) satisfies
the following relation:

Z4+Jbo=(1—-P+Jd) " (3.5)

Proof. Note that J® = 1¢” . From ¢* P = ¢’ and P1 = 1, we have J®P = J&® and
PJ® = J®. Using these two relations, it is easy to prove the following equation
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by induction:
P" —J® = (P —J®)™, for every integer m > 0. (3.6)
Substituting this into (3.2) yields Theorem 3.1. O

Since undirected graphs are a special case of directed graphs, (3.3) and (3.4)
provide an alternative way to compute hitting times and commute times for
random walks on connected undirected graphs. In this paper we will show that
(2.5) and (2.6) are in fact equivalent to (3.3) and (3.4).

3.2.  Diplacian and Green’s Function for Digraphs

We now generalize the existing spectral graph theory defined for undirected
graphs to digraphs by introducing the Diplacian—an appropriately generalized
Laplacian matrix—for strongly connected diagraphs. Let G = (V, E, A) be a
strongly connected weighted digraph defined on the vertex set V= {1,2,...,n},
where in general, the weight (or adjacency) matrix A is asymmetric. A major
technical difficulty in dealing with digraphs is that if one naively extends the
normalized Laplacian matrix £ = D~'/2(D — A)D~'/? or its unnormalized ver-
sion L = D — A defined for undirected graphs to digraphs, then L is in general
asymmetric; thus the nice properties such as positive semidefiniteness of £ no
longer hold. Past attempts at generalizing spectral graph theory to digraphs
have simply symmetrized £, for example by introducing a symmetric matrix
L=1—(®/2Pd"1/2 4 & 1/2PT®!/2)/2 [Chung 05, Zhou et al. 05]. Unfortu-
nately, as will be shown in Section 4, such a symmetrized £ does not directly
capture the unique characteristic of the random walk on the digraph as defined
earlier, since a set of diagraphs can have the same L.

For a strongly connected digraph G, let ®'/2 = diag[v/¢;]. We define the nor-
malized digraph Laplacian matrix! (Diplacian for short) I' = [I;;] for the graph
G as follows.

Definition 3.2. The Diplacian I is defined as

=Y —P)® /2 (3.7)

L An unnormalized digraph Laplacian is defined as L = ®(I — P) in [Boley et al. 11].
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Namely, for 1 <1i,j5 < n,

1—pi; ifi=yj,
Ty =< —o1pijo; "% it (i,)) € B, (3.8)
0 otherwise.

Treating this Diplacian matrix I' as an asymmetric operator on a digraph
G, we now define the discrete Green’s function G without boundary conditions
for digraphs in exactly the same manner as for undirected graphs [Chung and
Yau 00], namely, G is a matrix with its entries indexed by vertices ¢ and j that
satisfies the following conditions:

and expressed in the matrix form
G = I — ¢'/2¢1/2" (3.10)

In the following we will show that G is precisely I'", the pseudoinverse of the
Laplacian operator I" on the digraph G. Furthermore, we will relate I'" directly
to the fundamental matrix Z of the Markov chain associated with random walks
on the digraph G. Before we establish the main result of this paper, we first
introduce a bit more notation and then prove the following useful lemma.

Llemma 3.3. Define Z = ®/2Z0-1/2 as the normalized fundamental matriz and
J =02 Jpl/2 = ¢>1/2¢>1/2T. The following relations regarding Z and J hold:

(i) J =J%
(ll) jF = Fj = jZ = Zj = 0n><n7
(iii) To!/2 = 2¢!/2 =0, ¢!/2' T =¢'/2" 2 =0T,

Proof. These relations can be established using the facts that J =117, 17® =
ot ot T =11 0] =17, JoJ = J,¢' (I — P)=0", (I - P)1=0,¢" Z =07,
and Z1 = 0. The last four equalities imply that the matrices I — P and Z have
the same left and right eigenvectors, ¢ and 1, corresponding to the eigenvalue 0.

|

We are now in a position to prove the main theorem of the paper, which
states that the Green’s function for the Diplacian is exactly its Moore—Penrose
pseudoinverse and that it is equal to the normalized fundamental matrix, namely
G=It=2.



Li and Zhang: Digraph Laplacian and the Degree of Asymmetry 389

Theorem 3.4. (Diplacian matrix and Green’s function for digraphs.) Let G = (V,E,A) be a
strongly connected digraph with the normalized fundamental matriz Z as defined
in Lemma 3.3, and the Diplacian matriz T as defined in (3.7). Then Z =T
is the pseudoinverse of the Diplacian matriz I'. Furthermore, Z is the discrete
Green’s function for ', namely,

Z0 =1 - V2]l = [ — ¢/2412" (3.11)
where J is the matriz of all 1’s and ¢'/* = [(b}/?, cey ,17,/2]T is a column vector.

Proof. From equation (3.5) in Theorem 3.1, we have
Z+gJ=0T+J)". (3.12)

Multiplying (3.12) on the right by I + 7, and using Lemma 3.3, it is easy to see
that

2l =1-J7, (3.13)

which establishes that Z is the Green’s function of the Diplacian I'. Similarly, by
multiplying (3.12) on the left by I' + 7, we can likewise prove that 'Z =1 — 7.
Hence ZI' =T'Z = I — J is a real symmetric matrix, which implies (I'Z)? =
I'Z and (2T = ZT. Furthermore, since J Z = 0, equation (3.13) yields ZI'Z =
Z. Similarly, since 17 = ®'/2(I — P)J®'/? = 0, equation (3.13) yields TZT" =T
This establishes that Z satisfies the four conditions of the matrix pseudoinverse.
Hence Z is also the Moore-Penrose pseudoinverse of I'. Therefore, G = Z =T'".
O

3.3. Computing Hitting and Commute Times for Digraphs Using the Diplacian

Using the relationship between the Diplacian T', its pseudoinverse I't, and the
normalized fundamental matrix Z, we can now express the hitting times and
commute times of random walks on digraphs in terms of I'*, or alternatively in
terms of the singular values and singular vectors of the Diplacian matrix I.

From Z = & 1/2Z3!/?2 = o~1/2T+®'/2 and using (3.3) and (3.4), we can com-
pute the hitting times and commute times for random walks on digraphs directly
in terms of the entries of I't.

Theorem 3.5. (Computing hitting and commute times using ")) The hitting times and commute
times of random walks on strongly connected digraphs can be computed using the
pseudoinverse of the Diplacian matriz T't as follows:
+ +
Uy 15

Hy = -2
Y% ooy

(3.14)
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and
. ' s
C,j]':H,j'ﬁLij:l‘f’J* Y - S y
i b \[Pid;  \Did,
where 1":; is the (i,7)th entry of T, and ¢; is the stationary probability of ver-
tex i.

(3.15)

For undirected graphs, we show that (3.14) and (3.15) reduce to (2.5) and (2.6).
This can be seen from the fact that for undirected graphs, I' = £ is symmetric
and positive semidefinite. Hence the singular value decomposition of L is the
same as the eigendecomposition of L.

For digraphs we can express Fjj directly in terms of the singular values and
left /right singular vectors of the generally asymmetric Diplacian matrix T'. Let
0i, u;, and v; be the ith singular value and the corresponding left and right
singular vectors of I' arranged in increasing order, where ||u;|l2 = 1 and [Jv;|]2 = 1,
i=1,2,...,n. In particular, 0 = 0y < 09 < --- < 0,. Hence I' = ULV, where
Y =diag[o;], U = [u1,...,u,], V = [v1,...,v,], UUL =1, VVT = I, and T'* =
VETUT, where %% = diag[o;]. Therefore, T/, = 37, | 7-vyup;. Plugging these
equations into (3.14) and (3.15), we can express the hitting times and commute
times for random walks in a digraph in terms of the singular values and left and
right singular vectors of the Diplacian matrix I" as follows:

1 [ opjup;  vpiug;
o= ST (V% Ukt (3.16)
’ ,; o ( ; \/¢i¢j>

and
1 [ opjugj | UkiUki  UkiUg; VU
Cj=) —|——+ - L ) (3.17)
,; o ( oy bi Void; oo

4. Degree of Asymmetry, Generalized Cheeger Constant, and Bounds on the
Mixing Rate

In this section we explore the relation between the Diplacian I" and the sym-
metrized Laplacian £. We first show that the symmetrized Laplacian matrix
L and the Cheeger constant h(G) as defined in [Chung 05] are in a sense pri-
marily determined by an undirected graph associated with random walks with
transition probability matrix P = (P + ®~! PT ®)/2 and thus cannot capture the
unique characteristics of each individual digraph. As a result, we investigate two
questions: (1) how can the “degree of asymmetry” of a digraph be quantified and
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measured? and (2) how does the degree of asymmetry affect crucial properties of
a digraph such as the mixing rate? In the following, we propose one metric—the
largest singular value of V = (I' — I'7)/2—as a measure of the degree of asym-
metry in a digraph. We show that by explicitly accounting for the degree of
asymmetry, we can obtain generally tighter bounds on quantities (for example,
mixing rate) associated with random walks (or Markov chains) on digraphs.

4.1.  The Degree of Asymmetry and Relations to the Symmetrized Laplacian

In [Chung 05], the symmetrized Laplacian matrix for digraphs, £ = (F + FT) /2,
is introduced. It generalizes the Cheeger constant to digraphs and bounds it in
terms of the second smallest eigenvalue of £. In the following we show that the
symmetrized Laplacian £ and the Cheeger constant introduced by Chung are in
fact two quantities intrinsic to undirected graphs.

Theorem 4.1. Given a digraph G with transition probability matriz P, there exist in-
finite digraphs that have the same stationary distribution matriz ® and the same
symmetrized transition probability matriz P = (P + ® ' PT®)/2. As a result, all
these graphs have the same symmetrized Laplacian matriz and Cheeger constant.

Proof. We prove the theorem by construction. Given a digraph G = (V, E, A) with
transition probability matrix P, all the digraphs G’ with transition probability
P’ given by

P(a)=aP +(1-a)®'PT® (4.1)

form an infinite digraph set, denoted by G¢, where a € [0, 1].

It is easy to check that every P'(«) defined in (4.1) is nonnegative and satisfies
¢ P'(a) = ¢* and P'(a)1l = 1. Thus P’'(a) represents a transition probability
matrix of a random walk with stationary distribution ¢.

For every G’ € Gg, the Diplacian matrix is given by IV = ®'/2(I — P")®~1/2,
and the symmetrized Laplacian is determined uniquely by P, since we have

L= ¥ = 3!/? (I — IM);PT(D> 12 =@V2(1 - P)® V2. (4.2)
In particular, when o = %, P (%) = P represents the undirected graph G.

For every S C N={1,...,n}, define an n-element vector fs as fs(i)=
1/F4(S), i € S, and fs(i) = —1/F4(S), i € S, where F,(S):=>, ¢ ¢; and
Fy(8) := 3,5 ¢ are the circulation functions [Chung 05]. Define zg = ®~1/2 fg.
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Then we have

w§Tag = fEO(I = P)fs = Y ¢ipij = Fy(09),
i€S,j€8

1 _
eiTeg = 2kl ag = §($£F$5 + 25T ag) = 2§ Las. (4.3)

Hence, we know that for all the graphs G’ € Gg, the circulation functions Fy(.5),
F;(S), and F;(0S) depend only on the partition SV S = V. Therefore, every
graph G’ € G¢ has the same Cheeger constant, that is,

RS
s min{F,(9), F,(S)} h(G") = h(G). (4.4)

O

To capture the “degree of asymmetry” in a digraph, we express I' as a sum of
a symmetric part and a skew-symmetric part:

r=C+V, (4.5)

where we define the skew-symmetric part V = (I' — I'7) /2 as the skewed Lapla-
cian matrix of the digraph. Note that I'7 = £ + VT = £ — V. Hence V captures
the difference between I' and its transpose, which induces a reserved Markov
chain or random walk. When I is symmetric, then V =0.Let 0 =01 < g9 <--- <
o, denote the singular values in increasing order of I'. Likewise, let 0 = A\; < Ay <
..+ < A, denote the eigenvalues of £, and 0 = §; < 6y < --- < 8, = dpax the sin-
gular values of V. The following relations hold among them (see [Bhatia 97]):

S\/IjSO’iSXi—F(Sn, i:1a27"'an' (46)

From equation (4.6), we see that o; — A\; < 6,,4 = 1,...,n. When the graph is
undirected, we have I' = £. Thus 6, = 0 and 0; = \;, i = 1,...,n. We therefore
propose the largest singular value of V, §,, = dyax, as a measure of the degree
of asymmetry in the underlying digraph. Note that ¢, = || V]|, where || - || is the
operator bound norm of a matrix:

IVl = sup [Valo = sup [(y,Tz) —(y,I"x)|
flofl=1 lyll=ll=ll=1
= sup [(y,T'z) = (z,Ty)|
lyl=llzl=1
(see [Bhatia 97], pp. 6, 91). On the other hand, (x,Tx) — (z,I'Tz) = 0 for every z.

In the following, we relate and bound J,—the degree of asymmetry—to two
other important quantities associated with the Markov chain on a digraph: the
digraph gap g(G) defined below and the second-largest singular value of the
transmission probability matrix P.
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Given a digraph G, the circulation function Fy (-), where Fy, (i, j) = ¢;p;;, obeys
the flow conservation law at every node of the digraph: 3, Fy (ki) = >_; F (4, )
for all . Now define the digraph gap

9(G) = max Y[ (F (i) = Fo (i)
i€S jel

which quantifies the maximum difference between two bipartite subgraphs S
and S among all partitions. We have the following theorem relating the degree
of asymmetry with g(G) and o, 1 (P), the second-largest singular value of P =
ol/2pp-1/2,

Theorem 4.2. (Bounds on the degree of asymmetry.) We have

29(G) < 6, < A2 (PTP) = 0,1 (P), (4.7)

n

where P = ®1/2pp-1/2,

Proof. For a subset of vertices S € N={1,...,n}, define two n-element vectors yg
and zg as

(0 (b}/Q if i € S or g(i,9) > 0,
1) =
vs —gi)?/ 2 otherwise,

1

and

- o//*  ifieSorg(i,S) <0,
zg(i) =
> fr,zS} /2 otherwise,

where g(i, S) = 3_;c5(pijdi — pji¢;). Then we have [lys|| =1, ||zs]| = 1, and the
lower bound of ¢, is obtained as

29(GQ) = mgxy?st < 0. (4.8)
Moreover, we have the following equation:
T L r T L or 2
v V:§(P P+PP )—1(7’ +P)-. (4.9)
It is easy to check that ¢'/2 is the left and right eigenvector of V corresponding

to the smallest eigenvalue 0 and the eigenvector of P corresponding to the largest
eigenvalue 1. We also know that (P? + P)? is positive semidefinite. Therefore,
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for every n x 1 column vector = L ¢1/2, we have
1
62 = max ' VI'Vz < = max 27 (PTP +PPT)z < max 2’ PTPx
xlpl/? xlol/? zlgl/?
=\ (PTP), (4.10)
S5, <A (PTP) =0, 1 (P).

Now (4.8) and (4.10) yield Theorem 4.2. O

Theorem 4.3 below relates and bounds the second-smallest singular value oy
of T in terms of the degree of asymmetry J,, the Cheeger constant, and the
second-smallest eigenvalue Ay of L.

Theorem 4.3. (Relations among o9, Ao, Jy,, and the Cheeger constant) Given a strongly
connected graph G = (V, E, A) and its Laplacian matriz T' = ®/%(I — P)®~1/2
we have the bounds for the second-smallest singular value of T' as

h? O
(&) <oy < |14 =] 2hr(G). (4.11)
2 A2

When the graph is undirected, we have h?(G)/2 < 09 = Ay < 2h(G), which is
exactly the same as the bounds obtained in [Chung 05].

Proof. (i) Proof of the upper bound: Let o9 be the second-smallest (or the smallest
nonzero) singular value of the Diplacian matrix I'; and denote the singular decom-
position of the Moore-Penrose pseudoinverse of the Diplacian by I't = VE+UT,
where each diagonal entry of £ is 0 = 1/0; if 0; # 0, and o = 0 otherwise.
Then the largest singular value of I'" is max; O';L = 1/05.

Let S denote a subset of vertices S C V, and let S denote the complement of
S, that is, S = V — S. Then we define

To = (1)1/2f57 Yo = (1)1/2(1_P)f5 = Fva

where f: V — R is defined as follows:

1
—— ifies,

fs(@) = Fd’(ﬁ) o (4.12)
_FO(S') iftie s,

with Fy(S) = ,cq ¢ and Fy(S) =>",.5 ¢i- Then for each i (1 <i<n), we
have (v;, o) = Uf (u;, o), which indicates that (v;, o) and (u;, yo) have the same
sign.
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Then we have

n -1
L (Z“ (vi, g)o +<u“y0>> _wVUly (4.13)

max; o; — \ Yoy (vi, o) (ui, yo) o{ Ty,

The denominator of (4.13) can be rewritten as

09 =

i Ty = fL@VTT@Y2(I - P)fs = fE®Z(I - P)fs = fEOfs
= Fy(S)F,(S) = 0, (4.14)

where Z is the fundamental matrix. The third equality holds because we have
Z(I — P)=1— J® by Theorem 3.1, and fs is orthogonal to ¢, that is, J®fg =
" fs =0, where J is a matrix of all 1’s. Thus we have (I — J®)fs = fg —
J®fs = fg. From (4.13) and (4.14), we have

o xOTVUTy9 _ 2EVUTy, . xtyo o oFVUTy, fs (I - )j
T (S)F6(5) oy Fs(S)Fu(S) 4 Y0 Fy(S)F,(5)
71777
<MYV 9@y = ¢y - 20(G), (4.15)
Zo Yo

where h(G) is the Cheeger constant of the digraph G = (V, E, A).

Now, we are in a position to bound

AV gy 0

Cy =
T
Zy Yo A2

Let R =VUT. Since 2l Tz = I TT 2, we can rewrite ¢, as
olZo 0 ) 0

o — Ty Ryo T TRz T TvevTa,
0= "7T - T - T p
) Yo x5 T x5 Lo

where both RI" and £ are symmetric positive semidefinite matrices. Denote the
eigendecomposition of £ by £ = WAWT = CTC, where C = AY?2WT, and de-
fine zy = Cxy. Then we have z; CT(C+) =al (I -J)=2a], with =y L ¢'/?
and J = ¢1/2¢1/2 . As a result, we have

2 To+T RTC* 2 2 Tz

cy = = . 4.16
0 ZgZQ ZgZO ( )

Since T = O+ RTC* is symmetric, it has real eigenvalues. By substituting z =
Cxz in Tz = Az, we prove that T and L£* Rl have the same eigenvalues:
Tz—Xe=L"RlTz — \x =0, ifo_qS%,

Tz—Xz=LYRU(I - J)z—AI —J)x=L"RT0— X0 =0, if z = ag?,
(4.17)
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where a € R. From (4.17) and (4.16), we have

T
T _ _ _
¢p < max ZZT ZZ =\ (T) =M\ (‘LZ7L RP) =\ (RF‘CJr) <o, (RF‘C+)
=0,(TL) =0, ((L+V)L) < 1+§—”, (4.18)
2

where the last two inequalities hold because of [Seber 07, Theorem 6.72(b)(iii),
p. 118, and Theorem 6.80, p. 120].
From (4.15) and (4.18), we have

oy < (1 + (En) - 2h(G).
A2
In particular, when the graph is undirected, we have £ =T and 1+ 4§, / Ao = 1.
Thus the above upper bound of ¢y reduces to Ay < 2h(G), which subsumes the
results obtained in [Chung 05].

(ii) Proof of lower bound: It is proven in [Chung 05, Chung 06] that the
second-smallest eigenvalue \o of the symmetrized Laplacian matrix £ can be
bounded by the Cheeger constant as Ay > h?(G)/2. Since for any directed graph
G = (V,E,A), we have 0; > )\; (1 <i<mn), based on [Bernstein 05, Theorem
5.11.25, p. 355], we have g9 > Ay > h%(G)/2. O

Finally, we introduce a generalized Cheeger constant, iL(G), defined as

ol _ L GAITT
lzsll — esiotr  (zhas)!/?

=

(G) = Irgin (4.19)
where for every S € N={1,2,...,n}, x5 = ® /2 fs is as defined above. We see
that the generalized Cheeger constant thus defined minimizes the 2-norm of the
circulations across bipartite subgraphs S and S, whereas h(G) minimizes the

l-norm (the sum of absolute values) of the circulations across S and S. Clearly,
g9 S h(G)

4.2.  Bounding the Mixing Rate of Random Walks on Digraphs

In this section, using mixing rating bounds as an example, we show that by
considering the degree of asymmetry, we obtain a better bound for the mixing
rate of random walks on digraphs.

The mixing rate is a measure of how fast a random walk converges to its
stationary distribution. Many papers have studied the problem of bounding the
mixing rate of random walks (or reversible Markov chains) on undirected graphs,
such as [Boyd et al. 05, Jerrum and Son 02].
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Relatively few papers [Chung 05, Fill 91, Mihail 89] have addressed the prob-
lem of bounding the mixing rate of Markov chains (or random walks) on digraphs.
In bounding the convergence rate from an initial distribution to the stationary
distribution of a Markov chain with the transition probability matrix P, the
x-square distance [Chung 05, Fill 91] is commonly used, which is defined as
follows:

1/2

X(t) = max | (P,5) = ¢;)° . (4.20)

i€V (Q) e o;

Since not all random walks on strongly connected digraphs are convergent,
Chung defines a lazy random walk on G with transition probability matrix P, =
(I + P)/2 and derives the following bound on the mixing rate of this lazy random
walk using the x-square distance [Chung 05], where a bound using a closely
related total variance distance is also derived. Define M = ®/2P; & 1/2. Then
x(t)? < &' max; ¢; ', where

I L0 70 T7 S 117 D )
fLotiz fTf frovz UfIP T 2

From Theorem 4.1, we know that this bound leads to the same upper bound
for all digraphs with the same £. By accounting for the degree of asymmetry,
we obtain a generally tighter upper bound on || M f||?/| f||* as follows, which in
turn yields a tighter bound on x(t).

(4.21)

Theorem 4.4.  For an irreducible Markov chain P and a lazy random walk P, =
(I + P)/2, we have

| M [ Ao 1—oa2 ((P)
£ = max <1-22 - i/ 4.22
B ER 1 (422

3 D 2
<3 X (@maP)+o) (4.23)
4 2
where
P+PT

M=a2p, &% and P= I-L.

2

Proof. We first note that MT M can be rewritten as

MTM = I—i -t —§I—F+FT+PTP
N 2 2) 4 4 4

; _ pT
:<1_£>_I7’7’,

2 4
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bidirectional edges
directional edges N

Figure 1. Knoke’s data [Knoke and Kuklinski 82, Hanneman and M. Riddle 05]
on information exchanges among organizations operating in the social welfare
field. The degree of asymmetry of this digraph is 0.3096.

Since fl¢'/? is the left and right singular vectors of I corresponding to the
largest singular value 1 and is also the eigenvector of £ corresponding to the
smallest eigenvalue 0, by applying the min—max theorem [Bhatia 97, Theorem
6.58(e), p. 108], we prove (4.22). Then o2 _,(P) in (4.22) can be further bounded
as follows:

o2 ((P)< 0?2 [((P+V)< (0, 1(P)+6,)7, (4.24)
which yields (4.23). d

We remark that since 0,1 (P) < 0,,(P) =1, 1 —02_,(P) > 0 holds, thus the
bound in (4.22) is tighter than Chung’s bound in (4.21). In (4.23), we further
bound o,_1(P) in terms of the degree of asymmetry and the singular value of
P. In particular, when P is symmetric, the underlying graph is undirected and
the bound in (4.23) boils down to (4.22).

43.  Numerical Analysis

In this section, we study a real directed network in terms of its degree of asym-
metry 6, and the mixing rate bound. Figure 1 presents the information flow
network with ten formal organizations concerned with social welfare issues in
one Midwestern American city, where the data were collected by Knoke and
Kuklinski [Knoke and Kuklinski 82, Hanneman and M. Riddle 05].
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o 1
>
©
€
€
o
£ 05
©
©
o
o
[a]
O0 1

0.5
Degree of directionality (o)

Figure 2. Degree of asymmetry.

It is easy check that the Knoke information exchange digraph is strongly con-
nected; that is, every node can reach every other node in the graph. It has degree
of asymmetry 4, = 0.3096. Using (4.1), we construct a set of new digraphs with
« ranging from 0 to 1. As we can see from Figure 2, the new graph G(«) becomes
more symmetric with smaller §,,, when the parameter o gets closer to 1/2. On
the other hand, when |o — %| is larger, or equivalently « is closer to 0 or 1, the
graph becomes more asymmetric, with larger 9, .

Moreover, as we change a, we compute various mixing rate bounds on ¢, such
as our bounds (4.22) and (4.23), and the bound (4.21) obtained in [Chung 05].
Figure 3 shows the comparisons between mixing rate bounds over the degree of
asymmetry in the Knoke information exchange digraph, where (4.21) provides an
invariant bound for all digraphs constructed by (4.1), because the construction
preserves the stationary distribution and the symmetrized Laplacian matrix L.
On the other hand, (4.22) and (4.23) bound the random-walk mixing rates on

(()o) T —— — =
CONN PR
5 0.6 2 ‘
@ | Ay 1—o0p i (P)
1- 22

2055 2 !
3 Ay 1= (0n_1(P)+6n)
° N 1
8 0.5/
o

0-4% 0.1 0.2 0.3

Degree of asymmetry (5n)

Figure 3. Comparing mixing rate bounds.
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those digraphs more precisely, where digraphs that are more symmetric with
lower §,, have lower mixing rate bounds.
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