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Model Selection for Social
Networks Using Graphlets
Jeannette Janssen, Matt Hurshman, and Nauzer Kalyaniwalla

Abstract. Several network models have been proposed to explain the link structure
observed in online social networks. This paper addresses the problem of choosing
the model that best fits a given real-world network. We implement a model-selection
method based on unsupervised learning. An alternating decision tree is trained using
synthetic graphs generated according to each of the models under consideration. We use
a broad array of features, with the aim of representing different structural aspects of the
network. Features include the frequency counts of small subgraphs (graphlets) as well
as features capturing the degree distribution and small-world property. Our method
correctly classifies synthetic graphs, and is robust under perturbations of the graphs.
We show that the graphlet counts alone are sufficient in separating the training data,
indicating that graphlet counts are a good way of capturing network structure. We
tested our approach on four Facebook graphs from various American universities. The
models that best fit these data are those that are based on the principle of preferential
attachment.

1. Introduction

Recent experimental studies of various types of online social networks have re-
vealed many distinguishing features of the link structure of such networks. Exam-
ples are recent studies of online social networks such as MySpace and Facebook

C© Taylor & Francis Group, LLC
338 ISSN: 1542-7951 print



Janssen et al.: Model Selection for Social Networks Using Graphlets 339

in [Ahn et al. 07, Kumar et al. 06, McGlohon et al. 11, Nazir et al. 08, Traud
et al. 11], but also studies of social networks associated with other social me-
dia such as YouTube and Flickr [Cheng et al. 08, Leskovec et al. 05a, Mislove
et al. 07]. The studies show that social networks share many characteristics of
other complex networks, such as a power-law degree distribution, high clustering
coefficients, and small hop distances between individuals.

A number of graph models have been developed to explain the observed link
structure of social networks. Notable recent models that have been proposed
specifically to model social networks can be found in [Bonato et al. 10, Bonato
et al. 09, Kumar et al. 06, Lattanzi and Sivakumar 09, Leskovec et al. 05a]. Most
models can successfully replicate some of the observed features of the networks
and provide a mechanism for link formation that is based on plausible principles.
As the number of proposed models increases, the question of model selection
becomes more important. Our paper addresses this question. The goal of this
work is to determine, given a set of models, which of the models is the most
likely to have generated a given real online social network.

The best model obviously is the one that generates graphs that are most
similar in structure to the observed network. However, no consensus exists on
how to determine structural similarity of graphs. The graph features that are
replicated by proposed models most often are of a global nature: they char-
acterize the network as a whole. Degree distribution, clustering coefficient,
and average hop distance are all global features. Our model-selection method
complements the global features with local features, which are features de-
rived from the immediate neighborhood of a vertex. A similar collection of
features is used in the work [Bordino et al. 08], which uses clustering algo-
rithms to determine whether graphs from similar real networks get clustered
together.

To characterize the local structure, we will use counts of small subgraphs,
also called graphlets. Recent work on graph similarity has incorporated graphlet
counts as a method of comparing networks, as in [Bordino et al. 08, Kondor et
al. 09, Shervashidze 09]. Graphlets have also been used to characterize biological
networks; see [Milo et al. 02, Pržulj 07]. To test our hypothesis that graphlet
counts characterize the structure of a network, we developed three versions of
our model-selection method: one based only on global features, one based only
on graphlet counts, and a third one based on all features together. We found that
the method based on graphlet counts alone performs as well as the full feature
set, thus confirming our hypothesis. Our model also supports the conclusions of
[Bordino et al. 08, Middendorf et al. 05] that graphlet counts are an efficient
way of characterizing networks. Though it is not immediately obvious why this
should be so, the most likely explanation is that different models generate vastly
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different concentrations of small subgraphs even when the models share similar
global properties.

Our model-selection method is based on machine learning. More precisely, the
model-selection tool is a multiclass classifier, based on an alternating decision
tree. This classifier is trained to distinguish synthetic graphs generated according
to six different models. The parameters of the models are chosen randomly, but
such that the synthetic graphs will have size and density approximately equal to
the network data. Our model-selection method is based on the model validation
performed in [Middendorf et al. 05] for protein–protein interaction networks. Our
work is different in several ways: (i) the social networks we consider are much
larger and denser than the PPI networks, (ii) we use a different type of decision
tree, and (iii) we consider a different set of models. We also test the robustness
of our classifier: to this end, we generate graphs according to one of the models,
perturb some of its edges, and evaluate the performance of the classifier on the
perturbed graph. Our results show that our classification method is robust up
to a perturbation of 5%–10% of the edges.

We apply our classification method to four social networks obtained from Face-
book. The vertices correspond to users at four different American universities.
Two vertices are connected if they are Facebook “friends.” The data were ob-
tained from Mason Porter’s Facebook100 data set, first presented in [Traud et
al. 11].1 The graphs have around 7000 vertices, and average degree ranging from
68 to 89. Because of the different average degrees, we generated different train-
ing sets and built a different classifier for each of the four data sets. Our results
show a clear preference for models that are based on preferential attachment. We
complement the results of our classifier with a close analysis of the feature-value
profiles for each of the training sets, and a comparison with the feature values
of the training data, which show a more nuanced picture.

We have selected our six models such that they represent the most prevalent
principles that underlie graph models for complex networks. Of each type of
model under consideration, many variations exist in the literature. Such vari-
ations are sometimes conceived with the aim of modeling a particular class of
networks, or to obtain a particular graph-theoretic property. We note that there
is always a trade-off between goodness of fit and complexity of the model. For
this study, we have consciously chosen to keep the models as simple as possible,
while still incorporating enough variability so that each training set contains
graphs generated according to the same model with a range of different param-
eters. Each model has two or three tunable parameters. The models we consider

1 Available online at www.insna.org.
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are based on radically different generational principles. Thus, in finding the best
fit of our data to this set of models, we aim to find the principles that drive link
formation in online social networks.

An important ingredient of many models for complex networks is the principle
of preferential attachment (PA), first proposed for complex networks in [Barabási
and Albert 99]. Under this principle, vertices that already have high degree are
more likely to receive an edge from any new vertices that join the network. Models
based on the PA principle generally produce graphs with a power-law degree
distribution. Variations of the preferential attachment model from [Barabási and
Albert 99] have been proposed and studied by others; see [Bonato 08, Chung and
Lu 04] for a survey. We use a PA model proposed in [Aiello et al. 02], where the
attachment strength, and thus the exponent of the power law, can be tuned
through the inclusion of an additional parameter.

A second principle that has been proposed to explain the specific struc-
ture of complex networks is copy with error. In a copy or duplication model,
a new vertex copies some or all of its neighbors from the neighborhood of
an existing vertex. Copy models have been proposed for the web graph in
[Kleinberg et al. 99, Kumar et al. 00], for citation graphs in [Krapivsky and
Redner 08], and for biological networks in [Bebek et al. 06, Chung et al. 03]. The
forest-fire model proposed in [Leskovec et al. 05a] also implicitly incorporates the
idea of copying, since the neighbors of a new vertex are chosen from the local
environment of an existing vertex.

A central question of this work is whether a spatial, or geometric, model is
appropriate for our social network data. In a spatial model, vertices are assumed
to be embedded in a metric space, and formation of edges is influenced by the
metric distance between vertices. (For a recent overview of spatial models for
complex networks, see [Janssen 10].) The advantage of using a geometric model
for a social network is that the metric space can be seen as the social space
representing the interests, hobbies, and other attributes of the individuals corre-
sponding to the vertices of the social network. Assuming a geometric model gives
the possibility for inference of the social space from the network, thus providing
a basis for identifying communities or individuals with similar interests.

The simplest spatial model is the random geometric graph, in which vertices
can be connected only when their distance is below a given threshold. In the orig-
inal geometric graph model (see [Penrose 03]), vertices within threshold distance
are always connected. To introduce more variability, we will use an adapted ver-
sion whereby pairs of vertices that are within threshold distance are connected
independently with a fixed probability. Geometric graphs have been proposed
for biological networks, for example in [Pržulj et al. 04], and have been shown
to be a good fit in terms of graphlet structure.
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We have included a spatial model that incorporates the preferential attachment
principle: the spatial preferential attachment (SPA) model proposed in [Aiello
et al. 07]. Here, each vertex is surrounded by its sphere of influence, and new
vertices can link to it only if they fall within this sphere of influence. The PA
principle is incorporated indirectly, in that the size of the sphere of influence
depends on the degree of the vertex. In [Janssen et al. 11], it is shown how for
graphs obtained from this model, the metric distance between pairs of vertices
can be retrieved from the graph structure alone by considering the degrees of the
two vertices and their number of common neighbors. If the metric embedding is
interpreted as modeling the hidden reality of the vertices, then metric distance is
a measure of how similar the vertices are. Thus, the SPA model gives a possibility
of judging the similarity between vertices based on the graph structure.

The fact that spatial models can be used as a basis for estimating vertex sim-
ilarity from the graph structure makes them superior to purely graph-theoretic
models. We therefore feel that in cases in which the goodness of fit is approx-
imately equal, spatial models should be preferred. The conclusion of this work
is that from among the selected models, those that are built on the principle of
preferential attachment have the best fit for the Facebook data. Of the models
that give the best fit, one is a standard PA model, and the other is the spatial
preferred attachment model. In light of the previous discussion, we assert that
the SPA model is the most appropriate to model the Facebook data.

The organization of this paper is as follows. In the next section we describe our
method in detail, including descriptions of the models, the (Facebook) testing
data, the features selected to represent the graphs, and the classification algo-
rithm. In Section 3 we present the results of our experiment. We first analyze
the performance of our classifier using a test set containing synthetic graphs
generated from our training models. We compare the performance of the clas-
sifier when only graphlet counts are used as features, when only global features
are used, and when the full set of features is used. We also test how robust the
classifier is by artificially creating noise in the test data through changes to some
of the edges. Finally, we apply the classifier to the Facebook data. We present
the results of the classifier, and also analyze the profiles of the features for the
different models to understand what distinguishes the different models, and how
the results for the Facebook data should be interpreted.

2. The Model-Selection Classifier

Our model-selection method follows three steps. First, we generate the training
data, consisting of 1000 graphs generated according to each of the six models we
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have selected: the preferential attachment model, the copy model, the random
geometric model (2D and 3D), and the spatial preferred attachment model (2D
and 3D). The details of the models are given in Section 2.1. The parameters of
the models are randomly sampled from a range such that the graphs generated
are similar in size and density to the test data. The restriction of the sample
range of the parameters is necessitated by the fact that the graphlet counts
depend heavily on the size and density of a graph, even for graphs generated by
the same model. For this reason it is necessary to generate a new training set for
each test graph.

Next, we use the training data to build a multiclass alternating decision tree
(ADT). The details of the construction of the ADT are given in Section 2.3.
We represent the graphs using features that capture both the local structure of
the graph, through the graphlets, and the global structure. A description of the
features is given in Section 2.2.

Finally, we compute the feature vectors corresponding to each network from
our online social network data, in this case snapshots of Facebook. Running this
feature vector through the classifier gives a score for each model corresponding to
how well the model fits the test data. Our experimental procedure is repeated for
four different Facebook networks taken from the following American universities:
Princeton, American University, MIT, and Brown. We obtained these data from
the Facebook100 data set.

2.1. Models

We have implemented six different graph models. As explained in the introduc-
tion, our choice of models was motivated by the desire to test a wide range of
models commonly proposed for social networks, based on a number of different
attachment principles. Special attention was given to spatial models, a class of
models that is gaining support because of the ability to model vertex attributes
through spatial representation. Wherever more than one variation of the model
has been proposed in the literature, we have opted for the simpler versions. This
choice was motivated by the wish to avoid ambiguity in the classification.

All model-generation algorithms are written in Python using the graph-tool
module.2 Our training set includes only undirected graphs without multiple
edges. Some of the models allow for multiple edges; if this occurs, we remove
the multiple copies. For all models under consideration, this is known to affect
only a tiny fraction of the edges. The SPA model and copy model are formulated

2 Available online at http://projects.skewed.de/graph-tool/.
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to generate directed graphs; here we ignore the direction of the edges after gen-
eration.

2.1.1. Preferential attachment model (PA). The preferential attachment model was first
introduced in [Barabási and Albert 99] as a model for the World Wide Web. In
the original version, the model has only one parameter, namely the initial degree
of each vertex. We use here a more general model introduced in [Aiello et al. 02].
Preferential attachment models are built on the concept that a new user is more
likely to join to a user that already has many incident edges.

Our PA model has two parameters, d ∈ Z+ and α ∈ [0, d]. It generates a se-
quence of graphs {Gt : t ∈ N}, where G0 = H is a small random seed graph. We
take H to be an Erdős–Rényi random graph G(100, ed), where ed is the edge
density of the test graph. At each time step t > 0, Gt is formed by adding a
new vertex vt and adding d edges (vt , wi), where wi is chosen randomly, with
probability proportional to its degree plus α. The probability that wi is chosen
is given by

P (w = wi) =
degGt−1

(w) + α

2d(t − 1) + 2|E(H)| + α(t − 1)
,

where degGt−1
(w) is the degree of w in Gt−1 . Thus, vertices of high degree are

more likely to accumulate more edges.

2.1.2. Copy model (COPY). The copy model was originally proposed in [Kleinberg
et al. 99] as a model for the World Wide Web. The idea behind this model is
that a person tends to meet friends through a currently existing friend, and
thus the person’s friendship neighborhood will have large overlap with that of
the friend “copied” from. Our version allows for a number of neighbors that are
chosen at random, not copied. This version of the copy model is used in [Adler
and Mitzenmacher 02, Bonato and Janssen 09].

The copy model has two parameters, p ∈ (0, 1) and d ∈ Z+ . It generates a se-
quence of directed graphs {Gt : t ∈ N}; the direction of the edges will be ignored
for the model selection. Again, G0 = H is a small random seed graph. We take
H to be the directed version of the Erdős–Rényi random graph with 100 vertices
and edge probability equal to the edge density of the test graph. At each time
step t > 0, we add a new vertex vt . We then choose a vertex w uniformly at
random from Gt−1 , and for each out-neighbor u of w, we independently add an
edge from vt to u with probability p. We then choose d more vertices uniformly
at random from Gt−1 and add directed edges from vt to each of these vertices.

2.1.3. Random geometric model (GEO). The random geometric model is a model in which
the vertices are embedded in a metric space and edges are determined by a
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threshold on the distance between two vertices. Our model is close to the one
used to model protein–protein interaction networks in [Pržulj 07]; the difference
is that in our version, vertices that are within threshold distance of each other
have a probability p of being connected. This model is sometimes referred to as
the percolated random geometric graph.

The GEO model has two parameters: a threshold r ∈ (0, 1) and a link prob-
ability p ∈ (0, 1). A prescribed number of vertices are embedded uniformly at
random into a metric space S. If the distance between vertices in this space
is less than the threshold r, then an edge is added with probability p, inde-
pendently for each pair of vertices. We consider two-dimensional (GEO2D) and
three-dimensional (GEO3D) versions of this model in which the metric space S

is [0, 1]2 and [0, 1]3 respectively, equipped with the torus metric. In addition, we
randomly select a small number d of pairs of vertices uniformly at random, and
add an edge between them. In our experiments, we take d = �log |V |�.

Our model differs from the traditional random geometric graph by the addition
of a small number of random edges. The reason is the following. It is well known
that social networks have the “small-world” property, so the average shortest
path length between vertices is small. However, to obtain the desired density we
need to take the threshold r fairly small. This implies that each edge can bridge
at most a distance r in the metric space. Thus, the path length between vertices
that are at opposite ends of the metric space will be large, and as a result, the
average path length in random geometric graphs will be too large to make them
a suitable model for social networks. The random edges remedy this problem by
providing “shortcuts” between vertices that are far away in the metric space. On
the other hand, the number of edges added is so small that the other features,
such as graphlet counts and degree distribution, are not significantly affected.

2.1.4. Spatial preferential attachment model (SPA). The spatial preferential attachment
model introduced in [Aiello et al. 07] is a spatial model that incorporates the
preferential attachment principle. The model has three parameters, A1 ∈ (0, 1),
A2 ≥ 0, and p ∈ (0, 1]. We form a sequence of directed graphs {Gt}, t ∈ N ∪ {0},
with G0 as the empty graph. We define a region of influence around a vertex v

at time t ≥ 1, written R(v, t), with area

|R(v, t)| =
A1 deg−(v, t) + A2

t
,

or R(v, t) = S if the above is greater than 1. In the above, deg−(v, t) is the
in-degree of v at time t. At each time step t ≥ 1, a point in S is uniformly
randomly chosen to be the new vertex vt . For each vertex u ∈ V (Gt−1) such that
v ∈ R(u, t − 1), we independently add an edge from vt−1 to u with probability p.
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In this model, the influence regions are proportional to the in-degree of the vertex
but decrease over time. Again, after model generation, we ignore the direction
of the edges.

The vertices will be placed in the same metric spaces as the two GEO mod-
els above, giving us two-dimensional (SPA2D) and three-dimensional (SPA3D)
versions of the SPA model.

2.2. Features

We represent our graphs by 17 features in a vector representation. These features
include information about the global properties of the graphs, specifically the
degree distribution, the assortativity coefficient, and the average path length
between vertices. In addition, we capture the local structure through the raw
graphlets counts for the connected subgraphs of size 3 and size 4. Below is a
description of each of the features.

2.2.1. Degree distribution percentiles. The degree distribution is a favorite property stud-
ied for most “real-world” networks. A distribution with a power-law tail is a
distinguishing property of many such networks, including the friendship network
of Facebook (see [Traud et al. 11]). The most logical feature to use here would
be the coefficient of the power-law degree distribution. Unfortunately, not all
the models generate graphs with a power-law degree distribution (for example,
random geometric models), and it is often difficult to establish whether the data
exhibit a real power law or to determine its coefficient. Instead, to measure the
spread of the degree distribution, we consider the percentiles of the distribu-
tion formed by breaking it evenly into eight disjoint pieces. This gives us seven
features, called deg1, deg2, deg3, deg4, deg5, deg6, and deg7.

2.2.2. Assortativity coefficient. The assortativity coefficient r ∈ [−1, 1] is a measure-
ment of how well vertices of similar degree link to one another in the network.
An assortativity coefficient close to −1 indicates that vertices tend to link to
vertices of different degrees, and a value close to 1 indicates that vertices tend
to link to vertices of similar degrees. It is shown in [Mislove et al. 07] that online
social networks have positive assortativity coefficients, while the World Wide
Web and biological networks have negative assortativity coefficients. We com-
pute the assortativity coefficient in graph-tool using the following equation from
[Newman 03]:

r =
∑

i eii −
∑

i aibi

1 − ∑
i aibi

,
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where eij is the fraction of edges from a vertex of degree i to a vertex of degree
j, and ai =

∑
j eij and bj =

∑
i eij .

2.2.3. Average path length. The small-world property, implying a small average hop
distance between vertices, is another distinguishing aspect of social networks. It
is shown in [Mislove et al. 07] that online social networks have small average
path length. Here we will compute the average path length between vertices by
selecting 100 random pairs of vertices and calculating the length of the shortest
path between them using a breadth-first search implemented in graph-tool.

2.2.4. Graphlets. To characterize local structure, we include as features all the
counts of connected subgraphs of size 3 (two nonisomorphic graphs) and 4 (six
nonisomorphic graphs), as shown in Figure 1. Unfortunately, no algorithm is
known that computes the full counts for all of these subgraphs efficiently for
the size of graphs we are considering (some new algorithms to compute trian-
gles are being developed). As a compromise, we use the sampling algorithm of
[Wernicke 06] to sample the number of these graphlets. The advantage of Wer-
nicke’s algorithm is that it can be used to give an unbiased sample of a specified
portion of the subgraphs.

Wernicke’s algorithm is based on a systematic exploration of the neighborhood
using DFS (cut off when level k is reached). The sampling works by probabilis-
tically skipping steps of this exploration. To achieve unbiased sampling that ob-
tains a prescribed proportion of all small subgraphs, the probability that a step
is skipped is adjusted to the depth in the DFS where the step occurs. Additional
details can be found in [Wernicke 06].

For our experiments, we sample 1% of the size-3 graphlets and 0.01% of the
size-4 graphlets. Since the sampling rate for size-4 graphlets is very low (0.01%),
we tested Wernicke’s assertion that the algorithm indeed leads to an unbiased
sample of the graphlets. To this end, we computed the exact counts for the
graphlets of size 3 and 4 for a number of randomly chosen graphs, and compared
them to the estimates obtained by sampling. In Table 1, we show the performance
of the algorithm for one of the randomly generated graphs. You can see that there
is good agreement between the real counts and the estimates. In light of this
almost perfect agreement between sampling and exhaustive counts, we deemed
the achieved sampling rate more than sufficient for our purposes.

The computation of the graphlets is by far the most time-consuming of all the
features. For the size and density of graphs we are considering it was not feasible
to include subgraphs of size greater than 4. In [Middendorf et al. 05], the authors
consider subgraphs up to size 7, but this is possible only because the graphs are
much smaller and sparser than those considered here. Inclusion of graphlets of
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g1 g2 g3 g4 g5 g6 g7 g8

Figure 1. The graphlet features.

larger size will be possible for graphs of the size and density we consider here
only if new methods for computing or estimating graphlet counts are developed
that show a dramatic increase in efficiency. However, our results show that the
graphlets of size 3 and 4 are highly efficient in separating the models. Based on
our results, we do not expect that inclusion of higher-order graphlets will lead
to a significant improvement in the model-selection method.

2.3. Classification

To classify our data, we use the multiclass alternating decision tree (ADT) al-
gorithm LADTree of [Holmes et al. 02]. ADTs are a class of boosted decision
trees that were introduced in [Freund and Mason 99]. Boosting [Freund and
Schapire 97] is a well-established classification technique that combines so-called
weak classifiers to form a single powerful classifier. In successive steps called
boosting steps, weighted combinations of the weak classifiers are applied to the
training data, and the weights are adjusted in each step to improve the classifi-
cation.

The first ADTs were built using the AdaBoost boosting algorithm [Freund
and Schapire 97]. The ADT used here, LADTree, is built on the lesser-known
LogitBoost boosting algorithm of [Friedman et al. 00], in which the authors
show that both boosting algorithms fit an additive logistic regression model.
They argue that LogitBoost is the more appropriate algorithm, because it fits
the regression model using the more typical maximum likelihood minimization
criterion, whereas AdaBoost uses an exponential minimization criterion.

% g1 g2 g3 g4 g5 g6 g7 g8

100 2323538 320097 18389736 65090655 22256380 3115254 4317267 434608
10 232335 32075 1837970 6508583 2227640 310958 431961 43176
1 23142 3243 184115 650031 222899 30905 43062 4378

0.1 2368 343 18341 65156 22381 3143 4281 453
0.01 224 33 1804 6524 2163 315 422 49

Table 1. Performance of Wernicke’s algorithm on a graph with 3000 vertices and
70,270 edges.
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PA : 0
G E O 2 D : 0
C O P Y : 0
S PA 2 D 0

G E O 3 D : 0
S PA 3 D : 0

S 1 : a s s o r t < 0 . 0 2

Y

PA : 0 .4 8 1
C O P Y : 0 .4 8 1

G E O 2 D : - 0 . 9 6 3
S PA 2 D 0 .4 8 1

G E O 3 D : - 0 . 9 6 3
S PA 3 D : 0 .4 8 1

N

PA : - 0 . 8 6 7
C O P Y : - 0 . 8 6 7
G E O 2 D : 1 .7 3 3
S PA 2 D -0 .8 6 7
G E O 3 D : 1 .7 3 3
S PA 3 D : - 0 . 8 6 7

S 5 : g 6 < 4 1 1 7 . 5

Y

PA : 0 .0 1 9
C O P Y : 0 .0 9 4
G E O 2 D : 0 .0 1
S PA 2 D -0 .2 4 4

G E O 3 D : - 0 . 0 0 3
S PA 3 D : 0 .1 2 5

N

PA : - 0 . 6 0 2
C O P Y : 1 .1 0 1

G E O 2 D : - 0 . 9 0 3
S PA 2 D : 1 .2 2 7

G E O 3 D : - 0 . 4 2 4
S PA 3 D : - 0 . 3 9 8

S 1 2 : g 8 < 2 1 . 5

NY

PA : - 0 . 7 3 9
C O P Y : 0 .0 3 4

G E O 2 D : 1 .2 7 2
S PA 2 D : 0 .4 9 8

G E O 3 D : - 0 . 8 4 9
S PA 3 D : - 0 . 2 1 6

PA : - 0 . 4 7 2
C O P Y : - 0 . 5 8 5
G E O 2 D : 0 .0 1 7
S PA 2 D : - 0 . 3 5 5
G E O 3 D : 0 .6 2 5
S PA 3 D : 0 .7 6 9

S 2 : a s s o r t < 0 . 0 0 6

NY

PA : - 0 . 7 3 9
C O P Y : 0 .0 3 4

G E O 2 D : 1 .2 7 2
S PA 2 D : 0 .4 9 8

G E O 3 D : - 0 . 8 4 9
S PA 3 D : - 0 . 2 1 6

PA : - 0 . 4 7 2
C O P Y : - 0 . 5 8 5
G E O 2 D : 0 .0 1 7
S PA 2 D : - 0 . 3 5 5
G E O 3 D : 0 .6 2 5
S PA 3 D : 0 .7 6 9

Figure 2. Partial LADTree using the full feature vector with 200 boosting iterations.

In Figure 2, we show a partial LADTree that was constructed during our ex-
periment. An ADT has two types of nodes, decision nodes (rectangles in the
figure) and prediction nodes (ellipses). Decision nodes contain a Boolean predi-
cate that corresponds to a threshold on one of the features in the feature vectors
for the training data. The prediction nodes contain real-valued scores, one for
each of the classes in the training set. In our case, we have six different classes
or models, so each prediction node contains six scores.

The LADTree begins with a prediction node that has a score of zero for each
of the models. In each boosting iteration, a decision node is added to the tree
along with two prediction nodes as its children in the tree. The new decision
node can be added as a child to any existing prediction node in the tree. The
placement of the decision node and its Boolean predicate are chosen to give the
best separation of the training data. The exact criteria for this are provided by
the LogitBoost algorithm [Friedman et al. 00].

Once the LADTree has been formed, new instances, typically called the test
data in machine learning, can be classified by the tree. For us, the test data are
comprised by the feature vector for the Facebook graph we wish to classify. The
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feature vector for the Facebook graph will determine its flow through the tree.
The test instance travels through all possible paths that it can reach in the tree,
resulting in a classification score that is the sum of all prediction nodes reached
along the way. This results in six scores, Fj , j = 1, 2, 3, 4, 5, 6, one for each of the
six different models. A positive score is a good fit; a negative score is a bad fit.
The model that obtains the highest score is deemed to be the model that best
describes the test data. The absolute values of the scores provide the level of
confidence in the prediction. Thus, a large positive Fj indicates that model j is
a good model for the test instance, and a large negative Fj indicates that model
j is a bad model for the test instance. The scores Fj can be readily interpreted
as class probabilities pj by the equation

pj =
eFj

∑6
j=1 eFj

,

which results in inverting the additive logistic model that is fitted by the
LADTree algorithm [Holmes et al. 02].

The advantage of using ADTs is that they require no specific assumption about
the geometry of the input space for the features. Thus, we are free to incorpo-
rate any range of features such as degree distribution percentiles, average path
length, and subgraph counts without considering any potential dependencies
among them. The importance of each feature is based on how well it separates
the six different models. We use the Weka software package for Java to train all
the LADTrees used in our experiments.3

3. Results

We tested our approach on four different social network graphs taken from Mason
Porter’s Facebook100 data set. Each graph in the data set corresponds to users at
different universities. For our test data we take Princeton University, which has
6596 vertices and 293,329 edges; American University, which has 6386 vertices
and 217,661 edges; MIT, which has 6440 vertices and 251,252 edges; and Brown
University, which has 8600 vertices and 384,525 edges. In these graphs, each
vertex corresponds to a Facebook user, and two vertices are connected if they
are Facebook friends.

For each of these graphs, the process is as follows. First, we generate a training
set of 6000 graphs that are of the same size as the Facebook graph and have edge

3 Weka is available online at http://www.cs.waikato.ac.nz/mi/weka/.
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density that differs by at most 5% from that of the Facebook graph. In order to
test the effect of different features and different numbers of boosting iterations,
we build nine LADTree classifiers. The classifiers are built using three different
types of feature vectors: the full feature vector, which incorporates all 17 of the
features described in Section 2.2; the graph feature vector, using only the graphlet
features; and the nongraph feature vector, which uses only the non-graphlet-based
features. For each of the feature vectors under consideration we build classifiers
using 50, 100, and 200 boosting iterations, giving nine classifiers in total for
each experiment. To build the classifiers we use the well-known machine-learning
software package Weka. Finally, we use the classifiers to classify the Facebook
graph. The model that produces the graphs that get the best scores is considered
to be the best model for the data.

3.1. Testing the Classifier

Before performing our experiments on the actual Facebook data, it is important
to test the classifier to find out how we should interpret the results. To this
end, we generate an additional 100 graphs for each of the models and apply
the classifier to this known data set. Since we know exactly which class these
synthetic graphs belong to, this will establish a baseline for the maximum and
minimum possible scores achievable by each model. We generate the initial 600
graphs with the same density as the Princeton network and classify them using
the LADTree classifiers we have generated for the Princeton data.

First, we evaluate the performance of the classifier on these graphs and test
the effect of the number of iterations of the ADT tree. We use the full set of
features. Consider the scores generated by the classifier for the unchanged syn-
thetic graphs, shown in Tables 2, 3, 4, and 5. The rows in these tables correspond
to the 100 additional graphs generated by each model, and the column entry
corresponds to the average score with the standard deviation that each model
scored for that row. As expected, the graphs are overwhelmingly assigned to the
class corresponding to the model that generated them. The scores range roughly
between −10 and 10 for 50 boosting iterations, −15 and 15 for 100 boosting it-
erations, and −25 and 25 for 200 boosting iterations for both the full and graph
features. The performance of the classifier is consistent over a different number of
boosting iterations. Our other experiments confirm that the number of iterations
does not make a significant difference. Therefore, from here on we present only
the result for 100 boosting iterations.

To determine the importance of the graphlet features, we compare the per-
formance of the classifiers built using the full feature vector with those built
using only the graph feature vector. Table 5 shows the performance on the
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Models PA COPY GEO2D SPA2D GEO3D SPA3D
PA 8.96 ± 1.18 −3.91 ± 2.39 −4.16 ± 1.18 0.17 ± 1.69 −2.38 ± 1.25 1.32 ± 0.82

COPY −2.3 ± 0.34 7.02 ± 0.24 −2.19 ± 0.27 −0.19 ± 0.23 −3.2 ± 0.28 0.85 ± 0.27
GEO2D −6.78 ± 1.59 −7.82 ± 3.55 9.13 ± 2.89 2.65 ± 2.42 3.57 ± 1.47 −0.76 ± 1.55
SPA2D −5.51 ± 2.5 −11 ± 3.86 2.89 ± 2.27 10.16 ± 3.05 −2.36 ± 2.04 5.81 ± 1.76
GEO3D −6.14 ± 1.31 −8.42 ± 3.18 3.58 ± 1.61 −0.73 ± 1.05 9.04 ± 2.94 2.67 ± 2.32
SPA3D −4.09 ± 2.48 −9.97 ± 4.54 0.03 ± 2.2 5.22 ± 2.06 −0.26 ± 2.79 9.07 ± 2.84

Table 2. Full feature 50 boosting iterations. Average over 100 test graphs, with
standard deviation.

synthetically generated test graphs when only the graph feature vector is used.
Again, almost all graphs are classified correctly. In comparing Tables 3 and 5,
we can observe that the test graphs receive similar scores regardless of whether
the full feature vector or the graph feature vector is used. In some cases, using
the graph feature vector produced higher scores only for the geometric-based
models but not significantly higher. Thus we can conclude that graphlets alone
are sufficient to recognize the graph structure of the models under consideration.

Finally, we test the robustness of the classifier with respect to perturbations of
the graph structure. To do this, we take the 600 synthetic graphs and change a
percentage of the edges. This is done by randomly choosing a set of edges from the
graph, removing them, and replacing each edge with a new edge whose endpoints
are chosen uniformly at random. The goal is to see how fast the classification
accuracy deteriorates as the number of edge changes increases. Overall, we have
six test data sets of 600 graphs each, with 0%, 5%, 10%, 15% , 20% and 25% of
the edges randomly changed.

Tables 6 and 7 give the classification accuracy for each of the six test data sets
using the full feature vector and graph feature vector respectively. As seen before,
the classification accuracy on the original unchanged test data is very high for
both the full and graph feature vectors, and the classification accuracy is slightly
but not significantly higher when only the graph feature is used. When 5% of the
edges are changed, the classification accuracy for the full feature drops to just
below 75% while for the graph feature vector the accuracy is just below 80%.

Models PA COPY GEO2D SPA2D GEO3D SPA3D
PA 11.92 ± 0.89 −4.61 ± 1.25 −4.61 ± 1.93 2.39 ± 1.65 −5.11 ± 1.46 0.03 ± 1.03

COPY −5.5 ± 1.67 11.73 ± 0.80 −0.34 ± 1.11 1.37 ± 1.02 −8.25 ± 1.93 0.99 ± 1.4
GEO2D −10.83 ± 1.96 −10.64 ± 4.54 12.59 ± 3.19 4.07 ± 2.42 6.02 ± 1.91 −1.2 ± 1.84
SPA2D −8.08 ± 3.57 −13.61 ± 4.57 3.04 ± 2.88 13.79 ± 3.72 −2.38 ± 3.45 7.25 ± 1.99
GEO3D −10.72 ± 2.21 −12.55 ± 5.11 5.81 ± 2.30 1.56 ± 2.07 13.25 ± 3.79 2.66 ± 2.4
SPA3D −6.62 ± 3.79 −13.04 ± 5.68 −0.09 ± 2.97 6.94 ± 2.17 −0.45 ± 4.13 13.26 ± 4.05

Table 3. Full feature 100 boosting iterations. Average over 100 test graphs, with
standard deviation.
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Models PA COPY GEO2D SPA2D GEO3D SPA3D
PA 16.69 ± 1.5 −5.9 ± 1.55 −6.62 ± 2.75 2.42 ± 2.21 −8.90 ± 2.15 2.31 ± 1.66

COPY −8.2 ± 4.9 18.31 ± 0.8 −6.31 ± 1.61 1.95 ± 2.03 −9 ± 2.46 3.24 ± 2.05
GEO2D −16.79 ± 4.09 −18.23 ± 7.03 19.27 ± 3.01 5.48 ± 3.05 9.41 ± 3.44 0.86 ± 3.18
SPA2D −10.75 ± 5.6 −20.41 ± 6.61 5.46 ± 4.24 19.53 ± 4.40 −3.71 ± 5.34 9.88 ± 2.56
GEO3D −17.57 ± 4.34 −21.78 ± 8.46 8.92 ± 3.44 2.32 ± 2.96 20.5 ± 4.98 7.6 ± 4.12
SPA3D −8.73 ± 5.76 −20.74 ± 7.99 0.82 ± 4.55 9.59 ± 2.7 0.07 ± 5.94 18.99 ± 4.06

Table 4. Full feature 200 boosting iterations. Average over 100 test graphs, with
standard deviation.

In this case, the graph feature vector alone performs significantly better than
the full feature vector. For all other percentages of edge changes, the difference
between the two is not significant. The conclusion of this experiment is that the
graph features alone provide just as much information as the full feature set.
In fact, as is the case when 5% of the edges were changed, including additional
nongraph information can decrease the accuracy of the classifier. When 10% of
the edges are changed, both feature vectors give classification accuracies around
65%, which is still a fair performance. When 15% of the edges are changed,
the accuracy for both feature vectors drops to around 55%. At 20% and 25%,
the accuracy dips below 50%. The accuracy at this level is not good, but there
clearly still is information present in the link structure, since classifying the
graphs completely at random would give the correct classification less than 17%
of the time.

Another interesting observation is that the overall classification accuracy does
not necessarily increase with the number of boosting iterations. It is the case that
increasing the number of boosting iterations improves the classification accuracy
on the unchanged data, but this is not necessarily the case for the changed data.
For most of the test data sets the difference is not significant, but when 25% of
the edges are changed, the classification accuracy is about 3% better when only
50 boosting iterations are performed as compared to 200 boosting iterations. We
suspect that increasing the number of boosting iterations leads to overfitting of
the perturbed data.

Models PA COPY GEO2D SPA2D GEO3D SPA3D
PA 10.36 ± 0.51 0.45 ± 0.44 −5.26 ± 0.72 −0.6 ± 1.02 −6.19 ± 0.78 1.24 ± 0.98

COPY 0.07 ± 0.95 9.71 ± 0.85 −5.27 ± 0.36 0.35 ± 1.16 −5.95 ± 0.64 1.1 ± 0.36
GEO2D −12.18 ± 3.11 −14.9 ± 4.77 13.86 ± 3.98 5.97 ± 3.11 6.53 ± 2.49 0.72 ± 1.85
SPA2D −11.71 ± 2.89 −13.74 ± 4.32 2.35 ± 2.55 15.41 ± 3.44 −0.78 ± 3.31 8.47 ± 2.27
GEO3D −13.21 ± 3.28 −15.36 ± 4.39 7.45 ± 1.86 3.27 ± 2.02 13.39 ± 2.84 4.46 ± 2.67
SPA3D −11.41 ± 3.34 −14.22 ± 4.61 −0.03 ± 2.32 9.06 ± 2.17 1.62 ± 3.56 14.99 ± 3.03

Table 5. Graph feature 100 boosting iterations. Average over 100 test graphs,
with standard deviation.
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Edge Changes Boosting Iterations
% 50 100 200

0 94.67 95.67 97.17
5 73.83 71.5 74.33
10 64 63.33 65.17
15 57.33 56.17 56.33
20 51.17 48.67 48.83
25 44.17 43 41.17

Table 6. Full feature classification accuracy.

To find out exactly how the graphs are misclassified, we present, in Table 8,
the complete classification results for the classifier trained with the graph feature
vector. Here we can see that the 3D (GEO3D and SPA3D) models are very robust
against the changing of edges, while their 2D (GEO2D and SPA2D) counterparts
are not. Precisely, a large part of the misclassification of perturbed graphs is
due to the classification of GEO2D and SPA2D graphs as GEO3D and SPA3D,
respectively. Even with the lowest level of perturbation, 5%, roughly half of the
2D models are classified as their 3D counterparts. When 25% of the edges have
been changed, only around 5% of the 2D models are classified correctly, with
most of the graphs being classified as the 3D counterpart. Meanwhile, the 3D
models maintain a good classification accuracy even when 25% of the edges are
changed.

Another interesting observation is that the copy model is also somewhat robust
against the changing of edges. Even with 5% of the edges switched, all the copy-
model graphs are classified correctly. The accuracy dips to around 95% when
10% of the edges are switched. Even when 25% of the graph is changed, the
classification accuracy stays within 50%–70%. The PA model, on the other hand,

Edge Changes Boosting Iterations
% 50 100 200

0 94.83 96.67 97.83
5 78.67 79.83 79.67
10 64 63.5 63.67

l 15 56.17 55.67 54.8
20 49.33 48 48.17
25 44 40.5 40.67

Table 7. Graph feature classification accuracy.
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Change PA COPY GEO2D SPA2D GEO3D SPA3D Models
0% 100 0 0 0 0 0 PA

0 100 0 0 0 0 COPY
0 0 92 2 6 0 GEO2D
0 1 0 97 0 2 SPA2D
0 0 5 0 95 0 GEO3D
0 0 0 4 0 96 SPA3D

5% 88 2 0 0 0 10 PA
0 100 0 0 0 0 COPY
0 0 49 2 49 0 GEO2D
0 0 0 47 0 53 SPA2D
0 0 4 0 96 0 GEO3D
0 0 0 1 0 99 SPA3D

10% 78 14 0 0 0 8 PA
0 94 0 6 0 0 COPY
0 0 11 1 88 0 GEO2D
0 0 0 3 1 96 SPA2D
0 0 3 0 97 0 GEO3D
0 0 0 1 1 98 SPA3D

15% 51 45 0 0 0 4 PA
0 82 0 18 0 0 COPY
0 0 7 2 91 0 GEO2D
0 0 0 2 6 92 SPA2D
0 0 2 0 98 0 GEO3D
0 0 0 1 5 94 SPA3D

20% 24 76 0 0 0 0 PA
0 69 0 31 0 0 COPY
0 0 8 2 90 0 GEO2D
0 0 0 2 12 86 SPA2D
0 0 4 0 96 0 GEO3D
0 0 0 1 10 89 SPA3D

25% 2 98 0 0 0 0 PA
0 53 0 46 1 0 COPY
0 0 6 2 92 0 GEO2D
0 0 1 4 18 77 SPA2D
0 0 4 0 96 0 GEO3D
0 0 0 1 17 82 SPA3D

Table 8. Classification of perturbed graphs. Graph feature vector with 100 boost-
ing iterations.

is not robust against the changing of edges. The classification quickly decreases
as edge changes start to accumulate. Interestingly, PA graphs are confused only
with the copy model, not with any geometric model. Especially, PA graphs are
never confused with the SPA models, even though both models incorporate the
preferential attachment principle.

One purpose of testing the robustness of the classifier is to attempt to simulate
the behavior of the classifier on noisy data. One conclusion we have is that even
if a little bit of noise is introduced into the data, the 2D models are more likely to
get classified as a 3D model. The conclusion is that if unknown data are classified



356 Internet Mathematics

Classifier PA COPY GEO2D SPA2D GEO3D SPA3D
full Princeton −0.303 −14.551 4.599 11.287 −5.451 4.42
graph Princeton 6.699 −2.227 −3.914 3.085 −3.676 0.033
nongraph Princeton −0.858 −3.622 −7.447 8.022 −5.029 8.941
full American −0.414 −12.164 −0.183 8.307 −5.578 10.025
graph American 0.779 −10.639 0.381 5.834 −7.693 11.332
nongraph American −4.612 −2.442 −3.627 6.517 −3.348 7.512
full MIT 2.956 −12.512 2.715 13.528 −8.561 1.873
graphs MIT 4.097 −9.49 3.061 5.304 −2.91 −0.063
nongraph Brown −0.197 −3.58 −2.61 4.549 −1.606 3.44
full Brown 4.998 −15.163 −0.305 1.733 −6.161 14.897
graphs Brown 6.283 −0.085 −3.774 1.827 −3.771 −0.479
nongraph MIT 1.956 −7.305 −2.458 2.518 −2.901 8.192

Table 9. Scores for each data set, for each of the classifiers with 100 boosting
iterations. The highest scores are given in boldface.

as a 3D model, it is possible that the correct model should be the 2D model. We
also can conclude that using the graph feature vector is at least as reliable as
using the full feature vector.

3.2. Classification of the Facebook Networks

After verifying the quality of the classifier, we now apply the classifiers to the
data sets for which they were designed. Recall that for each data set, we have
built a different classifier, based on test data from synthetic graphs generated
according to the different models, with parameters tuned so that the resulting
graphs have approximately the same edge density as the graph from the data
set. In Table 9, we present the classification scores for each of the four data
sets, for classifiers using the full feature vector, graph feature vector, and the
non-graph-feature vector. The highest score is given in boldface; when the two
highest scores are close, both are highlighted.

The first clear conclusion of the outcome is that all significant high scores are
for models that incorporate the preferential attachment principle: PA, SPA2D,
and SPA3D. In most cases, both the SPA2D and SPA3D give fairly high posi-
tive scores. From results presented in the previous subsection on the perturbed
graphs, we know that misclassification between SPA2D and SPA3D is common.
Thus, only the general conclusion that the SPA model fits the data well is jus-
tified. Other techniques will be needed to determine the dimension. The PA
model gives the highest score for two of the data sets, but only with the classifier
that uses only the graph features. For our synthetic graphs, we have shown that
graphlet features are at least as efficient as the full feature set in distinguishing
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the classes. For real data, the situation clearly differs, and we see a fairly large
discrepancy between graph feature and full feature results. Since the full feature
set is based on the widest range of features, it makes sense to base our final
conclusion on the classifier built using all available features. In this light, the
SPA model clearly gives the best fit for the Facebook data.

Classification algorithms are built under the assumption that the test data
actually belong to one of the classes that the classifier is trained to distinguish.
This assumption is often not entirely justified in realistic applications, as is the
case here. However, it is common practice to evaluate unknown data using a
classification algorithm. With this in mind, we performed a more detailed analysis
of the classification to help interpret our results from the Facebook data. In our
analysis, we consider not only the final score of the classifier on the data set,
but also how each feature contributes to the score for each model. Specifically,
we extract information about the features that appear in the first layer of nodes
(of depth 1) in the ADT. Since the first layer of the ADT is most important
in separating the data, the features occurring in the first layer are the most
influential in the classification. Furthermore, we consider how often each feature
is visited when the classifier is applied to the Facebook data. Combined with our
knowledge about the different models, and their typical behavior with respect to
the various features, our analysis gives a more detailed picture of the classification
results.

In this section we give a general discussion of our analysis; a precise discussion
of the performance of the classifier on each of the data sets can be found in our
technical report [Hurshman et al. 11]. Our general analysis is based on comparing
how well the models were able to match the most important features in the
classification scores to those present in the Facebook graphs. For this analysis,
we generated box plots to visualize how well each feature generated in the models
compared to the feature present in the Facebook graphs. (See Figure 3 for an
example; all box plots can be found in [Hurshman et al. 11].) We also analyzed
the ADTs to see which feature was most represented among the decision nodes.

Our first observation is that in every classifier built using the full feature
vector, the first node in the ADT corresponds to the assortativity coefficient.
Thus, the assortativity coefficient is the most significant feature in separating
the classes. From the box plots of the feature values, we have observed that the
assortativity coefficient of the GEO models is significantly higher than all the
other models, as shown in Figure 3. This can also be explained theoretically; it
is easy to see that the vertices in a GEO model have degrees that are binomially
distributed, which implies that many vertices will have similar degrees, which
leads to a higher assortativity coefficient. Note that the assortativity coefficient
is not included in the graph feature vector, while the results for the synthetic test
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Figure 3. Box plots representing the spread of the assortativity coefficient (left)
and the g6 graph feature (right) for the Princeton network.

graphs show that the graph feature vector is equally successful in separating the
models. Thus, the information conveyed by the assortativity coefficient should
be implicitly contained in the graphlet counts.

The most important graphlet feature was g6 , which corresponds to the 4-cycle.
The 4-cycle feature tends to be the most important feature overall. That is, it
appears frequently in the first layer of nodes in the ADT, and it is usually the
feature that is most visited by the Facebook data when it is put through the
classifier. In some cases, the outcome of the classification can be deduced by
considering only the feature g6 . In most cases, the SPA models were the models
that were able to generate 4-cycle counts that were the closest to the 4-cycle
counts in the Facebook graphs. This can be seen in the box plot for the Princeton
network in Figure 3. The box plots for the other Facebook graphs can be seen in
[Hurshman et al. 11]. This is a major factor in explaining why the SPA models
performed so well in our experiments.

An important difference between the models is that the PA and COPY models
tend not to generate highly connected subgraphs, whereas the GEO models do
tend to generate highly connected subgraphs. Conversely, the PA and COPY
models generate many sparse subgraphs, whereas the GEO models do not. By
highly connected subgraphs we mean those that contain a triangle, namely g2 ,
g5 , g7 . Sparse subgraphs are those without a triangle: g1 , g3 , g4 . In particular,
for some experiments, the ability of the PA model to generate a high number of
3- and 4-paths that fit extraordinary well with the 3- and 4-paths generated in
the Facebook data resulted in the PA model having the best performance. This
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phenomenon was especially significant for the Princeton and Brown experiments
when only the graph feature vector was used. Overall, the SPA models are able
to generate a mixture of dense subgraphs and sparse subgraphs, which explains
the good performance overall of the SPA model.

A final interesting observation comes from comparing the experiments for the
Princeton and Brown networks. Though the Princeton network has 6596 vertices,
and the Brown network has 8600 vertices, they both have almost the same edge
density. The conclusions of the two experiments are similar, and for the graph
feature vector in particular they are almost identical. Moreover, the ADTs pro-
duced for each of the networks are very similar. They have the exact same first
layer of nodes for both the full and graph feature vectors. This suggests that
training sets with graphs of the same density generate similar ADTs, and that
the same classifier could be used for observed networks of comparable density.
This also implies that if the appropriate normalization factor could be found for
comparing subgraph counts for the graphs of different sizes but similar densities,
then the building of the classifier would have to be done only once. The same
classifier could then be applied to suitably normalized feature vectors of the data.
Since the generation of the samples of each model and the computation of the
graphlet counts for these samples take a large amount of computation time, this
would improve our method significantly.

4. Conclusions and Further Work

The main goal of this work was to determine which of our six models is the most
appropriate for a social network such as Facebook. The results of our experiments
show clearly that the models incorporating a preferential attachment mechanism
give the best fit. However, based on our work, it is difficult to determine whether
the PA or the SPA model is better. This is because we have not performed
enough experiments to develop a statistically significant sample size. However,
the fact that in all four experiments, for almost every classifier generated, the
PA and SPA models generally received positive scores indicates that the models
do fit the test data quite well. On the other hand, the COPY model generally
gave high negative scores for almost all the classifiers generated, indicating that
the model is a poor fit for the Facebook graphs considered.

Our work has shown conclusively that our classification procedure works well
at separating graphs produced by each of our models even when the models
generate graphs with similar degree distributions and average path lengths. This
gives evidence to our claim that local structure is important in developing models
for real-world networks. Furthermore, we saw that the classification accuracy
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using all of the features and that using only the graphlet features were not
significantly different. We can conclude from this that considering graphlets is
sufficient to separate the models.

Our results show that graphlets corresponding to paths, cycles, and highly
connected subgraphs are the most influential in distinguishing between different
models. This is not a surprising conclusion, because a high count of paths and
a low count of complete subgraphs is characteristic of sparse models such as PA
and COPY, while a low count of paths and a high count of complete graphs is
characteristic of denser models such as GEO2D and GEO3D. The ability of the
SPA models to generate a good mixture of all the subgraphs, in particular the
4-cycle, resulted in the SPA models performing well across all experiments.

Currently, it is necessary to generate a new training set and classifier for each
test network of a given size and density. This is because graphlet counts are highly
dependent on the size and density of the graph. We are interested in determining
a method to normalize the graphlet counts so that graphlet counts for graphs of
varying sizes and densities can be compared. Such a normalization would make
it possible to build a single classifier that could test networks for a range of sizes
and densities. In this work, the amount of time to perform one experiment took
about two weeks, so the existence of a universal classifier through the normal-
ization of graphlet counts would make testing various real-world networks more
tractable.
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