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Multiplicative Attribute Graph
Model of Real-World Networks
Myunghwan Kim and Jure Leskovec

Abstract. Networks are a powerful way to describe and represent social, technologi-
cal, and biological systems, where nodes represent entities (people, web sites, genes)
and edges represent interactions (friendships, communication, regulation). The study
of such networks then seeks to find common structural patterns and explain their emer-
gence through tractable models of network formation.

In most networks, each node is associated with a rich set of attributes or features. For
example, users in online social networks have profile information, genes have properties
and functions, and web pages contain text. However, most existing network models
focus on modeling the network structure while ignoring the features and properties of
the nodes. Thus, the questions that we address in this work are as follows: What is
a mathematically tractable model that naturally captures ways in which the network
structure and node attributes interact? What are the properties of networks that arise
under such a model?

We present a model of network structure that we refer to as the multiplicative at-
tribute graphs (MAG) model. The MAG model naturally captures the interactions
between the network structure and the node attributes. We consider a model in which
each node has a vector of categorical attributes associated with it. The link-affinity
matrix then models the interaction between the value of a particular attribute and the
probability of a link between a pair of nodes. The MAG model yields itself to math-
ematical analysis, and we derive thresholds for the connectivity and the emergence of
the giant connected component, and show that the model gives rise to networks with
a constant diameter. We also analyze the degree distribution and find surprising flex-
ibility of the MAG model in that it can generate networks with either log-normal or
power-law degree distribution.
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1. Introduction

Networks have emerged as a main tool for studying phenomena across the so-
cial, technological, and natural worlds. And with the emergence of the Internet,
social media, and high-throughput gene expression analysis, massive amounts of
network data have become available. Such networks have been thoroughly stud-
ied, and a unifying theme of studying real-world networks is to find patterns of
connectivity and explain them through models. The goal is to find answers to
questions such as, “What do real graphs look like?” “How do they evolve over
time? “How can we synthesize realistic-looking graphs?” “How can we find mod-
els that explain the observed patterns?” and “What are algorithmic consequences
of the observations and models?”

Research on networks consists in empirical observations about the structure
of networks and the models giving rise to such structures. The empirical
analysis of networks aims to discover common structural properties or patterns
[Chakrabarti and Faloutsos 06], such as heavy-tailed degree distributions
[Faloutsos et al. 99, Broder et al. 00], local clustering of edges [Watts and
Strogatz 98, Leskovec et al. 09], small diameters [Albert et al. 99, Leskovec
et al. 05b], navigability [Milgram 67, Kleinberg 00], emergence of network
community structure [Fortunato 10, Girvan and Newman 02, Leskovec et al. 08],
and so on. In parallel, there have been efforts to develop the network-formation
mechanisms that naturally generate networks with the observed structural
features. In these network-formation mechanisms, there have been two relatively
dichotomous modeling approaches.

Broadly speaking, one line of work has focused mainly on relatively simple
“mechanistic” but mathematically tractable network models in which connectiv-
ity patterns observed in the real world naturally emerge from the model. The
prime example in this line of research is the preferential attachment model with
its many variants [Barabási and Albert 99, Aiello et al. 00, Bollobás and Rior-
dan 03, Borgs et al. 07, Cooper and Frieze 03]. The model specifies a simple but
very natural edge-creation mechanism that in the limit leads to networks with
power-law degree distributions. Other models of similar flavor include the copying
model [Kumar et al. 00], the small-world model [Watts and Strogatz 98, Klein-
berg 00], geometric random graphs [Flaxman et al. 04], the forest fire model
[Leskovec et al. 05b], the random surfer model [Blum et al. 06], and models of
bipartite affiliation networks [Lattanzi and Sivakumar 09].
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On the other hand, a different approach to modeling network data has also
emerged. The effort here is in the development of statistically sound models that
consider the structure of the network as well as the features of nodes and edges
in the network (for example, in a social network, node features could include age,
gender, hometown, and profession of a user). Examples of such models include the
exponential random graphs [Wasserman and Pattison 96], the stochastic block
model [Airoldi et al. 07], and the latent space model [Hoff and Raftery 02]. Such
models are generally not analyzed mathematically in a sense that one would
prove theorems about the properties of networks that emerge from the model
but are rather fit to network data in order to discover interesting facts about a
particular network data set.

1.1. “Mechanistic” and “Statistical” Models

Generally, there has been some gap between the above two lines of research. The
“mechanistic” models are analytically tractable in a sense that one can mathe-
matically analyze properties of the networks that arise from the models. These
models emphasize the natural emergence of networks that have certain structural
properties found in real-world networks. However, such models are usually not
statistically “interesting” in the sense that they are often too simplistic to accu-
rately model the heterogeneities in linking behavior of different nodes. On the
other hand, “statistical” models are usually analytically intractable, since they
do not lend themselves to mathematical analysis. Even though the number of
parameters in such models is usually large, the models come accompanied with
statistical procedures for model parameter estimation. Such models have proven
to be very useful for testing various hypotheses about the interaction of network
structure and the attributes of nodes and edges.

Although models of network structure and formation are seldom both ana-
lytically tractable and statistically interesting, an example of a model satisfy-
ing both features is the Kronecker graphs model [Leskovec et al. 05a, Leskovec
et al. 10, Weichsel 62], which is based on the recursive tensor product of small
graph adjacency matrices. The model is analytically tractable in a sense that
one can analyze global structural properties of networks that emerge from the
model [Bodine et al. 10, Leskovec et al. 10, Mahdian and Xu 07]. In addition,
this model is statistically meaningful because there exists an efficient parameter-
estimation technique based on maximum likelihood [Gleich and Owen 11, Kim
and Leskovec 11b, Leskovec and Faloutsos 07]. It has been empirically shown
that with only four parameters, Kronecker graphs quite accurately model the
global structural properties of real-world networks such as degree distribu-
tions, edge clustering, diameter, and spectral properties of the graph adjacency
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matrices. However, even though the Kronecker graphs model is able to capture
the global structure of networks, the model considers only “bare” networks whose
nodes have no attributes.

1.2. Modeling Networks with Node Attribute Information

Network data usually contain not only the node connectivity information but
also attributes and features of the nodes. For example, in social networks we
are given a list of friends of a person as well as his or her attributes, such as
gender, workplace, and hobbies. When studying biological networks, we are given
the connectivity information as well as the properties of genes or proteins that
constitute the nodes of the network.

In order to accurately model networks, node characteristics as well as the
network connectivity structure need to be considered simultaneously. However,
the attempt to model the interaction between the network structure and node
attributes raises a wide range of questions. For instance, how do we account
for the heterogeneity in the population of nodes, and how do we combine node
features in a natural way to obtain probabilities of individual links? While earlier
work on a general class of latent space models [Young and Scheinerman 07, Hoff
and Raftery 02] attempted to address such questions, most resulting models were
either analytically tractable but statistically uninteresting or statistically very
powerful but hard to analyze mathematically.

To bridge this gap, we propose a class of stochastic network models that we
refer to as multiplicative attribute graphs (MAG). The model naturally captures
the interactions between occurrence of links in the network and the node at-
tributes in a clean and tractable manner. We consider a model in which each
node has a vector of categorical attributes associated with it. Attribute values
of a node are then combined in order to model the emergence of links. The
model allows for rich interaction between node attributes in a sense that one
can simultaneously model attributes that reflect homophily (love of the same) as
well as heterophily (love of the different) [Rogers and Bhowmik 70, McPherson
et al. 01]. Homophily occurs when people that share a certain feature (that is,
people who are similar) are more likely to create links among themselves. On the
other hand, heterophily occurs when people are more likely to create connections
with those who do not share some feature with them (for example, gender). Our
MAG model is designed to capture, in a natural way, homophily, heterophily,
and other types of node attribute interactions that occur in networks.

The rest of the paper is organized as follows. We proceed by formulating the
model in Section 2. In the sections that follow we then present our mathemat-
ical results. Section 3 examines the number of edges and shows that our model
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naturally obeys the densification power law [Leskovec et al. 05b]. Section 4 ex-
amines the connectivity of the MAG model, which includes the conditions not
only when the network contains a giant connected component but also when
it becomes connected. Section 5 shows that the diameter of the MAG model
remains small even though the number of nodes is large. Section 6 shows that
networks emerging from the MAG model have a log-normal degree distribution.

Section 7 describes a more general version of the model that can also capture
the power-law degree distribution. We view this as particularly interesting in the
light of the current debate on the power-law and the log-normal distributions in
empirical data [Mitzenmacher 04, Mitzenmacher 06]. Our results imply that the
MAG model is flexible in a sense that networks with very different properties
emerge depending on the parameter configuration.

Finally, Section 8 verifies the properties of the MAG model by simulation
experiments. The results of the simulations examine how the synthetic network
changes depending on the parameters as well as on how similar the network looks
to real-world networks.

2. Formulation of the Multiplicative Attribute Graph (MAG) Model

In the following section, we introduce the multiplicative attribute graph (MAG)
model. We first formulate a general version of the MAG model and then present a
simplified version that we will mathematically analyze throughout the paper. Fi-
nally, we also investigate the connection to previous efforts on network modeling.

2.1. General Considerations

On the road to formulating the multiplicative attributes graph model, we first
introduce the two essential ingredients of the model: note-attribute vectors and
the attribute link-affinity matrices.

First, we consider a setting in which each node u of the network has an attribute
vector a(u) of k categorical attributes associated with it. For example, one can
think that we ask each node of the network a sequence of k yes/no questions,
such as, “Are you male?” “Do you like ice cream?” and so on. A sequence of
answers of a node to such questions then forms (in this case) a binary vector of
length k associated with that node.

A second essential ingredient of our model is to specify a mechanism that
generates the probability of an edge between two nodes based on their attribute
vectors. As mentioned before, we aim to be able to model both the homophily of
some features as well as the heterophily of others. To achieve this, we associate
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Figure 1. Node-attribute link affinities. Four different types of link affinity of a
particular attribute. Circles represent nodes with attribute value 0 and 1, and
the width of the arrows corresponds to the affinity of link formation between the
two groups. Each bottom figure indicates its corresponding link-affinity matrix
(color figure available online).

each attribute i (the ith “question”) with the attribute link-affinity matrix Θi .
Each entry of matrix Θi captures the affinity of the ith attribute to form a link
between a pair of nodes given the value of attribute i for both nodes.

More precisely, Θi [ai(u), ai(v)] indicates the affinity with which a pair of nodes
u and v form a link, given that each ith attribute of nodes u and v takes value
ai(u) and value ai(v) respectively. In other words, to obtain the link affinity
corresponding to the ith attribute of nodes u and v, the values (ai(u), ai(v))
of the ith attribute of nodes u and v “select” an appropriate entry of Θi . For
example, the attribute value of the first node selects the row of matrix Θi (row
0 or row 1), and the value of the second node selects the column. Intuitively,
the higher the value Θi [ai(u), ai(v)], the stronger is the effect of the particular
attribute combination (ai(u), ai(v)) on forming a link.

By defining link-affinity matrices, we can capture the various types of struc-
tures in real-world social networks. For example, consider that nodes are de-
scribed with binary attributes. Then each link-affinity matrix Θi is a 2× 2 ma-
trix. Figure 1 illustrates four possible link-creation affinities of a single binary
attribute, which is denoted by a.

The top row of the figure visualizes the overall structure of the network when
one is considering the value of that particular attribute a. Circle 0 represents all
the nodes for which attribute a takes the value 0, and circle 1 represents all the
nodes with attribute value 1. The width of each arrow indicates the affinity of the
link formation between a pair of nodes with a given attribute value. For example,
the arrow 0←→ 1 indicates the affinity of link formation between a node with 0
value of a given attribute a and a node for which a takes the value 1. Below, we
also show the structure of the corresponding attribute link-affinity matrix.

Consider Figure 1(a), which illustrates homophily, which is a tendency of nodes
to link with others that have the same value of the particular attribute. This
means that nodes sharing the value 0 or 1 are more likely to link than pairs
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of nodes with different values of the attribute. Such structures can be captured
by the link-affinity matrix Θ, which has large values on the diagonal entries,
which means that link probability is high when nodes share the same attribute
value. The graph at the top of the figure demonstrates that there will be many
links between nodes that have the value of the attribute set to 0 and many links
between nodes that have the value 1, but there will be few links between nodes
where one has the value 0 and the other takes the value 1.

Similarly, Figure 1(b) illustrates heterophily, whereby nodes that do not share
the value of the attribute are more likely to link. In the extreme case, such an
affinity structure gives rise to bipartite networks.

Furthermore, Figure 1(c) shows the core–periphery affinity [Holme 05,
Leskovec et al. 09], whereby links are most likely between the “0 nodes” (mem-
bers of the core) and least likely between “1 nodes” (members of the periphery).
However, links between “zeros” and “ones” are more likely than between the
“ones,” which means that nodes of the core are the most connected and that the
nodes of the periphery are better connected to the core than among themselves
[Leskovec 09].

Lastly, Figure 1(d) illustrates the uniform affinity structure, which corresponds
to an Erdős–Rényi random graph model, whereby nodes have the same affinity
of forming a link regardless of their corresponding attribute values.

These examples indicate that the MAG model provides flexibility in the net-
work structure via link-affinity matrices. Although our examples focused on the
simplest case of binary attributes and undirected graphs, the MAG model nat-
urally allows for attributes with higher cardinalities—for the attribute of cardi-
nality di , the corresponding link-affinity matrix Θi is a di × di matrix. Similarly,
to model directed graphs, we drop the restriction of Θi being symmetric.

2.2. The Multiplicative Attributes Graph (MAG) Model

Now we formulate a general version of the MAG model. To start, let each node
u ∈ V have a vector of k categorical attributes and let each attribute have cardi-
nality di for i = 1, 2, . . . , k. We also have k link-affinity matrices Θi ∈ di × di for
i = 1, 2, . . . , k. Each entry of Θi is a real value between 0 and 1. Note that there
is no condition for Θi to be stochastic; we require only that each entry of Θi

be in the interval (0, 1) to represent a probability. Then the probability P [u, v]
of an edge (u, v) is defined as the product of link affinities corresponding to the
values of individual attributes:

P [u, v] =
k∏

i=1

Θi [ai(u), ai(v)] , (2.1)
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Figure 2. Schematic representation of the multiplicative attribute graphs (MAG)
model. Given a pair of nodes u and v with the corresponding binary attribute
vectors a(u) and a(v), the probability of an edge P [u, v] is the product over
the entries of attribute link-affinity matrices Θi , where values of ai (u) and ai (v)
“select” appropriate entries (row/column) of Θi . Note that this particular model
represents an undirected graph by making each link-affinity matrix Θi symmetric.
However, the MAG model generally represents directed graphs.

where ai(u) denotes the value of the ith attribute of node u. Note that edges ap-
pear independently with probability determined by the values of node attributes
and link-affinity matrices Θi .

Thus, the MAG model M is fully specified by a tuple M(V, {a(u)}, {Θi}),
where V is a set of vertices, {a(u)} (for each u ∈ V ) is a set of vectors capturing
attribute values of node u, and {Θi} (for i = 1, . . . , k) is a set of link-affinity
matrices. Figure 2 illustrates the model.

One can think of the MAG model in the following sense. In order to construct
a social network, we ask each node u a series of multiple-choice questions, and
the attribute vector a(u) stores the answers of node u to these questions. Then
the answers of nodes u and v to the question i determine an entry of the link-
affinity matrix Θi . In other words, u’s answer selects a row, and v’s answer
selects a column. Assuming that the questions are chosen so that answers are
uncorrelated, the product over the entries of the link-affinity matrices Θi gives
the probability of the edge between u and v.

The choice of multiplicatively combining entries of Θi is very natural. In par-
ticular, the social network literature defines the concept of Blau space [McPher-
son 83, McPherson and Ranger-Moore 91], whereby socio-demographic attributes
act as dimensions. The organizing force in a Blau space is homophily, in that it
has been argued that the flow of information between a pair of nodes decreases
with the “distance” in the corresponding Blau space. In this way, small pockets
of nodes appear and lead to the development of social niches for human activity
and social organization. In this respect, multiplication is a natural way to com-
bine node-attribute data (that is, the dimensions of the Blau space) so that even
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a single attribute can have profound impact on the linking structure (that is, it
creates a narrow social niche community).

As we show next, the proposed MAG model is analytically tractable in the
sense that we can formally analyze the properties of the model. Moreover, the
MAG model is also statistically interesting, since it can account for the het-
erogeneities in the node population and can be used to study the interaction
between properties of nodes and their linking behavior. Moreover, one can pose
many interesting statistical inference questions: Given attribute vectors of all
nodes and the network structure, how can we estimate the values of link-affinity
matrices Θi? How can we infer the attributes of unobserved nodes? Or given a
network, how can we estimate both the node attributes and the link-affinity ma-
trices Θi? However, the focus of the present paper is the mathematical analysis
of the model. For readers interested in the MAG model parameter inference, we
point to our follow-up work, where we have developed a method for determining
the attribute vectors a(u) and the link-affinity matrices Θi for a given network
[Kim and Leskovec 11a].

2.3. Simplified Version of the Model

Next we describe a simplified version of the model that we then mathematically
analyze in the further sections of the paper. First, while the general MAG model
applies to directed networks, we consider the undirected version of the model by
requiring each Θi to be symmetric. Second, we assume binary attributes, and
thus link-affinity matrices Θi have two rows and two columns. Third, to further
reduce the number of parameters, we also assume that the link-affinity matrices
for all attributes are the same, so Θi = Θ for all i. Putting the three conditions
together, we get that Θ =

[
α β
β γ

]
. In other words,

Θ[0, 0] = α, Θ[0, 1] = Θ[1, 0] = β, Θ[1, 1] = γ, for 0 ≤ α, β, γ ≤ 1.

Furthermore, all our results will hold for α > β > γ, which essentially corre-
sponds to the core–periphery structure of the network. However, we note that
the assumption α > β > γ is natural, since most large real-world networks have
a common “onion”-like core–periphery structure [Leskovec et al. 08, Leskovec
et al. 09, Leskovec et al. 10].

Lastly, we also assume a simple generative model of node-attribute vectors.
We consider that each binary attribute vector is generated by k independently
and identically distributed (i.i.d.) coin flips with bias µ. That is, we use an
i.i.d. Bernoulli distribution parameterized by µ to model attribute vectors such
that the probability that the ith attribute of node u takes the value 0 is
P (ai(u) = 0) = µ for i = 1, . . . , k and 0 < µ < 1.
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Putting it all together, the simplified MAG model M(n, k, µ,Θ) is fully spec-
ified by six parameters: n is the number of nodes, k is the number of attributes
of each node, µ is the probability that an attribute takes the value 0, and
Θ = [α β;β γ] (where α > β > γ) specifies the attribute link-affinity matrix.

We now study the properties of the random graphs that result from the MAG
model M(n, k, µ,Θ), where every unordered pair of nodes (u, v) is independently
connected with probability P [u, v] defined in (2.1). Since the probability of an
edge exponentially decreases in k, the most interesting case occurs when k =
ρ log2 n for some constant ρ. The choice of k = ρ log2 n is motivated by the fact
that the effective number of dimensions required to represent networks is of order
log n [Bonato et al. 10]. For convenience, throughout the paper, we will denote
log2(·) by log(·), while writing loge(·) as ln(·).

2.4. Connections to Other Models of Networks

We note that our MAG model belongs to a general class of latent space network
models, where nodes have some discrete or continuous latent attributes and the
probability of a pair of nodes forming a link depends on the values of the la-
tent attribute of the two nodes. For example, the latent space model [Hoff and
Raftery 02] assumes that nodes reside in a d-dimensional Euclidean space and
the probability of an edge between the pair of nodes depends on the Euclidean
distance between the latent positions of the two nodes. Similarly, in the random
dot product graphs model [Young and Scheinerman 07], the linking probability
depends on the inner product between the vectors associated with node positions.

Furthermore, the MAG model generalizes two recent models of network
structure. First, the recently developed multifractal network generator [Palla
et al. 10] can be viewed as a special case of the MAG model for which the node
attribute value distributions as well as the link-affinity matrices are all equal for
all attributes.

Moreover, the MAG model also generalizes the Kronecker graphs model
[Leskovec et al. 10] in a very subtle way. The Kronecker graphs model takes
a small (usually 2× 2) initiator matrix K and tensor-powers it k times to obtain
a matrix G of size 2k × 2k , interpreted as the stochastic graph adjacency matrix.
One can think of a Kronecker graph model as a special case of the MAG model.

Proposition 2.1. A Kronecker graph G on 2k nodes with a 2× 2 initiator matrix
K is equivalent to the following MAG graph M : Let us number the nodes of
M as 0, . . . , 2k − 1. Let the binary attribute vector of a node u of M be a bi-
nary representation of its node identifier, and let Θi = K. Then individual edge
probabilities (u, v) of nodes in G match those in M : PG [u, v] = PM [u, v].
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The above observation is interesting for several reasons. First, all results ob-
tained for Kronecker graphs naturally apply to a subclass of MAG graphs where
the node’s attribute values are the binary representation of its identifier. This
means that in a Kronecker graph version of the MAG model, each node has a
unique combination of attribute values (that is, each node has a different node
identifier), and all attribute value combinations are occupied (that is, node iden-
tifiers are in the range 0, . . . , 2k − 1).

Second, the Kronecker graph model can generate only networks whose number
of nodes is an integer power of the size of the Kronekcer initiator matrix K

(n = 2k ). On the other hand, the MAG model provides an important extension
in a sense that it does not suffer from this constraint. Our MAG model generates
networks with any number of nodes.

Third, building on this correspondence between Kronecker and MAG graphs,
we also note that the estimates of the Kronecker initiator matrix K nicely trans-
fer to the matrix Θ of the MAG model. For example, the Kronecker initiator
matrix K = [α = 0.98, β = 0.58, γ = 0.05] accurately models the graph of In-
ternet connectivity, while the global network structure of the Epinions online
social network is captured by K = [α = 0.99, β = 0.53, γ = 0.13] (see [Leskovec
et al. 10]). Thus, in the rest of this paper, we will consider the above values of
α, β, and γ as the typical values that the matrix Θ would normally take. In this
respect, our assumption of α > β > γ seems very natural.

Furthermore, the fact that most large real-world networks satisfy α > β > γ

tells us that such networks have recursive core–periphery structure [Leskovec
et al. 08, Leskovec et al. 10]. In other words, the network is composed of
denser and denser layers of edges as one moves toward the core of the network.
Basically, α > β > γ means that more edges are likely to appear between nodes
that share 0’s on more attributes, and these nodes form the core of the network.
Since more edges appear between pairs of nodes with attribute combination 0–1
than between those with 1–1, there are more edges between the core and the
periphery nodes (edges 0–1) than between the nodes of the periphery themselves
(edges 1–1).

In the sections that follow we mathematically analyze the properties of the
MAG model. We focus mostly on the simplified version. Each section states the
main theorem and gives an overview of the proof. We omit the full proofs in the
main body of the paper and describe them in the appendix, Section 10.

3. The Number of Edges

In this section, we derive an expression for the expected number of edges in
the MAG model. Moreover, this formula can validate not only the assumption
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k = ρ log n, but also a substantial social network property, namely the densifica-
tion power law [Leskovec et al. 05b].

Theorem 3.1. For a MAG graph M(n, k, µ,Θ), the expected number of edges, denoted
by m, satisfies

E[m] =
n(n− 1)

2
(
µ2α + 2µ(1− µ)β + (1− µ)2γ

)k + n (µα + (1− µ)γ)k .

The expression is divided into two terms. The first term indicates the number
of edges between distinct nodes, whereas the second term represents the number
of self-edges. If we exclude self-edges, the number of edges will be reduced to the
first term.

Before presenting the actual analysis, we define some useful shorthand notation
that will be used throughout the paper. First, let V be the set of nodes in the
MAG graph M(n, k, µ,Θ). We refer to the weight of a node u as the number of
0’s in its attribute vector, and denote it by |u|, that is, |u| = ∑k

i=1 1 {ai(u) = 0} ,

where 1 {·} is an indicator function. Additionally, we define Wj to be the set of
all nodes with the same weight j, so Wj = {u ∈ V : |u| = j} for j = 0, 1, . . . , k.
Similarly, Sj denotes the set of nodes with weight greater than or equal to j,
that is, Sj = {u ∈ V : |u| ≥ j}. By definition, Sj = ∪k

i=jWi .
To prove Theorem 3.1, we use the definition of the simplified MAG model and

first derive the following two lemmas.

Lemma 3.2. For distinct u, v ∈ V ,

E[P [u, v] | u ∈Wi ] = (µα + (1− µ)β)i (µβ + (1− µ)γ)k−i .

Lemma 3.3. For u ∈ V ,

E[deg(u) | u ∈Wi ] = (n− 1) (µα + (1− µ)β)i (µβ + (1− µ)γ)k−i + 2αiγk−i .

Using these lemmas, the outline of the proof of Theorem 3.1 is as follows.
Since the number of edges is half the degree sum, all we need to do is to sum
E[deg(u)] over the degree distribution. However, because E[deg(u)] = E[deg(v)]
if the weights of u and v are the same, we can add up E[deg(u) | u ∈Wi ] over
the weight distribution. Moreover, Theorem 3.1 also points out two important
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features of the MAG model. First, our earlier assumption that k = ρ log n for a
constant ρ is reasonable on account of the following two corollaries:1

Corollary 3.4. We have m ∈ o(n) almost surely as n→∞ if

k

log n
> − 1

log (µ2α + 2µ(1− µ)β + (1− µ)2γ)
.

Corollary 3.5. We have m ∈ Θ(n2−o(1)) almost surely as n→∞ if k ∈ o(log n).

Note that log
(
µ2α + 2µ(1− µ)β + (1− µ)2γ

)
< 0 because both µ and γ are

less than 1. Thus, in order for the MAG model M(n, k, µ,Θ) to have a realistic
number of edges—for example, more than the number of nodes n—the number
of attributes k should be bounded by order log n from Corollary 3.4. Similarly,
since most networks are sparse (that is, m� n2), the case of k ∈ o(log n) can
also be excluded. In consequence, both Corollary 3.4 and Corollary 3.5 provide
upper and lower bounds on the number of attributes k. These bounds support
our initial assumption of k = ρ log n.

Second, the expected number of edges can be approximately restated as

1
2
n2+ρ log(µ2 α+2µ(1−µ)β+(1−µ)2 γ ) ,

which means that the MAG model obeys the densification power law [Leskovec
et al. 05b], one of the properties of networks that grow over time. The densifica-
tion power law states that m(t) ∝ n(t)a for a > 1, where m(t) and n(t) are the
numbers of edges and nodes at time t, and a is the densification exponent. For
example, an instance of the MAG model with ρ = 1, µ = 0.5 (Proposition 2.1)
would have the densification exponent a = log(|Θ|), where |Θ| denotes the sum
of the entries of Θ.

Proofs of both lemmas and the theorem are fully described in Section 10.1.

4. Connectedness and the Existence of the Giant Component

In the previous section, we observed that the MAG model follows the densifi-
cation power law, and we gave conditions on the number of edges in the MAG
network. In this section, we mathematically investigate another general property

1 Throughout this paper, “almost surely” or “with high probability” means that some event
occurs with probability 1 − o(1).
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of networks, the existence of a giant connected component. Furthermore, we also
examine the situation in which this giant component covers the entire network,
which indicates that the network is connected.

We begin with the theorems that the MAG graph has a giant component and
further becomes connected.

Theorem 4.1. (Giant component.) Only one connected component of size Θ(n) exists in
the MAG model M(n, k, µ,Θ) almost surely as n→∞ if and only if

[(µα + (1− µ)β)µ (µβ + (1− µ)γ)1−µ ]ρ ≥ 1
2
.

Theorem 4.2. (Connectedness.) Let the connectedness criterion function of the MAG
model M(n, k, µ,Θ) be given by

Fc(M) =

⎧⎨
⎩

(µβ + (1− µ)γ)ρ when (1− µ)ρ ≥ 1
2 ,

[(µα + (1− µ)β)ν (µβ + (1− µ)γ)1−ν ]ρ otherwise,

where ν is a solution of[(µ

ν

)ν
(

1− µ

1− ν

)1−ν
]ρ

=
1
2

in (0, µ).

Then the MAG model M(n, k, µ,Θ) is connected almost surely as n→∞ if
Fc(M) > 1

2 . In contrast, the MAG model M(n, k, µ,Θ) is disconnected almost
surely as n→∞ if Fc(M) < 1

2 .

To prove the above theorems, we first define the monotonicity property of the
MAG model.

Theorem 4.3. (Monotonicity.) For u, v ∈ V ,

P [u, v | |u| = i] ≤ P [u, v | |u| = j]

if i ≤ j.

Theorem 4.3 ultimately demonstrates that a node of larger weight (defined
as the number of zeros in its attribute vector) is more likely to be connected
with other nodes. In other words, a node of large weight plays a “core” role in
the network, whereas a node of small weight is regarded as “peripheral.” This
feature of the MAG model has direct effects on the connectedness as well as on
the existence of a giant component.
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By the monotonicity property, the minimum degree is likely to be the degree of
the minimum-weight node. Therefore, the disconnectedness could be proved by
showing that the expected degree of the minimum-weight node is too small to be
connected with any other node. Conversely, if this lowest degree is large enough,
say Ω(log n), then any subset of nodes would be connected with the other part of
the graph. Thus, to show the connectedness, the degree of the minimum-weight
node must be inspected, using Lemma 3.3.

Note that the criterion in Theorem 4.2 is separated into two cases depending
on µ, which tells whether the expected number E[|W0 |] of weight-0 nodes is
greater than 1, because |Wj | is a binomial random variable. If this expectation is
greater than 1, then the minimum weight is likely to be close to 0, that is, O(1).

Therefore, the condition for connectedness actually depends on the minimum-
weight node. In fact, the proof of Theorem 4.2 is accomplished by computing
the expected degree of this minimum-weight node and using some techniques
introduced in [Mahdian and Xu 07]. Refer to Section 10.2 for the full proof.

A similar argument also works to explain the existence of a giant component.
Instead of focusing on the minimum-weight node, Theorem 4.1 shows that the
existence of the Θ(n) component relies on the degree of the median-weight node.
We intuitively understand this in the following way. Consider that we delete
from the network the nodes of degree smaller than the median degree. If the
degree of the median-weight node is large enough, then the remaining half of
the network is likely to be connected. The connectedness of this half-network
implies the existence of a Θ(n) component, the size of which is at least n/2. In
the proof, we actually examine the degrees of nodes of three different weights:
µk, µk + k1/6 , and µk + k2/3 . The existence of a Θ(n) component is determined
by the degrees of these nodes.

However, the existence of a Θ(n) component does not necessarily indicate that
it is a unique giant component, since there might be another Θ(n) component.
Therefore, to prove Theorem 4.1 more strictly, the uniqueness of the Θ(n) com-
ponent has to follow the existence of it. We can prove the uniqueness by showing
that if there are two connected subgraphs of size Θ(n), then they are connected
to each other almost surely.

The complete proofs of these three theorems can be found in Section 10.2.

5. Diameter of the MAG Network

The diameter of real-world networks is usually small, even though the number
of nodes can grow large. More interestingly, as the network grows, the diameter
tends to shrink [Leskovec et al. 05b]. We can show that networks arising from the
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MAG model also exhibit this property. We apply similar ideas as in [Mahdian
and Xu 07].

Theorem 5.1. If (µβ + (1− µ)γ)ρ > 1
2 , then the MAG model M(n, k, µ,Θ) has a

constant diameter almost surely as n→∞.

This theorem does not specify the exact diameter, but under the given condi-
tion, it guarantees a bounded diameter even though n→∞ using the following
lemmas (recall that we defined Sλk as {u ∈ V : |u| ≥ λk} in Section 3).

Lemma 5.2. If

(µβ + (1− µ)γ)ρ >
1
2

for λ =
µβ

µβ + (1− µ)γ
,

then Sλk has a constant diameter almost surely as n→∞.

Lemma 5.3. If

(µβ + (1− µ)γ)ρ >
1
2

for λ =
µβ

µβ + (1− µ)γ
,

then all nodes in V \Sλk are directly connected to Sλk almost surely as n→∞.

By Lemma 5.3, we can conclude that the diameter of the entire graph is limited
to (2 + diameter of Sλk ). Since by Lemma 5.2, the diameter of Sλk is constant
almost surely under the given condition, the actual diameter is also constant.

The proofs are presented in Section 10.3.

6. Log-Normal Degree Distribution

In this section, we analyze the degree distribution of the simplified MAG model.
In our analysis we exclude the self-edges not only because computations become
simple but also because self-edges have little effect on the degree distribution
of the network. Depending on values of Θ, the MAG model produces graphs of
various degree distributions. For instance, since the network becomes a sparse
Erdős–Rényi random graph if α ≈ β ≈ γ < 1, the degree distribution will ap-
proximately follow the binomial distribution. Similarly, if µ is close to 0 or 1,
then the MAG graph again becomes an Erdős–Rényi random graph with edge
probability p = α (when µ ≈ 1) or γ (when µ ≈ 0). Another extreme example
is the case that α ≈ 1 and µ ≈ 1. Then the network will be close to a complete
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graph, which represents a degree distribution different from a sparse Erdős–Rényi
random graph.

For these reasons, we will focus on particular ranges of values of parameters
µ and Θ. For µ we assume that its value is bounded away from 0 and 1. With
regard to Θ, we assume that a reasonable configuration space for Θ is one for
which

µα + (1− µ)β
µβ + (1− µ)γ

is between 1.6 and 3. Our condition on Θ can be supported by real examples
in [Leskovec and Faloutsos 07]. For example, the particular Kronecker graph
presented in Section 2 has the value of this ratio equal to 2.44. Also note that
the condition on Θ is crucial for us, since in the analysis we use that(

µα + (1− µ)β
µβ + (1− µ)γ

)x

grows faster than a polynomial function of x. If

µα + (1− µ)β
µβ + (1− µ)γ

is close to 1, we cannot make use of this fact.
Assuming these conditions on µ and Θ, we obtain the following theorem about

the degree distribution of the MAG model.

Theorem 6.1. In the MAG model M(n, k, µ,Θ) that follows the above assumptions,
if

[(µα + (1− µ)β)µ (µβ + (1− µ)γ)1−µ ]ρ >
1
2
,

then the tail pd of the degree distribution follows a log-normal distribution, specif-
ically,

lnN
(
ln

(
n(µβ + (1− µ)γ)k

)
+ kµ ln R +

kµ(1− µ)(ln R)2

2
, kµ(1− µ)(ln R)2

)
,

for

R =
µα + (1− µ)β
µβ + (1− µ)γ

as n→∞.

In other words, the degree distribution of the MAG model approximately
follows a quadratic relationship when plotted on a log-log scale. This result
is nice, since some social networks tend to follow the log-normal distribution.
For instance, the degree distribution of the LiveJournal online social network
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[Liben-Nowell et al. 05] as well as the degree distribution of the communication
network between 240 million users of Microsoft Instant Messenger [Leskovec and
Horvitz 08] tend to follow the log-normal distribution.

To give a brief overview of the proof, we first notice that the expected degree
of a node in the MAG model is an exponential function of the node weight by
Lemma 3.3. This means that the degree distribution is mainly affected by the
distribution of node weights. The node weight follows a binomial distribution,
which can be approximated by a normal distribution for sufficiently large k. Be-
cause the logarithmic value of the expected degree is linear in the node weight
and this weight follows a binomial distribution, the logarithm of the degree ap-
proximately follows a normal distribution for large k. This in turn indicates that
the degree distribution roughly follows a log-normal distribution.

Note that we required

[(µα + (1− µ)β)µ (µβ + (1− µ)γ)1−µ ]ρ >
1
2
,

which is related to the existence of a giant component. First, this requirement
is perfectly acceptable, because real-world networks have a giant component.
Second, as we described in Section 4, this condition ensures that the median
degree is large enough. Equivalently, it also indicates that the degrees of half
the nodes are large enough. If we refer to the tail of the degree distribution as
the degrees of nodes with degrees above the median degree, then we can prove
Theorem 6.1. The full proofs for the above analysis are described in Section 10.4.

7. Extension: Power-Law Degree Distribution

So far, we have worked with the simplified version of the MAG model parame-
terized by only a few variables. Even with these few parameters, the model can
generate networks with many properties found in real-world networks. However,
regarding the degree distribution, even though the log-normal distribution is one
that networks commonly follow, many networks also follow the power-law degree
distribution [Faloutsos et al. 99].

In this section, we show that by slightly extending the basic MAG model we
can produce networks with the power-law degree distribution. We do not attempt
to analyze a general case, but rather we suggest an example of a configuration
of the MAG model parameters that leads to networks with power-law degree
distributions.

We still maintain the condition that every attribute is binary and inde-
pendently sampled from a Bernoulli distribution. However, in contrast to the
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simplified version, we allow each attribute to have a different Bernoulli param-
eter as well as a different attribute link-affinity matrix associated with it. The
formal definition of this model is as follows:

P (ai(u) = 0) = µi, P [u, v] =
k∏

i=1

Θi [ai(u), ai(v)] .

The number of parameters here is 4k, and they consist of µi ’s and Θi ’s for
i = 1, 2, . . . , k. For convenience, we denote this power-law version of the MAG
model by M(n, k, �µ, �Θ), where �µ = {µ1 , . . . , µk} and �Θ = {Θ1 , . . . ,Θk}. With
these additional parameters, we are able to obtain the power-law degree distri-
bution, as the following theorem describes.

Theorem 7.1. For M(n, k, �µ, �Θ), if

µi

1− µi
=

(
µiαi + (1− µi)βi

µiβi + (1− µi)γi

)−δ

for δ > 0, then the degree distribution satisfies pd ∝ d−δ− 1
2 as n→∞.

In order to investigate the degree distribution of this model, the following two
lemmas are essential.

Lemma 7.2. The probability that node u in M(n, k, �µ, �Θ) has an attribute vector
with values ai(u) (for i = 1, . . . , k) is

k∏
i=1

(µi)1{ai (u)=0}(1− µi)1{ai (u)=1}.

Lemma 7.3. The expected degree of node u in M(n, k, �µ, �Θ) is

(n− 1)
k∏

i=1

(µiαi + (1− µi)βi)
1{ai (u)=0} (µiβi + (1− µi) γi)

1{ai (u)=1} .

By Lemmas 7.2 and 7.3, if the condition in Theorem 7.1 holds, then the prob-
ability that a node has the same attribute vector as node u is proportional to the
(−δ)th power of the expected degree of u. In addition, the (− 1

2 )th power comes
from the Stirling approximation for large k. This roughly explains Theorem 7.1.
The complete proof is given in Section 10.5, and the result is also verified by
simulation in Figure 5.
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8. Simulation Experiments

In the previous sections we performed theoretical analysis of the MAG model. In
this section, we use simulation experiments to further demonstrate the properties
of networks that arise from the MAG model. First, we generate synthetic MAG
graphs with different parameter values to explore how the network properties
change as a function of the MAG parameter values. We focus on the change of
scalar network properties, such as diameter and the size of the largest connected
component of the graph, as a function of the model parameter values. Second,
we also run simulations with fixed parameter configurations to check other addi-
tional properties of networks under the MAG model that we did not theoretically
analyze. In this way, we are able to qualitatively compare networks produced by
our model to a given real-world network.

8.1. MAG Model Parameter Space

Here we focus on the simplified version of the MAG model and examine how
various network properties vary as a function of parameter settings. We fix all
but one parameter and vary the remaining parameters. We vary µ, α, f , and n

in the MAG model M(n, k, µ,Θ), where α is the first entry of the link-affinity
matrix Θ = [α β;β γ] and f indicates a scalar factor of Θ, that is, Θ = f ·Θ0

for a constant Θ0 = [α0 β0 ;β0 γ0 ].
Figure 3 depicts (a) the number of edges, (b) the fraction of nodes in the

largest connected component, and (c) the effective diameter of the network as
a function of µ, α, f , and n for a fixed k = 8. Here the effective diameter of
a network is defined as the 90th percentile of the distribution of shortest path
distance between connected pairs of nodes [Leskovec et al. 05b].

First, we notice that the growth of the network in the number of edges is slower
than exponential, since the curves on the plot grow sublinearly in Figure 3(a),
which has a log-scaled y-axis. Note that based on Theorem 3.1, the network size
(the number of edges) is roughly proportional to

n2 (
µ2α + 2µ(1− µ)β + (1− µ)2γ

)k
.

For example, by this formula, the number of edges is proportional to the kth
power of f (the eighth power of f in our case). Since the expected number of
edges is a polynomial function of each variable (µ, α, f , and n), this sublinear
growth on the log scale agrees with our analysis. Furthermore, the larger the
degree of the polynomial function for each variable, the closer to the straight
line the number-of-edges curve becomes. For instance, the network size grows by
a 16th-degree polynomial in µ, whereas it grows as a quadratic function of n. In
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Figure 3. Structural properties of a simplified MAG model M (n, k, µ, Θ) when
we fix k and vary single parameters one at a time: µ, α, f , or n. As each parameter
increases, the synthetic network becomes denser in general, so that a giant con-
nected component emerges and the diameter decreases to approach a constant.
(a) Network size, (b) largest connected component, (c) effective diameter (color
figure available online).

Figure 3(a), we thus observe that the network size growth over µ is even closer
to the exponential curve than that over n.

Second, in Figure 3(b), the size of the largest component shows a sharp thresh-
olding behavior, which indicates a rapid emergence of the giant component.
This is very similar to thresholding behaviors observed in other network mod-
els such as the Erdős–Rényi random graph and Kronecker models [Erdős and
Rényi 60, Leskovec et al. 10]. The vertical line in the middle of each figure
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Figure 4. Structural properties of a simplified MAG graph as a function of the
number of nodes n for different values of µ (we fix the link-affinity matrix Θ =
[0.85 0.7; 0.7 0.15] and the ratio ρ = k/ log n = 0.596). Observe not only that the
relationship between the number of edges and nodes obeys the densification power
law, but also that the diameter begins shrinking after the giant component is
formed [McGlohon et al. 08]. (a) Network size, (b) largest connected component,
(c) effective diameter (color figure available online).

represents the theoretical threshold for the existence of a unique giant connected
component (the result of Theorem 4.1). Notice that the theoretical threshold
and the simulations agree nearly perfectly. The vertical line intersects the size of
the largest connected component close to the point where the largest component
contains a bit over 50% of the nodes of the network.
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Lastly, while the previous two network properties monotonically change, in
Figure 3(c) the effective diameter of the network increases quickly up to about the
point where the giant connected component forms and then drops rapidly after
that and approaches a constant value. This behavior is in accordance with em-
pirical observations of the “gelling” point where the giant component forms and
the diameter starts to decrease in the evolution of real-world networks [Leskovec
et al. 05b, McGlohon et al. 08]. Intuitively, this makes sense: When the network
is not connected, the effective diameter, which is defined only over connected
pairs of nodes, is small. As the network gains more edges, it becomes better con-
nected but looks like a tree, and so the diameter increases. When the network
gains even more edges and moves beyond the emergence of the giant connected
component, the diameter tends to shrink.

Furthermore, we also performed simulations in which we fix Θ and µ but
simultaneously increase both n and k by keeping their ratio constant. Figure 4
plots the change in each network metric (network size, fraction of the largest
connected component, and effective diameter) as a function of the number of
nodes n for different values of µ. Each plot effectively represents the evolution
of the MAG network as the number of nodes grows over time. From the plots,
we see that the MAG model follows the densification power law (DPL) and
the shrinking diameter property of real-world networks [Leskovec et al. 05b].
Depending on the choice of µ, one can also control for the rate of densification
and the diameter.

8.2. Degree Distributions

In addition to the network size, connectivity, and diameter, we also empirically
examined the degree distributions of the MAG graph. We already proved that the
MAG model can give rise to networks that have either a log-normal or a power-
law degree distribution depending on the model parameters. Here we generate
the two types of networks and compare their degree distributions.

Figure 5 plots the degree distributions of the two types of MAG model.
Figure 5(a) plots the degree distributions of the simplified MAG model
M(n, k, µ,Θ), while Figure 5(b) plots the degree distribution of the “power-
law” version of the MAG model M(n, k, �µ, �Θ) that we introduced in Section 7.
For each case, the left plot represents the degree histogram, whereas the right
plot shows the complementary cumulative distribution (CCDF). While both the
histogram and CCDF of a power-law distribution look linear when plotted on a
log-log scale, CCDF provides a much better test of whether a distribution follows
a power law [Clauset et al. 07].

In Figure 5(a), both raw and CCDF versions of the distribution look parabolic
on the log-log scale, which indicates that the MAG model M(n, k, µ,Θ) has a
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Figure 5. Degree distributions of simplified and power-law versions of the MAG
graph (see Section 7). We plot both the histogram and the CCDF of the degree
distribution. The simplified version in figure (a) has a parabolic shape on the log-
log scale, which is an indication of a log-normal degree distribution. In contrast,
the power-law version in figure (b) shows a straight line on the same scale, which
demonstrates a power-law degree distribution (color figure available online).

log-normal degree distribution. On the other hand, in Figure 5(b), both plots
exhibit a straight line on the log-log scale, which indicates that the degree distri-
bution of M(n, k, �µ, �Θ) follows a power law. All these experimental results agree
with our mathematical analyses in Sections 6 and 7.

8.3. Comparison to Real-world Networks

Also, we qualitatively compare the structural properties of a given real-world
network and the corresponding synthetic network generated by the MAG model.
In order to compare the real and synthetic networks, we need to determine
the appropriate values of the MAG model parameters. This leads to interesting
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Figure 6. (a) Yahoo!-Flickr network, (b) simplified MAG model, (c) general MAG
model. A comparison of network properties between real-world Yahoo!-Flickr
online social network, a simplified MAG model network, and a general version of
the MAG model. Except for the clustering coefficient, the properties of the MAG
model qualitatively resemble those of the Yahoo!-Flickr network even when it is
the simplified version in figure (b). Moreover, the general version of the MAG
model can represent all six network properties of a shape similar to those of the
real-world networks in figure (c) (color figure available online).
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questions of how to find optimal MAG model parameters so that the synthetic
network resembles the given real-world network. The full resolution of these
questions lies beyond the scope of the present paper. In this paper we simply
searched by brute force over a relatively small subset of possible MAG param-
eter settings. For readers interested in how to determine optimal MAG model
parameters for a given real-world network, we point to our follow-up work [Kim
and Leskovec 11a].

In this paper we manually selected some parameter settings (n, k, µ,Θ) to
synthesize the simplified MAG model. We then computed the properties of the
MAG model M(n, k, µ,Θ) and compared them to the properties of a given real-
world network. Our goal is not to claim that these particular parameter values are
in any way “optimal” for the given real-world network but rather to demonstrate
the flexibility of the MAG model and show that many MAG networks exhibit
qualitatively similar properties to those found in real-world networks.

For the real-world network, we use the Yahoo!-Flickr online social network on
10,240 nodes and 44,800 edges. For the simplified MAG model M(n, k, µ,Θ), we
used k = 8, µ = 0.45, Θ = [0.85 0.30; 0.30 0.25] with the same number of nodes
n = 10,240. Figures 6(a) and (b) illustrate the following properties of the real-
world and corresponding synthetic networks of the simplified MAG model. Each
row of the figure plots a separate property:

Row 1: Degree distribution is a histogram of the number of edges of a node
[Faloutsos et al. 99].

Row 2: Singular values indicate the singular values of the adjacency matrix
versus their rank [Farkas et al. 01].

Row 3: Singular vector represents the distribution of components in the left
singular vector associated with the largest singular value [Chakrabarti
et al. 04].

Row 4: Clustering coefficient represents the degree versus the average (local)
clustering coefficient of nodes of a given degree [Watts and Strogatz 98].

Row 5: Triad participation indicates the number of triangles to which a node
is adjacent. It measures the transitivity in networks [Tsourakakis 08].

Row 6: Hop plot shows the number of reachable pairs of nodes as the number
of hops. It sketches how quickly the network expands [Palmer et al. 02,
Leskovec and Faloutsos 07].

Figure 6 reveals that the plots of properties of the MAG model resemble
those of the Yahoo!-Flickr network. Notice the qualitatively similar behavior of
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Attribute (i) µi Θi

0 0.60 [0.9999 0.0432; 0.0505 0.9999]
1 0.04 [0.9999 0.9999; 0.9999 0.1506]
2 0.24 [0.9999 0.9999; 0.9999 0.2803]
3 0.17 [0.9999 0.9999; 0.9999 0.2833]
4 0.62 [0.9999 0.0476; 0.0563 0.9999]
5 0.08 [0.9999 0.9999; 0.9999 0.1319]
6 0.57 [0.9999 0.1246; 0.1402 0.9999]
7 0.57 [0.9999 0.1186; 0.1364 0.9999]
8 0.40 [0.9999 0.1757; 0.1535 0.9999]

Table 1. MAG model configuration for Figure 6(c). We let k = 9 for this general
version.

nearly all properties between Figures 6(a) and (b). The only property for which
the simplified MAG model does not match the Yahoo!-Flickr network seems
to be the clustering coefficient. Since in real-world networks high-degree nodes
tend to have lower clustering, in the simplified MAG model the situation is the
reverse: higher-degree nodes also tend to have higher clustering. This is due to
the fact that for all attributes we use the same link-affinity matrix Θ, which
represents only the core–periphery structure (α > β > γ). Thus, the simplified
MAG model can resemble only the overall core–periphery structure of real-world
networks [Leskovec et al. 09]. However, networks like the Yahoo!-Flickr network
also exhibit local clustering of the edges, where effects of homophily result in
formation of tightly knit clusters or communities in networks.

Hence, our hypothesis is that the local clustering of nodes would naturally
emerge by mixing core–periphery link-affinity matrices (α > β > γ) and ho-
mophily link-affinity matrices (α, γ > β). To investigate this, we also gener-
ated the synthetic network with a more general version of the MAG model,
M(n, k, �µ, �Θ). Figure 6(c) illustrates the network properties of this general ver-
sion. We describe the configuration of this version in Table 1. Note that this
general version of the model nicely captures the heavy-tailed clustering coeffi-
cient distribution that the real-world network shows, which the simplified version
cannot do. For the other properties, the general version still exhibits distributions
that seem qualitatively similar to those of the real-world network.

By this experiment, we find that the MAG model is capable of representing
real-world networks. Furthermore, we verify the flexibility of the MAG model
in a sense that it can give rise to networks with different network properties
depending on the MAG model parameter configuration.
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9. Conclusion

We have presented the multiplicative attribute graph model of real-world net-
works. Our model considers nodes with categorical attributes as well as the
affinity of link formation of each specific attribute. We introduced the attribute
link-affinity matrix to represent the affinity of link formation and provide flexi-
bility in the network structure.

The introduced MAG model is both analytically tractable and statistically
interesting [Kim and Leskovec 11a]. In this paper, we analytically proved several
network properties observed in real-world networks. We proved that the MAG
model obeys the densification power law. We also showed both the existence of
a unique giant connected component and a small diameter of MAG networks.
Furthermore, we showed through mathematical analysis that the MAG model
gives rise to networks with either log-normal or power-law degree distribution.
Finally, we empirically verified our analytical results by large-scale simulation
experiments.

Overall, the MAG model is statistically interesting in a sense that it can rep-
resent various types of network structures. Moreover, the MAG model also leads
an interesting problem of identifying the structure of a given real-world network
in terms of the MAG model parameters. We leave various formulations of the
parameter fitting problem for future work. Furthermore, future work includes
other kinds of problems such as how to find underlying network structures and
missing node attributes where node attributes are partially observed.

10. Appendix

In this appendix we give complete proofs of theorems and lemmas presented
earlier in the paper. In particular we prove:

� Section 10.1: The number of edges. We prove Lemmas 3.2, 3.3 and Theorem
3.1.

� Section 10.2: Connectedness and the existence of the giant component. We
prove Theorems 4.1, 4.2, and 4.3.

� Section 10.3: Diameter. We prove Lemmas 5.2 and 5.3.

� Section 10.4: Log-normal degree distribution. We prove Theorem 6.1.

� Section 10.5: Power-law degree distribution. We prove Lemmas 7.2, 7.3, and
Theorem 7.1.
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10.1. The Number of Edges

Here we describe all the proofs with regard to the number of edges in the MAG
model M(n, k, µ,Θ) as shown in Section 3.

Proof of Lemma 3.2. Let N 0
uv be the number of attributes that take the value 0 in

both u and v. For instance, if a(u) = [0 0 1 0] and a(v) = [0 1 1 0], then N 0
uv = 2.

We similarly define N 1
uv as the number of attributes that take the value 1 in both

u and v. Then, N 0
uv ,N 1

uv ≥ 0 and N 0
uv + N 1

uv ≤ k, since k indicates the number
of attributes in each node.

By definition of the MAG model, the edge probability between u and v is

P [u, v] = αN 0
u v βk−N 0

u v −N 1
u v γN 1

u v .

Since both N 0
uv and N 1

uv are random variables, we need their conditional joint
distribution to compute the expectation of the edge probability P [u, v] given the
weight of node u. Note that N 0

uv and N 1
uv are independent of each other if the

weight of u is given. Let the weight of u be i, which means that u ∈Wi . Since
u and v can share the value 0 only for the attributes where u already takes the
value 0, it follows that N 0

uv equivalently represents the number of heads in i coin
flips with probability µ. Therefore, N 0

uv follows Bin(i, µ). Similarly, N 1
uv follows

Bin(k − i, 1− µ). Hence their conditional joint probability is

P (N 0
uv ,N 1

uv | u ∈Wi) =
(

i

N 0
uv

)
µN 0

u v (1− µ)i−N 0
u v

(
k − i

N 1
uv

)
µk−i−N 1

u v (1− µ)N 1
u v .

Using this conditional probability, we can compute the expectation of P [u, v]
given the weight of u:

E[P [u, v] | u ∈Wi ]

= E[αN 0
u v βi−N 0

u v βk−i−N 1
u v γN 1

u v | u ∈Wi ]

=
i∑

N 0
u v =0

k−i∑
N 1

u v =0

(
i

N 0
uv

)(
k − i

N 1
uv

)
(αµ)N 0

u v

× ((1− µ)β)i−N 0
u v (µβ)k−i−N 1

u v ((1− µ)γ)N 1
u v

=

⎡
⎣ i∑

N 0
u v =0

(
i

N 0
uv

)
(αµ)N 0

u v ((1− µ)β)i−N 0
u v

⎤
⎦

×
⎡
⎣ k−i∑

N 1
u v =0

(
k − i

N 1
uv

)
(µβ)k−i−N 1

u v ((1− µ)γ)N 1
u v

⎤
⎦

= (µα + (1− µ)β)i (µβ + (1− µ)γ)k−i .
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Proof of Lemma 3.3. By Lemma 3.2 and the linearity of expectation, we sum this
conditional probability over all nodes and obtain the expectation of the degree
given the weight of node u.

Proof of Theorem 3.1. We compute the expected number of edges, written as E[m],
by adding up the degrees of all nodes described in Lemma 3.3:

E[m] = E[
1
2

∑
u∈V

deg(u)]

=
1
2
n

k∑
j=0

P (Wj )E[deg(u) | u ∈Wj ]

=
1
2
n

k∑
j=0

(
k

j

)
µj (1− µ)k−j

E[deg(u) | u ∈Wj ]

=
1
2
n

k∑
j=0

(
k

j

)
((n− 1) (µα + (1− µ)β)j (µβ + (1− µ)γ)k−j

+ 2αjµjγk−j (1− µ)k−j )

=
n(n− 1)

2
(
µ2α + 2µ(1− µ)β + (1− µ)2γ

)k + n (µα + (1− µ)γ)k .

Proof of Corollary 3.4. Suppose that k =
(
ε− 1

log ζ

)
log n for ζ = µ2α + 2µ(1− µ)β +

(1− µ)2γ and ε > 0. By Theorem 3.1, the expected number of edges is Θ
(
n2ζk

)
.

Note that log ζ < 0, since ζ < 1. Therefore, the expected number of edges is

Θ(n2ζk ) = Θ
(
ζk+ 2 lo g n

l o g ζ

)
= Θ(n1+ε log ζ ) = o(n).

Proof of Corollary 3.5. Under the situation that k ∈ o(log n), the expected number of
edges is

Θ(n2ζk ) = Θ(n2+( k
l o g n ) log ζ ) = Θ(n2+o(1) log ζ ) = Θ(n2−o(1)).

10.2. Connectedness and the Existence of the Giant Component

Since Theorem 4.3 is used to prove other theorems, we begin with the proof of it.
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Proof of Theorem 4.3. If j ≥ i, for any v ∈Wi , we can generate a node v(j ) ∈Wj from
v by flipping (j − i) attribute values that originally take 1 in v. For example, if
a(v) = [0 1 1 0], then a(v(3)) = [0 0 1 0] or [0 1 0 0]. Hence, P [u, v(j ) ] ≥ P [u, v]
for v ∈Wi .

Here we note that

E[P [u, v(j ) ] | v ∈Wi ] = E[P [u, v(j ) ] | v(j ) ∈Wj ],

because each v(j ) can be generated by
(
j
i

)
different a(v) sets with the same

probability. Therefore,

E[P [u, v] | v ∈Wj ] = E[E[P [u, v(j ) ] | v ∈Wi ]]
≥ E[E[P [u, v] | v ∈Wi ]] = E[P [u, v] | v ∈Wi ].

Now we introduce the theorem that plays a key role in proving Theorem 4.1
as well as Theorem 4.2.

Theorem 10.1. Let |Sj | ∈ Θ(n) and E[P [u, V \u] | u ∈Wj ] ≥ c log n as n→∞ for
some j and sufficiently large c. Then, Sj is connected almost surely as n→∞.

Proof. Let S ′ be a subset of Sj such that S ′ is neither an empty set nor Sj itself.
Then the expected number of edges between S ′ and Sj\S ′ is

E[P [S ′, Sj\S ′] | |S ′| = k] = k · (|Sj | − k) · E[P [u, v] | u, v ∈ Sj ]

for distinct u and v. By Theorem 4.3,

E[P [u, v] | u, v ∈ Sj ] ≥ E[P [u, v] | u ∈ Sj , v ∈ V ]
≥ E[P [u, v] | u ∈Wj, v ∈ V \u]

≥ c log n

n
.

Given the size of S ′ as k, the probability that there exists no edge between S ′

and Sj\S ′ is at most exp
(− 1

2 E[P [S ′, Sj\S ′] | |S ′| = k]
)

by the Chernoff bound
[Ross 05]. Therefore, the probability that Sj is disconnected is bounded as
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follows:

P (Sj is disconnected) ≤
∑

S ′⊂Sj ,S ′ =φ,Sj

P (no edge between S ′, Sj\S ′)

≤
∑

S ′⊂S,S ′ =φ,Sj

exp
(
−1

2
E[P [S ′, Sj\S ′] | |S ′|]

)

≤
∑

S ′⊂S,S ′ =φ,Sj

exp
(
−|S ′| (|Sj | − |S ′|) c log n

2n

)

≤ 2
∑

1≤k≤|Sj |/2

(|Sj |
i

)
exp

(
−c|Sj | log n

4n
k

)

≤ 2
∑

1≤k≤|Sj |/2

|Sj |k exp
(
−c|Sj | log n

4n
k

)

≤ 2
∑

1≤k≤|Sj |/2

exp
((

log |Sj | − c|Sj | log n

4n

)
k

)

= 2
∑

1≤k≤|Sj |/2

exp (−kΘ(log n)) (because |Sj | ∈ Θ(n))

= 2
∑

1≤k≤|Sj |/2

(
1

nΘ(1)

)k

≈ 1
nΘ(1) ∈ o(1)

as n→∞. Therefore, Sj is connected almost surely.

10.2.1. Existence of the Giant Connected Component. Now we turn our attention to the giant
connected component. To establish its existence, we investigate Sµk , Sµk+k 1 / 6 ,
and Sµk+k 2 / 3 depending on the situation. The following lemmas tell us the size
of each subgraph.

Lemma 10.2. |Sµk | ≥ n
2 − o(n) almost surely as n→∞.

Proof. By the central limit theorem [Ross 05], |u |−µk√
kµ(1−µ)

∼ N(0, 1) as n→∞,

that is, k →∞. Therefore, P (|u| ≥ µk) is at least 1
2 − o(1), so |Sµk | ≥ n

2 − o(n)
almost surely as n→∞.

Lemma 10.3. |Sµk+k 1 / 6 | ∈ Θ(n) almost surely as n→∞.
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Proof. By the central limit theorem mentioned in Lemma 10.2,

P (µk ≤ |u| < µk + k1/6) ≈ Φ

(
k1/6√

kµ(1− µ)

)
− Φ(0) ∈ o(1)

as k →∞, where Φ(z) represents the cumulative distribution function of the
standard normal distribution. Since P (|u| ≥ µk + k1/6) is still at least 1

2 − o(1),
the size of Sµk+k 1 / 6 is Θ(n) almost surely as k →∞, that is, n→∞.

Lemma 10.4. |Sµk+k 2 / 3 | ∈ o(n) almost surely as n→∞.

Proof. By the Chernoff bound, P (|u| ≥ µk + k2/3) is o(1) as k →∞. Thus
|Sµk+k 2 / 3 | is o(n) almost surely as n→∞.

Using the above lemmas, we prove the existence and the uniqueness of the
giant connected component under the given condition.

Proof of Theorem 4.1. Existence: First, if

[(µα + (1− µ)β)µ (µβ + (1− µ)γ)1−µ ]ρ >
1
2
,

then by Lemma 3.3,

E[P [u, V \u] | u ∈Wµk ] ≈ [2[(µα + (1− µ)β)µ (µβ + (1− µ)γ)1−µ ]ρ ]log n

= (1 + ε)log n > c log n

for some constant ε > 0 and c > 0. Since |Sµk | ∈ Θ(n) by Lemma 10.2, Sµk is
connected as n→∞ by Theorem 10.1. In other words, we are able to extract a
connected component of size at least n

2 − o(n).
Second, when

[(µα + (1− µ)β)µ (µβ + (1− µ)γ)1−µ ]ρ =
1
2
,

we can apply the same argument for Sµk+k 1 / 6 . Because |Sµk+k 1 / 6 | ∈ Θ(n) by
Lemma 10.3,

E[P [u, V \u] | u ∈Wµk+k 1 / 6 ]

≈ [2[(µα + (1− µ)β)µ (µβ + (1− µ)γ)1−µ ]ρ ]log n

(
µα + (1− µ)β
µβ + (1− µ)γ

)(ρ log n)1 / 6

=
(

µα + (1− µ)β
µβ + (1− µ)γ

)(ρ log n)1 / 6

= (1 + ε′)ρ log n1 / 6
,

which is also greater than c log n as n→∞ for some constant ε′ > 0. Thus,
Sµk+k 1 / 6 is connected almost surely by Theorem 10.1.
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Lastly , when

[(µα + (1− µ)β)µ (µβ + (1− µ)γ)1−µ ]ρ <
1
2
,

for u ∈Wµk+k 2 / 3 , we have

E[P [u, V \u] | u ∈Wµk+k 2 / 3 ]

≈ [2[(µα + (1− µ)β)µ (µβ + (1− µ)γ)1−µ ]ρ ]log n

×
(

µα + (1− µ)β
µβ + (1− µ)γ

)(ρ log n)2 / 3

=
[
(1− ε′′)ρ−2 / 3 (log n)1 / 3

(
µα + (1− µ)β
µβ + (1− µ)γ

)](ρ log n)2 / 3

is o(1) as n→∞ for some constant ε′′ > 0. Therefore, by Theorem 4.3, the
expected degree of a node with weight less than µk + k2/3 is o(1). However,
since Sµk+k 2 / 3 is o(n) by Lemma 10.4, n− o(n) nodes have weights less than
µk + k2/3 . Hence, most of n− o(n) nodes are isolated, so that the size of the
largest component cannot be Θ(n).

10.2.2. Uniqueness of the Largest Connected Component. We already pointed out that either
Sµk or Sµk+k 1 / 6 is the subset of the Θ(n) component when the giant connected
component exists. Let this component be called H. Without loss of generality,
suppose that Sµk ⊂ H. Then, for any fixed node u,

P [u,H] ≥ P [u, Sµk ] (∵ Sµk ⊂ H)
= |Sµk | · E[P [u, v] | v ∈ Sµk ]
≥ |Sµk | · E[P [u, v] | v ∈ V \Sµk ] (by Theorem 4.3)

=
|Sµk |

n− |Sµk |P [u, V \Sµk ].

Since V \H ⊂ V \Sµk , it follows that

E[P [u, V \H]] ≤ E[P [u, V \Sµk ]] ≤
(

n− |Sµk |
|Sµk |

)
E[P [u,H]]

holds for every u ∈ V .
Suppose that another connected component H ′ also contains Θ(n) nodes. We

will deduce a contradiction if H and H ′ are not connected almost surely as
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n→∞. To determine E[P [H,H ′]], we calculate

E[P [H,H ′]] = |H ′| · E[P [u,H] | u ∈ H ′]

≥ |H
′| · |Sµk |

n− |Sµk | E[P [u, V \Sµk ] | u ∈ H ′]

≥ |H
′| · |Sµk |

n− |Sµk | E[P [u,H ′] | u ∈ H ′] (since H ′ ⊂ V \H ⊂ V \Sµk ).

However, E[P [u,H ′] | u ∈ H ′] ∈ Ω(1). Otherwise, since the probability that u ∈
H ′ is connected to H ′ is not greater than E[P [u,H ′] | u ∈ H ′] by Markov’s in-
equality [Ross 05], u is disconnected from H ′ almost surely as n→∞. Therefore,
H ′ includes at least one isolated node almost surely as n→∞. This is in con-
tradiction to the connectedness of H ′.

On the other hand, if E[P [u,H ′] | u ∈ H ′] ∈ Ω(1), then E[P [H,H ′]] ∈ Ω(n).
In this case, by the Chernoff bound, H and H ′ are connected almost surely
as n→∞. This is also a contradiction. Therefore, there is no Θ(n) connected
component other than H almost surely as n→∞.

10.2.3. Conditions for the Connectedness of a MAG Network. Now we present the proofs for
connectedness. Before the main proof, we present and prove an essential lemma.

Lemma 10.5. If (1− µ)ρ ≥ 1
2 , then Vmin/k → 0 almost surely as n→∞. Otherwise,

if (1− µ)ρ < 1
2 , then Vmin/k → ν almost surely as n→∞, where ν is a solution

of the equation

[(µ

ν

)ν
(

1− µ

1− ν

)1−ν
]ρ

=
1
2

in (0, µ).

Proof. First, we assume that (1− µ)ρ ≥ 1
2 , which indicates that n(1− µ)ρ ≥ 1 by

definition. Then the probability that |Wi | = 0 is at most exp(− 1
2 E[|Wi |]) by the

Chernoff bound. However, for fixed µ,

E[|W1 |] = n

(
k

1

)
µ1(1− µ)k−1 ≥ µ

1− µ
k ∈ O(k).

Therefore, by the Chernoff bound, P (|W1 | = 0)→ 0 as k →∞. This implies that
Vmin is o(k) almost surely as n→∞.
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Second, we look at the case that (1− µ)ρ < 1
2 . For any ε ∈ (0, µ− ν), we use

Stirling’s approximation,

E[|W(ν+ε)k |]
≈ n

(
k

(ν + ε)k

)
µ(ν+ε)k (1− µ)(1−(ν+ε))k

≈
√

2πk( k
e )k

√
2π(ν + ε)k( (ν+ε)k

e )(ν+ε)k
√

2π(1− (ν + ε))
(

(1−(ν+ε))k
e

)(1−(ν+ε))k

× nµ(ν+ε)k (1− µ)(1−(ν+ε))k

=
n√

2πk(ν + ε) (1− (ν + ε))

[(
µ

ν + ε

)ν+ε (
1− µ

1− (ν + ε)

)1−(ν+ε)
]k

.

Since (µ

x

)x
(

1− µ

1− x

)1−x

is an increasing function of x over (0, µ), it follows that
(

µ

ν + ε

)ν+ε (
1− µ

1− (ν + ε)

)1−(ν+ε)

= (1 + ε′)
(

1
2

)1/ρ

= (1 + ε′)n−1/k

for some constant ε′ > 0. Therefore,

E[|W(ν+ε)k |] =
(1 + ε′)k√

2πk(ν + ε) (1− (ν + ε))

increases exponentially as k increases. By the Chernoff bound, |W(ν+ε)k | is not
zero almost surely as k →∞, that is, n→∞.

In a similar way,

E[|W(ν−ε)k |] =
(1− ε′)k√

2πk(ν − ε) (1− (ν − ε))

decreases exponentially as k increases. Since E[|Wi |] ≥ E[|Wj |] if µk ≥ i ≥ j,
the expected number of nodes with at most weight (ν − ε)l is less than
(ν − ε)k E[|W(ν−ε)k |], and its value goes to zero as k →∞. Hence, by the Cher-
noff bound, there exists no node of weight less than (ν − ε)k almost surely as
n→∞.

To sum up, Vmin/k goes to ν almost surely as k →∞, that is, n→∞.

Using the above lemma, we prove the condition that the network is connected.
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Proof of Theorem 4.2. Let Vmin/k → t for a constant t ∈ [0, µ) as n→∞. If

[(µα + (1− µ)β)t (µβ + (1− µ)γ)1−t ]ρ >
1
2
,

then by Lemma 3.3,

E[P [u, V \u] | u ∈WVm in ] ≈ E[P [u, V \u] | u ∈Wtk ]

≈ [2[(µα + (1− µ)β)t (µβ + (1− µ)γ)1−t ]ρ ]log n

= (1 + ε)log n

≥ c log n

for some ε > 0 and sufficiently large c. Note that SVm in indicates the entire net-
work by definition of Vmin . Since |SVm in | is Θ(n), it follows that SVm in is connected
almost surely as n→∞ by Theorem 10.1. Equivalently, the entire network is also
connected almost surely n→∞.

On the other hand, when

(µα + (1− µ)β)
V m in
lo g n (µβ + (1− µ)γ)

k −V m in
lo g n <

1
2
,

the expected degree of a node with weight |Vmin | is o(1), because from the above
relationship,

E[P [u, V \u] | u ∈WVm in ] ≈ (1− ε′)log n

for some ε′ > 0. Thus, in this case, some node in WVm in is isolated almost surely,
so the network is disconnected.

10.3. Diameter

Here we first introduce a theorem that plays a key role in proving the constant
diameter in the MAG model, and then we present the proofs of Lemmas 5.2
and 5.3 described in Section 5.

Theorem 10.6. [Bollobás 90, Klee and Larmann 81] For an Erdős–Rényi random
graph G(n, p), if (pn)d−1/n→ 0 and (pn)d/n→∞ for a fixed integer d, then
G(n, p) has diameter d with probability approaching 1 as n→∞.

Proof of Lemma 5.2. Let AG and AH be the probabilistic adjacency matrices of
random graphs G and H, respectively. If AG

ij ≥ AH
ij for every i, j and H has a

constant diameter almost surely, then so does G. This can be understood in the
following way. To generate a network with AG , we first generate edges with AH

and further create edges with (AG −AH ). However, since the edges created in
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the first step already result in a constant diameter almost surely, it follows that
G has a constant diameter.

Note that minu,v∈Sλ k
P [u, v] ≥ βλkγ(1−λ)k . Thus it is sufficient to prove that

the Erdős–Rényi random graph G(|Sλk |, βλkγ(1−λ)k ) has a constant diameter
almost surely as n→∞. However,

E[|Wλk |]βλkγ(1−λ)k

= n

(
k

λk

)
µλk (1− µ)(1−λ)kβλkγ(1−λ)k

≈ n√
2πkλ (1− λ)

(
µβ

λ

)λk (
(1− µ)γ

1− λ

)(1−λ)k

(By Stirling approximation)

=
n√

2πkλ (1− λ)
(µβ + (1− µ)γ)k

(
because λ =

µβ

µβ + (1− µ)γ

)

=
1√

2πkλ (1− λ)
(2 (µβ + (1− µ)γ)ρ)log n

=
1√

2πkλ (1− λ)
(1 + ε)log n

for some ε > 0.
Since this value goes to infinity as n→∞, so does E[Wλk ]. Therefore, by the

Chernoff bound, |Wλk | ≥ cE[Wλk ] almost surely as n→∞ for some constant c.
Then

|Sλk |βλkγ(1−λ)k ≥ |Wλk |βλkγ(1−λ)k ≥ cE[|Wλk |]βλkγ(1−λ)k

≈ c√
2πkλ (1− λ)

(1 + ε)log n .

By Theorem 10.6, an Erdős–Rényi random graph

G

(
|Sλk |, c(1 + ε)log n

|Sλk |
√

2πkλ (1− λ)

)

has diameter at most (1 + ln 2/ε) almost surely as n→∞. Thus, the diameter of
G(|Sλk |, βλkγ(1−λ)k ) as well as Sλk is also bounded by a constant almost surely
as n→∞.
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Proof of Lemma 5.3. For any u ∈ V ,

P [u, Sλk ] ≥
k∑

j=λk

n

(
k

j

)
µj (1− µ)k−j βj γk−j

=
k∑

j=λk

n

(
k

j

)
λj (1− λ)k−j

(
µβ

λ

)j (
(1− µ)γ

1− λ

)k−j

=
k∑

j=λk

n

(
k

j

)
λj (1− λ)k−j (µβ + (1− µ)γ)k

= (2 (µβ + (1− µ)γ)ρ)log n

⎛
⎝ k∑

j=λk

(
k

j

)
λj (1− λ)k−j

⎞
⎠ .

By the central limit theorem,
∑k

j=λk

(
k
j

)
λj (1− λ)k−j converges to 1

2 as k →∞.
Therefore, P [u, Sλk ] is greater than c log n for a constant c, and then by the
Chernoff bound, u is directly connected to Sλk almost surely as n→∞.

10.4. Log-Normal Degree Distribution

We begin by introducing a general formula for degree distribution in any random
graph model.

Theorem 10.7. [Young and Scheinerman 07] We have

P (deg(u) = d) =
∫

u∈V

(
n− 1

d

)
(E[P [u, v]])d (1− E[P [u, v]])n−1−d du.

If we plug the MAG model M(n, k, µ,Θ) into the above theorem, we obtain
the following corollary.

Corollary 10.8. For Ej = (µα + (1− µ)β)j (µβ + (1− µ)γ)k−j , the probability of
degree d in the MAG model M(n, k, µ,Θ) is

pd =
k∑

j=0

(
k

j

)
µj (1− µ)k−j

(
n− 1

d

)
Ed

j (1− Ej )
n−1−d .
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Proof. We reformulate the statement of Theorem 10.7 as

P (deg(u) = d) =
k∑

j=0

P (u ∈Wj )
(

n− 1
d

)
(E[P [u, v] | u ∈Wj ])

d

× (1− E[P [u, v] | u ∈Wj ])
n−1−d ,

and by applying Lemma 3.2, we obtain the desired formula.

Now we prove the main theorem on degree distribution for the MAG model
M(n, k, µ,Θ) using the above corollary.

Proof of Theorem 6.1. To save space, we begin by establishing some shorthand notation
for various quantities:

x = µα + (1− µ)β,

y = µβ + (1− µ)γ,

fj (d) =
(

n− 1
d

) (
xjyk−j

)d (
1− xjyk−j

)n−1−d
,

gj (d) =
(

k

j

)
µj (1− µ)k−j fj (d).

By Corollary 10.8, we can restate pd as
∑l

j=0 gj (d).
If most of these terms turn out to be insignificant under our assumptions, the

probability pd will be approximately proportional to one or a few dominant terms.
In this case, what we need to do to find j that maximizes gj (d) =

(
k
j

)
µj (1−

µ)k−j fj (d) and obtain its approximate formula.
We begin with an approximation of fj (d). For large n and d, by Stirling ap-

proximation,

fj (d) ≈
√

2πn(n/e)n
(
xjyk−j

)d (
1− xjyk−j

)n−d

√
2πd(d/e)d

√
2π(n− d) ((n− d)/e)n−d

=
1√

2πd
(
1− d

n

)
(

nxjyk−j

d

)d (
1− xjyk−j

1− d/n

)n−d

.

However, the expected degree of the maximum-weight node is

O(n (µα + (1− µ)β)k ),

and so is the expected maximum degree. Therefore, the degree d which we are
interested in o(n) almost surely as n→∞, that is, as k →∞. Therefore,(

1− xjyk−j

1− d/n

)n−d

≈ exp
(−(n− d)xjyk−j + (n− d)d/n

) ≈ exp(−nxjyk−j + d).
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For sufficiently large k, we can further simplify gj (d) by normal approximation
of the binomial distribution:

ln gj (d) = ln
(

k

j

)
µj (1− µ)k−j + ln fj (d)

≈ −1
2

ln (2πkµ(1− µ))− 1
2kµ(1− µ)

(j − µk)2 + ln fj (d)

≈ C − 1
2kµ(1− µ)

(j − µk)2 − 1
2

ln d− d ln
d

nxjyk−j
+ d

(
1− nxjyk−j

d

)

for some constant C. When d = nxτ yk−τ for τ ≥ µk and R = x/y, we have

ln gj (d) ≈ C − 1
2kµ(1− µ)

(j − µk)2 − 1
2

ln d + d(j − τ) ln R + d
(
1−Rj−τ

)
.

Using (j − µk)2 = (j − τ)2 + (τ − µk)2 + 2(j − τ)(τ − µk), we obtain

ln gj (d) ≈ Cτ − (j − τ)2

2kµ(1− µ)
+ (j − τ)

(
d ln R− τ − µk

kµ(1− µ)

)

+ d
(
1−Rj−τ

)− 1
2

ln d

for

Cτ = C − (τ − µk)2

2kµ(1− µ)
.

Now considering gj (d) as a function of j, not of d, we find j that maximizes
gj (d) for d = nxτ yk−τ . However, the median weight is approximately equal to
µk by the central limit theorem. If we focus on the greater half of the degrees,
we can then let τ ≥ µk. And in this case, since

[(µα + (1− µ)β)µ (µβ + (1− µ)γ)1−µ ]ρ >
1
2
,

we have

d ≥ [(µα + (1− µ)β)µ (µβ + (1− µ)γ)1−µ ]ρ ∈ Ω(k).

If we differentiate ln gj (d) with respect to j, we obtain

(ln gj (d))′ ≈ − j − τ

kµ(1− µ)
+

(
d ln R− τ − µk

kµ(1− µ)

)
− dRj−τ ln R = 0.

Because d ∈ Ω(k) and j, τ ∈ O(k), we can conclude that Rj−τ ≈ 1 as n→∞;
otherwise, | (ln gj (d))′ | grows as large as Ω(d). Therefore, when j ≈ τ , gj (d) is
maximized.

Furthermore, since ∣∣∣∣ j − τ

2kµ(1− µ)

∣∣∣∣� d ln R as n→∞,
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the first quadratic term

(j − τ)2

2kµ(1− µ)
in ln gj (d)

is negligible. As a result, when R is practical (approximately in the range 1.6 to
3.0), ln gτ +∆ will be at most (Θ(−d|∆|)− ln gτ ) for ∆ ≥ 1. After all, gτ effectively
dominates the probability pd , and so ln pd is roughly proportional to ln gτ . By
assigning

τ =
ln d− ln nyk

ln R
,

we obtain

ln pd ≈ C − 1
2kµ(1− µ)

(
ln d− ln nyk

ln R
− µk

)2

− 1
2

ln d

= C ′ − 1
2kµ(1− µ)(ln R)2

(
ln d− ln nyk − kµ ln R− 1

2
kµ(1− µ)(ln R)2

)2

for some constant C ′. Therefore, the degree distribution pd approximately follows
the log-normal distribution, as described in Theorem 6.1.

10.5. Power-law Degree Distribution

We begin by proving Lemmas 7.2 and 7.3.

Proof of Lemma 7.2. Lemma 7.2 holds because the ai ’s are independently distributed
Bernoulli random variables.

Proof of Lemma 7.3. Let us define Pj (u, v) as the edge probability between u and v

when we limit consideration only up to the jth attribute:

Pj (u, v) =
j∏

i=1

Θi [ai(u), ai(v)] .

Thus, what we aim to show is that for a node v,

E[Pk (u, v)] =
k∏

i=1

(µiαi + (1− µi)βi)
1{ai (u)=0} (µiβi + (1− µi)γi)

1{ai (u)=1} .

When k = 1, this is trivially true by Lemma 3.2. When k > 1, suppose that
the above formula holds for k = 1, 2, . . . , k′. Since

Pk ′+1(u, v) = Pk ′(u, v)Θk ′+1 [ak ′+1(u), ak ′+1(v)] ,
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it follows that

E[Pk ′+1(u, v)]
= E[Pk ′(u, v)]E[Θk ′+1[ak ′+1(u), ak ′+1(v)]]

= E[Pk ′(u, v)](µk ′+1αk ′+1 + (1− µk ′+1)βk ′+1)1{ak ′+ 1 (u)=0}

× (µk ′+1βk ′+1 + (1− µk ′+1)γk ′+1)1{ak ′+ 1 (u)=1}

=
k ′+1∏
i=1

(µiαi + (1− µi)βi)
1{ai (u)=0} (µiβi + (1− µi)γi)

1{ai (u)=1} .

Therefore, the expected degree formula described in Lemma 7.3 holds for every
k ≥ 1.

Applying the above lemmas to Theorem 10.7, we prove the degree distribution
of M(n, k, �µ, �Θ) as described in Theorem 7.1.

Proof of Theorem 7.1. Before the main argument, we need to define the ordered
probability mass of attribute vectors as p(j ) for j = 1, 2, . . . , 2k . For example,
if the probability of each attribute vector (00, 01, 10, 11) is respectively 0.2, 0.3,
0.4, and 0.1 when k = 2, the ordered probability masses are p(1) = 0.1, p(2) = 0.2,
p(3) = 0.3, and p(4) = 0.4.

Then by Theorem 10.7, we can express the probability of degree d, written as
pd , as follows:

pd =
(

n− 1
d

) 2k∑
j=1

p(j )(Ej )d(1− Ej )n−1−d , (10.1)

where Ej denotes the average edge probability of the node that has the attribute
vector corresponding to p(j ) . If the p(j ) ’s and Ej ’s are configured so that few
terms dominate the probability, we may approximate pd as(

n− 1
d

)
p(τ )(Eτ )d(1− Eτ )n−1−d

for τ = arg maxj p(j ) (Ej )
d (1− Ej )

n−1−d . Assuming that this approximation
holds, we will propose a sufficient condition for the power-law degree distribution
and suggest an example for this condition.

To simplify computations, we propose a condition that p(j ) ∝ E−δ
j for a con-

stant δ. Then the jth term is(
n− 1

d

)
p(j ) (Ej )

d (1− Ej )
n−1−d ∝ ((Ej )

d−δ (1− Ej )
n−1−d),
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which is maximized when Ej ≈ d−δ
n−1−δ . Moreover, under this condition, if

Ej+1/Ej is at least (1 + z) for a constant z > 0, then

p(τ +∆) (Eτ +∆)d (1− Eτ +∆)n−1−d

p(τ ) (Eτ )d (1− Eτ )n−1−d

is o(1) for ∆ ≥ 1 as n→∞. Therefore, the τth term dominates equation (10.1).
Next, by the Stirling approximation with the above conditions,

pd ≈
(

n− 1
d

) (
d− δ

n− 1− δ

)d−δ (
n− 1− d

n− 1− δ

)n−1−d

∝ 1√
d(n− 1− d)

(d− δ)−δ

(
(n− 1)(d− δ)
d(n− 1− δ)

)d (
n− 1

n− 1− δ

)n−1−d

∝ d−1/2 (d− δ)−δ

(
1− δ

d

)d

≈ d−δ−1/2 exp(−δ)

for sufficiently large d and n. Thus, pd is approximately proportional to d−
1
2 −δ

for large d as n→∞.
Finally, we prove that the two conditions for the power-law degree distribution

are simultaneously feasible by providing an example configuration. If all the p(j )

are distinct and

µi

1− µi
=

(
µiαi + (1− µi)βi

µiβi + (1− µi)γi

)−δ

,

then we satisfy the condition p(j ) ∝ (Ej )−δ by Lemmas 7.2 and 7.3. On the other
hand, if we set µi

1−µi = (1 + z)−2i δ , then the other condition, Ej+1/Ej ≥ (1 + z),
is also satisfied. Since we are free to configure the µi ’s and Θi ’s independently,
the sufficient condition for the power-law degree distribution is satisfied.
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