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Abstract. Social networks are the substrate upon which we make and evaluate many of
our daily decisions: our costs and benefits depend on whether—or how many of, or which
of—our friends are willing to go to that restaurant, choose that cellular provider, already
own that gaming platform. Much of the research on the “diffusion of innovation,” for
example, takes a game-theoretic perspective on strategic decisions made by people
embedded in a social context. Indeed, multiplayer games played on social networks,
where the network’s nodes correspond to the game’s players, have proven to be fruitful
models of many natural scenarios involving strategic interaction.

In this paper, we embark on a mathematical and general exploration of the rela-
tionship between two-person strategic interactions (a “base game”) and a “networked”
version of that same game. We formulate a generic mechanism for superimposing a
symmetric two-player base game M on a social network G: each node of G chooses
a single strategy from M and simultaneously plays that strategy against each of its
neighbors in G, receiving as its payoff the sum of the payoffs from playing M against
each neighbor. We denote the networked game that results by M ⊕ G. We are broadly
interested in the relationship between properties of M and of M ⊕ G: how does the
character of strategic interaction change when it is embedded in a social network? We
focus on two particular properties: the (pure) price of anarchy and the existence of
pure Nash equilibria. We show tight results on the relationship between the price of
anarchy in M and M ⊕ G in coordination games. We also show that, with some ex-
ceptions when G is bipartite, the existence or absence of pure Nash equilibria (and
even the guaranteed convergence of best-response dynamics) in M and M ⊕ G is not
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entailed in either direction. Taken together, these results suggest that the process of
superimposing M on a graph is a nontrivial operation that can have rich, but bounded,
effects on the strategic environment.

1. Introduction

In recent years there has been significant and growing interest in games played
on networks, with the game’s players represented by the nodes of the network.
Within this space, there has been particular attention paid to social networks,
in which edges connect pairs of people whose actions can directly impact each
other. This growing line of research can in part be attributed to a sense that such
games are indeed the “right” model for many natural scenarios: many human
endeavors can be viewed as games in which a person’s utility is determined by the
behavior of those who are in some sense close by—friends, associates, or trading
partners, for example. The actions of other players in the network are felt only
indirectly; their decisions may or may not cause cascades of local changes that
eventually propagate to distant players.

A rich vein of research, and an illustrative example of this game-theoretic
style of work on social networks, has been carried out under the “diffusion of
innovation” rubric in the literature [Chwe 00, Immorlica et al. 07, Jackson and
Yariv 05, Jackson and Yariv 07, Jackson and Yariv 11, Moris 00, Rogers 95,
Strang and Soule 98, Valente 95, Young 98, e.g.]. Imagine, for example, a popu-
lation of mobile phone users, each of whom must choose whether to subscribe to
an unlimited text-messaging plan with her cellular provider, or to use a pay-per-
message plan. If many of a person u’s friends adopt an unlimited-texting plan,
then u may receive many (perhaps unsolicited) text messages from her friends,
incurring a large number of high pay-per-message charges; conversely, if very
few of u’s friends have adopted the unlimited-message option, then u will likely
receive few text messages, and thus for her, the pay-per-use price will likely be a
better deal. This scenario—glibly, a strategic multiagent version of the ski-rental
problem—requires people to think not only about the relative costs of “rent-
ing” and “buying” but also about the structure of their social networks, and the
choices that their friends make. In this example, one might expect to observe
clusters of adopters in the social network that are relatively isolated from corre-
sponding clusters of nonadopters. In the real world, these clusters will be highly
correlated with age, and in part result from the significant correlation in age
between people connected by a social tie (see [McPherson et al. 01]). This “age
homophily” illustrates the perhaps obvious point that in many network-type
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games, the structure of the network matters critically. But, perhaps also obvi-
ously, the structure of the game matters too. Sometimes, a strategy—adopting a
new piece of communication technology, say—becomes more attractive as addi-
tional people, particularly one’s friends, choose it; sometimes—ordering a dish at
a restaurant where food will be shared, say—it becomes less attractive [Liebowitz
and Margolis 94, Katz and Shapiro 85, e.g.]. And more complex strategic land-
scapes are possible too.

In this paper, we are broadly concerned with the way in which local decision-
making—whether to buy the unlimited text-messaging plan, whether to order
the pad thai or the massaman curry, whether to go to the opera or the baseball
game—is affected when it is embedded into a social-network context.

We formulate a general framework for superimposing a symmetric two-player
game, which we call a base game, on a social network, creating a networked
version of the base game. The nodes of the network correspond to the players,
each of whom must choose a single strategy from the set of available strategies in
the base game. Each player’s payoff is the sum of its payoffs from playing the base
game simultaneously with its neighbors. (In essence, each player simultaneously
plays the base game with each of its neighbors in the graph, restricted so that
players must act consistently across their multiple games.)

Our particular line of inquiry is directed toward exploring the relationship
among a base game M , a graph G, and the resulting networked game M ⊕ G.

1.1. Our Results

We study the networked games resulting from superimposing arbitrary two-
player symmetric games on arbitrary undirected graphs. We are primarily in-
terested in understanding how properties of a base game carry over—or do not
carry over—to the networked game. There are many ways in which to ask about
the relationship among M , G, and M ⊕ G. We focus on two specific instantia-
tions of this question, as initial steps in this line of study: the (pure) price of
anarchy and the existence of (pure) Nash equilibria. See Section 3 for definitions.
(Throughout, we consider only pure strategies except where mixed strategies are
explicitly mentioned; see Sections 5 and 7 for discussion of mixed strategies.)

1.1.1. The Price of Anarchy. The (pure) price of anarchy of a game is the ratio of
the social welfare—the sum of the payoffs for all players—in the best outcome
(“opt”) to the worst Nash equilibrium (“wne”). We are interested in how the
price of anarchy of the base game M relates to the price of anarchy of the
networked game M ⊕ G. Here we focus on coordination games (also known as
matching games) as base games.
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In these games, players receive identical positive payoffs if they choose the
same strategy from the set of options, and payoffs of zero if they choose different
strategies. (The payoffs the players receive for matching can depend on which
strategy they choose.) Coordination games and variants are frequently used to
model diffusion of innovation: for example, strategies might represent choices
of communication technologies (whether to buy a fax machine, which computer
operating system to choose) where there is utility in making the same choice as
one’s friends.

Let Mcoord be any coordination game of this type. In Section 5, we give
tight bounds on the maximum (taken over all graphs) of the price of anarchy
for Mcoord ⊕ G.

1.1.2. The Existence of Pure Nash Equilibria. One of the most basic game-theoretic ques-
tions that one can ask is whether a pure Nash equilibrium exists in a given
game. The analogous question here is the connection between the existence of
pure Nash equilibria in the base game and the existence of pure Nash equilibria
in the networked game.

In Section 6, we show largely negative results about this connection. If M has
a pure Nash equilibrium and G is bipartite, then M ⊕ G has a pure Nash equilib-
rium as well; in all other cases, though, we show that the existence (or absence)
of pure Nash equilibria in M does not imply anything about the existence (or
absence) of pure Nash equilibria in M ⊕ G. We give examples of base games M

and (bipartite and nonbipartite) graphs G1 and G2 such that the properties of
M and M ⊕ G1 match with respect to the existence of pure Nash equilibria,
but M and M ⊕ G2 mismatch. Furthermore, we give examples of base games
M in which best-response dynamics is guaranteed to converge in M but is not
guaranteed to converge in M ⊕ G, and vice versa.

Our work on the existence of pure Nash equilibria illustrates that the base
game and the networked game are qualitatively different. When a base game is
“networkified,” pure Nash equilibria can be created or destroyed; the guaranteed
convergence of best-response dynamics can be introduced or eliminated.

This qualitative difference is largely unsurprising; indeed, networked games are
interesting only because they do not precisely replicate their base game. What is
more surprising is that there are still nontrivial quantitative similarities between
the base game and the networked game, for example in the price of anarchy, that
can be proven to be independent of the size or topology of the graph. We believe
that further quantification of the effect of moving a base game to a networked
context is a fertile area for study.
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2. Related Work

As described in Section 1, there has been appreciable work on networked
versions of particular games, usually on particular classes of networks, in
modeling the diffusion of innovation [Chwe 00, Immorlica et al. 07, Jackson and
Yariv 05, Jackson and Yariv 07, Jackson and Yariv 11, Moris 00, Rogers 95,
Strang and Soule 98, Valente 95, Young 98]. These models typically capture
scenarios in which there is incentive toward assortative behavior; other work has
explored models in which players have incentive toward dissortative behavior,
including cut games and party affiliation games, which subsume both cut games
and coordination games [Balcan et al. 09, Christodoulou et al. 06, Fabrikant
et al. 04]. (One can think of a cut game as a networked variant of the El Farol
Bar problem, in which a player wants to make a decision that is matched by a
minority of that player’s neighbors [Arthur 94].)

A networked game M ⊕ G is a special form of a graphical game [Ben-Zwi
and Ronen 08, Daskalakis and Papadimitriou 06, Dilkina et al. 07, Elkind
et al. 06, Elkind et al. 07, Gottlob et al. 05, Kakade et al. 03, Kearns
et al. 01, Kearns 07], an n-player game in which the payoff to a player u is
affected only by the strategies of the neighbors of u in an underlying n-node
graph. (Other formalisms for games on networks have also been considered; see
[Galeotti et al. 10, Goyal 07, Jackson 08] for some examples.) Graphical games
allow u’s payoff to depend arbitrarily on the strategies chosen by u’s neighbors;
in our networked games, u’s payoff is simply the sum of a payoffs on each edge
incident to u.

Graphical games are interesting when the underlying graph is sparse, as social
networks are; otherwise, the graphical structure does not impose much limita-
tion. Our networked games, as well as these “sparse” graphical games, form a
natural class of compactly representable games—games that can be specified in
space polynomial in the number of players and strategies. Fully general games
are typically of less interest, both practically and theoretically: practically, gen-
eral games require exponential space to describe and thus are too large to be
tractable; and theoretically, this huge game description trivializes various com-
putational problems—searching for a pure Nash equilibrium in a general game
can be solved by brute force in time linear in the input size.

One paper on graphical games is particularly close in spirit to our work here:
[Ben-Zwi and Ronen 08] studies the relationship between the (“global”) price
of anarchy of a graphical game and what the authors call the “local price of
anarchy.” The latter measures how well any subset S of players in the network
responds to choices made by the nodes outside of S (where “how well” is mea-
sured in terms of the ratio of the worst Nash equilibrium wne to the social
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optimum opt within the subgame induced by fixing the strategies of all non-S
players).

The recent paper [Daskalakis and Papadimitriou 09] studies a special case of
our problem: networked games arising from zero-sum (or more generally, strictly
competitive) base games. The authors demonstrate in this case that the mixed
Nash equilibria of the networked game can be computed efficiently, by reducing
their computation to that of the mixed Nash equilibria of a particular two-player
zero-sum game.

At a more abstract level, one can see a parallel between our work here and
recent work in epidemiology. Work in that field can loosely be categorized as
falling under the “fully mixed model,” in which one models any two members of
a large population as equally likely to interact, or under the “network model,”
in which an underlying social/contact network reflects the latent structure in
people’s interactions.

Network-based models more realistically reflect the ways in which diseases
spread, but in most cases the fully mixed model is far more amenable to rig-
orous mathematical analysis, particularly as the population grows large. In the
game-theoretic context, there is a significant body of work on “fully mixed”-type
models in which randomly selected pairs of agents from a large population play
a particular two-player game, possibly repeatedly—for example, see the classic
text [Fudenberg and Levine 98] on learning in games. (Among other things, this
book gives an account of how players might settle on a Nash equilibrium, and how
players might select a particular equilibrium.) In our setting, we consider a fixed
network of interactions; our interests are in the ways that the networked game
relates to the base game. This network-based perspective on evolutionary game
theory was introduced in [Kearns and Suri 06], which deals largely in extending
classic results of evolutionary game theory to the network-based setting.

3. Background and Notation

3.1. Games

An n-player game M consists of a set of players {1, . . . , n}, a strategy set Si

for each player i, and a payoff function pi : (S1 × · · · × Sn ) → Z for each player.
Each player i chooses a strategy si ∈ Si ; the vector s = 〈s1 , . . . , sn 〉 is called a
strategy profile. The payoff to player i under s is pi(s), and the social welfare
of s is

∑
i pi(s). The social optimum, denoted by opt, is the strategy profile s

that achieves the maximum social welfare. A strategy profile s is a (pure) Nash
equilibrium if no player can unilaterally deviate from s to improve her payoff, i.e.,
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if pi(s) ≥ pi(s1 , . . . , si−1 , s
′
i , si+1 , . . . , sn ) for every i and every s′i ∈ Si . We denote

the worst Nash equilibrium—that is, the pure Nash equilibrium s with the lowest
social welfare—by wne, and the best Nash equilibrium by bne. We also write
opt, wne, and bne to denote the social welfare of the corresponding strategy
profile opt, wne, and bne. The price of anarchy is given by poa := opt/wne,
and the price of stability is given by pos := opt/bne. Note again that all of
these quantities refer only to pure Nash equilibria.

In this paper, we are interested in symmetric two-player games, in which the
two players have the same set of strategies S1 = S2 = S, and p1(s, s′) = p2(s′, s)
for any two strategies s, s′ ∈ S. Whenever we refer to a “base game,” we implicitly
mean it to be a symmetric two-player game.

3.2. Graphs

For the purposes of this paper, a graph G = 〈V,E〉 is an undirected graph with
a set V of nodes and a set E of edges that has no isolated nodes. For a node u in
a graph G, we write ΓG (u) to denote the set of u’s neighbors—that is, ΓG (u) :=
{v : {u, v} ∈ E}. We omit the subscript when G is obvious from context. We
write Kn to denote the n-node complete graph, and Kn,n to denote the complete
bipartite graph with n nodes in each “part” of the graph.

4. Playing Games on Graphs

Let M be an arbitrary symmetric two-player game in which each player’s set
of available strategies is denoted by S, and when player 1 plays s1 and player
2 plays s2 , then the payoff to player i is given by pi(s1 , s2). Let G = 〈V,E〉 be
an arbitrary graph. We define the networked game M ⊕ G (“game M played on
graph G”) as follows:

� The set of players in M ⊕ G is V , the set of nodes in the graph G.

� The set of strategies available to player v ∈ V is S, the set of strategies for
a player in M .

� For a strategy profile s in which player v plays the strategy sv ∈ S, the
payoff to any player w ∈ V is given by pw (s) :=

∑
x∈Γ(w ) p1(sw , sx). That

is, the payoff to player w when she plays strategy sw is the sum of the
payoffs that she would receive if she played strategy sw in the base game
with each of her neighbors.
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For example, if G is a two-node, one-edge graph (that is, the graph G is K2),
then M ⊕ G is isomorphic to the base game M .

We can see a less trivial example through the classic game of rock–paper–
scissors. Define the base game RPS with strategies {rock,paper, scissors} such
that

p1(rock, scissors) = p1(scissors,paper) = p1(paper, rock) = 1

and all other payoffs are zero. This game has no pure Nash equilibria. But in
RPS ⊕K3 , when this game is played on the triangle, we have a three-player game
that does have a pure Nash equilibrium—namely, one in which each of the three
strategies is played by exactly one player.

5. Coordination Games

We begin by analyzing the networked version of coordination games. By way of
reminder, our focus in this section (and indeed throughout the paper) is on the
mathematical properties of these network games—particularly as those proper-
ties relate to their analogues in the base coordination game. In this section, we
focus on price-of-anarchy and price-of-stability results.

A two-player coordination game (or matching game, or consensus game) is
one in which both players choose from the same set of strategies, and receive
positive payoffs only if they make the same selection. As usual, we are interested
in symmetric coordination games, which we define as follows:

� Players share a strategy set S = {s1 , . . . , sk}.
� The two players both receive identical payoffs of vi if both choose si for any

index i ∈ {1, . . . , k}, and both receive identical payoffs of 0 if they choose
strategies si and sj �=i .

We refer to this game as the k-strategy coordination game with payoffs
{v1 , . . . , vk}. Without loss of generality, we always canonically order the strate-
gies so that v1 ≤ v2 ≤ · · · ≤ vk−1 ≤ vk . Throughout, we assume that the vi ’s are
integer-valued.

Lemma 5.1. Let M be an arbitrary k-strategy coordination game with payoffs
{v1 , . . . , vk}, and let G be an arbitrary graph. Then pos(M) = pos(M ⊕ G) = 1.

Proof. The social optimum for the base game M occurs when both players choose
strategy sk , yielding a payoff of vk for each. This strategy profile is optimal
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because vk is the largest entry anywhere in the payoff matrix for M , and it is a
Nash equilibrium for the same reason. Similarly, in M ⊕ G, the strategy profile
in which all players play sk is again a Nash equilibrium and socially optimal.
Thus the socially optimal strategy profile is a Nash equilibrium in both M and
M ⊕ G, and pos(M) = pos(M ⊕ G) = 1.

Lemma 5.2. Let M be an arbitrary k-strategy coordination game with payoffs
{v1 , . . . , vk}. Then there exists a graph G such that poa(M ⊕ G) ≥ vk · ∑k

i=1
1
vi

.

Proof. To begin, we define a few quantities:

p :=
k∏

i=1

vi, ni :=
p

vi
, and n :=

k∑
i=1

ni.

Note that ni can also be written as ni =
∏

j �=i vj ; therefore the ni ’s are integral,
and thus n is too.

To prove the lemma, we show that M played on the complete bipartite graph
Kn,n has the desired price of anarchy; that is, poa(M ⊕Kn,n ) ≥ vk · ∑k

i=1
1
vi

.
We prove two claims:

Claim 5.3. There is a strategy profile of M ⊕Kn,n that has social welfare 2n2vk .

Claim 5.4. There is a Nash equilibrium of M ⊕Kn,n that has social welfare 2pn.

This establishes the desired result, because

poa =
opt

wne
≥ 2n2vk

2pn
=

nvk

p
=

vk

∑k
i=1

p
vi

p
= vk

k∑
i=1

1
vi

by Claims 5.3 and 5.4 and the definitions of n and ni , respectively.
To prove Claim 5.3, suppose each player chooses strategy sk , just as in Lemma

5.1. Each node in Kn,n thus matches the strategy chosen by all n of its neighbors,
and therefore receives a payoff of nvk . There are 2n nodes in the graph, and thus
the social welfare under this strategy profile is 2n · nvk , as claimed.

To prove Claim 5.4, consider the strategy profile p in which precisely ni of the
n nodes in each part of Kn,n play strategy si . Note that the payoff to a node u

playing si is then vini , because u has precisely ni neighbors matching u, namely
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the ni nodes in the other part of the graph who are also playing si . Thus

social welfare under p

=
∑

i

2ni · vini (there are 2ni nodes playing si ; each receives vini as above)

=
∑

i

2ni · vi
p

vi
=

∑
i

2nip = 2pn. (definition of ni and n)

We further claim that p is a Nash equilibrium. Indeed, consider any node u. The
payoff to u for playing si is vini = vi · (p/vi) = p, which is a constant independent
of i. Thus every node u is indifferent among its strategies, and thus p is a Nash
equilibrium.

Lemma 5.5. Let M be an arbitrary k-strategy coordination game with payoffs
{v1 , . . . , vk}, and let G be an arbitrary graph. Then poa(M ⊕ G) ≤ vk · ∑k

i=1
1
vi

.

Proof. Fix an arbitrary Nash equilibrium strategy profile p in M ⊕ G, and write
p(w) to denote the strategy played by a node w under p. We write

δ(u) := |Γ(u)|, (u’s degree in G)
δi(u) := |{w ∈ Γ(u) : p(w) = si}|,

(the number of u’s neighbors playing si under p)

m :=
∑

u

δ(u)/2. (the total number of edges in the graph G)

Write pu to denote u’s payoff under p. Note that u’s payoff from playing strategy
si is precisely viδ

i(u). For any node u and any i ∈ {1, . . . , k},
pu ≥ viδ

i(u), (5.1)

because p is a Nash equilibrium. Dividing both sides of (5.1) by vi and summing
the resulting constraints over all strategies i, we have∑

i

pu

vi
≥

∑
i

δi(u) ⇐⇒ pu ·
∑

i

1
vi

≥ δ(u) ⇐⇒ pu ≥ δ(u)∑
i

1
vi

. (5.2)

Therefore

social welfare of p =
∑

u

pu ≥
∑

u

δ(u)∑
i

1
vi

= 2m · 1∑
i

1
vi

, (5.3)

where the inequality follows by (5.2). Note that the social optimum is achieved
when all players choose strategy sk , so we have that the socially optimal outcome
achieves the social welfare

opt = 2m · vk . (5.4)
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Thus

opt

social welfare of p
≤ 2m · vk

2m · 1∑
i

1
v i

= vk

∑
i

1
vi

by (5.3) and (5.4). Because p was an arbitrary Nash equilibrium, we have that
opt/wne ≤ vk · ∑i

1
vi

for the worst Nash equilibrium wne, and thus the price
of anarchy of M ⊕ G has the same upper bound.

These lemmas establish the following. Let M be an arbitrary k-strategy coordi-
nation game with payoffs {v1 , . . . , vk}. For any graph G, we have pos(M ⊕ G) =
1 and poa(M ⊕ G) ≤ vk · ∑i

1
vi

; furthermore, there exists a graph G∗ for which
poa(M ⊕ G∗) = vk · ∑i

1
vi

.

Theorem 5.6. (Price of anarchy in coordination games.) Let M be any k-strategy coordination
game with payoffs {v1 , . . . , vk}, for any k ≥ 2. Then

poa(M) + k − 1 ≤ max
G

poa(M ⊕ G) ≤ k · poa(M).

Furthermore, for any k, there are k-strategy coordination games in which both
bounds are tight.

Proof. Note that by Lemma 5.2 and Lemma 5.5, we have that maxG poa(M ⊕
G) = vk · ∑i

1
vi

. Let G∗ denote the graph achieving this maximum price of an-
archy. Also notice that poa(M) = vk/v1 : in the base game, Nash equilibria arise
only when the two players are indeed playing the same strategy, and the worst
such equilibrium is when both players play s1 .

For the lower bound,

poa(M ⊕ G∗)=vk ·
∑

i

1
vi

≥ vk ·
(

k − 1
vk

+
1
v1

)
=k − 1 +

vk

v1
= k − 1 + poa(M),

because 1/vk ≤ 1/vi for all i. This bound is tight in the k-strategy coordina-
tion game with payoffs {1, v, v, . . . , v}, where poa(M) = v/1 = v and poa(M ⊕
G∗) = k − 1 + v.

For the upper bound,

poa(M ⊕ G∗) = vk ·
∑

i

1
vi

≤ vk · k

v1
= k · poa(M),

because 1/vi ≤ 1/v1 for all i. This bound is tight in the k-strategy coordination
game M with payoffs {1, 1, . . . , 1}, where we have poa(M) = 1, while poa(M ⊕
G∗) = k.
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As we stated in Section 1, in this paper we restrict our attention to pure
Nash equilibria. In many of the scenarios that motivate our work, the choices
participants make (e.g., which operating system to buy, or which cell phone
provider to use) are costly to alter, and it is hard to imagine these decisions
literally being made by coin tosses by every member of a large population.

That said, it is worth noting that the constructed pure Nash equilibrium on
M ⊕Kn,n of Lemma 5.2 is closely related to a mixed Nash equilibrium in the base
game M . In particular, we can associate player 1 in M with all players on the left
side of Kn,n in M ⊕Kn,n , and player 2 with all players on the right side. Given
any pure Nash equilibrium in M ⊕Kn,n , the corresponding mixed strategy for a
player in M is a weighted average of her associated players’ strategies. Similarly,
any mixed Nash equilibrium on M can be converted into a pure Nash equilibrium
in a networked game on a sufficiently large complete bipartite graph (assuming
that probabilities in the mixed Nash equilibrium are rational). See Lemma 6.7
for the general, formal version of this statement.

This correspondence implies the following surprising fact: Lemma 5.2 and
Lemma 5.5 also relate the pure and mixed prices of anarchy in (two-player)
coordination games. Of course, Lemma 5.5 is a more general result, in that it
bounds the effect of playing matching games on arbitrary networks, not just com-
plete bipartite graphs, and pure Nash equilibria in M ⊕ G for general networks
G do not correspond (at least not obviously) to mixed Nash equilibria in M .
Nevertheless, as part of our future work we intend to further explore the rela-
tionship between mixed Nash equilibria in base games and pure Nash equilibria
in their networked counterparts.

6. Existence of Pure Nash Equilibria

In this section, we explore the relationship between the existence of pure Nash
equilibria in an arbitrary base game M and the existence of pure Nash equilib-
ria in the networked game M ⊕ G played on a graph G. Broadly speaking, we
show negative results: one cannot infer anything, in either direction, about the
existence of pure Nash equilibria in M and the existence of pure Nash equilibria
in M ⊕ G. The limited exception arises in the case of a bipartite graph G.

We will highlight our main results first, and then devote the rest of the section
to more detailed statements of the results and proofs.

Theorem 6.1. (Bipartite results.) Let G be an arbitrary bipartite graph. Then:

(1) For a base game M with a pure Nash equilibrium, M ⊕ G has a pure Nash
equilibrium.



190 Internet Mathematics

(2) For a base game M with no pure Nash equilibrium, M ⊕ G may or may
not have a pure Nash equilibrium. (In particular, for every base game M ,
there exists a bipartite graph GM such that M ⊕ GM does have a pure Nash
equilibrium.)

Theorem 6.2. (Nonbipartite results.) Let G be an arbitrary nonbipartite graph. Then
regardless of whether the base game M has a pure Nash equilibrium, M ⊕ G

may or may not have a pure Nash equilibrium. In particular:

(1) For any nonbipartite graph G, there is a base game MG (we can choose
whether MG has a pure Nash equilibrium) such that MG ⊕ G does not have
a pure Nash equilibrium.

(2) As in Theorem 6.1(2), for every base game M (with or without a pure Nash
equilibrium), there exists a nonbipartite graph GM such that M ⊕ GM does
have a pure Nash equilibrium.

Theorem 6.1(1) is the lone positive result, showing that a pure Nash equilib-
rium in a base game does translate into a pure Nash equilibrium when that game
is played on a bipartite network. The other results are all negative, in that they
show that conclusions about the existence of pure Nash equilibria in M ⊕ G in
terms of the existence of pure Nash equilibria in M are not generally possible.

Of these results, we will specifically highlight the result mentioned in Theo-
rem 6.1(2) and Theorem 6.2(2), which is proven in Lemma 6.7. This result draws
an unexpected connection between mixed Nash equilibria in a base game M and
pure Nash equilibria in the networked version of M , played on an appropriately
chosen complete bipartite or tripartite graph.

6.1. Best-Response Dynamics

We also further explore the case in which there are pure Nash equilibria in M , by
subdividing this case based on whether best-response dynamics (BRD) always
converges. BRD is an algorithm that produces a sequence of strategy profiles
by repeatedly allowing a player i to update her strategy to a best response,
i.e., a strategy in Si maximizing i’s payoff, holding all other strategies constant.
Specifically, BRD is the following algorithm:

1. Start from an arbitrary strategy profile s.

2. While there is some player who is not playing a best response in s:
(a) Choose such a player i arbitrarily.
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(b) Update s by changing si to be an arbitrary best response for player
i.

If BRD terminates, then it terminates at a pure Nash equilibrium; however,
BRD may not terminate even if a pure Nash equilibrium exists. We say that BRD
always converges if this process terminates regardless of the arbitrary choices (the
initial profile s; which player i updates in each iteration; which best response si

is chosen if there is more than one), subject to the liveness condition that every
player “gets a turn” infinitely often.

Theorem 6.3. (Best-response dynamics results.) For an arbitrary base game M and graph G:

(1) If BRD always converges in M , then BRD may or may not always converge
in M ⊕ G (regardless of whether G is bipartite or nonbipartite).

(2) Conversely, if BRD always converges in M ⊕ G, then
(a) if G is bipartite, then BRD always converges in M ; but

(b) if G is nonbipartite, then BRD may or may not always converge in M .

As before, the lone case in which one can infer anything is Theorem 6.3(2a): if
BRD always converges in the networked game on a bipartite graph, then BRD
must always converge on the base game. But all the other results are negative.

These results—and those from Theorem 6.1 and Theorem 6.2—are summa-
rized in full detail, including complete quantification of each result with respect
to graphs and base games, in Figure 1.

6.2. Rock–Paper–Scissors

In several of our constructions, we make use of the following k-strategy “rock–
paper–scissors” game, which we denote by RPSk . There are k ≥ 2 strategies
{s0 , . . . , sk−1}, where strategy si “beats” the strategy si+1. Formally, we define

payoff to player playing si against sj =

{
1 if j = (i + 1) mod k,

0 otherwise.

For example:

RPS5 =

s0 s1 s2 s3 s4

s0 0, 0 1, 0 0, 0 0, 0 0, 1
s1 0, 1 0, 0 1, 0 0, 0 0, 0
s2 0, 0 0, 1 0, 0 1, 0 0, 0
s3 0, 0 0, 0 0, 1 0, 0 1, 0
s4 1, 0 0, 0 0, 0 0, 1 0, 0

.
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no pure Nash equilibrium
exists in M

a pure Nash equilibrium exists in M
BRD does not converge in
M

BRD converges in M

bipartite
graph G

∀G ∃M :
M ⊕ G has no pure NE
(Lemma 6.4)

∃G ∀M :
M ⊕ G has no pure NE
(bipartite: Lemma 6.9)
(nonbipartite:

Lemma 6.10)

∀M ∃G :
M ⊕ G has a pure NE
(Lemma 6.7)

∀G ∀M : M ⊕ G has a pure NE (Lemma 6.5)

∀G ∀M :
BRD
does not
converge in M ⊕ G
(Lemma 6.11)

∃M ∀G :
BRD converges in M ⊕ G
(Lemma 6.8)

∃G ∀M :
BRD converges in M ⊕ G
(Lemma 6.9)

∃G ∃M :
BRD does not converge in
M ⊕ G
(Lemma 6.12)

nonbipartite
graph G

∀G ∃M : M ⊕ G has no pure NE (Lemma 6.6)

∀M ∃G : M ⊕ G has a pure NE (Lemma 6.7)

∀G ∃M :
BRD does not converge in
M ⊕ G
(Lemma 6.6)

∃G ∀M :
BRD does not converge
in M ⊕ G
(Lemma 6.10)

∃G ∃M :
BRD converges
in M ⊕ G
(Lemma 6.13)

∀G ∃M :
BRD does not converge in
M ⊕ G
(Lemma 6.6)

∃M ∀G :
BRD converges in M ⊕ G
(Lemma 6.8)

Figure 1. Summary of our results relating the existence of pure Nash equilibria
and the convergence of best-response dynamics in base games M and networked
games M ⊕ G. When we write “BRD converges,” we mean that best-response
dynamics always converges, from any starting strategy profile and following any
sequence of best-response updates. Similarly, “BRD does not converge” means
that BRD sometimes fails to converge.

We will write α · RPSk , for a scalar α > 0, to denote the version of this game in
which the payoff for playing a strategy si against s(i+1) mod k is α rather than 1.
All other payoffs remain zero.

Note that RPSk does not have a pure Nash equilibrium for any k ≥ 3: the only
best response to strategy si is strategy s(i−1) mod k , but the only best response
to s(i−1) mod k is s(i−2) mod k . Thus no two strategies are mutual best responses,
because i �= (i − 2) mod k for any k ≥ 3, and thus no pure Nash equilibrium
exists in RPSk . (For k = 2, we have i = (i − 2) mod k, and the strategies s0 and
s1 are mutual best responses. In fact, RPS2 is a simple “mismatching” game,
with pure Nash equilibria 〈s0 , s1〉 and 〈s1 , s0〉.)
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6.3. Detailed Results and Proofs

Lemma 6.4. For every graph G, there exists a base game M with no pure Nash
equilibria such that the networked game M ⊕ G also does not have a pure Nash
equilibrium.

Proof. It suffices to choose M = RPSn+1, where n is the number of nodes in G.
Suppose for a contradiction that a strategy profile p is a pure Nash equilibrium

for RPSn+1 ⊕ G. There are n + 1 strategies and only n nodes, so there is at
least one strategy that is not being played under p; consequently, there exist an
index i and node u such that strategy si is played by u under p, but strategy
s(i+1) mod (n+1) is not being played by any node under p.

The structure of RPSn+1 implies that the payoff pu to node u is precisely the
number of u’s neighbors in G that play strategy s(i+1) mod (n+1) under p; thus
pu = 0. But the node u has at least one neighbor playing some strategy sj , and
thus u can deviate from si to s(j−1) mod (n+1) to receive a strictly positive payoff.
Thus p is not a Nash equilibrium, contradicting the assumption.

The proof of Lemma 6.4 uses a base game M with no pure Nash equilibria to
show that the networked game M ⊕ G need not have a pure Nash equilibrium.
If we restrict the base game M to contain a pure Nash equilibrium, then will the
same result hold? To answer this question, we have to consider the structure of
G. In particular, if G is nonbipartite, there still exists M such that M ⊕ G has
no pure Nash equilibrium, even if M itself does; however, if G is bipartite, this
is no longer the case.

Lemma 6.5. For every bipartite graph G and for every base game M that has a
pure Nash equilibrium, the game M ⊕ G has a pure Nash equilibrium too.

Proof. Let M be an arbitrary base game that has a pure Nash equilibrium, and let
G = 〈L ∪ R,E〉 be an arbitrary bipartite graph. Let the strategy profile s = 〈a, b〉
be a pure Nash equilibrium in M . Consider the strategy profile p in which
p(u) = a for u ∈ L and p(u) = b for u ∈ R. We claim that p is a pure Nash
equilibrium in M ⊕ G.

Let pu (a) denote the payoff to a node u for playing strategy a in M when
the other player plays according to s, and let p̂u (a) denote the payoff to a node
u for playing strategy a in M ⊕ G when the other nodes play according to p.
Then, simply, we have p̂u (a) = δ(u) · pu (a), where δ(u) denotes the degree of
node u in G.
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Because no player wants to deviate from s in M , no node wants to deviate
from p in M ⊕ G. Thus p is a pure Nash equilibrium in M ⊕ G.

Lemma 6.6. For every nonbipartite graph G, there exist base games M and M ′ with
the following properties: both M and M ′ have pure Nash equilibria, best-response
dynamics always converges in M but best-response dynamics does not always
converge in M ′, and neither M ⊕ G nor M ′ ⊕ G has a pure Nash equilibrium.

Proof. Our constructions for M and M ′ are similar; we will begin with the con-
struction for M and then augment it to define M ′. Let n be the number of nodes
in G. Define the following (2n + 2)-strategy game Mn :

Mn :=

s0 s1 . . . sn b0 b1 . . . bn

a0 1, 1 1, 1 . . . 1, 1
a1 (1 − ε) · RPSn +1 1, 1 1, 1 . . . 1, 1
...

...
...

. . .
...

an 1, 1 1, 1 . . . 1, 1
b0 1, 1 1, 1 . . . 1, 1
b1 1, 1 1, 1 . . . 1, 1 (1 − ε) · RPSn +1
...

...
...

. . .
...

bn 1, 1 1, 1 . . . 1, 1

.

First we claim that best-response dynamics always converges in Mn . Any
strategy profile 〈ai, bj 〉 or 〈bi, aj 〉 is a pure Nash equilibrium: both players are
receiving a payoff of 1, the maximum possible value anywhere in the matrix, so
they are certainly playing mutual best responses. At a strategy profile 〈ai, aj 〉,
either player’s best response causes her to switch to a b-type strategy (and thus
to a pure Nash equilibrium). Similarly, one best-response update from a strategy
profile 〈bi, bj 〉 results in one player switching to an a-type strategy and thus a
Nash equilibrium. From an arbitrary strategy profile, BRD terminates after at
most one best-response update: if the players begin with one a-type and one
b-type strategy, then the profile begins as a pure Nash equilibrium; if they have
the same strategy types, then one update leads to a pure Nash equilibrium.

Now we will show that for the nonbipartite graph G, there is no pure Nash
equilibrium in Mn ⊕ G (and certainly BRD does not terminate).

Suppose for a contradiction that a strategy profile p is a pure Nash equilibrium
for Mn ⊕ G. For a node u, let pa

u denote the payoff that u receives under p from
its neighbors who are playing a-strategies (i.e., pa

u is 1 − ε times the number of
u’s neighbors playing a(p(u)+1) mod (n+1) under p). Similarly, let pb

u denote the
payoff that u receives under p from its neighbors playing b-strategies (i.e., pb

u is
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exactly the number of u’s neighbors that are playing a b-strategy under p). Let
pu := pa

u + pb
u denote the total payoff to u under p.

Because G is nonbipartite, the graph is not 2-colorable. Interpreting the “strat-
egy types” (a’s and b’s) under p as two colors, we know that there must be two
adjacent nodes x and y such that x and y are both “colored” a or both “col-
ored” b by the profile p. Without loss of generality, suppose that x and y are
both colored a. Let A denote the set of a-colored nodes that are connected to x

and y in G; that is, let A denote the connected component of the subgraph of
G induced by considering only a-colored nodes. Then every node in A plays an
a-strategy under p and is adjacent to at least one other node in A playing an
a-strategy under p.

But |A| ≤ n; therefore, just as in Lemma 6.4, by the pigeonhole principle, there
must be some node u ∈ A playing strategy ai where no node in A plays strategy
a(i+1) mod (n+1). Therefore pa

u = 0. But that node u is adjacent to some node in
S playing a strategy aj . If u switches to play a(j−1) mod (n+1), then u’s payoff
increases: he still receives pb

u payoff from his b-colored neighbors, and he receives
at least 1 − ε from his aj neighbor. This deviation increases u’s payoff, and thus
contradicts the assumption that p was a Nash equilibrium.

We have now described a base game Mn such that best-response dynamics
always converges in Mn (and thus a pure Nash equilibrium exists in Mn ), yet
there is no pure Nash equilibrium in Mn ⊕ G. To prove the second part of the
lemma, we must again give a base game M ′

n such that M ′
n has a pure Nash

equilibrium but M ′
n ⊕ G does not, but this time where BRD does not always

converge in M ′
n . We construct M ′

n by augmenting Mn to block BRD from always
converging. We add two strategies c0 and c1 , where playing ci against any non-c
strategy has a highly negative payoff, and the c-versus-c submatrix is a version
of the classic matching pennies game (a two-player, two-strategy game that has
no pure Nash equilibria):

M ′
n :=

s0 . . . bn c0 c1

a0 0,−n 0,−n
... Mn

...
...

bn 0,−n 0,−n

c0 −n, 0 . . . −n, 0 1,−n −n, 1
c1 −n, 0 . . . −n, 0 −n, 1 1,−n

.

First observe that, like Mn , the base game M ′
n contains a pure Nash equilibrium,

namely any strategy profile 〈ai, bj 〉 or 〈bi, aj 〉. However, BRD does not always
converge in M ′

n : if the two players begin at the strategy profile 〈c0 , c0〉, then
after four best-response updates (player 2 updates to c1 ; player 1 updates to
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c1 ; player 2 updates to c0 ; player 1 updates to c0) we have looped back to the
original strategy profile.

Now we argue that for the nonbipartite graph G, there is no pure Nash equi-
librium in M ′

n ⊕ G. There can be no pure Nash equilibrium in M ′
n ⊕ G in which

any node uses a c-strategy: some c-playing node must receive a payoff of −n

along some edge, which means its player’s total payoff must be negative (be-
cause he gains at most a payoff of one from every other neighbor), and switching
to strategy a0 , say, guarantees a nonnegative payoff. And there is no pure Nash
equilibrium involving only a-type and b-type strategies, as above. Thus there is
no pure Nash equilibrium in M ′

n ⊕ G.

In Lemmas 6.5 and 6.6 we see how base games with pure Nash equilibria can
lead to networked games with and without pure Nash equilibria, depending on
the underlying graph structure. Lemma 6.4 shows a specific base game with no
pure Nash equilibria that leads to a networked game with no pure Nash equilibria.
But in Lemma 6.4, the base game M was chosen with respect to a particular
graph G. Here we show that this dependence was crucial: for every base game
M , there exists a graph G such that the networked game M ⊕ G has a pure Nash
equilibrium. Our proof again highlights some of the connections between pure
Nash equilibria in networked games and mixed Nash equilibria in base games.

Lemma 6.7. For every base game M (independent of whether pure Nash equilibria
exist in M or whether best-response dynamics always converges in M), there exist
a bipartite graph G and a nonbipartite graph G′ such that pure Nash equilibria
exist in both M ⊕ G and M ⊕ G′.

Proof. Let S denote the strategy set of M , and let p denote the payoff function to a
player in M . A classic result from [Nash 51] says that the symmetric two-player
game M must have a symmetric mixed Nash equilibrium—that is, a probability
distribution σ over S that is a best response to itself. More formally, the expected
payoff to a player for playing any strategy in the support of σ against σ must be
maximal:

σ(s) > 0 =⇒ ∀s′ ∈ S :
∑
t∈S

σ(t) · p(s, t) ≥
∑
t∈S

σ(t) · p(s′, t). (6.1)

Furthermore, because we have a two-player base game, the probability vector σ

contains only rational probabilities, so that σ(s) = qs/n, where
∑

s qs = n, for
a common denominator n ∈ Z≥1 and coefficients qs ∈ Z≥1 . (For a more detailed
derivation of the above results, see [Papadimitriou 07].)

We can now define the graphs G and G′ as the complete bipartite graph G :=
Kn,n and the complete tripartite graph G′ := Kn,n,n with n nodes in each part
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of each graph. We claim that the following p is a pure Nash equilibrium in M ⊕
Kn,n : precisely qs nodes in each part of the graph play strategy s. Specifically,
every node u is playing a best response:

u’s payoff from playing s =
∑

w∈Γ(u)

p(s,p(w)) =
∑
t∈S

n · σ(t) · p(s, t)

(u has precisely n neighbors, of which qt = n · σ(t) are playing strategy t)

≥ n ·
∑
t∈S

σ(t) · p(s′, t) by (6.1)

=
∑

w∈Γ(u)

p(s′,p(w))

= u’s payoff from deviating to s′,

where we can apply (6.1) because u playing s implies that σ(s) > 0. Thus p
is a pure Nash equilibrium in M ⊕Kn,n . The proof that there is a pure Nash
equilibrium in M ⊕Kn,n,n is strictly analogous, where now every node has 2n ·
σ(t) neighbors playing strategy t instead of just n · σ(t).

With these statements about mismatches between base games and networked
games proven, we turn to a few simple examples of graphs and base games in
which properties of the base game do align with properties of the corresponding
networked games.

Lemma 6.8. There exists a base game M in which best-response dynamics always
converges (and thus M has a pure Nash equilibrium) such that for every graph G,
best-response dynamics always converges in the networked game M ⊕ G (which
thus also has a pure Nash equilibrium).

Proof. Let M be a trivial game in which all payoffs are zero. Then every strategy
profile is a pure Nash equilibrium in M and in M ⊕ G, and thus BRD always
converges in both.

Lemma 6.9. There exists a bipartite graph G such that for every base game M , the
existence of pure Nash equilibria and the convergence of best-response dynamics
are identical in the games M and M ⊕ G.

Proof. Let G = K2 be the trivial 2-node, 1-edge graph. Then the games M and
M ⊕ G are in fact identical, and the claim follows immediately. (The same result
holds when G is an arbitrary matching in which multiple independent parallel
copies of M are played.)
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Lemma 6.10. There exists a nonbipartite graph G such that for every base game M ,
a pure Nash equilibrium exists in M ⊕ G only if a pure Nash equilibrium exists
in M , and, furthermore, BRD always converges in M ⊕ G only if BRD always
converges in M .

Proof. Let G be a 5-node, 2-component graph containing K2 and K3 as its two
connected components; the graph is not bipartite because of the K3 component.
If there were a pure Nash equilibrium in M ⊕ G, then the two nodes in the
K2 component would have to be playing mutual best responses, and thus their
two strategies would form a pure Nash equilibrium in M . Similarly, if there is a
sequence σ of best-response updates in M that does not terminate, then BRD
does not converge in M ⊕ G when σ is the sequence of best-response updates in
the K2 component.

Finally, we conclude this section with three results about best-response dy-
namics. We show that in bipartite graphs, if BRD does not always converge in
M , then BRD does not always converge in M ⊕ G. (This result is analogous to
Lemma 6.5, where we showed the existence of pure Nash equilibria in a base
game carried over to networked games on bipartite graphs.) We also give two
more examples of mismatches in properties between base games and networked
games: a base game in which BRD always converges but for which BRD does not
always converge in the networked game on a bipartite graph, and a base game in
which BRD does not always converge but for which BRD does always converge
in the networked game on a nonbipartite graph.

Lemma 6.11. For every bipartite graph G and every base game M in which BRD
does not always converge, BRD also does not always converge in the networked
game M ⊕ G (even if the players’ best-response updates are done in round-robin
order).

Proof. Suppose there is a nonconvergent sequence of best-response strategy choices
for the base game M . Denote this sequence by 〈s1 , s2 , s3 , . . .〉, where player 1’s
updates are denoted by odd subscripts and player 2’s by even subscripts, where
each of these strategies is a best response to the previous strategy.

Fix an arbitrary bipartite graph G = 〈L ∪ R,E〉, and consider the following
run of BRD on the networked game M ⊕ G. We start from the strategy profile
p in which every node in L plays strategy s1 and every node in R plays strategy
s2 . Players update their strategies in a round-robin order such that all players
in L update before all players in R.
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Because G is bipartite, when a node � ∈ L updates its strategy, any updates
made by other nodes in L do not affect �’s best response. Because strategy si+1

is a best response to strategy si in M , by the definition BRD on M , it must also
be a best response in playing against many opponents, all of whom are playing
si . Starting from p, where L and R nodes are playing s1 and s2 , respectively, it
is thus a best response for each node � ∈ L to update to s3 . Now each node in R

is adjacent only to nodes playing s3 , and thus, similarly, it is a best response for
each node r ∈ R to update to s4 , and so forth. Because there is a nonconvergent
sequence of best responses in M (namely 〈s1 , s2 , s3 , . . .〉), then there is also a
nonconvergent sequence of best responses in M ⊕ G (also 〈s1 , s2 , s3 , . . .〉), so
BRD does not always converge in the networked game.

Lemma 6.12. There exist a bipartite graph G and a base game M such that best-
response dynamics always converges in M but best-response dynamics does not
always converge in M ⊕ G (even if the players’ best-response updates are done
in round-robin order).

Proof. Let the graph G = K2,2 be the complete bipartite graph with nodes L =
{w, x} and R = {y, z} and edges L × R. Define the base game M as follows:

s1 s2 s3 s4 s5 s6

s1 3, 3 0, 0 0, 2 0, 2 2, 0 2, 0
s2 0, 0 3, 3 0, 2 0, 2 2, 0 2, 0

s3 2, 0 2, 0 3, 3 0, 0 0, 2 0, 2
s4 2, 0 2, 0 0, 0 3, 3 0, 2 0, 2

s5 0, 2 0, 2 2, 0 2, 0 3, 3 0, 0
s6 0, 2 0, 2 2, 0 2, 0 0, 0 3, 3

.

Intuitively, M is a version of 2 · RPS3 in which there are two strategies of each
type (s1 and s2 are both “rock”; s3 and s4 are both “paper”; s5 and s6 are both
“scissors”), and players receive a payoff of 3 if they choose the same strategy.
The key for BRD not always converging in K2,2 is the following. Suppose that
both nodes of each “side” of the graph always play the same of rock, paper, or
scissors, but always differ in which of the strategies within that category they
play. Then each “losing” node has two neighbors and can gain 2 + 2 from winning
the two “RPS-type” games against the other side of the graph, which outweighs
the 3 from matching one of the other side’s strategies; both nodes will switch
to “winning,” and the process will continue for the other pair. However, in the
non-networked version of M , BRD will always converge, because when there is
only one other player, it is better to match that player (for a payoff of 3) than
to beat him in RPS (for a payoff of 2).
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More formally, we claim that BRD always converges—in zero or one best-
response updates, in fact—in the base game M . This is easy to see, because
in any strategy profile 〈si, sj �=i〉, either player’s best response is to match the
strategy played by the other, yielding a payoff of 3 for both players. Any strategy
profile 〈si, si〉 is a pure Nash equilibrium, and thus BRD terminates after this
step.

Now we claim that BRD does not always converge in M ⊕ G. Suppose that we
start with the strategy profile 〈s1 , s2 , s3 , s4〉 for nodes 〈w, x, y, z〉, respectively,
and updates proceed alphabetically, in round-robin fashion. Then the strategy
profiles after each step of BRD are as follows:

explanation of updating node u ’s update current strategy
payoff to u for ...

u Γ(u)’s strategies s1 s2 s3 s4 s5 s6 u ’s best response w x y z

initial strategy profile s1 s2 s3 s4

w s3 , s4 0 0 3 3 4 4 s5 s5 s2 s3 s4

x s3 , s4 0 0 3 3 4 4 s6 s5 s6 s3 s4

y s5 , s6 4 4 0 0 3 3 s1 s5 s6 s1 s4

z s5 , s6 4 4 0 0 3 3 s2 s5 s6 s1 s2

w s1 , s2 3 3 4 4 0 0 s3 s3 s6 s1 s2

x s1 , s2 3 3 4 4 0 0 s4 s3 s4 s1 s2

y s3 , s4 0 0 3 3 4 4 s5 s3 s4 s5 s2

z s3 , s4 0 0 3 3 4 4 s6 s3 s4 s5 s6

w s5 , s6 4 4 0 0 3 3 s1 s1 s4 s5 s6

x s5 , s6 4 4 0 0 3 3 s2 s1 s2 s5 s6

y s1 , s2 3 3 4 4 0 0 s3 s1 s2 s3 s6

z s1 , s2 3 3 4 4 0 0 s4 s1 s2 s3 s4

.

Thus we have returned to the same strategy profile as the initial configuration,
and BRD is stuck in a loop. Therefore BRD does not always converge in M ⊕ G.

Lemma 6.13. There exist a nonbipartite graph G and a base game M with a pure
Nash equilibrium but for which best-response dynamics does not always converge
in M such that best-response dynamics does always converge on M ⊕ G.

Proof. The graph G = K3 is the triangle, and the base game M is an augmented
form of rock–paper–scissors altered with a major tie deterrent and an additional
matching-type strategy:

R P S X

R −4,−4 0, 1 1, 0 0, 0
P 1, 0 −4,−4 0, 1 0, 0
S 0, 1 1, 0 −4,−4 0, 0
X 0, 0 0, 0 0, 0 4, 4

.
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Note that a pure Nash equilibrium does exist in M , namely the profile 〈X,X〉.
However, best-response dynamics does not always converge in M : if we begin in
the strategy profile 〈R,P 〉, then BRD ends up in a cycle (specifically, RP →
SP → SR → PR → PS → RS → RP ). Now we must argue that BRD always
converges in M ⊕ G, which we will do by examining players’ best responses
depending on the number of the three nodes in the graph that are playing strat-
egy X.

BRD terminates immediately if we start it from the profile 〈X,X,X〉.
If we start BRD from any profile in which exactly two players have chosen

X, then those two players are already playing a best response. As soon as the
non-X player has a chance to make an update, her best response is to switch to
X as well. BRD then terminates as above.

If we start BRD from any profile in which exactly zero players have chosen X,
then the best response for any player is to choose an RPS strategy that does not
duplicate any other player’s choice. Therefore, as soon as all three players have
gotten a chance to update, BRD will have as its current strategy profile some
permutation of 〈R,P, S〉. This profile is a pure Nash equilibrium, and thus BRD
terminates.

Finally, if we start BRD from any profile in which exactly one player has chosen
X, then one of two cases holds. One possibility is that the X-player makes the
first update: in this case, just as above, his best response is to choose an RPS
strategy that does not duplicate any other player’s choice. BRD then terminates
as in the zero-X-player case. The other possibility is that an RPS player makes
the first update: in this case, her best response is to play X. This update leads
to a profile with two players who have chosen X, and again as above, BRD will
always terminate from such a profile.

7. Future Directions

Our work points to a substantial number of interesting open questions. We are
currently pursuing a number of these directions, which we briefly highlight here.

First, we would like to extend our price-of-anarchy analysis of coordination
games to other or more general base games. What properties must a base game
possess for similar bounds to hold?

Second, we hope to develop stronger results based on particular structural
aspects of the underlying network. A number of our results in this paper distin-
guish between graphs that are bipartite and those that are not. Could stronger
results be found if we restricted ourselves to other classes of graphs, such as
regular graphs, trees, or grids? Or, more ambitiously, could we perhaps begin to
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understand games played on networks that are explicitly intended to represent
social structures [Kleinberg 00, Watts and Strogatz 98, Barabási and Albert 99,
e.g.]?

Third, in Section 5 and in Lemma 6.7, we noted a correspondence between
mixed Nash equilibria in base games and pure Nash equilibria in their networked
counterparts (for a complete k-partite network). Can a more general correspon-
dence be found for arbitrary networks? And could this correspondence further
our understanding of mixed Nash equilibria in general?

Fourth, what kind of general algorithmic results are possible in the context of
networked games? For example, can we give an efficient algorithm that, given
a graph G as input, computes the price of anarchy for a simple coordination
game when it is played on the graph G? Under what circumstances can one find
pure Nash equilibria efficiently in networked games? The connection to graphical
games may be helpful here, though there are differences. (For example, even for
a complete graph G, the game M ⊕ G is still compactly representable; graphical
games for which the underlying graph of direct influence is complete require an
exponential-sized description.) Because our M ⊕ G networked games are more
restrictive than graphical games, we might hope for efficient algorithms in a
broader context than what is known for graphical games. An encouraging sign
for this research direction is the recent work [Daskalakis and Papadimitriou 09]
on reducing a networked game Z ⊕ G to a two-player zero-sum game when the
base game Z is zero-sum (or even strictly competitive).

Finally, the framework we put forth in this work specifies how a large, complex
game can be generated via the composition of a simple base game and a network.
To what extent might we be able to perform the reverse operation: take a complex
game and decompose it (even if only approximately) into a network and one or
more simple base games?
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