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Community Structures in Classical
Network Models
Angsheng Li and Pan Peng

Abstract. Communities (or clusters) are ubiquitous in real-world networks. Researchers
from different fields have proposed many definitions of communities, which are usually
thought of as a subset of nodes whose vertices are well connected with other vertices in
the set and have relatively fewer connections with vertices outside the set. In contrast
to traditional research that focuses mainly on detecting and/or testing such clusters, we
propose a new definition of community and a novel way to study community structure,
with which we are able to investigate mathematical network models to test whether
they exhibit the small-community phenomenon, i.e., whether every vertex in the net-
work belongs to some small community. We examine various models and establish
both positive and negative results: we show that in some models, the small-community
phenomenon exists, while in some other models, it does not.

1. Introduction

There are quite a few interesting phenomena that arise in the study of large-scale
networks. For example, the degree sequences in many networks obey power-law
distributions [Barabási and Albert 99, Mitzenmacher 04], which means that the
number of nodes with k links is proportional to k−γ for some constant γ. Typ-
ical social, technological, and biological networks exhibit the small-world phe-
nomenon [Watts and Strogatz 98, Kleinberg et al. 00], namely, almost every
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pair of nodes in the graph are connected by a short path through the network,
and in some cases, we can find such a short path efficiently using only local
information. Other typical characteristics include the “triadic closure” property
[Rapoport 53], the “densification and shrinking diameters” in the evolution of
networks [Leskovec et al. 07], and the property of community structures [Fortu-
nato 10], which is the main focus of this paper.

Communities (also called “clusters” or “modules”) are naturally thought of
as cohesive subgraphs in a network. Informally, vertices in a community are
well interconnected with fellow members of the community and have relatively
fewer connections with vertices outside the community. Communities appear in
a wide range of applications. For instance, in protein–protein interaction (PPI)
networks, groups of proteins sharing the same or similar functions are clustered
together [Jonsson et al. 06]; in society, the communities may correspond to groups
of friends or coworkers [Granovetter 73]; in scientific collaboration networks,
scientists who investigate similar research topics or use similar methodologies
group together to form communities [Girvan and Newman 02].

Previous research has focused heavily on how to find and test these common
clusters in networks. Many algorithms have been proposed to detect communi-
ties. To name a few, agglomerative or divisive ideas combined with some spe-
cific vertex (or link) similarity measures are used to find clusters [Hopcroft et
al. 03, Girvan and Newman 02]. Due to the many similar characteristics between
clustering and graph partitioning, in which spectral techniques work particu-
larly well, spectral algorithms are also used to find clusterings [von Luxburg 07].
Modularity-based methods have been very influential in recent research [Newman
and Girvan 04, Danon et al. 05]. Other works may first treat communities from
some specific perspective and then utilize that to achieve their specific goals. For
example, [Palla et al. 05] views communities as a chain of adjacent cliques, and
using this, the authors can find overlapping and/or nesting communities. Testing
the quality of a community has also been studied [Lancichinetti et al. 08, Lan-
cichinetti and Fortunato 09]. For more applications and experimental results on
community detection, see the recent survey [Fortunato 10].

Though there are extensive studies on finding and testing communities, there
is no uniform or standard definition of the term. In fact, many papers on find-
ing clusters do not give a precise definition (mathematically) but do give al-
gorithms that will output cohesive subsets of the nodes of graphs, and then
these sets are treated as the communities (e.g., [Girvan and Newman 02, Ahn
et al. 09]). Traditional definitions vary greatly depending on the field of research
and the investigators’ goals. Some definitions involve the global structure of the
community—for instance, one can expect a partition of a graph to contain good
communities if the partition is an (approximate) optimal solution to a global
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modularity function, which involves some quantities in the real-world network
and the corresponding quantities in a random model preserving the degree se-
quence of the original network [Newman and Girvan 04]—and some are based on
the local property of clusters (e.g., a clique or clique-like subgroup is supposed
to be a good community [Kumar et al. 00, Palla et al. 05]).

In this paper, we introduce a new definition of community. In our definition,
a community is allowed to overlap and/or nest other communities. Furthermore,
our definition provides a quantitative way to compare the quality of two commu-
nities (by comparing the community components; see Section 2). This definition
uses the concept of the conductance of a subset of the graph, which measures
somehow the ratio between the number of edges incident to the subset and the
number of edges in the set, and it plays important roles in graph theory, algo-
rithms, and statistical physics [Chung 97, Hoory et al. 06]. Some conductance
results of random graphs have also been investigated [Durrent 07].

Several papers have appeared that connect conductance to clustering. In [Kan-
nan et al. 04], the authors have proposed a bicriteria measure for assessing the
quality of a clustering. They define a good clustering as a set of clusters in which
each cluster has high conductance and the weight of intercluster edges takes only
a small portion of the total edge weight. Their main goal is to analyze a spectral
algorithm that gives a good approximation solution to the clustering problem
under their definition.

In [Leskovec et al. 2008], the authors use the conductance directly to mea-
sure the goodness of a community. A good community is supposed to have low
conductance. They considered the quality of network communities at different
size scales. Specifically, they studied a quantity that is the minimum conductance
over all sets of size k in the entire graph, and they plot this quantity as a function
of k over 100 large-scale networks. In this way, they can analyze the relationship
between the quality and the size of a community. One of the many interesting ob-
servations is that the size of the best community (with minimal conductance) in
many large-scale networks is around 100. This observation matches the Dunbar
number [Dunbar 96], which predicts that a stable community has size bounded
above by approximately 150.

In contrast to many other papers (e.g., [Mishra et al. 08, Kannan et al. 04])
that first give a definition of community and then develop algorithms to find
subsets satisfying the definition, we study the small-community phenomenon in
various networks. This is motivated by the common experience that in many
social networks, almost every node belongs to at least one small community.
This intuition is to some extent confirmed by [Allen 04], which finds that online
communities have around 60 members and some other evidence that supports
Dunbar’s theory on the limit size of a stable community.
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The observation of the work of [Leskovec et al. 2008], cited above, also gives
evidence that small communities not only exist but also have the best quality
in many large-scale networks. On the other hand, as we mentioned, we use the
conductance to measure the quality of a set. Though conductance has been
used to characterize communities (e.g., [Leskovec et al. 2008]), we combine the
conductance of a set and its size in a more refined way that has never been
considered before.

We test our definition on a variety of random graph models to check whether
they exhibit the small-community phenomenon. Through this line of research we
can both determine whether a given model is suitable for validating real-world
networks and provide motivation to design more appropriate network models.

We believe not only that our results build a theoretical framework for the
study of community structures, but that they have potential applications in un-
derstanding other structural properties and/or dynamic behaviors of networks
in general. For example, [Chierichetti et al. 10a, Chierichetti et al. 10b] recently
established the connection between rumor-spreading on a graph and its conduc-
tance. It is known that communities play an important role in rumor-spreading
(see, e.g., [Ball et al. 97]), reflecting the intuition that rumor spreads quickly
within a community. This experiment needs a mathematical proof, for which our
definition of community might well be used.

In Section 2, we will give some basic definitions on good communities and
some corresponding quantities, and we will formulate the concept of the small-
community phenomenon. In Section 3, we will investigate the small-community
phenomenon on a set of classical network models, including the Erdős–Rényi
model [Erdős and Rényi 60], the geometric preferential attachment model [Flax-
man et al. 07a, Flaxman et al. 07b], and the hierarchical model [Ravasz and
Barabási 03]. In Section 4, we consider the community structure of some per-
turbed graphs, including the small-world model, and show that the small-commu-
nity phenomenon in a graph may be viewed as a slightly dual property of being
an expander.

2. Basic Definitions

Given a simple graph G = (V,E), let dv denote the degree of a vertex v ∈ V .
The volume vol(S) of a subset S ⊆ V is the sum of degrees of vertices in it, i.e.,
vol(S) =

∑
v∈S dv . Noting that the volume of V is twice the number of edges, we

denote it by vol(G) = vol(V ) = 2|E|. For any two vertex subsets S, T ⊂ V , we
let eG (S, T ) denote be the number of edges with one endpoint in S and the other
in T , while eG (S) denotes the number of edges with both endpoints in S. When
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it is clear from the context, we will abbreviate eG (S, T ) and eG (S) as e(S, T )
and e(S), respectively. Then obviously, vol(S) = 2e(S) + e(S, S̄). For S ⊆ V and
vol(S) ≤ 1

2 vol(G), the conductance of S is defined as

Φ(S) =
e(S, S̄)
vol(S)

.

For S with vol(S) > 1
2 vol(G), its conductance is defined to be the conductance

of its complement, namely Φ(S) = Φ(S̄).
In [Leskovec et al. 2008], the conductance of a set S is used to measure the

goodness of the community S. As easily seen from the definition, the conduc-
tance of a set S provides somehow a measure of the ratio between the number of
edges incident to the set and the number of edges contained in the set. Thus, con-
ductance is intuitively related to a community. More specifically, the smaller the
conductance of a set S is, the more likely it is that S is a good community. More-
over, it is natural to require a community to be connected, which ensures that
every pair of nodes in the community can establish a connection only through
the nodes inside the community.

We will also require that the size of a meaningful community in a graph (or
model) G depend on the number of vertices n in G, which means that we will not
consider a set of constant size to be a proper community. This requirement can
be seen as follows: on the one hand, we are more interested in how communities
change as the size of the network grows. On the other hand, a set that is too
small can hardly be thought of as a reasonable community [Allen 04]. Moreover,
empirical results reveal that the sizes of many communities scale with the size
of the associated network (see, e.g., [Palla et al. 05]).

We now extend the idea of [Leskovec et al. 2008] to give a more refined way
to measure the goodness of a community.

Definition 2.1. Given a graph G = (V,E) and α, β > 0, a connected set S ⊂ V with1

|S| = ω(1) is a strong (α, β)-community2 if

Φ(S) ≤ α

|S|β .

Moreover, if |S| = O((ln n)γ ), where n = |V |, then we say that S is a strong
(α, β, γ)-community.

1 Here ω(1) means any slowly growing function. This condition ensures that a meaningful
community cannot be too small.

2 We note that [Mishra et al. 08] has also given a definition to measure clustering, and it also
uses the notation of (α, β)-clusters. That definition needs precise bounds on both the number
of intra- and interedges of a set, and thus is very different from ours.
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If the conductance satisfies some weaker condition, we can define a weak com-
munity. Formally we make the following definition.

Definition 2.2. Given a graph G = (V,E) and α, β > 0, a connected set S ⊂ V with
|S| = ω(1) is a weak (α, β)-community if

Φ(S) ≤ α

(ln |S|)β
.

The weak (α, β, γ)-community can be defined similarly.
We call β the community exponent of the graph. It is easily seen that 0 ≤

β ≤ 2 in the definition of strong community. Here β captures the quality of a
community. Intuitively, for a strong (α, β)-community S, if β is large, then the
fraction of edges outside of S that cross the cut is low, which means that S is
more like a community. Thus, to some extent, we can say that if β1 > β2 > 0, a
strong (α1 , β1)-community is better than a strong (α2 , β2)-community, which is
again better than any weak community.

In many cases, we want to know whether a given random network model
exhibits the small-community phenomenon, i.e., whether every vertex in the
graph is contained in some small community.

Definition 2.3. Given a random graph G with vertex set V and |V | = n, if with
high probability, almost every vertex v is contained in a strong or weak (α, β, γ)-
community, where α, β, γ > 0 are some constants independent of n, then G is
said to exhibit the small-community phenomenon.3

In the remaining sections, we will also use a quantity related to conductance,
which is called expansion, which is introduced here.

Definition 2.4. In a graph G = (V,E), the expansion of a subset S ⊆ V is

α(S) =
e(S, S̄)

min
(|S|, ∣∣S̄∣∣) .

The expansion of the graph α(G) is minS⊆V , |S |≤|V |/2 α(S). The graph expan-
sion of some network models is studied in [Flaxman 07, Flaxman et al. 07a, Flax-
man et al. 07b] .

3 By with high probability we mean that some event occurs with probability at least 1 − o(1);
almost every vertex means at least a fraction 1 − o(1) of vertices.



Li and Peng: Community Structures in Classical Network Models 87

3. Results on Classical Network Models

In this section, we investigate the community structure (based on our definition)
in several classical network models. We will see that some models capture the
small community structure, while others do not.

3.1. The Erdös–Rényi Model

The Erdös–Rényi model [Erdős and Rényi 60] is one of the most basic network
models. It is also called the G(n, p) model, in which each potential edge appears
with probability p, independently of other edges. We will see that for p large
enough (in which case the graph is connected with high probability), this model
does not exhibit the small-community phenomenon.

Theorem 3.1. If p = ω(n) ln n/n, where ω(n) → ∞ arbitrarily slowly, then for every
β > 0 and all γ > 0, a random graph G in G(n, p) with high probability does not
contain even a weak (α, β, γ)-community.

Proof. It is well known that for p = ω(n) ln n/n, with high probability, every vertex
in G has degree around (n − 1)p ≈ ω(n) ln n (see [Alon and Spencer 08, p. 129]),
i.e., deg(v) ≈ ω(n) ln n for all vertices v. We will assume this property to hold in
this proof.

Now we consider a subset S ⊂ V with |S| = k ≤ n/2. We will show that with
high probability, every such S has conductance Φ(S) at least δ, for a sufficiently
small constant δ.

The expected number of edges e(S, S̄) between S and its complement S̄ is

E[e(S, S̄)] = k(n − k)p ≥ kω(n) ln n/2.

If the conductance Φ(S) is smaller than δ, then e(S, S̄) < δ vol(S) ≈
δkω(n) ln n. Using the Chernoff bound (see, e.g., [Mitzenmacher and Upfal 05]),
we have

Pr[e(S, S̄) < δkω(n) ln n] ≤ e−c1 kω (n) ln n ,

for some constant c1 .
The probability that there exists a subset S ⊂ V with |S| = k ≤ n/2 and

Φ(S) < δ is at most

n/2∑
k=1

(
n

k

)
e−c1 kω (n) ln n ≤

n/2∑
k=1

e(1−c1 ω (n))k ln n = o(1).
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Therefore, for each set S with size at most n/2, the conductance Φ(S) is no
less than δ. In particular, for any γ > 0, a set of size O((ln n)γ ) has conductance
no smaller than some constant, which concludes the proof.

3.2. Preferential Attachment Model

Barabási and Albert [99] proposed the preferential attachment (PA) scheme to
reproduce the property that the vertex degrees follow a power law distribution
in many real networks. This model has since then been extensively studied. In
particular, [Mihail et al. 06] shows that with high probability, the graph from the
preferential attachment model (which is a small variant of the original model)
has constant expansion and constant conductance.

The model in [Mihail et al. 06] is based on the following random graph process.
At time t = 1, the graph G′

1 equals a minivertex x1 with a self-loop. At time
t ≥ 2, a new minivertex xt arrives and chooses a minivertex xt ′ (t′ < t) in G′

t−1
with probability proportional to the degree of xt ′ . Then G′

t is constructed by
adding edge (xt, xt ′) to G′

t−1 . Now if we stop at time dn (for some parameter
d) and obtain G′

dn , then we contract every d consecutive minivertices xdτ−i ,
0 ≤ i ≤ d − 1, into a corresponding vertex xτ . The final graph is denoted by Gd,n .

The following result is an immediate corollary of the main theorem in [Mihail
et al. 06].

Theorem 3.2. [Mihail et al. 06] With high probability, for a graph Gd,n in the
preferential attachment model and d ≥ 2, 0 < β ≤ 2, there is no strong (or weak)
(α, β)-community in Gd,n .

3.3. Geometric Preferential Attachment Model

As we have seen, the preferential attachment scheme generates graphs with con-
stant expansion with high probability, which is indeed the case in many real
networks. However, [Blandford et al. 03] and [Estrada 06] provide evidence that
in some real networks, the expansion (in many cases, also the conductance) is
not bounded below by a constant. This motivates the definition in [Flaxman et
al. 07a, Flaxman et al. 07b] of a class of geometric preferential attachment (GPA)
models that not only contains sets with small expansion but also preserves the
power law degree distribution. We will show that the GPA model also contains
good communities.

The model is defined on the surface S of a sphere in R3 of radius 1/(2
√

π) (so
that area(S) = 1). Let Bd(u) = {x ∈ S : |x − u| ≤ d}, where | · | denotes the an-
gular distance between two points on the surface of the sphere, i.e., Bd(u) denotes
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the spherical cap of angular radius d around u on S. Let Ad = area(Bd(u)), for
every u ∈ S.

At time 0, the initial graph G0 is the empty graph. At time t ≥ 1, a ver-
tex xt is generated uniformly at random in S. Then xt chooses m neighbors
{yi}, 1 ≤ i ≤ m, according to some distribution on the set of vertices near
xt . Then Gt is formed by adding these m new edges (xt, yi), 1 ≤ i ≤ m, to
Gt−1 . Specifically, let Vt−1(xt) be the set of vertices that are in Gt−1 and
within angular distance at most r = nρ−1/2 (here 0 < ρ < 1/2) from xt , and
let Dt−1(xt) =

∑
v∈Vt−1 (xt ) degt(v). Then for any vertex u ∈ Vt−1(xt), the prob-

ability that yi (for 1 ≤ i ≤ m) equals u is

Pr[yi = u] =
degt−1(u)

max{Dt−1(xt), αmArt} ,

and yi may also equal xt , with probability

Pr[yi = xt ] = 1 − Dt−1(xt)
max{Dt−1(xt), αmArt} .

Flaxman et al. showed that with high probability, the graph Gn generated
from the above process has a power law degree distribution and contains some
large set with small expansion. They also showed that when m ≥ K ln n, for K

sufficiently large, the graph is connected.
Concerning the community structure, we have the following result.

Theorem 3.3. If m ≥ K ln n, where K is some sufficiently large constant, for Gn

generated from the GPA model, with high probability, each vertex in Gn is con-
tained in a strong (α, β)-community of size nε , where 0 < β, ε < 1/2.

Proof. Since m ≥ K ln n, using [Flaxman et al. 07a, Lemma 6], we can guarantee
that the community is connected.

Let Gn = (Vn ,En ), and for each vertex v ∈ Vn , let Cd(v) be the set of all
vertices in Vn within angular distance at most d from v. Namely, Cd(v) = Vn ∩
Bd(v). We will show that for suitable choice of d, Cd(v) is a good community
with high probability. Here, we will assume r ≤ d = o(1).

For any u, the area of Bd(u) is

Ad = 2π · 1
2
√

π
· 1 − cos d

2
√

π
≈ d2

4
.

Note that a vertex u ∈ Cd(v) can connect vertices only within angular distance
r from it. Therefore, the neighbors of Cd(v) belong to the strip within distance r

of the boundary of Bd(v). Let Str1 = Bd+r (v) \ Bd(v), Str2 = Bd(v) \ Bd−r (v),
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and T1 = Vn ∩ Str1, T2 = Vn ∩ Str2. Then the edges between T1 and T2 form the
edge set between Cd(v) and Vn \ Cd(v).

The respective areas of the two strips are

area(Str1) = Ad+r − Ad ≈ r2 + 2rd

4
,

area(Str2) = Ad − Ad−r ≈ 2rd − r2

4
.

Now let d = nδ−1/2 , ρ < δ < 1/2. Since each vertex u is generated uniformly
and independently on S, the probability of u ∈ Bd(v) is

Ad ≈ d2

4
=

n2δ−1

4
(note that the area of S is 1). Therefore,

E[|Cd(v)|] ≈ n2δ

4
.

Using the Chernoff bound, we have that with probability at least 1 − n−3 ,

(1 − σ)
n2δ

4
≤ |Cd(v)| ≤ (1 + σ)

n2δ

4
,

where σ is an arbitrarily small constant.
Similarly, we can bound the number of vertices in T1 and T2 to ensure that

with probability at least 1 − 2n−3 ,

|T1 | ≤ (1 + σ)
3nρ+δ

4
, |T2 | ≤ (1 + σ)

3nρ+δ

4
.

The number of edges between T1 and T2 is at most m(|T1 | + |T2 |). Therefore,
with probability at least 1 − 3n−3 , the set Cd(v) contains about c0n

2δ /4 vertices,
where 1 − σ ≤ c0 ≤ 1 + σ, and the number of edges e(Cd(v), Vn \ Cd(v)) between
Cd(v) and Vn \ Cd(v) is at most

2m(1 + σ)
3nρ+δ

4
.

Noting that vol(Cd(v)) ≥ m|Cd(v)|, we have

Φ(Cd(v)) ≤ 2m(1 + σ) 3nρ + δ

4

mc0
n2 δ

4

= Θ
(

1
nδ−ρ

)
.

Now if we set δ = ε
2 , ρ = (1

2 − β)ε, then with probability at least 1 − 3n−3 , we
have both

|Cd(v)| = Θ(nε) and Φ(Cd(v)) =
1

|Cd(v)|β .
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By the union bound, with probability at least 1 − 1/n, every vertex v ∈ Vn

is contained in a community Cn ( ε−1 ) / 2 (v), which has size Θ(nε) and community
exponent β < 1/2.

The geometric preferential attachment model has been extended to general
models in which all the nice properties, that is, the small-diameter property,
the power law degree distribution, and the small-community phenomenon are
satisfied simultaneously [Li and Peng 11].

3.4. The Ravasz–Barabási Hierarchical Model

In [Ravasz and Barabási 03], the authors construct a model that not only has
the power law degree distribution, but satisfies the property that the clustering
coefficient decays in a characteristic manner. The latter property characterizes
the hierarchical feature of networks. The model (we call it the Ravasz–Barabási
hierarchical model) is introduced as follows.

Initially, at time t = 1, the graph G1 is a complete graph K5 in which one of
the nodes is marked center and the other four nodes are marked peripheral. At
time t > 1, suppose that we have constructed Gt−1 , denoted by Ot−1 . Then we
first create four new copies of Gt−1 , say Ni

t−1 , 1 ≤ i ≤ 4, and then connect all
the peripheral nodes in Nt−1 = ∪iN

i
t−1 to the center in Ot−1 . This finishes the

construction of Gt . We define the center node of Gt to be the center node of
Ot−1 , and the peripheral nodes of Gt to be all the peripheral nodes in Nt−1 .

A stochastic version of the hierarchical model can also be defined (see also
[Ravasz and Barabási 03]) if we modify the above process in the following way.
At time t = 1, the graph G1 is again the complete graph K5 . At time t > 1, we
also denote the obtained Gt−1 by Ot−1 . Then we first create four new copies
of Gt−1 , say Ni

t−1 , 1 ≤ i ≤ 4, and from each copy we randomly pick a fraction
pt−1 of nodes (without replacement) to be the peripheral nodes. Each of the
peripheral nodes in Ni

t−1 then independently chooses a neighbor in Ot−1 and
connects an edge to the neighbor. More specifically, for a peripheral node v, it
connects a node u from Ot−1 with probability proportional to the degree of u.
This finishes the construction of Gt .

We define the peripheral nodes of Gt to be all the peripheral vertices from
Nt−1 = ∪iN

i
t−1 .

Note that in the stochastic version of the model, if p < 1
5 , then the number

of peripheral nodes in a given step is smaller than 1, and the graphs generated
from the model are just unconnected pieces of the complete graph K5 , which
gives a trivial case. Therefore, we will restrict to the case p > 1

5 in the following
argument.
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We can show that in the deterministic model, almost every vertex is contained
in some small community and that in the stochastic version, every vertex is con-
tained in a small community. Therefore, we conclude that the small-community
phenomenon appears in the Ravasz–Barabási hierarchical model.

Now given a graph or module G, we will let V (G) and E(G) denote the vertex
set and edge set of G, respectively.

Theorem 3.4. For a graph Gt generated from the deterministic Ravasz–Barabási hi-
erarchical model, almost every node is contained in a strong (α, β, γ)-community
for some constants α, β, γ > 0.

Proof. Let vi, ei , pvi denote the number of vertices, edges, and peripheral vertices
of graph Gi , respectively. From the definition, we have ni = 5i , pvi = 4i , ei =
5ei−1 + pvi , e1 = 10. We can solve for ei to get

ei = 5i

(
2 +

16(1 − ( 4
5 )i−1)

5

)
= c1 · 5i .

Now we have |V (Gt)| = vt = 5t . Let t0 = c log5 t for some sufficiently large
constant c > 1. First, we show that for a vertex born before time t0 , all vertices
other than those born too early in Gt0 are contained in their corresponding small
communities. A key observation is that for a vertex v 
= x1 born at time i, it will
have no connection with vertices born after time i, where x1 is the center of G1 .

Specifically, if a node v is born before time ln t0 , then we will call v bad and we
will not find a community for such a node. If a node v is born at time i such that
ln t0 ≤ i ≤ t0 , then it must be contained in a new copy of Gi−1 , i.e., v ∈ Nj

i−1
for some j = 1, 2, 3, 4. We denote this copy by C(v) = Nj

i−1 , and we will show
that C(v) is a good community containing v. We note that |C(v)| = 5i−1 ≤ 5t0 =
(log5 n)c and that the numbers of edges inside and outside of C(v) are c1 · 5i−1

and 4i−1 , respectively. Thus

Φ(C(v)) =
4i−1

2 · c1 · 5i−1 + 4i−1 = O

(
1

( 5
4 )i−1

)
= O

(
1

|C(v)|log5 5/4

)
.

For i > t0 , each node v ∈ V (Gi) is contained in a unique copy C1(v) of Gt0 .
We will call such a copy the basic module in Gi . For a module M = C1(v), the
numbers of vertices and edges in it are |V (C1(v))| = 5t0 and e(C1(v)) = c1 · 5t0 ,
respectively.

Given such a module M , we treat it as the product of a new process that starts
at K5 with the center node c of M . Then new vertices and edges come in by
exactly the same rule as that for Gt . As a consequence, M is the graph obtained
from the new process at time t0 . Similarly, we define a vertex born before time
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ln t0 in the new process to be bad. Note that the number of bad vertices in M

is 5 + 52 + · · · + 5ln t0 −1 < 5ln t0 .
Now if the center c of M is connected to some other vertices outside of M ,

then for v ∈ V (M) that is not bad in M , we define C(v) = C ′(v), where C ′(v) is
the analogous community as defined above for Gt0 . Namely, if we treat M as the
output of the new process and v is born at time i such that ln t0 ≤ i ≤ t0 , then
it must be contained in a new copy of Gi−1 , i.e., v ∈ Nj

i−1 for some j = 1, 2, 3, 4.
We denote this copy by C(v) = Nj

i−1 . By the above calculation, we know that
C(v) is a good community containing v.

If the center c of a given module M is not connected to any vertices outside of
M , i.e., c connects only vertices inside M , then for v ∈ V (M), we define C(v) =
M = C1(v). Now the number of edges outside of C(v) is at most (t − t0)4t0 .
Thus,

Φ(C(v)) =
(t − t0)4t0

2 · c1 · 5t0 + (t − t0)4t0
= O

(
1

tc(1−log5 4−1/c)

)

= O

(
1

|C(v)|1−log5 4−1/c

)
.

We can always choose a large constant c � 1 to ensure that 1 − log5 4 − 1/c >

0. Now the number b(t) of bad nodes in Gt can be easily calculated by induction.
Since b(t0 + 1) < 5ln t0 and b(i + 1) = 5b(i), we have b(t) < 5t−t0 +ln t0 . Thus, the
fraction of bad nodes in Gt is

5t−t0 +ln t0

5t
= 5−t0 +ln t0 = o(1).

Therefore, for c > 1 large enough, a fraction 1 − o(1) of nodes in Gt are con-
tained in their own corresponding small communities that are strong (α, β, γ)-
communities, where 0 < β ≤ 1 − log5 4 − 1/c and (ln n)γ = (log5 n)c .

The above analysis can also be adapted to the stochastic version of the model.

Theorem 3.5. Assume that 1/5 < p < 1. For a graph Gt generated from the stochas-
tic Ravasz–Barabási hierarchical model, with high probability, every node is con-
tained in a strong (α, β, γ)-community for some constants α, β, γ > 0.

Proof. As in the previous proof, if we let vi , ei , and pvi denote the numbers of
vertices, edges, and peripheral vertices of the graph Gi , then vi = 5i , pvi = (5p)i ,
ei = 5ei−1 + 4 · (5p)i−1 , from which we have

ei = 5i

(
6
5

+
4(1 − pi)
5(1 − p)

)
= c1 · 5i .
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Now n = |V (Gt)| = vt = 5t . Let t0 = c log5 t for some sufficiently large con-
stant c > 1. For t0 < i ≤ t, we will again treat the copy of Gt0 as the basic
module. Noting that each v ∈ V (Gi) is contained in a unique module C(v) in
which the numbers of vertices and edges are |V (C(v))| = 5t0 = (log5 n)c and
e(C(v)) = c1 · 5t0 respectively, we will show that C(v) is a good community con-
taining v.

Note that once a module M = C(v) is formed in the process, then the edges
inside the module will not change by definition. However, the number of edges
e(M,V (Gi) \ M) between the module M and V (Gi) \ M may increase as i grows
from t0 + 1 to t. We will bound e(M,V (Gt) \ M) by showing that at each step,
the number of newly formed edges coming out of M is small.

Claim 3.6. If c is large enough and t0 < i ≤ t, then with probability 1 − i
tc , for

every module M in Gi, we have

e(M,V (Gi) \ M) ≤ c2(i − t0)(5p)t0 ,

for some large constant c2 .

Proof. We prove the claim by induction on i. For i = t0 + 1, Gt0 +1 contains five
modules, namely, four peripheral modules and one central module. For a periph-
eral module M and central module M ′, we have

e(M,V (Gt0 +1) \ M) = (5p)t0 and e(M ′, V (Gt0 +1) \ M ′) = 4 · (5p)t0 ,

respectively. Thus, if c2 ≥ 4, then the claim holds for i = t0 + 1.
Suppose by induction that the claim holds for all i with t0 < i ≤ j. Let i =

j + 1.
By definition, Gj+1 is composed of four new copies {Ni

j }4
i=1 and one old copy

Oj of Gj . Assume that M is an arbitrary module in Gj+1.
If M is contained in Ni

j for some i with 1 ≤ i ≤ 4, then

e(M,V (Gj+1) \ M) = e(M,V (Ni
j ) \ M) + e(M,Oj ),

where e(M,Oj ) is the number of edges between M and Oj . Noting that e(M,Oj )
is also the number of nodes being chosen in M at time j + 1, we see that
e(M,Oj ) ≈ H(5j , 5t0 , (5p)j ), where H(A,B,C) is the hypergeometric distribu-
tion with parameters A, B, and C. Therefore, by the concentration inequality
on the hypergeometric distribution (see, e.g., [Dubhashi A. Panconesi 09]), with
probability at most 1/2c2 (5p)t 0 ,

e(M,Oj ) ≥ c2(5p)t0 . (3.1)
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If c and c2 are sufficiently large, then (3.1) holds with probability at most
1/
(
2 · 4 · 5j−t0 (tc)

)
.

Thus, with probability at least 1 − 1
2tc , for every module M in Nj = ∪4

i=1N
i
j ,

we have e(M,Oj ) ≤ c2(5p)t0 .
If M is contained in Oj , then

e(M,V (Gj+1) \ M) = e(M,V (Oj ) \ M) + e(M,Nj ),

where e(M,Nj ) is the number of edges between M and Nj . Noting that e(M,Nj )
is also the number of nodes being chosen in M at time j + 1, we have by induction
that a selected node in Nj chooses a neighbor in M with probability at most

pj =
2 · c1 · 5t0 + c2(j − t0)(5p)t0

2 · c1 · 5j
= (1 + o(1))5t0 −j ,

so e(M,Nj ) is dominated by Bi(4 · (5p)j , pj ), where Bi(n, p) denotes the binomial
distribution with parameters n and p. Therefore, by the Chernoff bound,

e(M,Nj ) ≥ c2(5p)t0 , (3.2)

with probability at most

1
2c2 (5p)t 0

.

If c and c2 are sufficiently large, then (3.2) holds with probability at most

1
2 · 5j−t0 (tc)

.

Thus, with probability at least 1 − 1/2tc , for every module M in Oj , we have
e(M,Nj ) ≤ c2(5p)t0 . Therefore with probability at least 1 − 1/tc , for every mod-
ule M in Gj+1, the number of newly formed edges incident to M is no more than
c2(5p)t0 . By induction, we have that with probability at least

1 −
(

j

tc
+

1
tc

)
= 1 − j + 1

tc

that

e(M,V (Gj+1) \ M) ≤ c2(j − t0)(5p)t0 .
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Using the above claim, we have that with probability at least 1 − 1/tc−1 , all
basic modules C(v) in Gt have conductance value

Φ(C(v)) ≤ c2t · (5p)t0

2c1 · 5t0 + c2t · (5p)t0
= O

(
t1+c log5 5p

tc

)

= O

(
1

|C(v)|log5
1
p − 1

c

)
.

Therefore, when c is large enough, with high probability, every vertex v in Gt is
contained in a strong (α, β, γ)-community that is also the basic module contain-
ing v, where 0 < β ≤ log5

1
p − 1

c and (ln n)γ = (log5 n)c .

4. Perturbed Graphs

In this section, we will consider the community structure of a graph (a perturbed
graph) in which “randomness” and “structure” are combined in a more natural
way. Specifically, a perturbed graph G is composed of a base graph Ḡ and a
random graph R defined on the vertex set of Ḡ. For example, the small-world
model of [Kleinberg et al. 00] is a perturbed graph with Ḡ and R representing
respectively the d-dimensional grid and a random graph on the grid. Here R

is constructed in the following way: Let d(u, v) denote the l1 norm on the grid.
Each vertex u chooses an out-contact v with probability proportional to d(u, v)−r ,
where r ≥ 0 is some parameter, and a directed edge from u to v is added to the
graph.

We will also consider another question that arises naturally from our defi-
nition of community. Intuitively, a graph exhibiting the small-community phe-
nomenon contains many sets with small conductance. On the other hand, an
expander is a graph with all sets having large conductance. Thus, it is of in-
terest to explore the relationship between these two properties. Here we show
that for a particular model, with high probability it is an expander under certain
conditions, while under some other conditions, it exhibits the small-community
phenomenon.

4.1. The d -Dimensional Small-World Model

Edge expansion on several classes of perturbed graphs is studied in [Flaxman 07].
Particularly, it is shown that with high probability, for r < d, the expansion of the
small-world model is greater than some small constant; for r = d the expansion
is o(1). We refine Flaxman’s analysis to show that as r changes, the small-
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community phenomenon appears. In fact, there exists a threshold result of the
small-community phenomenon in the small-world model.

Theorem 4.1. (Threshold theorem for the small-community phenomenon.) In the d-dimensional
small-world model G, with high probability, when r < d, there is no proper com-
munity for an arbitrary node; when r = d, there exist weak (α1 , β1)-communities
of size n/(ln n)c1 for every node, where β1 < 1, c1 > 0, and there exist weak
(α2 , 1)-communities of size c2n for every node, where 0 < c2 ≤ 1

4 ; when r > d,
there exist strong (α, β, γ)-communities for every node for some constants α, β, γ.

Proof. We first look at the 1-dimensional small-world model. Namely, we consider
the perturbed graph G = Ḡ + R, where Ḡ is a cycle on n vertices, and R is the
random graph on the same n vertices and each vertex chooses an out-contact j

with probability proportional to d−r
i,j . Specifically, if we set Z =

∑
k 
=i d−r

i,k , then
in R the probability that there is an arc from i to j is d−r

i,j /Z, where r > 0 is the
parameter of this model.

We divide the proof into two cases.
Case 1: r < 1. In this case, [Flaxman 07] proves that the expansion of G is

greater than some small constant δ with high probability. Therefore, for every S

satisfying |S| ≤ n
2 , we have eG (S, S̄) ≥ δ|S|. Using the fact that eG (S) ≤ 3|S|, we

have Φ(S) ≥ c0 , for some constant c0 . Therefore, there is no proper community
for an arbitrary node.

Case 2: r ≥ 1. Now for a vertex v, we define Ck (v) to be the set of vertices
within distance at most k from v, i.e., Ck (v) = {j : d(v, j) ≤ k}, where k ≤ 1

4 n

will be specified later. We show that Ck (v) is indeed a good community with
respect to its size k. When there is no confusion, we will use C to denote Ck (v)
for simplicity.

It is obvious that eḠ (C) = 2k, eḠ (C, C̄) = 2, and 0 ≤ eR (C) ≤ 2k + 1. We only
need to estimate eR (C, C̄).

For i ∈ C, let Xi,C and Xi,C̄ denote the indicator random variables of the
respective events that i has chosen its out-contact in C and C̄. For j ∈ C̄,
let Xj,C and Xj,C̄ denote respectively the indicator random variables of the
events that j has chosen its out-contact in C and C̄. In addition, let Xij be
the indicator random variable of the event that i has chosen j as its out-
contact.

Now let eR1 be the number of random arcs from C to C̄. Such an arc is formed
by some vertex i in C choosing its out-contact j in C̄. We also let eR2 be the
number of random arcs from C̄ to C. Thus, eR (C, C̄) = eR1 + eR2 . We analyze
eR1 and eR2 separately.
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For r = 1, we have Z =
∑

k 
=i d−1
i,k = Θ(ln n). We can calculate the expectation

of eR1 as follows:

E[eR1 ] =
∑
i∈C

E[Xi,C̄ ] =
∑
i∈C

∑
j∈C̄

E[Xij ]

=
∑
i∈C

∑
j∈C̄

d−1(i, j)
Z

= Θ

⎛
⎝ 1

Z

k∑
i=1

⎛
⎝n/2∑

j=i

1
j

+
n/2∑

j=2k+2−i

1
j

⎞
⎠
⎞
⎠ (4.1)

= Θ

(
1

ln n

(
2k ln

n

2
−

k∑
i=1

ln i(2k + 2 − i)

))

= O

(
k

ln n
ln

n

2k

)
.

Now since the random variables {Xi,C̄ }i∈C are independent 0, 1 random vari-
ables, by the Chernoff bound, we know that eR1 concentrates around its expec-
tation when k is large. Specifically, for any c1 > 0, 0 < c2 ≤ 1

4 , and n/(ln n)c1 ≤
k ≤ c2n, with probability at most o(1/n),

eR1 >
c′k
ln n

ln
n

2k
,

for some constant c′.
Similar results for eR2 can be obtained. Indeed, E[eR2 ] is the same as E[eR1 ]

by the symmetry of d(·, ·). Then with probability at least 1 − o(1/n),

eR (C, C̄) = eR1 + eR2 ≤ 2c′k
ln n

ln
n

2k
.

Now we know that

eG (C) = Θ(k), eG (C, C̄) = O

(
k

ln n
ln

n

2k

)
,

from which we can estimate the conductance of C by definition.
If k = n/(ln n)c1 , then with probability at least 1 − o(1/n),

Φ(C) ≤ eG (C, C̄)
2eG (C) + eG (C, C̄)

≤
2c ′k
ln n ln n

2k

2k + 2c ′k
ln n ln n

2k

= O

(
ln lnn

ln n

)
= O

(
1

(ln |C|)β

)
,

where β is an arbitrary constant with 0 ≤ β < 1.
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If k = c2n, then with probability at least 1 − o(1/n),

Φ(C) = O

(
1

ln |C|
)

.

Thus, with probability 1 − o(1), every vertex in the graph is contained in a
weak (α, β)-community of size n/(ln n)c1 , where 0 ≤ β < 1; it is also contained
in a weak (α, 1)-community of size c2n.

For r > 1, the calculations are almost the same. We need only notice that in
this case, Z =

∑
k 
=i d−r

i,k = Θ(1), and that in equation (4.1), we should replace
1/j by 1/jr . In so doing, we obtain

E[eR1 ] = O
( k∑

i=1

( n/2∑
j=i

1
jr

+
n/2∑

j=2k+2−i

1
jr

))
= O

( k∑
i=1

(i1−r + (2k + 2 − i)1−r )
)

=

⎧⎪⎪⎨
⎪⎪⎩

O(k2−r ) if 1 < r < 2,

O(ln k) if r = 2,

O(1) if r > 2.

As a result, if 1 < r < 2 and if k = c3(log n)1/(2−r) for some large constant c3 ,
then with probability at least 1 − o(1/n),

Φ(C) = O

(
log n

k

)
= O

(
1

(log n)
r −1
2−r

)
= O

(
1

|C|r−1

)
.

If r ≥ 2 and we set k = (log n)c4 for an arbitrary constant c4 > 1, then with
probability at least 1 − o(1/n),

Φ(C) = O

(
log n

k

)
= O

(
1

(log n)c4 −1

)
= O

(
1

|C|1− 1
c 4

)
.

Thus, with probability 1 − o(1), for r > 1, every vertex v in the graph is con-
tained in a strong (α, β, γ)-community that is the set of vertices not far from v.

In conclusion, with high probability, when r is in the range [0, 1), there is no
proper community in the graph; when r = 1, every vertex is contained in some
large and weak communities. Finally, when r grows to be larger than 1, small
strong communities appear for every node.

For d ≥ 2, the proof is almost the same as above: we also need to define
Ck (v) = {u : d(u, v) ≤ k} for appropriate k. Noting that in the d-dimensional
model, Ck (v) contains about Θ(kd) nodes and the boundary of Ck (v) contains
about Θ(kd−1) nodes, we can easily verify the corresponding results.



100 Internet Mathematics

4.2. A Generalized Perturbed Graph

It is also shown in [Flaxman 07] that a perturbed graph G can be written as
G = Ḡ + R, with Ḡ an arbitrary connected graph and R a uniformly random
mapping on V (Ḡ). Specifically, each v ∈ V (Ḡ) independently chooses a neighbor
u uniformly at random from the vertex set and connects to u. The resultant
graph has constant edge expansion, with high probability.

Now we generalize the definition of R (generalized random mapping) in the
following way. We introduce a parameter q, which is the probability for a vertex
to choose itself as its neighbor (i.e., a loop is formed). We define the probability
for a vertex u to choose a vertex v (v 
= u) as its neighbor to be p = 1−q

n−1 . It is
easy to see that if q = 1

n , then R corresponds to the uniformly random mapping.
In the following, we will specify the base graph Ḡ to be the n-node cycle and

R to be the generalized random mapping on Ḡ. We show that as q varies from
0 to 1, the structure of the network changes. Intuitively speaking, if q is small,
then the conductance of a small subset of G = Ḡ + R is at least some constant
and G does not have a small community; if q is large, then a small community
appears.

Theorem 4.2. If q < 1/nσ
1 for some constant σ1 < 1, then with high probability,

every subset S of size |S| ≤ εn, where ε is an arbitrarily small constant, has con-
ductance larger than some constant; if q > 1 − 1/ln n, then with high probability,
every vertex is contained in a strong (α, 1, 1)-community.

Proof. Using the Chernoff bound, it is easy to see that with high probability, the
degree of every vertex is bounded above by a constant c′, which means that for
a set S ⊂ V (G), the volume of S satisfies |S| ≤ vol(S) ≤ c′|S|. Thus, to show
that some set S has low conductance, it suffices to bound the probability that
eR (S, S̄) ≤ δ, for some sufficiently small constant δ < 1

10 .
It is shown in [Flaxman 07] that the probability that there exists some set S

with |S| = s and eR (S, S̄) ≤ δ|S| is at most

P1 = n
(ne

δs

)2δs

Pr[eR (S, S̄) ≤ δs].

Now we consider all sets of size no more than εn for a small constant ε. For a
set S such that |S| = s ≤ εn, we know that

Pr[eR (S, S̄) ≤ δs] ≤
(

s

δs

)
(q + (s − 1)p)s−δs ≤

((e

δ

)δ
(

s − 1
n − 1

+ q
n − s

n − 1

)1−δ
)s

.
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If

s0 =
3

1 − 3δ
≤ s ≤ εn,

then for

q <
1

nσ1
, where σ1 =

5 − 3δ

6(1 − δ)
< 1,

we have

P1 ≤ n

((ne

δs

)2δ (e

δ

)δ
(

s − 1
n − 1

+ q
n − s

n − 1

)1−δ
)s

≤ n

((ne

δs

)2δ (e

δ

)δ
(

2
nσ1

)1−δ
)s

≤ n

( (
e
δ

)3δ 21−δ

s2δnσ1 (1−δ)−2δ

)s

= n

((
e
δ

)3δ 21−δ

s2δn
5−1 5 δ

6

)s

.

Let

f(s) =
(

c

s2δn
5−1 5 δ

6

)s

= es(ln c−2δ ln s− ( 5−1 5 δ ) ln n
6 ),

where

c = c(δ) =
(e

δ

)3δ

21−δ .

For n sufficiently large and δ small enough, the derivative of f is

f ′(s) = f(s)
(

ln c − 2δ ln s − (5 − 15δ) ln n

6
− 2δ

)
< 0.

Therefore, we get

P1 ≤ nf(s0) = O

(
n

1
n5/2

)
= o

(
1
n

)
.

Combining the fact that

e(S, S̄) ≥ δ
3

1 − 3δ

for each S of size

|S| = s <
3

1 − 3δ
,

we know that the probability that there exists a set of size no more than εn and
conductance less than δ is o(1). Thus, for q < 1/nσ

1 , each small set has constant
conductance with high probability.
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If q > 1 − 1/ln n, then for each vertex v, we define C(v) to be the set of vertices
within distance at most k = lnn, where the distance is the l1 norm on the 1-
dimensional grid (i.e., the cycle). Then in analogy to the proof for the small-world
model, we can show that the number of edges eR (C(v), V \ C(v)) between C(v)
and V \ C(v) is concentrated around its expectation

E[eR (C(v), V \ C(v))] = Θ(k(n − k)p).

Therefore, we can estimate the conductance of C(v) as

Φ(C(v)) ≤ Θ
(

k(n − k)p
k

)
= Θ

(
(n − k)

1 − q

n − 1

)
= Θ(1 − q).

In particular, if q = 1 − 1/ln n, then

Φ(C(v)) ≤ Θ
(

1
|C(v)|

)
.

For q larger than this probability, C(v) has conductance even smaller, but the
best possible Φ(C(v)) is still of order

Θ
(

1
|C(v)|

)
.

5. Conclusions

Intuitively speaking, a real large-scale network is a dynamic evolution of sparse
graphs in which a single node or edge is no longer essential. In this case, it is a
challenge to define the “basic elements” of a network, leading to a wide range
of research on communities in networks. Existing algorithms based on graph-
partitioning are very successful in finding large communities. However, experi-
ence in human society tells us that small communities exist almost everywhere,
that small communities overlap, and that small communities play important roles
in social organization.

Given that networks are natural mathematical models for describing relation-
ships of massive objects in many different subjects of both the physical and social
sciences, it is an important scientific problem to study the functions, roles, and
mechanisms of small communities of general networks in nature, in industry, and
in society.

In this article, we have proposed a novel approach to defining communities
in a network, allowing us to study the small-community phenomenon in some
well-defined network models. We show that a number of natural network models
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satisfy the small-community phenomenon, which can be regarded as a new fea-
ture for a number of networks. Not only do the results we have proved help us
to explore and characterize some general properties of real-world networks; they
also have potential applications in validation and control of networks.

On the other hand, in the definition of the small-community phenomenon,
the requirement that almost every node belong to some community may be too
stringent. It would be of interest to study cases in which only a constant fraction
of nodes or even fewer belong to some community in both theoretical models
and real-world networks.
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