
�

�

“imvol5” — 2010/1/6 — 11:12 — page 323 — #1
�

�

�

�

�

�

Internet Mathematics Vol. 5, No. 4: 323–342

Complexity of Pure Nash Equilibria
in Player-Specific Network
Congestion Games
Heiner Ackermann and Alexander Skopalik

Abstract. Network congestion games with player-specific delay functions do not possess
pure Nash equilibria in general. We therefore address the computational complexity of
the corresponding decision problem and prove that it is NP-complete to decide whether
a pure Nash equilibrium exists. This result is true for games with directed edges as well
as for networks with undirected edges, and still holds for games with two players only.
In contrast to games with networks of arbitrary size, we present a polynomial-time
algorithm deciding whether there exists a Nash equilibrium in games with networks of
constant size.

Additionally, we introduce a family of player-specific network congestion games that
are guaranteed to possess equilibria. In these games players have identical delay func-
tions. However, each player may use only a certain subset of the edges. For this class
of games we prove that finding a pure Nash equilibrium is PLS-complete. Again, this
result is true for networks with directed edges as well as for networks with undirected
edges, and still holds for games with three players only. In games with networks of con-
stant size, however, we prove that pure Nash equilibria can be computed in polynomial
time.

1. Introduction

Allocating a feasible and optimal subset of a given set of resources is a funda-
mental problem in many applications. For example, in networks users want to
choose paths, corresponding to subsets of the edges, along which they can stream
data as fast as possible. In the presence of several service providers users seek
the best ones. Many of these applications have in common that users are driven

© A K Peters, Ltd.
1542-7951/08 $0.50 per page 323

�

�

“imvol5” — 2010/1/6 — 11:12 — page 324 — #2
�

�

�

�

�

�

324 Internet Mathematics

by selfish, economic interests rather than by social ones. In this paper we are
interested in applications in which there is no central authority coordinating the
assignment of users to resources and we apply game-theoretic tools in order to
model the users’ behavior. To be precise, we consider an extension of Rosenthal’s
notion of network congestion games [Rosenthal 73].

In these games a finite number of players share a network and each of them
wants to select a path with minimum delay (or cost) that connects individual
pairs of nodes. The delay of a path equals the sum of delays of the edges in that
path, and the delay of an edge depends on the number of players currently using
that edge. In recent years, network congestion games have been considered
with respect to different questions, such as the existence and computational
complexity of Nash equilibria,1 the price of anarchy, network design problems,
and mechanism design problems. For an introduction and formal definition of
these problems we refer the reader to [Nisan et al. 07] and the references therein.

In this paper we are interested in player-specific network congestion games. In
such games each player is equipped with a set of player-specific delay functions.
This is in contrast to Rosenthal’s model, in which all players allocating an edge
observe the same delay. Player-specific network congestion games naturally arise
when different players have different preferences regarding the edges of the net-
work. Some players might prefer to use freeways, while others might prefer to
use scenic roads. It is well known that player-specific network congestion games
do not necessarily possess Nash equilibria [Milchtaich 06]. We therefore investi-
gate the computational complexity of deciding whether such a game possesses a
Nash equilibrium. We prove that this problem is NP-complete in directed and
undirected networks even if there are only two players. In contrast to games
with networks of arbitrary size, we present a polynomial-time algorithm decid-
ing whether there exists a Nash equilibrium in games with networks of constant
size.

In order to bypass the limitations of general player-specific congestion games,
we introduce a family of games for which the existence of a Nash equilibrium is
guaranteed by Rosenthal’s potential function [Rosenthal 73]. We assume that
all players sharing an edge observe the same delay. However, each player may
use only a certain subset of the edges. Such games naturally arise when drivers
are prohibited from using certain roads, e.g., trucks may be forbidden to use
narrow roads, while slow-moving vehicles may be excluded from the freeway.
These games—in the following called restricted network congestion games—are
closely related to standard network congestion games in which players compute
their delays with respect to common delay functions and in which each player

1In this paper, the term Nash equilibrium always refers to a pure Nash equilibrium.

�

�

“imvol5” — 2010/1/6 — 11:12 — page 325 — #3
�

�

�

�

�

�

Ackermann and Skopalik: Complexity of Pure Nash Equilibria in Network Congestion Games 325

may use every edge. These standard games are considered in [Fabrikant et al.
04], and its authors show that computing an equilibrium is PLS-complete, that
is, computing a Nash equilibrium is “as hard to compute as any object whose
existence is guaranteed by a potential function” [Fabrikant et al. 04]. Thus,
computing a Nash equilibrium of a restricted network congestion game is PLS-
complete, too.

However, the previously mentioned proof requires an arbitrary number of play-
ers and resources. In this paper we consider games in which one of these two
parameters is constant. In the case of a constant number of players, we prove that
computing a Nash equilibrium remains PLS-complete, whereas it is polynomial-
time solvable in the case of constant number of resources. The latter result
follows easily by a potential function argument and applies to every congestion
game with common delay functions and with a constant number of resources.
Again, both results apply to networks with directed and undirected edges. Un-
fortunately, we failed to prove PLS-completeness for computing Nash equilibria
in standard network congestion games with a constant number of players. This
question was our primary motivation and remains a challenging open problem.

1.1. Definitions and Notation

In the following, we introduce the notation used throughout this paper.

1.1.1. Player-Specific Network Congestion Games. A player-specific network congestion game
Γ consists of four components:

• a network G = (V, E) with m directed or undirected edges;

• a finite set N = {1, . . . n} of n players;

• for every player i a source–sink pair (si, ti) ∈ V × V ;

• for every player i and every edge e ∈ E a nondecreasing delay function
de

i : N → N.

The strategy space of player i is the set of paths connecting source si with
target ti. We denote by S = (P1, . . . , Pn) a state of the game in which player i

chooses path Pi. Furthermore, we denote by ne(S) = |{i ∈ N | e ∈ Pi}| the
congestion on edge e in state S, that is, ne(S) equals the number of players
sharing edge e in state S. Players act selfishly and choose paths with minimum
delay given fixed choices of the other players. The delay of player i in state S

equals
∑

e∈Pi
de

i (ne(S)). Finally, we call a state S a Nash equilibrium if no player
has an incentive to change her strategy.

�

�

“imvol5” — 2010/1/8 — 14:30 — page 326 — #4
�

�

�

�

�

�

326 Internet Mathematics

We also consider network congestion games with common delay functions, i.e.,
all players sharing an edge observe the same delay. However, we assume that
each player is restricted to a certain subset of the edges. We call such a game a
restricted network congestion game. Such a game can easily be interpreted as a
player-specific game by defining player-specific delay functions in the following
way. If a player is allowed to use an edge, her delay function equals the common
one, while if a player is not allowed to use an edge, she observes delay ∞ for
every congestion on that edge.

1.1.2. The Complexity Class PLS. A local search problem Π is given by its set of in-
stances IΠ. For every instance I ∈ IΠ, we are given a finite set of feasible
solutions F(I) ⊆ {0, 1}∗, an objective function c : F(I) → N, and for every fea-
sible solution S ∈ F(I) a neighborhood N (S, I) ⊆ F(I). Given an instance I of
a local search problem, we seek a locally optimal solution S∗, i.e., a solution that
does not have a strictly better neighbor with respect to the objective function c.

A local search problem Π belongs to PLS if the following polynomial-time
algorithms exist: an algorithm A that computes for every instance I of Π an
initial feasible solution S0 ∈ F(I), an algorithm B that computes for every
instance I of Π and every feasible solution S ∈ F(I) the objective value c(S),
and an algorithm C that determines for every instance I of Π and every feasible
solution S ∈ F(I) whether S is locally optimal and finds a better solution in the
neighborhood of S in the latter case.

Johnson, Papadimitriou, and Yannakakis introduced the notion of a PLS-
reduction. A problem Π1 in PLS is PLS-reducible to a problem Π2 in PLS if
there exist polynomial-time computable functions f and g such that f maps
instances I of Π1 to instances f(I) of Π2; g maps pairs (S2, I), where S2 denotes
a solution of f(I) to solutions S1 of I; and for all instances I of Π1, if S2 is a local
optimum of instance f(I), then g(S2, I) is a local optimum of I. A local search
problem Π in PLS is PLS-complete if every problem in PLS is PLS-reducible to Π.

1.2. Related Work

Most closely related to our NP-completeness results are the results in [Milch-
taich 96, Milchtaich 06, Dunkel and Schulz 06]. In [Milchtaich 96], player-specific
network congestion games on parallel links are introduced, and it is shown that
these games are not potential games, but that nonetheless, Nash equilibria al-
ways exist and can be computed efficiently if the player-specific delay functions
are nondecreasing.

In [Milchtaich 06], the author presents some network topologies such that every
player-specific network congestion game on such a topology possesses an equi-
librium without further assumption on the delay functions except monotonicity.

�

�

“imvol5” — 2010/1/6 — 11:12 — page 327 — #5
�

�

�

�

�

�

Ackermann and Skopalik: Complexity of Pure Nash Equilibria in Network Congestion Games 327

In [Dunkel and Schulz 06], the authors consider the computational complexity of
deciding whether a weighted network congestion game possesses a Nash equilib-
rium. In such games, players sharing an edge observe the same delay. However,
the congestion on an edge depends on the sum of the players’ individual weights.

The authors prove that deciding whether an equilibrium exists is NP-complete.
Furthermore, they consider network congestion games on parallel links with
weighted players and player-specific delay functions and prove that deciding
whether such a game possesses a Nash equilibrium is NP-complete, too.

Others papers that are loosely related to our NP-completeness results are
the following: [Chakrabarty et al. 05] considers player-specific network conges-
tion games on (a constant number of) parallel links from a global optimization
perspective, and investigates whether one can compute social optimal states of
such games efficiently. [Gairing et al. 06] considers network congestion games on
parallel links with player-specific linear latency functions without offsets with re-
spect to the price of anarchy. [Ackermann et al. 06b] extends Milchtaich’s results
[Milchtaich 96] to player-specific matroid congestion games and shows that the
matroid property is the maximal property on the strategy spaces guaranteeing
the existence of equilibria in player-specific congestion games. Finally, [Anshele-
vich et al. 04] and [Meyers 06] consider several problems involving congestion
games with a constant number of players.

Most closely related to our PLS-completeness result is [Fabrikant et al. 04].
The authors prove that computing a Nash equilibrium in network congestion
games with common delay functions and directed edges is PLS-complete if the
players have different source and sink nodes. However, an equilibrium can be
computed efficiently if the players have the same source or target node. [Acker-
mann et al. 06a] significantly simplified their proof and extended it to networks
with undirected edges and linear delay functions.

2. General Player-Specific Network Games

In this section, we consider the complexity of deciding whether a general player-
specific network congestion game possesses a Nash equilibrium. We prove that
this problem is NP-complete even in the case of two players. First, we con-
sider networks of directed edges and present a fairly simple reduction from the
directed-edge–disjoint-path problem. Unfortunately, our reduction cannot
be extended to networks with undirected edges, since the undirected-edge–

disjoint-path problem admits a polynomial-time algorithm in the case of con-
stant number of source–sink pairs [Robertson and Seymour 95]. We therefore
present a reduction from 3-sat in the undirected case. Finally, we consider

�

�

“imvol5” — 2010/1/6 — 11:12 — page 328 — #6
�

�

�

�

�

�

328 Internet Mathematics

ek ek,0

ek,1

ek,2

ek,3

ek,4

ek,5

ek,6

v vu u
⇒

Figure 1. The gadget Gek by which an edge ek is replaced.

games with networks of constant size and present a polynomial-time algorithm
deciding whether a Nash equilibrium exists.

2.1. Networks with Directed Edges

Theorem 2.1. It is NP-complete to decide whether a player-specific network conges-
tion game with directed edges and two players possesses a Nash equilibrium.

Proof. Obviously, the decision problem belongs to NP, since one can decide in
polynomial time whether a state S of a player-specific network congestion game
with directed edges and two players is a Nash equilibrium. In order to prove
that the problem is complete, we present a polynomial-time reduction from the
directed-edge–disjoint-path problem with two disjoint source–sink pairs.
An instance of this problem consists of a directed graph G = (V, E) and two
disjoint node pairs (s1, t1) and (s2, t2). Given such an instance, we would like
to decide whether there exist distinct edge-disjoint paths between the two node
pairs. This problem is known to be NP-complete [Fortune et al. 80].

Given an instance (G, (s1, t1), (s2, t2)) of the directed-edge–disjoint-path

problem with two source–sink pairs, we construct a player-specific network con-
gestion game Γ with two players as follows. We substitute every edge ek ∈ E

by the gadget Gek
presented in Figure 1 in order to obtain the network GΓ =

(VΓ, EΓ) on which the game is played. Player i ∈ {1, 2} wants to allocate a path
between the nodes si and ti in GΓ. Observe that this construction ensures a
one-to-one correspondence between the paths in G and in GΓ in the natural way
if we ignore the precise subpaths through every gadget. Let M be a sufficiently
large number. Then the player-specific delay functions of the edges ek,0, . . . , ek,6

are defined as presented in Table 1. Observe that every gadget Gek
implements a

subgame that is played by the players if both want to allocate a path connecting
u and v. If only one player wants to allocate such a path, then it allocates a
player-specific shortest path from u to v. If we choose M sufficiently large such

�

�

“imvol5” — 2010/1/6 — 11:12 — page 329 — #7
�

�

�

�

�

�

Ackermann and Skopalik: Complexity of Pure Nash Equilibria in Network Congestion Games 329

ek,0 ek,1 ek,2 ek,3 ek,4 ek,5 ek,6

cong. 1 2 1 2 1 2 1 2 1 2 1 2 1 2

player 1 0 M 1 1 M M M M 1 20 1 1 5 5
player 2 0 M 1 20 1 1 5 5 5 5 M M M M

Table 1. The player-specific delay functions of the edges ek,0, . . . , ek,6.

that the first player never allocates one of the edges ek,2 and ek,3 and such that
the second player never allocates one of the edges ek,5 or ek,6, then the delays of
these shortest paths are 3 and 5. Suppose now that the two players play such a
subgame. In this case, it is not difficult to verify that the subgame possesses no
Nash equilibrium.

Suppose now that we are given two node-disjoint paths P1 and P2 in G con-
necting s1 and t1, and s2 and t2. We map these paths to paths in GΓ in the
natural way, and choose player-specific shortest paths through every gadget. Let
n(Pi) be the number of edges on the path Pi. Thus, player 1 has delay 3 ·n(P1),
and player 2 has delay 5 ·n(P2). If one of the players had an incentive to change
her strategy, then she will choose only a path in which she shares no gadget with
the other player, since otherwise, her delay would increase to at least M . This is
true because in this case, the players would share at least one edge ek,0. This also
implies that the delay of the other player does not increase due to the strategy
change of the first player. Observe that this holds for any further best response.
Thus, the players converge to an equilibrium after O(n) best responses, since
the delay of a player decreases by at least the cost of the shortest path through
a gadget.

Suppose now that we are given a Nash equilibrium of Γ. In this case the
players do not share a gadget, for otherwise the state is not a Nash equilibrium.
Thus, we can easily construct edge-disjoint paths in G connecting (s1, t1) and
(s2, t2).

2.2. Networks with Undirected Edges

Theorem 2.2. It is NP-complete to decide whether a player-specific network conges-
tion game with undirected edges and two players possesses a Nash equilibrium.

Proof. Obviously, the decision problem belongs to NP, since one can decide in poly-
nomial time whether a state S of a player-specific network congestion game with
undirected edges and two players is a Nash equilibrium. In order to prove that
the problem is complete, we present a polynomial-time reduction from 3-sat.
Let ϕ be a 3-sat formula with n variables x1, . . . , xn and m clauses C1, . . . , Cm.

�

�

“imvol5” — 2010/1/6 — 11:12 — page 330 — #8
�

�

�

�

�

�

330 Internet Mathematics

lower path

upper path

ei,a ei,b ei,c

ēi,x ēi,y ēi,z

Figure 2. The bit gadget of variable xi.

We assume that every clause in ϕ contains exactly three distinct literals. Given
ϕ, we construct a player-specific network congestion game with undirected edges
and two players as follows. For the sake of simplicity we refer to the players
as bit player and clause player. Our construction satisfies the following three
properties:

1. The bit player can choose between 2n different paths each determining a
unique assignment of the n variables.

2. The clause player can check for every clause separately whether there exists
a variable satisfying that clause.

3. If and only if there exists an unsatisfied clause, then both players are forced
to choose paths through a special gadget. This gadget implements a sub-
game that does not possess a Nash equilibrium if both players participate.

In the following we define three different kinds of gadgets called variable,
clause, and subgame gadgets and describe how they are connected. The gadgets
consist of bold, dashed, and dotted edges. Bold edges appear in all three kinds of
gadgets, whereas dotted edges do not appear in the variable gadgets, and dashed
edges do not appear in the clause gadgets. The player-specific delay functions
will be chosen in such a way that the bit player never chooses one of the dotted
edges and that the clause player never chooses one of the dashed edges.

For every variable xi there is a variable gadget Gxi as depicted in Figure 2.
Without loss of generality let {C1, . . . , Ck} be the set of clauses in which xi

appears as a positive literal. For every such clause Cj there is a bold edge ei,j on
the upper path in Gxi . Additionally, let {Ck+1, . . . , Cl} be the set of clauses in
which xi appears as a negative literal. For every such clause Cj there is a bold
edge ēi,j on the lower path in Gxi . Bold edges are connected by dashed edges
as shown in the figure. The ordering of the bold edges can be chosen arbitrarily.
Additionally, the gadgets Gxi are arranged one after the other starting with
gadget Gx1 and finishing with gadget Gxn . They are connected by dashed edges.

�

�

“imvol5” — 2010/1/6 — 11:12 — page 331 — #9
�

�

�

�

�

�

Ackermann and Skopalik: Complexity of Pure Nash Equilibria in Network Congestion Games 331

ep,j

eq,j

ēr,j

shortcut edge to subgame gadget

Figure 3. The clause gadget of clause Cj = (xp, xq, x̄r).

For every clause Cj there is a clause gadget GCj as depicted in Figure 3. For
every variable xi that appears as a positive literal in Cj there is a bold edge ei,j .
For every variable xi that appears as a negative literal in Cj there is a bold edge
ēi,j . Observe that edges ei,j and ēi,j coincide with the corresponding edges in
the variable gadgets Gxi . Bold edges are connected by dotted edges as shown
in the figure. Additionally, there is a shortcut edge from the leftmost node from
every clause gadget to the subgame gadget. The gadgets GCj are arranged one
after the other starting with gadget GC1 and finishing with gadget GCm . They
are connected by dotted edges.

The subgame gadget is depicted in Figure 4. Basically it consists of three bold
edges e1, e2, e3 arranged as a triangle. The dotted shortcut edges from the clause
gadgets are connected to vertex v2. Additionally, there is a dotted edge from
the rightmost node of the clause gadget GCm to node v1, and there is a dashed
edge from the rightmost node of the subgame gadget Gxn to node v1.

It remains to define the source and target nodes of the players and the delay
functions of the edges. The bit player wants to allocate a path from the leftmost
node of the variable gadget Gx1 to the node v3 of the subgame gadget. The
clause player, however, wants to allocate a path connecting the leftmost node
from the clause gadget GC1 to the node v1 of the subgame gadget.

v1

v2 v3

e1

e3

e2

edge from last variable gadget

edge from last clause gadget

shortcut edges

Figure 4. The subgame gadget.

�

�

“imvol5” — 2010/1/6 — 11:12 — page 332 — #10
�

�

�

�

�

�

332 Internet Mathematics

e1 e2 e3

congestion 1 2 1 2 1 2

clause player 20 21 12 15 4 10
bit player 1 21 5 15 3 10

Table 2. The player-specific delay functions of the edges e1, e2, e3.

The player-specific delay functions are defined as follows. Let M be a suf-
ficiently large number. The bit player always has delay 0 on bold and dashed
edges, and delay M on every dotted edge. On bold edges the clause player has
delay 0 if she does not share it with the bit player. Otherwise, it has delay M .
On dotted edges the clause player always has delay 0. The player-specific delay
functions of the edges e1, . . . , e3 are depicted in Table 2. If we choose M suffi-
ciently large, then the bit player never allocates a dotted edge, and the clause
player never allocates a dashed edge. For simplicity of presentation, we assume
that both players always allocate cycle-free paths as best responses, that is, they
never choose paths visiting a node twice. One can easily enforce this by a slight
modification of the delay of the dashed and dotted edges.

Suppose now that there exists a satisfying assignment x̄ of the given 3-sat
formula. In this case, we can construct a Nash equilibrium as follows. If xi = 0,
then the bit player chooses the upper path in gadget Gxi . Otherwise, she chooses
the lower path. Intuitively, she chooses a path that corresponds to the negation
of x̄. Additionally, she chooses the player-specific shortest path with respect to
congestion 1 in the subgame gadget connecting v1 and v3. This path is simply the
edge e3. In this case, the bit player has delay 3. Observe that this is the globally
shortest path of the bit player. The clause player chooses a path through every
clause gadget along which she does not share a bold edge with the bit player.
This is possible, since x̄ is a satisfying assignment and since the bit player chooses
a path that corresponds to the negation of x̄. In this case, the bit player enters
the subgame gadget at its target node v1. Observe that this path has delay 0,
which is best possible. We conclude that we can construct a Nash equilibrium if
we are given a satisfying assignment, since we can assign both players to globally
shortest paths.

Suppose now that no satisfying assignment exists. In this case, there always
exists an unsatisfied clause Cj , and thus the clause player cannot choose a path
through that gadget along which both players do not share a bold edge. Due to
the choice of M , the bit player always switches to the shortcut edge of GCj as best
response and enters the subgame gadget at node v2. Since the bit player always
enters the subgame gadget at v1, the players are forced to play the subgame
defined by the subgame gadget. Observe now that the subgame gadget possesses

�

�

“imvol5” — 2010/1/6 — 11:12 — page 333 — #11
�

�

�

�

�

�

Ackermann and Skopalik: Complexity of Pure Nash Equilibria in Network Congestion Games 333

no Nash equilibrium if players enter the gadget as described above. We conclude
that no Nash equilibrium exists if no satisfying assignment exists.

2.3. Networks with a Constant Number of Edges

Theorem 2.3. One can decide in polynomial time whether a player-specific network
congestion game Γ with a constant number of (un)directed edges possesses a Nash
equilibrium.

Proof. The algorithm we present generalizes a technique introduced in [Chakrabarty
et al. 05] in order to compute a social optimal state of a player-specific network
congestion game with a constant number of parallel links. Let P = {P1, . . . , Pl}
be the set of paths in the network. Note that l ≤ 2m is constant. Given a state
S of Γ we denote by c̄(S) the congestion vector (c1(S), . . . , cl(S)), where ci(S)
equals the number of players choosing path Pi in S. Observe that there are at
most nl ≤ n2m

such vectors. In the following, we describe how to decide whether
there exists an equilibrium S of Γ such that c̄(S) equals a given congestion vector
c̄ = (c1, . . . , cl).

Given a congestion vector c̄ = (c1, . . . , cl) we construct a directed graph Gc̄ =
({s, t} ∪ N ∪ P , E(c̄)) with edge capacities as follows. For every player i ∈ N
there is a vertex ui that is connected to the vertex s. The capacity of such
an edge is 1. For every path Pj ∈ P there is a vertex vj that is connected to
the vertex t. The capacity of such an edge is cj . Furthermore, a vertex ui is
connected to a vertex vj if the following conditions are satisfied:

If the congestion on the edges is given by the vector c̄, and player i

is player Pj , then player i does not prefer a different strategy.

Now we would like to decide whether there exists an s–t flow of capacity n.
Observe that such a flow exists if and only if cj units of flow can flow from cj

different player vertices ui to path vertices vj . Thus, if such a flow exists, and
if we assign a player to that path to which the unit of flow originating in its
vertex flows, we obtain a Nash equilibrium, since the construction ensures that
the player is satisfied.

Finally, since there are polynomially many distinct vectors c̄, and since the
construction and analysis of Gc̄ can be done in polynomial time, we obtain a
polynomial-time algorithm.

The running time of the algorithm is O(poly(2m) · poly(n2m

)). An interesting
open problem is to prove that the problem is fixed parameter tractable, that is,
to develop algorithms with running time O(poly(2m) · poly(n)).

�

�

“imvol5” — 2010/1/8 — 14:42 — page 334 — #12
�

�

�

�

�

�

334 Internet Mathematics

3. Restricted Network Congestion Games

In this section, we analyze the complexity of computing Nash equilibria of
restricted network congestion games with a constant number of players or re-
sources.

3.1. Networks with Directed Edges

Theorem 3.1. Computing a Nash equilibrium of a restricted network congestion
game with directed edges and k players is PLS-complete for any k ≥ 3.

Proof. We prove the theorem by a reduction from the local search problem positive
not-all-equal 2-satisfiability PosNae2Sat, which is known to be PLS-complete
[Schäffer and Yannakakis 91]. Let x1, . . . , xn be Boolean variables. An instance
ϕ of PosNae2Sat consists of a set of m weighted clauses Cj over the variables
xi that contain two positive literals each. We denote by wj the (nonnegative
integer) weight of clause Cj . A clause is satisfied if and only if the two vari-
ables it contains have different values. By X̄ = (X1, . . . , Xn) ∈ {0, 1}n we
denote a bit assignment to the variables x1, . . . , xn. The weight w(X̄) of a bit
assignment X̄ is defined as the sum of the weights of all satisfied clauses. We
denote the maximal weight by W =

∑m
j=1 wj . By X̄Xi=b we denote the bit

vector (X1, . . . , Xi−1, b, Xi+1, . . . , Xn). A local optimum of ϕ is a bit assign-
ment X̄ whose weight cannot be increased by flipping a single variable xi, i.e.,
w(X̄) ≥ w(X̄xi=b) for all 1 ≤ i ≤ n and b ∈ {0, 1}. Therefore, the neighborhood
of an assignment is defined as the set of assignments with Hamming distance one.

Given an instance ϕ, we construct a restricted network congestion game Γϕ

such that one can easily construct a local optimum of ϕ given a Nash equilibrium
of Γϕ; Γϕ simulates in parallel two copies of ϕ, which we call ϕA and ϕB .
Furthermore, the game consists of three players, a bit player and two clause
players.

Every path the bit player can choose determines assignments X̄A and X̄B for
ϕA and ϕB, respectively. The set of paths the bit player can choose from can be
divided into two disjoint sets P1 and P2. If she chooses a path from P1, X̄A is the
actual assignment for ϕ and X̄B is a (probably better) neighboring assignment.
For every path in P2 it is the other way round. The bit player switches between
paths in P1 and P2 as long as she can switch to a better neighboring assignment.

The paths of the clause players lead through 2m gadgets. For both copies of
ϕ there is one gadget for every clause. The two clause players simulate a clause
by choosing from four paths through the corresponding gadget. For each of the
two variables, there are two paths. There is one path for each bit assignment.

�

�

“imvol5” — 2010/1/6 — 11:12 — page 335 — #13
�

�

�

�

�

�

Ackermann and Skopalik: Complexity of Pure Nash Equilibria in Network Congestion Games 335

We ensure that they always have an incentive to correctly simulate the clauses
according to the assignments determined by the bit player. Through every gadget
they choose those two paths that correspond to this bit assignment.

To implement this we introduce four levels of delays: large, medium, small,
and tiny. If the bit player is on a path in P1 (P2) and the clause players do
not correctly simulate the clauses of ϕA (ϕB) according to the assignment X̄A

(X̄B), at least one of them has a large delay. If the bit player is on a path in P1

(P2) and the clause players simulate ϕA (ϕB) correctly, the bit player observes a
medium delay proportional to the weight of the unsatisfied clauses according to
the actual assignment X̄A (X̄B). Furthermore, she has additionally a small delay
that is proportional to the weight of the unsatisfied clauses of the neighboring
assignment X̄B (X̄A). If the bit player is on a path in P1 (P2) and the clause
players do not correctly simulate ϕB (ϕA), they additionally have tiny delays.
This ensures that the clause players have an incentive to correctly simulate the
clauses and that the bit player has an incentive to choose the best neighboring
assignment.

As long as there is a better neighboring assignment, the bit player can change
from a path from P1 (P2) to a path from P2 (P1) by adopting the neighbor-
ing assignment as the actual assignment and by choosing a new neighboring
assignment.

We are now ready to describe our construction in detail. We present the
network of Γϕ as two subnetworks. One subnetwork contains the edges the bit
player is allowed to choose; the other subnetwork contains the edges the two
clause players are allowed to choose. The edges that are contained in both
networks are called connection edges. The connection edges are almost the only
edges that cause delay to the players. Almost all other edges have delay 0
regardless of the number of players using it. To further simplify the presentation
we merge path segments into sets of edges and use dashed edges to indicate these
path segments in Figures 5 and 6. The complete network can be constructed by
concatenating the edges from a set in arbitrary order while adding an edge that
is not contained in the other subnetwork between every pair of consecutive edges
with constant delay 0. Note that the order of these edges along the paths is not
important.

The subnetwork of the bit player is depicted in Figure 5. We now define the
corresponding sets of edges and the delays on the edges. Let M
 αW
 α

βW
 β ≥ 4m.

• PA
xi=b := {uA

j,xi=b, t
B
j,xi=b| for all clauses Cj with xi ∈ Cj}. Such a path

segment corresponds to the fact that bit xi equals b in the assignment
X̄A. It also corresponds to the fact that xi = b in the assignment X̄B,

�

�

“imvol5” — 2010/1/6 — 11:12 — page 336 — #14
�

�

�

�

�

�

336 Internet Mathematics

PB
x1=1 PB

x2=1 PB
xn=1

PB
x1=0

PA
x1=0

PB
x2=0

PA
x2=0

PB
xn=0

PA
xn=0

PA
x1=1 PA

x2=1 PA
xn=1

PB
xn→1

PB
xn→0

PB
x1→1

PB
x1→0

PA
x1→0

PA
x1→1

PA
xn→0

PA
xn→1

s

WA

WB

. . .

t

. . .

...

...

(P1)

(P2)

Figure 5. The subnetwork of the bit player. The dashed edges correspond to sets
of edges.

unless the bit player chooses to flip this bit (see below). The u-edges have
delay 0 for one player and delay M for two or more players. They induce
a large delay to clause players if they do not correctly simulate this bit
assignment ϕA. The t-edges have delay 0 for one player and delay 1 for
two or more players. They induce tiny delays to the clause players if they
do not correctly simulate the bit assignment ϕB .

• WA := {wA
j,0, w

A
j,1| for all 1 ≤ j ≤ m}. If the clause players correctly

simulate ϕA, this path segment induces medium delay proportional to the
weight of the unsatisfied clauses of X̄A to the bit player. The edges wA

j,0

and wA
j,1 have delay 0 for one or two players and delay αwj for three players.

• PA
xi→b := {wA

j,0,xi→b, w
A
j,1,xi→b| for all 1 ≤ j ≤ m with xi �∈ Cj} ∪ {tBj,xi→b,

wA
j,xi→b| for all 1 ≤ j ≤ m with xi ∈ Cj}. If the bit player chooses such a

path segment, then she determines the neighboring assignment X̄B to be
obtained from X̄A by flipping bit xi to b. If the clause players correctly
simulate ϕA, this path segment induces a small delay proportional to the
weight of the unsatisfied clauses of that neighboring assignment. For each
1 ≤ j ≤ m with xi �∈ Cj , the edges wA

j,0,xi→b and wA
j,1,xi→b have delay 0

for at most two players and delay βwj for three. For each 1 ≤ j ≤ m with

�

�

“imvol5” — 2010/1/6 — 11:12 — page 337 — #15
�

�

�

�

�

�

Ackermann and Skopalik: Complexity of Pure Nash Equilibria in Network Congestion Games 337

WB
j,0

WB
j,1

mute
x

wB
j,xb→1

wB
j,xb→0

wB
j,xa→1

wB
j,xa→0

PB
Cj,xa=0

PB
Cj,xb=0

PB
Cj,xb=1

PB
Cj,xa=1

mutex

(B)

PA
Cj,xa=0

PA
Cj,xb=0

PA
Cj,xb=1

PA
Cj,xa=1 WA

j,1

WA
j,0

wA
j,xb→0

wA
j,xb→1

wA
j,xa→1

wA
j,xa→0

mute
x

mutex

(A)

Figure 6. This figure shows an A-gadget and a B-gadget for a clause Cj =
{xa, xb}. There are four paths through each gadget. From top to bottom, we
denote the paths by xb = 0, xa = 0, xb = 1, and xa = 1. The subnetwork of the
two clause players is a concatenation of the A- and B-gadgets for all clauses.

xi ∈ Cj , the edge wA
j,xi→b has delay 0 for one player and delay βwj for two

or more players. The t-edges have delay 0 for one player and delay 2 for
two or more players. They induce tiny delays to the clause players if they
do not simulate this bit flip in ϕB.

Additionally, there are sets PB
xi=b, WB, and PB

xi→b that are defined in the
same manner.

The two clause players are symmetric in the sense that they play on the same
subnetwork and have the same source and target nodes. Their subnetwork is a
concatenation of m A-gadgets and m B-gadgets. Figure 6 depicts such a pair
of gadgets. Their source–sink paths lead through all 2m gadgets. The edges
labeled with mutex have delay 0 for one player and delay M2 for two or more
players. The dashed edges correspond to the following sets of connection edges:

• PA
Cj,xi=b := {uA

j,xi=1−b, t
A
j,xi=1−b, t

A
j,xi→1−b}. A clause player using such a

path segment simulates the assignment of b to xi of X̄A in the clause Cj

of ϕA. In the following, we say that she sets xi = b in this gadget. If this
is not a correct simulation and the bit player is on a path from P1, then a
u-edge induces large delay. If this is not a correct simulation and the bit
player is on a path from P2, then a t-edge induces a tiny delay.

• For each d ∈ {0, 1}, WA
j,d := {wA

j,d} ∪ {wA
j,d,xi→b| for all b ∈ {0, 1} and

1 ≤ i ≤ n with xi �∈ Cj}. If and only if both players use the same WA
j,d path

segment they simulate an unsatisfying assignment for Cj . If, additionally,
the bit player chooses a path from P1, the edge wA

j,d has medium delay

�

�

“imvol5” — 2010/1/6 — 11:12 — page 338 — #16
�

�

�

�

�

�

338 Internet Mathematics

proportional to wj . Furthermore, one of the edges wA
j,d,xi→b induces a

small delay if xi is not in clause Cj . Note that in the case that xi is in the
clause Cj there are extra edges in the gadget.

• The sets PB
Cj ,xi=b and WB

j,d are defined analogously.

We now prove that every Nash equilibrium of Γϕ corresponds to a locally
optimal assignment of ϕ. Consider a Nash equilibrium of Γϕ and assume that
the bit player chooses a path from the set P1. Let PA

x1=X1
, . . . ,PA

xn=Xn
, WA,

and let PA
xi∗→b be the path segments she chooses. Then the following properties

hold.

Lemma 3.2.

(a) In every A-gadget for every clause Cj = {xa, xb} one clause player sets
xa = Xa and the other player sets xb = Xb.

(b) In every B-gadget for every clause Cj = {xa, xb} with a, b �= i∗ one clause
player sets xa = Xa and the other player sets xb = Xb.

(c) In every B-gadget for every clause Cj = {xi∗ , xc} one clause player sets
xc = Xc and the other player sets xi∗ = b.

Proof. Observe that in any gadget for any clause Cj = {xa, xb} one of the clause
players chooses xa = 0 or xa = 1, whereas the other player chooses xb = 0 or
xb = 1. Otherwise, both have delay M2 and thus an incentive to change.

(a) Consider the A-gadget of a clause Cj = {xa, xb}. Due to our assumptions,
all edges of the path segment PA

Cj ,xa=Xa
are not used by the bit player and

therefore have delay 0 for a single clause player, whereas the edge uA
j,xa=Xa

that is contained in the path segment PA
Cj,xa=(1−Xa) is used by the bit player

and therefore causes delay M to a clause player. The same is true for the path
segments PA

Cj ,xb=Xb
and PA

Cj ,xb=(1−Xb)
, respectively. The delay of all other edges

in the gadget sums to less than M . Thus, in every Nash equilibrium, one of the
clause players chooses xa = Xa and the other player chooses xb = Xb.

(b) In the B-gadgets all wB-edges and all edges in the WB-sets are not used
by the bit player and therefore have delay 0. Consider the B-gadget for a clause
Cj = {xa, xb} with a, b �= i∗. All edges of the path segment PB

Cj,xa=Xa
are

not used by the bit player and therefore have delay 0 for a single clause player,
whereas the edge tBj,xa=Xa

that is contained in the path segment PB
Cj ,xa=(1−Xa)

is used by the bit player and therefore has delay 1 for a clause player. The same
is true for the path segments PB

Cj ,xb=Xb
and PB

Cj,xb=(1−Xb)
, respectively.

�

�

“imvol5” — 2010/1/6 — 11:12 — page 339 — #17
�

�

�

�

�

�

Ackermann and Skopalik: Complexity of Pure Nash Equilibria in Network Congestion Games 339

(c) Let Cj = {xi∗ , xc} be a clause that contains xi∗ . In the B-gadgets of clause
Cj , one clause player sets xc = Xc, which has delay 0. The other clause player
sets xi∗ = b, which has delay of at most 1. The path xi∗ = 1 − b has delay of at
least 2 due to the edge tBj,xi→b that is currently used by the bit player.

Note that an equivalent version of Lemma 3.2 holds for Nash equilibria in
which the bit player chooses a path from the set P2. The following observation
follows directly from Lemma 3.2.

Remark 3.3. In every Nash equilibrium the path segment WA has delay α(W −
w(X̄)) for the bit player. Furthermore, the delay on the path segment PA

xi∗→b

equals β(W − w(X̄xi∗=b)) plus an additive term of at most 2m for the bit
player.

Lemma 3.4. Every Nash equilibrium of Γϕ corresponds to a local optimum of ϕ.

Proof. For the purpose of contradiction, consider a Nash equilibrium that does
not correspond to a local optimum of ϕ. Let PA

x1=X1
, . . . ,PA

xn=Xn
, WA, and

let PA
xi∗→b be the path segments used by the bit player. By Remark 3.3, we

can conclude that X̄Xi∗=b is the best neighboring assignment; otherwise, the
path segment PA

xi∗→b has more delay than another path segment PA
xi∗∗→b∗∗ for

the bit player. We show that this implies that the bit player can improve her
delay by choosing another path. The delays of all edges in the set WA sum to
α(W − w(X̄)). Thus, the bit player has at least this amount of delay.

Now observe that each path segment PB
xi=X1

with i �= i∗ has delay 0 for the
bit player, since the clause players correctly simulate ϕB with the assignment
X̄Xi∗=b. The path segment PB

xi∗=b has delay of at most m. The delays of all
edges in the set WB sum to α(W −w(X̄xi∗=b)). The delay of any path PB

xi′→b′ is
at most βW +2m. Note that βW +3m < α. Thus, the bit player could decrease
her delay by changing to such a path. This is a contradiction to the assumption
that this is a Nash equilibrium.

We conclude that every Nash equilibrium of Gϕ corresponds to a locally opti-
mal assignment of ϕ. Obviously, the construction of Gϕ and the mapping of an
equilibrium to an assignment of ϕ can be done in polynomial time.

It is an interesting open problem whether computing Nash equilibria for re-
stricted network congestion games with two players remains PLS-complete. More-
over, it is a challenging open problem to prove any results in standard congestion
games with a constant number of players.

�

�

“imvol5” — 2010/1/8 — 14:44 — page 340 — #18
�

�

�

�

�

�

340 Internet Mathematics

3.2. Networks with Undirected Edges

Theorem 3.5. Computing a Nash equilibrium of a restricted network congestion
game with undirected edges and k players is PLS-complete for any k ≥ 3.

Proof. We extend the previous proof (Section 3.1) and interpret the network as
one with undirected edges. Obviously, any best response path of the bit player
in the undirected network is also a best response in the directed case.

The same is true for the clause players. Every best response path of a clause
player visits each A- and B-gadget exactly once, because otherwise, one of the
mutex edges has delay M . Additionally, a path with a gadget that includes an
edge in the reverse direction of the directed case cannot be a best response either.
This follows from the fact that such a path includes at least three u-edges. One
of these has delay M .

3.3. Games with a Constant Number of Resources

Theorem 3.6. One can compute a Nash equilibrium of a restricted network congestion
game Γ with a constant number of resources in polynomial time.

Proof. Rosenthal’s potential function φ(S) =
∑

e∈E

∑ne(S)
i=0 de(i) already estab-

lishes a pseudo-polynomial-time upper bound on the convergence time of bet-
ter response dynamics in congestion games [Rosenthal 73]. In the case of better
response dynamics, players iteratively deviate to better strategies. Now observe
that in games with constant number m of resources, there are at most nm differ-
ent congestion vectors c̄ = (ne1 , . . . , nem). Thus, every state has one out of nm

possible potential values, and therefore the better responses dynamics terminate
after at most nm steps.

Note that the previous proof applies to every congestion game with constant
number of resources. Again, it is an open problem whether the problem is fixed-
parameter tractable.

Acknowledgments. The authors wish to thank Matthias Englert and Berthold Vöcking for
helpful discussions.

This work was supported in part by the EU within the 6th Framework Program under
contract 001907 (DELIS) and the German Israeli Foundation (GIF) under contract
877/05.

�

�

“imvol5” — 2010/1/6 — 11:12 — page 341 — #19
�

�

�

�

�

�

Ackermann and Skopalik: Complexity of Pure Nash Equilibria in Network Congestion Games 341

References

[Ackermann et al. 06a] Heiner Ackermann, Heiko Röglin, and Berthold Vöcking. “On
the Impact of Combinatorial Structure on Congestion Games.” In Proceedings of the
47th Annual IEEE Symposium on Foundations of Computer Science, pp. 613–622.
Los Alamitos, CA: IEEE Press, 2006.

[Ackermann et al. 06b] Heiner Ackermann, Heiko Röglin, and Berthold Vöcking.
“Pure Nash Equilibria in Player-Specific and Weighted Congestion Games.” In Inter-
net and Network Economics: Internet and Network Economics, Second International
Workshop, WINE 2006, Patras, Greece, December 15–17, 2006, Proceedings, Lecture
Notes in Computer Science 4286, pp. 50–61. Berlin: Springer, 2006.

[Anshelevich et al. 04] Elliot Anshelevich, Anirban Dasgupta, Jon M. Kleinberg, Éva
Tardos, Tom Wexler, and Tim Roughgarden. “The Price of Stability for Network
Design with Fair Cost Allocation.” In Proceedings of the 45th Annual IEEE Sympo-
sium on Foundations of Computer Science, pp. 295–304. Los Alamitos, CA: IEEE
Press, 2004.

[Chakrabarty et al. 05] Deeparnab Chakrabarty, Aranyak Mehta, and Viswanath Na-
garajan. “Fairness and Optimality in Congestion Games.” In Proceedings of the 6th
ACM conference on Electronic Commerce, pp. 52–57, New York: ACM Press, 2005.

[Dunkel and Schulz 06] Juliane Dunkel and Andreas S. Schulz. “On the Complexity of
Pure-Strategy Nash Equilibria in Congestion and Local-Effect Games.” In Internet
and Network Economics: Internet and Network Economics, Second International
Workshop, WINE 2006, Patras, Greece, December 15–17, 2006, Proceedings, Lecture
Notes in Computer Science 4286, pp. 62–73. Berlin: Springer, 2006.

[Fabrikant et al. 04] Alex Fabrikant, Christos Papadimitriou, and Kunal Talwar. “The
Complexity of Pure Nash Equilibria.” In Proceedings of the 36th Annual ACM
Symposium on Theory of Computing, pp. 604–612. New York: ACM Press, 2004.

[Fortune et al. 80] Steven Fortune, John E. Hopcroft, and James Wyllie. “The Directed
Subgraph Homeomorphism Problem.” Theoretical Computer Science 10 (1980), 111–
121.

[Gairing et al. 06] Martin Gairing, Burkhard Monien, and Karsten Tiemann. “Rout-
ing (Un-)splittable Flow in Games with Player-Specific Linear Latency Functions.”
In Automata, Languages and Programming: 33rd International Colloquium, ICALP
2006, Venice, Italy, July 10–14, 2006, Proceedings, Part I, Lecture Notes in Com-
puter Science 4051, pp. 501–512. Berlin: Springer, 2006.

[Meyers 06] Carol Meyers. “Network Flow Problems and Congestion Games: Com-
plexitiy and Approximation.” PhD thesis, Massachusetts Institute of Technology,
2006.

[Milchtaich 96] Igal Milchtaich. “Congestion Games with Player-Specific Payoff Func-
tions.” Games and Economic Behavior 13:1 (1996), 111–124.

[Milchtaich 06] Igal Milchtaich. “The Equilibrium Existence Problem in Finite Net-
work Congestion Games.” In Internet and Network Economics: Internet and Net-
work Economics, Second International Workshop, WINE 2006, Patras, Greece, De-
cember 15–17, 2006, Proceedings, Lecture Notes in Computer Science 4286, pp. 87–
98. Berlin: Springer, 2006.

�

�

“imvol5” — 2010/1/6 — 11:12 — page 342 — #20
�

�

�

�

�

�

342 Internet Mathematics

[Nisan et al. 07] Noam Nisan, Tim Roughgarden, Eva Tardos, and Vijay Vazirani. Al-
gorithmic Game Theory. Cambridge, UK: Cambridge University Press, 2007.

[Robertson and Seymour 95] Neil Robertson and Paul D. Seymour. “Graph Minors
xiii: The Disjoint Paths Problem.” Journal of Combinatorial Theory, Series B, 63:1
(1995), 65–110.

[Rosenthal 73] Robert W. Rosenthal. “A Class of Games Possessing Pure-Strategy
Nash Equilibria.” Int. Journal of Game Theory 2 (1973, 65–67.

[Schäffer and Yannakakis 91] Alejandro A. Schäffer and Mihalis Yannakakis. “Simple
Local Search Problems That Are Hard to Solve.” SIAM Journal on Computing 20:1
(1991), 56–87.

Heiner Ackermann, Fraunhofer-Institut für Techno- und Wirtschaftsmathematik, Fraun-
hofer-Platz 1, 67663 Kaiserslautern, Germany (heiner.ackermann@itwm.fraunhofer.de)

Alexander Skopalik, Department of Computer Science, RWTH Aachen University,
Ahornstr. 55, D-52056 Aachen, Germany (skopalik@cs.rwth-aachen.de)

Received February 18, 2008; accepted January 27, 2009.

