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A Spatial Web Graph Model with
Local Influence Regions
W. Aiello, A. Bonato, C. Cooper, J. Janssen, and P. Pral/at

Abstract. We present a new stochastic model for complex networks, based on a spatial
embedding of the nodes, called the spatial preferred attachment (SPA) model. In the
SPA model, nodes have influence regions of varying size, and new nodes may link to a
node only if they fall within its influence region. The spatial embedding of the nodes
models the background knowledge or identity of the node, which will influence its link
environment. In our model, nodes can determine their link environment based only
on local knowledge of the network. We prove that our model gives a power-law in-
degree distribution, with exponent in [2,∞) depending on the parameters, and with
concentration for a wide range of in-degree values.

1. Introduction

Current stochastic models for complex networks, such as those described in [Bon-
ato 08, Chung and Lu 06], aim to reproduce a number of graph properties ob-
served in real-world networks such as the web graph. On the other hand, ex-
perimental and heuristic treatments of real-life networks operate under the tacit
assumption that the network is a visible manifestation of an underlying hidden
reality. For example, it is commonly assumed that communities in a social net-
work can be recognized as densely linked subgraphs, or that web pages with
many common neighbors contain related topics. Such assumptions imply that
there is an a priori community structure or relatedness measure of the nodes,
which is reflected by the link structure of the graph.

A common method to represent relatedness of objects is by an embedding in
a metric space, so that related objects are placed close together, and commu-
nities are represented by clusters of points. Following a common text-mining
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technique, web pages are often represented as vectors in a word-document space.
Using latent semantic indexing, these vectors can then be embedded in a Eu-
clidean topic space, so that pages on similar topics are located close together.
Experimental studies [Menczer 04] have confirmed that similar pages are more
likely to link to each other. On the other hand, experiments also confirm a large
amount of topic drift: it is possible to move to a completely different topic in a
relatively short number of hops. This points to a model in which nodes are em-
bedded in a metric space, and the edge probability between nodes is influenced
by their proximity.

The spatial preferred attachment (SPA) model proposed in this paper combines
the above considerations with the often-used preferential attachment principle:
pages with high in-degree are more likely to receive new links. In the SPA model,
each node is placed in space and surrounded by an influence region. The volume
of the influence region is determined by the in-degree of the node. The volume of
each region is scaled by time, so the influence regions of nodes that do not gain
new links will steadily decrease in size. The decrease in the volume of influence
regions is motivated by the fact that the topic space grows over time. A new
node v can link to an existing node u only if v falls within the influence region of
u. If v falls within the influence region of u, then v will link to u with probability
p. Thus, the model is based on the preferential attachment principle, but only
implicitly: nodes with high in-degree have a large influence region, and therefore
are more likely to attract new links.

A random graph model with certain similarities to the SPA model is the geo-
metric random graph; see [Penrose 03]. In that model, all influence regions have
the same size, and the link probability is p = 1. Flaxman, Frieze, and Vera sup-
ply an interesting geometric model in which nodes are embedded on a sphere and
the link probability is influenced by the relative positions of the nodes [Flaxman
et al. 07]. This model is a generalization of a geometric preferential attachment
models presented by the same authors in [Flaxman et al. 06], which influenced
our model. Other geometric models for complex models are now emerging, such
as the inner product model; see, for example, [Young and Scheinerman 07].

There are at least two features that distinguish the SPA model from previous
models. First, a new node can choose its links purely based on local information.
Namely, the influence region of a node can be seen as the region where the
associated entity (such as a web page or scholarly paper) is visible: only entities
that are close enough (in topic) to fall within the influence region will be aware
of its existence, and thus have a possibility to link to it. Moreover, a new
node links independently to each node visible to it. Consequently, the new
node needs no knowledge of the invisible part of the graph (such as in-degree of
other nodes, or total number of nodes or links) to determine its neighborhood.
Second, since a new node links to each visible node independently, the out-degree
is not a constant nor chosen according to a predetermined distribution, but arises
naturally from the model.
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1.1. The SPA Model

We formally define the SPA model as follows. Fix parameters m ∈ N, the
dimension, and p ∈ [0, 1], the link probability. In addition, fix three positive
constants A1, A2, and A3 such that pA1 ≤ 1. Let S be the unit hypercube in
R

m, with the torus metric d(·, ·) derived from the L∞ metric. In particular, for
any two points x and y in S,

d(x, y) = min
{‖x − y + u‖∞ : u ∈ {−1, 0, 1}n

}
.

The torus metric is chosen so that there are no boundary effects, and altering
the metric will not significantly affect the main results of the paper. The L∞
norm is chosen so that every point on the boundary of the unit cube has equal
distance 1/2 to the center of the hypercube. However, the norm could be easily
replaced by any of the Lp norms, with changes only to some of the constants in
our main results.

For each positive real number α ≤ 1, and u ∈ S, define the ball around u with
volume α as

Bα(u) = {x ∈ S : d(u, x) ≤ rα},
where rα = α1/m/2, so rα is chosen such that Bα has volume α.

The SPA model generates stochastic sequences of graphs (Gt : t ≥ 0), where
Gt = (Vt, Et), and Vt ⊆ S. Let d−(v, t) be the in-degree of node v in Gt, and
d+(v, t) its out-degree. We define the influence region of node v at time t ≥ 1,
written R(v, t), to be the ball around v with volume

|R(v, t)| =
A1d

−(v, t) + A2

t + A3
,

or R(v, t) = S if the right-hand side is greater than 1.
The process begins at t = 0, with G0 being the empty graph. Time step t, for

t ≥ 1, is defined to be the transition between Gt−1 and Gt. At the beginning of
each time step t, a new node vt is chosen uniformly at random (uar) from S, and
added to Vt−1 to create Vt. Next, independently, for each node u ∈ Vt−1 such
that vt ∈ R(u, t− 1), a directed edge (vt, u) is created with probability p. Thus,
the probability that a link (vt, u) is added in time step t equals p|R(u, t − 1)|.
See Figure 1 for a drawing of a simulation of the SPA model.

Because new nodes choose independently whether to link to each visible node,
and the size of the influence region of a node depends only on the edges from
younger nodes, the distribution of the random graph Gn produced by the SPA
model with parameters A1, A2, A3, p, m is equivalent to the graph Gn+A3 pro-
duced by the SPA model with the same values for A1, A2, p, m, but with A3 = 0,
where the first A3 nodes have been removed. Since the results presented in this
paper do not depend on the first nodes, we will assume throughout that A3 = 0.
In the rest of the paper, (Gt : t ≥ 0) refers to a sequence of random graphs
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Figure 1. A simulation of the SPA model on the unit square with t = 5000, p = 1,
and A1 = 1, A2 = 0.

generated by the SPA model with parameters A1, A2, p, and m, and we assume
that A3 = 0. We use the notation [n] for {0, 1, . . . , n}. All logarithms are in
base e.

1.2. Main Results

We now state our main results on the SPA model, with proofs deferred to the
next section. We first prove that with high probability a graph Gn generated
by the SPA model has an in-degree distribution that follows a power law. See
Figure 1 for the in-degree distribution of a simulation of the SPA model. We say
that an event holds asymptotically almost surely (aas) if it holds with probability
tending to one as n → ∞. An event holds with extreme probability (wep) if it
holds with probability at least 1 − exp(−Θ(log2 n)) as n → ∞. We will often
use the stronger notion of wep in favor of the more commonly used aas, since it
simplifies some of our proofs. If we consider a polynomial number of events that
each holds wep, then all events hold wep. Let Ni,t denote the number of nodes
of in-degree i in Gt. For an integer n ≥ 0, define

if = if (n) =
(

n

log8 n

) pA1
4pA1+2

.
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Theorem 1.1. Fix p ∈ (0, 1]. Then for any i ≥ 0,

E(Ni,n) = (1 + o(1))cin,

where

c0 =
1

1 + pA2
, (1.1)

and for 1 ≤ i ≤ n,

ci =
pi

1 + pA2 + ipA1

i−1∏
j=0

jA1 + A2

1 + pA2 + jpA1
. (1.2)

For i = 0, . . . , if , wep

Ni,n = (1 + o(1))cin.

Since ci = (1+o(1))ci−(1+ 1
pA1

) for some constant c, this shows that for large i,
the expected proportion Ni,n/n follows a power law with exponent 1+ 1

pA1
, with

concentration for all values of i up to if . If pA1 = 10/11, then the power law
in-degree exponent is 2.1, the same as observed in the web graph (see [Bonato
08, Chung and Lu 06]).

The previous result characterizes the distribution of in-degrees in the graph.
The total number of nodes of a given in-degree (smaller than if ) is tightly con-
centrated around its mean. In the next result, we give a precise expression for
the probability distribution of the in-degree of the individual node vi born at
time i, in the case that pA1 < 1. No concentration result can be obtained here,
but part (c) does give a bound on the maximum value that the in-degree of any
particular vertex can reach.

For vj the node added at time step j, let d−(vj , n) be the in-degree of this
node at the end of time step n.

Theorem 1.2. If 0 < pA1 < 1, then the following hold:

(a) For 1 ≤ j ≤ n(1 − log−1 n) and 0 ≤ l ≤ √
j log−1 n or for n(1 − log−1 n) <

j < n and l = 0, 1,

P(d−(vj , n) = l) = (1 + O(log−1 n))
(

l + (A2/A1) − 1
l

)(
j

n

)pA2

×
(

1 −
(

j

n

)pA1

(1 + O(log−1 n))

)l

.
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(b) For n(1 − log−1 n) < j < n and l ≥ 2,

P(d−(vj , n) = l) = O

(
l(A2/A1)−1

(log n)l

)
.

(c) For all K > 0,

P
(
There exists j ≤ n : d−(vj , n) ≥ K(log n)2(n/j)pA1

)
= O

(
n−Ke−18

)
.

Theorem 1.2(c) implies (taking K = log2 n) that wep every node vj has in-
degree at most (n/j)pA1 log4 n. If we are interested in an event that holds aas,
then every node vj has in-degree O((n/j)pA1 log2 n). Conditional on this, items
(a) and (b) characterize the distribution of d−(vj , n) for all j ≥ log8 n when
pA1 ≤ 1/2, and for j ≥ npA1−1/2 log8 n when pA1 > 1/2.

Let Mt = |Et|, the number of edges in Gt, and let mt = E(Mt). Then we have
that

E(Mt+1 | Mt) = Mt +
t∑

j=1

p
A1d

−(vj , t) + A2

t
= Mt +

pA1Mt

t
+ pA2,

and so m1 = 0, and for t ≥ 1,

mt+1 = mt

(
1 +

pA1

t

)
+ pA2.

The (first-order) solutions of this recurrence are

mn ∼
{

pA2
1−pA1

n, pA1 < 1,

n log n, pA1 = 1.

Theorem 1.3. If pA1 < 1, then aas the number of edges is concentrated around its
expected value:

Mn = (1 + o(1))mn.

An important difference between the SPA model and many other models is
that the out-degree is not a parameter of the model, but is the result of a
stochastic process. Using the expression for mn above, we can easily derive
the expected out-degree of a vertex vj . For example, this out-degree equals
pA2/(1 − pA1) + o(1) if pA1 < 1. Since the expected out-degree is small, we
do not expect concentration. The next result gives bounds for the maximum
out-degree in the graph.
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Theorem 1.4. Asymptotically almost surely,

max
0≤i≤n

deg+(vi, n) ≥ (1 + o(1))p
log n

log log n
.

However, aas all nodes have out-degree O(log2 n).

Theorem 1.5. Asymptotically almost surely, deg+(vn, n) = O(log2 n).

From Theorem 1.2, the number of nodes of in-degree zero in a graph generated
by the SPA model in Gn is linear in n. In addition, with positive probability a
new node will land in a part of S not covered by any influence regions, and thus
have out-degree zero. Therefore, the underlying undirected graph of Gn is not
connected. In fact, we expect that for the majority of distinct pairs u, v, there
will not be a directed path from u to v.

2. Proofs of Results

This section is devoted to the proofs of the theorems outlined in the previous
section.

2.1. Proof of Theorem 1.1

The equations relating the random variables Ni,t are described as follows. Since
G1 consists of one isolated node, N0,1 = 1, and Ni,1 = 0 for i > 0. For all t > 0,
we derive that

E(N0,t+1 − N0,t|Gt) = 1 − N0,tp
A2

t
, (2.1)

E(Ni,t+1 − Ni,t|Gt) = Ni−1,tp
A1(i − 1) + A2

t
− pNi,t

A1i + A2

t
. (2.2)

Recurrence relations for the expected values of Ni,t can be derived by taking
the expectation of the above equations. To solve these relations, we use the
following lemma on real sequences, which is [Chung and Lu 06, Lemma 3.1].

Lemma 2.1. If (αt), (βt), and (γt) are real sequences satisfying the relation

αt+1 =
(

1 − βt

t

)
αt + γt,

and limt→∞ βt = β > 0 and limt→∞ γt = γ, then limt→∞ αt/t exists and equals
γ/(1 + β).
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Applying this lemma with αt = E(N0,t), βt = pA2, and γt = 1 gives that
E(N0,t) = c0t + o(t) with c0 as in (1.1). For i > 0, the lemma can be inductively
applied with

αt = E(Ni,t), βt = p(A1i + A2), and γt = E(Ni−1,t)
A1(i − 1) + A2

t

to show that E(Ni,t) = cit + o(t), where

ci = ci−1p
A1(i − 1) + A2

1 + p(A1i + A2)
.

It is straightforward to verify that the expression for ci as defined in (1.1) and
(1.2) satisfies this recurrence relation.

We prove concentration for Ni,t when i ≤ if using a relaxation of Azuma–
Hoeffding martingale techniques. The random variables Ni,t do not a priori
satisfy the c-Lipschitz condition: it is possible that a new node may fall into
many overlapping regions of influence. Nevertheless, we will prove that devia-
tion from the c-Lipschitz condition occurs with exponentially small probability.
The following lemma gives a bound for |Ni,t+1 − Ni,t| that holds with extreme
probability.

Lemma 2.2. With extreme probability, the following inequality holds for all 0 ≤ t ≤
n − 1:

|Ni,t+1 − Ni,t| ≤ 2(A1i + A2) log2 n, for 0 ≤ i ≤ t.

Proof. Fix t, let i, j ≤ t, and let Xj(i, t) denote the indicator variable for the event
that vj has degree i at time t and vt+1 links to vj . It follows that

Ni,t+1 − Ni,t =
t∑

j=1

Xj(i − 1, t) −
t∑

j=1

Xj(i, t),

and so

|Ni,t+1 − Ni,t| ≤ max
( t∑

j=1

Xj(i − 1, t),
t∑

j=1

Xj(i, t)
)
. (2.3)

Let Zj(i, t) denote the indicator variable for the event that vt+1 is chosen in
the ball of volume (A1i + A2)/t around node vj . Clearly, if Xj(i, t) = 1, then
Zj(i, t) = 1 as well, so Xj(i, t) ≤ Zj(i, t). Thus, to bound |Ni,t+1 − Ni,t| it
suffices to bound the values of Z(i, t), where

Z(i, t) =
t∑

j=1

Zj(i, t).
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The variables Zj(i, t) for j = 1, . . . , t are mutually independent. To see this,
we can assume the position of vt+1 to be fixed. Then, the value of Zj(i, t)
depends only on the position of vj . Since the position of each node is chosen
independently and uniformly, the value of Zj(i, t) is independent of the value of
any other Zj′(i, t) where j 
= j′. Therefore, Z(i, t) is the sum of independent
Bernoulli variables with probability of success equal to

P(Zj(i, t) = 1) =
A1i + A2

t
.

Using Chernoff’s inequalities (see, for instance [Janson et al. 00, Theorem 2.1]),
we can show that wep Z(i, t) < A1i+A2+(A1i+A2) log2 n < 2(A1i+A2) log2 n.
Using these bounds, the proof now follows, since by (2.3),

|Ni,t+1 − Ni,t| ≤ max(Z(i − 1, t), Z(i, t)).

We mention that Theorem 1.5 can be used to improve the upper bound for
|Ni,n −Ni,n−1| to O(log2 n), since the maximum change cannot be greater than
the out-degree of vertex vn.

To sketch the technique of the proof of Theorem 1.1, we consider N0,t, the
number of nodes of in-degree zero. We use the supermartingale method of [Pittel
et al. 96], as described in [Wormald 99].

Lemma 2.3. Let G0, G1, . . . , Gn be a random graph process and Xt a random variable
determined by G0, G1, . . . , Gt, 0 ≤ t ≤ n. Suppose that for some real β and
constants γi,

E(Xt − Xt−1 | G0, G1, . . . , Gt−1) < β

and
|Xt − Xt−1 − β| ≤ γi

for 1 ≤ t ≤ n. Then for all α > 0,

P
(
for some t with 0 ≤ t ≤ n : Xt − X0 ≥ tβ + α

) ≤ exp
(
− α2

2
∑

γ2
j

)
.

Theorem 2.4. With extreme probability, for every 1 ≤ t ≤ n, we have that

N0,t =
t

1 + A2p
+ O(n1/2 log3 n) = c0t + O(n1/2 log3 n) .

Proof. We first transform N0,t into something close to a martingale. It provides
some insight if we define a real function f(x) to model the behavior of the
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scaled random variable 1
nN0,xn. If we presume that the changes in the function

correspond to the expected changes of the random variable (see (2.1)), we obtain
the differential equation

f ′(x) = 1 − f(x)
pA2

x
with the initial condition f(0) = 0. The general solution of this equation can be
put in the form

f(x)xpA2 − x1+pA2

1 + pA2
= C.

Consider the real-valued function

H(x, y) = xpA2y − x1+pA2

1 + pA2
(2.4)

(note that we expect H(t, N0,t) to be close to zero). Let wt = (t, N0,t), and
consider the sequence of random variables (H(wt) : 1 ≤ i ≤ n). The second-
order partial derivatives of H evaluated at wt are all O(tpA2−1). Therefore, we
have

H(wt+1) − H(wt) = (wt+1 − wt) · gradH(wt) + O(tpA2−1), (2.5)

where “·” denotes the inner product and gradH(wt) = (Hx(wt), Hy(wt)).
Observe that from our choice of H , we have that

E(wt+1 − wt | Gt) · gradH(wt) = 0.

Hence, taking the expectation of (2.5) conditional on Gt, we obtain that

E(H(wt+1) − H(wt) | Gt) = O(tpA2−1).

From (2.5), noting that

gradH(wt) =
(
pA2t

pA2−1N0,t − tpA2 , tpA2
)
,

and using Lemma 2.2 (and the comment after the lemma) to bound the change
in N0,t, we have that wep

|H(wt+1) − H(wt)| ≤ tpA2O(log2 n) + O(tpA2) = O(tpA2 log2 n).

Now we may apply Lemma 2.3 to the sequence (H(wt) : 1 ≤ i ≤ n), and sym-
metrically to (−H(wt) : 1 ≤ i ≤ n), with α = n1/2+pA2 log3 n, β = O(tpA2−1),
and γt = O(tpA2 log2 n), to obtain that wep

|H(wt) − H(w0)| = O(n1/2+pA2 log3 n)

for 1 ≤ t ≤ n. Since H(w0) = 0, this implies from the definition (2.4) of the
function H , that wep

N0,t =
t

1 + pA2
+ O(n1/2 log3 n)

for 1 ≤ t ≤ n, which finishes the proof of the theorem.
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We may repeat (recursively) the argument as in the proof of Theorem 2.4 for
Ni,t with i ≥ 1. Since the expected change for Ni,t is slightly different now (see
(2.2)), we obtain our result by considering the following function:

H(x, y) = xp(A1i+A2)y − ci−1
p(A1(i − 1) + A2)
1 + p(A1i + A2)

x1+p(A1i+A2).

Using this function, we may show by similar arguments as in the case i = 0 that
wep

Ni,n = cin + O(in1/2 log3 n).

We therefore obtain concentration for all degrees i up to

if =
(

n

log8 n

) pA1
4pA1+2

,

since

ifn1/2 log3 n = n
3pA1+1
4pA1+2 log

4pA1+6
4pA1+2 n

= o
(
n

3pA1+1
4pA1+2 log

4pA1+6
4pA1+2+1 n

)
= o

(
i
−(1+ 1

pA1
)

f n

)
= o(cif

n).

2.2. Proof of Theorems 1.2 and 1.3

We present the proofs of the results on the in-degrees of individual nodes and
the number of edges.

Proof of Theorem 1.2. To simplify notation let η = A1p, ν = A2p, and ξ = A2/A1.
Let the node added at time step v be denoted by v, and treat the current time
step (given as n above) as t. Let P(d−(v, t) = l) denote the distribution of the
in-degree of node v at the end of time step t.

The indicator variable X(t + 1) for an increase in d−(v, t) by receiving a link
from vt+1 is a Bernoulli random variable with parameter p(A1d

−(v, t) + A2)/t.
Thus,

P(X(t + 1) = 0 | d−(v, t) = j) = 1 − ηj + ν

t
, (2.6)

P(X(t + 1) = 1 | d−(v, t) = j) =
ηj + ν

t
. (2.7)

Let v, t be fixed, suppose d−(v, t) = l, and let T = (Tj, j = 1, . . . , l) denote the
time steps Tj (if any) at which the degree of v changed. Let τ = (τ1, . . . , τl)
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denote a particular value of T, so that τj is the time step at which d−(v, τj)
changed from j − 1 to j. For v < τ ≤ t let

J = {τ : τ1 < τ2 < · · · < τl}

be the sequences of possible transitions. Hence,

P(d−(v, t) = l) =
∑
τ∈J

P(T = τ ).

Let
Ψj = P(X(T ) = 0, for all τj < T < τj+1),

with τl < T ≤ τl+1 = t when j = l. If τj+1 = τj + 1, then let Ψj = 1. If
τj+1 ≥ τj + 2, then from (2.6) we have that

Ψj =
∏

τj<T<τj+1

(
1 − ηj + ν

T

)
.

Define ω = log t. Since l ≤ √
v/ω, then (ηj + ν)/t ≤ (ηl + ν)/v = o(1), so that

1 − ηj + ν

t
= e

−ηj+ν
t −O

(
j2

t2

)
.

Let
δ(τ, j) = j2/τ. (2.8)

Then

Ψj = exp
((

−(ηj + ν)
∑

τj<T<τj+1

1
T

)
− O(δ(τj , j))

)

=
(

τj

τj+1

)ηj+ν

(1 + O(δ(τj , j))).

For 0 ≤ j ≤ l − 1, let Φj(t + 1) = P(X(t + 1) = 1 | d−(v, t) = j). Thus from
(2.7), we have

Φj(t + 1) =
ηj + ν

t
.

Let Φj = Φ(τj+1), and let Φl = 1. Let F (τ ) denote P(d−(v, t) = l and τ ). Let
P(T j = τj | T j−1 = τj−1) be the probability that the transition to j occurs at
τj given the transition to j − 1 at τj−1. Hence,

F (τ ) = Ψl

l∏
j=1

P(T j = τj | T j−1 = τj−1) =
l∏

j=0

Ψj Φj .
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Ignoring for the moment the multiplicative error terms, we see that F (τ ) is given
by (

v

τ1

)ν
ν

τ1

(
τ1

τ2

)η+ν
η+ν

τ2

· · ·
(

τl−1

τl

)η(l−1)+ν
η(l−1)+ν

τl

(
τl

t

)ηl+ν

.

Recall that ξ = ν/η. We cancel repeated values of τj to give

F (τ ) = (1 + O(δ(t, l)))
Γ(l + ξ)

Γ(ξ)

(v

t

)ν l∏
j=1

η τη−1
j

tη
(1 + O(δ(τj , j))) .

Thus,

P(d−(v, t) = l) = (1 + O(δ(t, l)))
Γ(l + ξ)

Γ(ξ)

(v

t

)ν

P1, (2.9)

where

P1 =
∑
τ∈J

l∏
j=1

η τη−1
j

tη
(1 + O(δ(τj , j))) .

For bj ≥ 0 we have that

(bv + · · · + bt)k − (bv
2 + · · · + bt

2)
(

k

2

)
(bv + · · · + bt)k−2

≤ k!
∑

i1<···<ik

bi1 · · · bik
≤ (bv + · · · + bt)k.

Replace the term δ(τj , j) in F (τ ) with δ(τj , l) and let

bτ = (1 + O(δ(τ, l)))
ητη−1

tη
,

so that

P1 =
1
l!
{
(bv + · · · + bt)l − O(l2)(bv

2 + · · · + bt
2)(bv + · · · + bt)l−2

}
.

Using (2.8) and recalling that l ≤ √
v/ω,

bv + · · · + bt =
∑

v≤τ≤t

ητη−1

tη
(1 + O(δ(τ, l)))

= 1 −
(v

t

)η
(

1 −
(v

t

)η

O

(
l2

v

))

= 1 −
(v

t

)η (
1 + O

(
1
ω

))
.

An upper bound for P1, and hence P(d−(v, t) = l), follows.
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For 1 ≤ v ≤ t(1 − 1/ω) and l ≤ √
v/ω we prove below that

t∑
τ=v

b2
τ = O

(
1

ωl2

)( t∑
τ=v

bτ

)2

. (2.10)

We therefore have that

P1 =
(
1 + O

(
1
ω

)) 1
l!

(
1 −

(v

t

)η (
1 + O

(
1
ω

)))l

. (2.11)

Inserting this estimate for P1 into (2.9) completes the proof of Theorem 1.2(a).
As remarked in the previous paragraph, (2.11) is an upper bound for P1 for any
l ≤ √

v/ω, which completes the proof of Theorem 1.2(b).
Returning to the proof of (2.10), let

g(v, t) =

⎧⎪⎪⎨
⎪⎪⎩

η2

1−2η

(
1
v

(
v
t

)2η − 1
t

)
, η < 1

2

1
4t log(t/v), η = 1

2
η2

2η−1

(
1
t − 1

v

(
v
t

)2η
)

, η > 1
2 .

Using δ = O(1/ω) we have that

bv
2 + · · · + bt

2 =
(
1 + O

(
1
ω

))
g(v, t).

It follows by direct examination that vg(v, t) = O(1). Since l ≤ √
v/ω, we have

l2g(v, t) = O(1/ω2). However,
∑

i bi ≥ Θ(1/ω) for v ≤ t(1−1/ω), and the result
follows.

We now prove Theorem 1.2(c). Let Xt = d−(v, t). By Markov’s inequality, for
h > 0,

P(Xt ≥ α) = P(ehXt ≥ ehα) ≤ e−hα
EehXt . (2.12)

Let Yt be an indicator variable for the increase of in-degree of v at time step
t + 1. Then Xt+1 = Xt + Yt, where

P(Yt = 1) =
p(Xt + 1)

t + 1
,

and
E
(
ehYt | Xt

)
= 1 +

p(Xt + 1)
t + 1

(
eh − 1

)
.

Assume that 0 < h ≤ 1 (proved below in (2.14), so that eh ≤ h + h2. Then

E
(
ehXt+1

)
= E

(
ehXtehYt

)
≤ E

(
ehXte

p(Xt+1)
t+1 (eh−1)

)
≤ e

ph
t+1 (1+h)

E

(
ehXt(1+ p

t+1 (1+h))
)

. (2.13)
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Let ε = 9/ω, and let

h =
1
ω

(v

t

)p(1+2ε)

.

Let ht = h and for v + 1 ≤ s ≤ t define hs−1 by

hs−1 = hs

(
1 +

p

s
(1 + hs)

)
,

so that

hs = h

t∏
τ=s+1

(
1 +

p

τ
(1 + hτ )

)
.

Let ετ = max(hτ : τ = v, . . . , h) and assume (proved below in (2.14)) that
ετ < ε < 1.

Iterating expression (2.13) and noting that EehvXv = 1 as Xv = 0, we have

EehXt ≤ exp
(
p

t∑
s=v

hs(1 + hs)
s

)
≤ exp

(
p(1 + ε)

∑ hs

s

)
.

However, since 1/s + · · · + 1/t ≤ 1/s + log t/s, we have

hs ≤ h exp
( t∑

τ=s+1

p(1 + ε)
τ

)
≤ he2

(
t

s

)p(1+ε)

≤ e2

ω
< 1, (2.14)

for t ≥ 9.
We therefore have that

EehXt ≤ exp

(
hp(1 + ε)e2tp(1+ε)

t∑
s=v

1
s1+p(1+ε)

)

≤ exp

(
h

(
t

v

)p(1+ε)

e2

(
1 +

p(1 + ε)
v

))

≤ exp
(

e4

ω

(v

t

)εp
)

= 1 + O

(
1
ω

)
.

Let α = Kω2(t/v)p. By (2.12) and (2.14) we have that

P(Xt ≥ α) = (1 + o(1))e−hα

= O(1) exp
(
−Kω

(v

t

)2pε
)

= O
(
t−Ke−18

)
.

This completes the proof of item (c), and completes the proof of Theorem 1.2.
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Proof of Theorem 1.3. We count the number of edges by counting the in-degree of
nodes. Our approach is as follows: by Theorem 1.1, wep for i ≤ if the number
of nodes Ni,n of in-degree i at time n is concentrated.

Let a be the solution of (n/a)pA1 = if and let ω′ = (K log2 n)1/(pA1) be the
solution of ( n

aω′
)pA1

K log2 n =
(n

a

)pA1

,

where K ≥ 4e18. From Theorem 1.2(c), with probability 1 − O(n−3) no node
v ≥ aω′ has degree exceeding if . Let

µ(n) =
∑
i≤if

ENi,n = (1 + o(1))
∑
i≤if

Ni,n,

and let

λ(n) =
aω′∑
j=1

d−(vj , n).

We prove, conditional on Theorem 1.2(c), that λ(n) = o(mn), and thus the
number of edges is concentrated around mn. We have that for pA1 < 1,

λ(n) =
aω′∑
j=1

d−(vj , n)

≤ Kω2
aω′∑
j=1

(
n

j

)pA1

= O

(
ω2
( n

aω′

)pA1

aω′
)

= O

(
n
(n

a

)pA1−1

log2/(pA1) n

)

= O

(
n

(
n

log8 n

)(pA1−1)/(4pA1+2)

log2/(pA1) n

)

= O
(
n(5pA1+1)/(4pA1+2) log2/(pA1) n

)
= o(n).

However, µ(n) ≥ cn for some constant c > 0, so λ(n) = o(µ(n)), and the assertion
follows.

2.3. Proof of Theorems 1.4 and 1.5

We now give the proofs of the results on out-degrees in the SPA model.
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Proof of Theorem 1.4. Partition the interval [0, 1] into �2(n/A2)1/m� subintervals of
equal length. Hence, the unit hypercube is partitioned into

h = 2mn/A2 + O(n(m−1)/m) = (1 + o(1))2mn/A2

identical hypercubes. (We expect each hypercube to contain a constant number
of nodes.) We will show that aas there is a hypercube containing log n

log log n nodes.
Fix c ∈ R and suppose that

k = k(n) =
log n

log log n
(1 + cn)

such that

lim
n→∞(k + 1/2)(log k + m log 2 − log A2 − 1) = log n + c.

Note that k = log n
log log n (1 + O(log log log n/ log log n)) = (1 + o(1)) log n

log log n .
The probability q that any fixed hypercube contains exactly k nodes is equal

to

q =
(

n

k

)(
1
h

)k (
1 − 1

h

)n−k

= (1 + o(1))
nk

k!

(
A2

2mn

)k

exp
(
−A2

2m

)

= (1 + o(1))
1
k!

(
A2

2m

)k

exp
(
−A2

2m

)
.

Using Stirling’s formula k! = (1 + o(1))
√

2πk(k/e)k, we obtain that

q = (1 + o(1))
√

2m

2πA2

(
eA2

2mk

)k+1/2

exp
(
−A2

2m
− 1

2

)

= (1 + o(1))
√

2m

2πA2
exp

(
−(k + 1/2)(log k + m log 2 − log A2 − 1) − A2

2m
− 1

2

)

= (1 + o(1))
√

2m

2πA2
exp

(
− logn − c − A2

2m
− 1

2

)

= (1 + o(1))
1
n

√
2m

2πA2
exp

(
−c − A2

2m
− 1

2

)
.

It follows that the expected number of hypercubes with exactly k nodes is tending
to

λ = hq =
1√
2π

(
2m

A2

)3/2

exp
(
−c − A2

2m
− 1

2

)
.
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Now let Ai (1 ≤ i ≤ h) denote the event that the ith hypercube contains
exactly k nodes, and let Sh =

∑h
i=1 IAi be the number of events that actually

occur (Sh is a random variable). Finally, let

Bh
l =

∑
1≤j1<···<jl≤h

P

(
l⋂

i=1

Aji

)
.

We already showed that limh→∞ Bh
1 = λ. It is also not difficult to see that for a

fixed value of l,

lim
h→∞

Bh
l =

λl

l!
.

Therefore, Sh is tending to a random variable with Poisson distribution; that is,

lim
h→∞

P(Sh = l) =
λl

l!
e−λ.

In particular,
lim

h→∞
P(Sh = 0) = e−λ.

Since c → −∞ for k = k0 = log n
log log n , aas there is a hypercube K with k0 points.

Since all nodes have the volume of the ball of influence at least A2/n during
the whole process up to time n (deterministically), the last node v added to K
falls into balls of influence of all other nodes inside K (observe that the volume
of K is at most 2−mA2/n, so this holds even if v lies on the boundary of K).
Thus, E deg+(v, n) ≥ pk0.

To finish the proof, we use the fact that a sum of independent random variables
with large enough expected value is not too far from its mean (see, for example,
[Janson et al. 00, Theorem 2.8]). It follows that if ε ≤ 3/2, then

P
(| deg+(v, n) − E deg+(v, n)| ≥ εE deg+(v, n)

) ≤ 2 exp
(
− ε2

3
E deg+(v, n)

)
.

(2.15)

Setting

ε = 1
/

3
√

E deg+(vi, n),

we obtain that aas

deg+(vi, n) =
(
1 + O(ε)

)
E deg+(vi, n),

and the assertion follows.

Proof of Theorem 1.5. Since the node vn is chosen uar from the unit hypercube (note
that the history of the process does not affect this distribution) with the torus
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metric, without loss of generality, we may assume that vn lies in the center of
the hypercube. For 1 ≤ i < n, let Xi denote the indicator random variable of
the event that vi lies in the ball around vn (or vice versa) with volume

α = 2i−pA1npA1−1 log2 n.

By Theorem 1.2(c), we have that aas

d−(vi, n) ≤ (n/i)pA1 log2 n,

for all i ∈ [n]. Hence, aas for all i ∈ [n− 1], Xi = 0 implies that vn is not in the
influence region of vi and there is no directed edge from vn to vi. Therefore, aas
we have that

deg+(vn, n) ≤
n−1∑
i=1

Xi.

Since

E

( n−1∑
i=1

Xi

)
=

n−1∑
i=1

O(i−pA1npA1−1 log2 n)

= O
(
npA1−1 log2 n

n−1∑
i=1

i−pA1

)
= O(log2 n),

the assertion follows from the Chernoff bound (see (2.15)).

3. Generalizations

Several variants of the SPA model may be proposed, and for each variant, it
would be interesting to pursue a rigorous analysis of the degree distributions.
One such variation is the generalized SPA (or GSPA) model, which allows more
control of the out-degree. In the GSPA model, nodes are distributed on the
hypercube as in the SPA model, but now receive two regions of influence. Each
node v at time step t is assigned both an in-degree influence region with volume

A− + B−d−(v, t)
t

,

where A− and B− are nonnegative constants and d−(v, t) is the in-degree of v
at time t, and an out-degree influence region with volume

A+ + B+d+(v, t)
t

,

where A+ and B+ are nonnegative constants and d+(v, t) is the out-degree of v
at time t.
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Edges are now added with probability p between any pair of nodes whose
regions interact by a predetermined rule. An important difference between this
and the SPA model is that at every time step all nodes can potentially receive
out- and in-edges. This implies that graphs generated by the GSPA model can
have cycles, and edges that go from younger to older nodes.

We describe three rules for the generation of edges.

Intersection rule. If the in-degree influence region of node v has a nonempty
intersection with the out-degree influence region of node u, then the di-
rected edge (u, v) is added.

Disjunction rule. If node u is contained in the in-degree influence region of
v, or node v is contained in the out-degree influence region of u, then the
directed edge (u, v) is added.

Conjunction rule. If node u is contained in the in-degree influence region of
v, and node v is contained in the out-degree influence region of u, then the
directed edge (u, v) is added.

One of the rules is chosen (or some combination of them, depending on the
motivating application), and edges are added according to the rules. Observe
that the disjunction rule is the closest to the SPA model with Aout = Bout = 0.
Note that edges may well be added between pairs of older nodes in a given time
step, not just between the new node and the older nodes. The SPA model also
has a fairly small bound B on the out-degree with high probability (see Theorem
1.5). This implies that the graphs so generated have tree width at most B with
high probability, which does not accurately model the large tree width observed
in the web graph (see [Aiello et al. 01]). The GSPA model may be converted
into an undirected model. In this model, there is an influence region based on
degree. An edge is added between two nodes according to an overlap rule. The
overlap rules above are easily modified to the undirected case.
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