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On Locality in a Geometric
Random Tree Model
Ross M. Richardson

Abstract. We address the question of locality in random graphs. In particular, we study
a geometric random tree model Tα,n which is a variant of the FKP model proposed in
[Fabrikant et al. 02]. We choose vertices v1, . . . , vn in some convex body uniformly and
fix a point o. We then build our tree inductively, where at time t we add an edge from
vt to the vertex in v1, . . . , vt−1 that minimizes α‖vt − vi‖ + ‖vi − o‖ for i < t, where
α > 0. We categorize an edge vi → vj in this graph as local or global depending on the
edge length relative to the distance from vi to o. We study the extent to which the tree
is composed of either global or local edges and, in particular, show that it undergoes a
transition at α = 1.

1. Introduction

Consider the problem of providing telephone service to some central hub. Each
customer has a given position in the plane, and thus a given distance from the
hub. If we are allowed to extend a single connection from each new customer
to an existing customer, then choosing the nearest neighbor clearly optimizes
(minimizes) the amount of new wire we have to string. On the other hand,
connecting to an existing customer who is farther away from the hub than our
new customer may lead to attenuated service, and hence we may wish to choose
a customer located closer to the hub. If we weigh these two costs and choose a
customer who optimizes (minimizes) our total cost function, the behavior will
clearly depend on the relative weighting given to each cost.
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We shall construct a simple geometric tree model motivated by the above
example. We shall say that a customer is linked by a local edge (respectively
global edge) if the edge length is short (respectively long) relative to the distance
between the customer and the hub. In this way we obtain a meaningful description
of the local behavior that respects the length scale of each vertex. The above
example shows that, depending on how we choose to weight edge costs, both
completely local and completely global behavior are possible. In this paper, we
shall quantify these ideas, and, in particular, we shall look at the transition from
global to local behavior based on relative costs.

2. Related Work

Network models that encapsulate both local and global structure have been
investigated for some time. One of the earliest such papers is [Bollobás and
Chung 88], in which the authors analyze the union of an n-cycle and a random
matching. They demonstrate that such graphs have near-minimal diameter (for
all graphs of maximum degree at most 3) while at the same time requiring only
a linear number of edges. More generally, they also show that a graph with
bounded degree k that satisfies an expansion condition (namely that it expands
roughly as a tree with constant degree k) can be made to have near-minimal
diameter with the addition of a random matching.

From an algorithmic perspective, Kleinberg [Kleinberg 00] proposed a simple
local/global network model consisting of an n × n planar grid, to which one
adds a single random edge at each vertex. The edge is chosen with probability
proportional to some (fixed) power of the inverse distance. He demonstrates that
only for power 2 can an algorithm find short paths given only local information;
for other exponents the random component is either too local or too random.

In a similar vein, the authors of [Liben-Nowell et al. 05] show that for an
arbitrarily populated grid model in which link probabilities are determined via
local density (sparse regions have higher link probability than dense regions),
computable short paths exist. The authors of [Andersen et al. 05] replace the
local grid with a graph that satisfies prescribed local flow constraints, and the
global graph with a power-law G(w) random graph (see [Chung and Lu 06a]). In
this way, they obtain both local clustering and small diameter, and they further
provide an algorithm for separating the local and global components.

Note that all of these models are constructed as the union of a sparse local
component, given by some condition on neighborhood growth (local flow, regular
geometric embedding, etc.), combined with a small (linear) number of random
edges. The resulting graphs all share the features of being sparse, connected,
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and having minimal (near-optimal) diameter. As these traits are the hallmark
of so-called “real” complex networks, graphs as above with identifiable local and
global structure are thus compelling objects of study.

Our main contribution in this work is the analysis of the relative composition
of local and global structure in the graph model motivated by the introduction
(which is generated similarly to that of [Fabrikant et al. 02]). In particular, we
examine the relationship between generative rules (i.e., how should the relative
cost between local and global edges be weighted) and the resulting change in
overall composition. To our knowledge, the only other work to address the
question of detecting local and global structure is [Andersen et al. 05], and they
do so algorithmically.

3. Model and Definitions

3.1. Definition

The model we study here is a technical modification of the one originally pro-
posed in [Fabrikant et al. 02] (referred to as the FKP model).

We define a random-graph model Tα (Tα,n when we wish to stress the depen-
dence on n) with positive parameter α. We denote by K some compact, convex
set in R

d and o a fixed point interior to K. Without loss of generality, we assume
the volume of K to be 1.

For a given natural number n, we construct Tα,n as follows: The vertices of
Tα,n, denoted by Vn = {v1, . . . , vn}, are chosen independently and uniformly in
K.1 For each vertex vi, i = 1, . . . , n, associate to it a function

φi(x) = α‖vi − x‖ + ‖x − o‖,

where ‖ · ‖ is the Euclidean length. For the model Tα,n, we associate to each
vertex vi, i = 1, . . . , n, a unique edge ei with source vi and target vti given by

vti := argmin
j<i

φi(vj).

We shall assume that such a minimizer is unique, as this happens with probabil-
ity 1.

1As is usual in the theory of random graphs, we shall adopt the point of view that Tα,n

and Tα,m are constructed on the same probability space such that Vn ∩ Vm = Vn if n ≤ m.
As the vertices completely determine the graph, the subgraph of Tα,m induced by Vn is thus
Tα,n, and hence we view T as being built one vertex and edge at a time.
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One obtains the FKP model by choosing K to be the unit square, letting o be
a vertex of the tree prior to v1, and using instead the constraints

φ′
i(x) = α‖vi − x‖ + d(x, o),

where d(x, o) is the graph-theoretic distance from a vertex x to the root o. Thus
the FKP model balances local costs geometrically while balancing global costs
graph-theoretically. This definition proves enough of a technical convienience to
allow the authors of [Fabrikant et al. 02] to explore the degree distribution of
the resulting tree. We summarize these results in the next section.

Let us remark that both our model and the FKP model fall under the paradigm
of highly optimized tolerance (HOT), due originally to Carlson and Doyle [Carl-
son and Doyle 00, Carlson and Doyle 99]. So-called HOT models are charac-
terized by “optimal yet reliable design in the presence of a certain hazard.”
In the present case, our hazard is the randomness introduced by the points
in Vn. Through both simulation and comparison with real designed networks,
the authors of [Doyle et al. 05] argue that the HOT paradigm more closely re-
flects the mechanism that drives the formation of such networks, due largely
to the fact that real networks evolve (or are designed) to optimize network
costs.

3.2. Locality

For an edge ei with target vj , we call ei β-local (or (1−β)-global) for 0 ≤ β ≤ 1 if
the Euclidean edge length of the orthogonal projection of vivj onto the segment
ovi is at most β‖vi − o‖. Equivalently, the target of the edge is contained in the
half-space

H(vi, β) :=
{
x | (x − o) · (vi − o) ≥ (1 − β)‖vi − o‖2

}
.

If not otherwise stated, we take β = 1
2 . See Figure 1. We shall concern ourselves

with the fraction ρ(β) of β-local edges in Tα.
Our definition of a local edge is a straightforward—at least we hope so, given

Figure 1—and natural geometric notion. The definition could classify as local
an edge emanating from p with length much greater than ‖o − p‖ (which might
occur if ‖o− p‖ is small and the edge is perpendicular to op). In Section 6.1, we
introduce the notion of regions of influence, which will allow us to quantify the
heuristic that the target of p lies “close” to the chord op with high probability,
and thus abhorrent “local” edges are not a cause for concern. For the present,
however, it shall suffice that our definition is a technical convenience.
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Figure 1. The shaded region represents H(vi, 1/4), where K is a sphere. Note that
x and y (as possible targets of vi) give 1/4 local and global edges, respectively.

3.3. Conventions

All results hold under the assumption that n → ∞, and we use the Landau
notation O(·), o(·), Ω(·), etc., with respect to this assumption. Further, we let Õ

suppress logarithmic factors, hence Õ(·) implies O
(
·(log n)C

)
for some constant

C. We denote by P, E, Var, Cov—the probability, expectation, variance, and
covariance, respectively. We say a property holds asymptotically almost surely
(a.a.s.) if the probability of non-occurrence tends to 0 as n → ∞. The ε-ball
about a point p ∈ R

d is denoted by B(p, ε). We shall use primarily the base-2
logarithm, denoted lg, as well as the natural logarithm, ln.

4. Results

4.1. Prior Results

As Tα is structurally very similar to the FKP model, it will be useful to under-
stand all that is known in this latter case.

The fundamental result of the authors in [Fabrikant et al. 02] is that the FKP
model demonstrates three distinct behaviors based on the value of α.

Theorem 4.1. [Fabrikant et al. 02] In the FKP model, we have the following:

• If α < 1/
√

2, the tree is a star.

• If α = Ω(
√

n), the expected number of nodes that have degree D is at most
n2 exp (−cD).

• If α ≥ 4 and α = o(
√

n), the expected number of nodes with degree at
least D is greater than c · (D/n)−β for positive constants c and β (possibly
depending on α). In particular, if α = o

(
3
√

n1−ε
)

then we have β ≥ 1/6

and c = O(α−1/2).
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The main achievement of this theorem, namely the appearance of a power law
in the model, is disputed to some extent in [Berger et al. 03]. In this later work,
the authors take issue with the fact that c in the above theorem may vary with
n. While consistent with the work of Fabrikant et al., they show that

• if α = o(
√

n/(log n)2), the FKP model has n− o(n) leaves with high prob-
ability, and

• if α/(
√

n log n) → ∞, the function ρk is bounded above and below by
exponential-tailed functions of k,

where ρk = limn→∞ n−1 E[| {x | x ∈ Vn, deg(x) ≥ k} |].
They further demonstrate that, in the range (log n)4 ≤ α ≤ n1/2/(log n)4, the

maximum degree is O(nα−2), yet there are Θ̃
(
α2
)

vertices of degree Ω
(
nα−2

)
.

Hence, there are many vertices of degree differing only by a constant from the
maximum. This contrasts sharply with the traditional “Zipf-like” notion of a
power law, which predicts a constant number of such vertices. They leave un-
examined the range for which α = Ω

(√
n (log n)2

)
and α = O (

√
n log n). This

logarithmic gap is “presumably unnecessary” according to the authors, though
no more rigorous speculation is given.

As we shall observe in Theorem 4.2, the same dichotomy between “star-like”
and exponential-tailed behavior occurs for the model Tα. In this model, however,
the behaviors change sharply at α = 1. What about the case α = 1? Numerical
experiments for trees scaling up to 10,000 vertices suggest that in this case the
full degree distribution does obey a power law (see Figure 2 for instances of all
three regimes). We note that for α = 1 the summands in φi are of the same
order, whereas for the FKP model the summands in φ′

i are of the same order
when α = Θ̃ (

√
n). Thus, for this latter value of α = α(n) we speculate that the

FKP model also demonstrates a full power law. Determining the correct value for

(a) α = 3. (b) α = 0.5. (c) α = 1.

Figure 2. Tα,10,000 instances.
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√
n/ (log n)2 ≤ α ≤

√
n log n at which this behavior emerges is beyond our reach,

however (and hence even convincing numerical computation becomes difficult).
Thus, the Tα model at α = 1 seems the correct setting for numerically—if not
theoretically—recovering the power law originally sought in [Fabrikant et al. 02].

Finally, in the course of their investigations, the authors also show that the
distance from any node to the root o is at most 3 logn with high probability.
They remark that in the case α = ∞ the graph-theoretic distance to o from
a point vi is distributed as the distance to root in a uniform random-recursive
tree (see [Smythe and Mahmoud 95]). Given that the FKP model can be a star
with high probability for some α, no logarithmic lower bound on the diameter
is possible.

4.2. The Model T α

Our first two results concern the degree distribution and diameter of Tα for
α bounded away from 1. The model Tα shares the regimes of “star-like” and
exponential-tailed behavior. The transition between regimes, however, occurs
here at α = 1 instead of Θ̃ (

√
n) (in the case d = 2).

Theorem 4.2. (Degree Distribution.) We have the following for Tα,n:

1. If α < δ < 1 for δ fixed, then a.a.s. the number of vertices of degree greater
than 1 is O(lg n).

2. If α > δ > 1 for δ fixed, then there exists a constant c > 0 such that for
any vertex vi, i = 1, . . . , n, we have

P[deg(vi) ≥ D] = O(n exp(−cD)). (4.1)

In particular, the maximum degree is O(ln n) a.a.s.

Under the assumption that α → ∞ sufficiently fast (ω(ln n) say), one can show
a matching exponential lower bound in (4.1), which follows by a modification of
an argument found in [Berger et al. 03].

Unlike the FKP model, the diameter of our graph is logarithmic for all values
of α.

Theorem 4.3. (Diameter.) For any α > 0, the diameter of Tα is Θ(ln n) a.a.s.

It is worth considering how at the extremes, α → 0 and α → ∞, the diameter
is logarithmic. The latter case follows from the prior comparison to a uniform
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random-recursive tree. The former case, in which the graph appears “star-like”,
follows from the heuristic that most vertices will choose a target closest to o in
Euclidean norm. Over the course of n random points, however, the closest point
changes a logarithmic number of times. Hence, the diameter is determined by the
diameter of the subgraph induced on this sequence of closest points, which will
be logarithmic. (This subgraph is expected to be a path since a new “closest”
point will target the prior such point.)

Having quantified the combinatorial structure Tα, we now move to the main
contribution of this paper: understanding the composition of Tα in terms of the
relative number of local and global edges, as a function of α. Our first result
shows that in the case of α bounded away from 1, Tα consists almost entirely of
a single type of edge (local or global).

Theorem 4.4. (Edge Length.) Fix 0 < β < 1.

1. If α > δ > 1, then ρ(β) → 1.

2. If α < δ < 1, then ρ(β) → 0.

In particular, we find that, when α is bounded away from 1, the distribution of
edge lengths is governed primarily by the geometry of the extreme cases, α → 0
and α → ∞. Hence, as ρ(β) is a rough measure of the local tendency of the
graph, we see that the graph is entirely local or global in this case.

When α is not bounded away from 1, what can be said about ρ(β)? If β is a
function of α, we can have both ρ(β) → 0 and ρ(β) → 1, and indeed ρ(β) can be
bounded away from both 0 and 1. While the relationship between α and β that
forces these behaviors can be determined to some extent, the attendant details
outweigh the utility of such a result. Thus, we focus on our main theorem, which
already suggests some of this behavior.

Our main theorem asserts that around α = 1, our model Tα consists of both
local and global edges of roughly the same number, as measured by our parameter
ρ(β). We work in the unit volume ball in R

2, for simplicity, though the same
result should hold for general K.

Theorem 4.5. Set K = B(0, π−1/2) ⊆ R
2 with o = 0. If α = 1, we have

ρ

(
1
2

)
=

1
2
(1 + o(1)), a.a.s.
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Additionally, if β is fixed and |α − 1| = o(n−2), there exist constants 0 < c <

c′ < 1 depending on β such that

c < E[ρ(β)] < c′.

The proof of Theorem 4.5 gives the following heuristic explanation for this
behavior: for a point vi in K with ‖vi − o‖ = l, the edge ei has length uniformly
chosen in [0, l] and is contained in the thin tube about ovi. It is thus tempting
to conjecture that ρ(x) ≈ x, but the proof of Theorem 4.5 does not seem to
generalize to this case.

5. Further Directions

As mentioned in Section 4.1, the model Tα offers promise as a model on which to
study the power-law degree distribution originally sought by [Fabrikant et al. 02].
Of particular interest is the relation between the dimension d and the power-
law exponent, which appears in our numerical experiments to be a decreasing
function of d.

In both Tα and the FKP model, the weight α is a fixed function of n. A. Flax-
man (personal communication) suggests looking at a non-homogeneous variant
of these models. To wit, for the Tα model, he suggests setting

φi(x) = α(i)‖vi − x‖ + ‖x − o‖,

where α(i) varies with i.
The results of Theorem 4.2 and Theorem 4.5 are similar to an infinite Pólya

urn model studied in [Chung et al. 03]. In this model, at each time-step a ball is
added to an existing urn with probability 1 − p , else a new urn is created. If a
ball is to be placed into an existing urn, then each urn is chosen with probability
proportional to mγ , where m is the number of balls in the urn. Under the regimes
γ > 1, γ < 1, and γ = 1, the bin distributions are exponential, dominated by
a single bin, and power-law a.a.s. The question of why both combinatorial and
geometric selection rules produce similar phenomena remains open.

While random graphs in metric spaces already provide the correct setting for
notions of locality, the model Tα shows that random-graph models with edges
chosen in a biased, or spatially inhomogeneous manner, allow for more complex
behavior (compare Tα to the homogeneous geometric random-graph model of
Penrose). One outstanding question available in this setting is understanding the
extent to which dimensionality can be defined intrinsically for complex network
models, and how dimensionality influences the degree distribution, edge locality,
etc. Such a program would be an important first step in the verification of
geometric random-graph models.



158 Internet Mathematics

6. Tools

6.1. Regions of Influence

All of the subsequent analysis in this paper relies on the notion of influence
regions. Set γ > 0. Then the set of points

U(p, γ) = {q | ‖o − q‖ + α‖q − p‖ ≤ (min(1, α) + γ)‖p − o‖}

forms the γ-influence region (or γ−region) about p. We then have the following:

Lemma 6.1. (Convexity.) The region U(p, γ) is convex for any choice of p and γ > 0.

Proof. Let x1, x2 ∈ K be such that

‖xi − o‖ + α‖xi − p‖ = (min(1, α) + γ)‖p− o‖, i = 1, 2, (6.1)

which is to say that they lie on the boundary of U(p, γ). Let z = λx1 +(1−λ)x2.
Then

‖z − p‖ = ‖λx1 + (1 − λ)x2 − p‖ ≤ λ‖x1 − p‖ + (1 − λ)‖x2 − p‖,

and similarly for ‖z− o‖. Thus,

‖z− o‖ + α‖z − p‖ ≤ (λ‖x1 − o‖ + (1 − λ)‖x2 − o‖)
+ α(λ‖x1 − p‖ + (1 − λ)‖x2 − p‖)

(by (6.1)) = (min(1, α) + γ)‖p − o‖.

For the special case α = 1, the γ-region is simply an ellipse with foci o and p

and with major axis length ‖o− p‖(1 + γ)/2. For α < 1, as γ → ∞ the γ region
approaches that of an ellipse with foci o and p. For γ sufficiently small, however,
the γ-region localizes about the point o. Specifically, the γ-region forms a convex
region about o, the boundary of which is at maximum and minimum distance
from o along the line through o and p. The case α > 1 is similar, but in this case
the γ-region concentrates about p. See Figure 3.

We can further elucidate the structure of this region by computing the radii
of the smallest enclosing circle and the largest inscribing circle of U(p, γ). We
summarize this as follows:

Lemma 6.2. Let p be a point of distance r to o.
Assume α < 1. Then we have

B

(
o,

r(1 + γ − α)
1 + α

)
⊂ U(p, γ) ⊂ B

(
o,

r(1 + γ − α)
1 − α

)
,
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o p α > 1

α < 1o p

α = 1o p

Figure 3. γ−regions for γ small.

and, in particular,

πd

(1 + α)d
≤ Area(U(p, γ))

(r(1 + γ − α))d
≤ πd

(1 − α)d
.

Let α > 1. Then we have

B

(
o,

rγ

1 + α

)
⊂ U(p, γ) ⊂ B

(
o,

rγ

1 − α

)
,

and
πd

(1 + α)d
≤ Area(U(p, γ))

(rγ)d
≤ πd

(1 − α)d
.

Here, πd = πd/2

Γ(d/2+1) denotes the volume of a unit ball in R
d.

Proof. For α > 1, consider the ball centered at p of minimum radius xr, x ≤ 1,
that includes U(p, γ). As U(p, γ) and this ball intersect along the line po, we
obtain the equation (1−x)r+αxr = (1+γ)r, hence xr = γr/(1−α). The other
cases are similar.

It is worth observing that, whenever α �= 1, the ratio of the radius of a ball that
inscribes U(p, γ) to the radius of a ball that circumscribes U(p, γ) can be made
at most α+1

|α−1| for any γ. As a consequence, for α bounded away from 1, we
can conclude that the length of ei is of the same order as the nearest neighbor
distance of vi. See Lemmas 7.1 and 7.5.

6.2. Probability

The following elementary inequality will be used without comment in this paper:

(1 − nx2)e−nx ≤ (1 − x)n ≤ e−nx, 0 ≤ x ≤ 1, n ≥ 0.

See for instance [Bai et al. 01], Lemma 5.
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We shall also make use of the following Chernoff-like bound for sums of inde-
pendent indicators (see [Chung and Lu 06b] for a recent survey).

Lemma 6.3. (Chernoff.) Let X1, . . . , Xn be independent random variables such that
P(Xi = 1) = pi and P(Xi = 0) = 1 − pi. Then if X =

∑n
i=1 Xi, we have the

following two bounds:

P(X ≤ E[X ] − λ) ≤ exp
(

−λ2

2E[X ]

)
,

P(X ≥ E[X ] + λ) ≤ exp
(

−λ2

2(E[X ] + λ/3)

)
.

The next lemma is a convenient way to invoke a second-moment argument,
following [Alon and Spencer 00], and follows from Chebyshev’s inequality.

Lemma 6.4. Let X = X1 + . . . + Xn where Xi is an indicator for the event Ai. If
Var[X ] = o(E[X ]2), then we have

X = E[X ](1 + o(1)), a.a.s.

7. Proofs

7.1. Proof of Theorem 4.2

7.1.1. Proof of case α < δ < 1. For i = 1, . . . , �lg n we let ri = ( 2i
πd(lg e)(2i−1) )

1/d.
We claim that

P (V2i−1 ∩ B(o, ri) = ∅ for some i = �lg lg n, . . . , �lg n) = o(1).

To see this, we use the union bound to compute

P

⎛
⎝ �lg n�⋃

i=�lg lg n�
{V2i−1 ∩ B(o, ri) = ∅}

⎞
⎠ ≤

�lg n�∑
i=�lg lg n�

(1 − πdr
d
i )2

i−1

≤
�lg n�∑

i=�lg lg n�
exp(−πdr

d
i (2i − 1))

≤ lg n(lg n)−3/2 = o(1), (7.1)

since exp(−2�lg lg n/ lg e) ≤ (lg n)−3/2 for n sufficiently great.
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Next, observe that the point closest to o gives a bound on the target for any
vertex.

Lemma 7.1. Fix 2 ≤ i ≤ n. If r = minj<i ‖o − vj‖, then ‖o − vti‖ < r
(

1+δ
1−δ

)
.

Proof. Let vj be the point that obtains the minimum distance r. By Lemma
6.2, there is a γ such that B(o, r) ⊂ U(vi, γ) ⊂ B(o, r 1+α

1−α ). Thus, any point vk

falling outside B(o, r α+1
α−1 ) must have φi(vk) > φi(vj), and hence the target of vi

must obey ‖o − vti‖ ≤ r 1+α
1−α < r 1+δ

1−δ .

Now, for each i = �lg lg n, . . . , �lg n, we can compute the number of points in
{v2i , . . . , v2i+1−1} that fall inside B(o, ri(1+δ

1−δ )), which for n sufficiently great lies

entirely inside K. The expected such number is 2iπd(ri
1+δ
1−δ )d = 2i

lg e ( 2i

2i−1 )(1+δ
1−δ )d.

By Lemma 6.3, the probability that the actual number exceeds the expectation
by more than ci for some constant c > 0 is bounded by

exp

⎛
⎜⎜⎝ −c2i2

2
(

2i
lg e

(
2i

2i−1

)(
1+δ
1−δ

)d

+ ci/3
)
⎞
⎟⎟⎠ ,

which is o((lg n)−1) for c sufficiently great and i ≥ �lg lg n. Hence, we may
assume that for all such i the number of points in {v2i , . . . , v2i+1−1} falling inside
B(o, ri

1+δ
1−δ ) is 2i

lg e( 2i

2i−1 )(1+δ
1−δ )d+ci with probability tending to 1. Summing gives

�lg n�∑
i=�lg lg n�

i

((
2i

2i − 1

)(
1 + δ

1 − δ

)d

+ c

)
= O(lg n)

such vertices. From Equation (7.1) and Lemma 7.1 the remaining vertices among
{v2�lg lg n� , . . . , vn} have degree 1. Hence, the total number of vertices of degree
greater than 1 is O(lg n).

7.1.2. Proof of case α > δ > 1. The method of proof here is an extension of that
found in [Fabrikant et al. 02].

Fix the point vi. We consider each edge in which vi participates to be either
short or long based on whether or not it is shorter than r = (πd(n − 1))−1/d.
The number of short edges of vi is bounded by the number of vertices that fall
inside the ball of radius r. Lemma 6.3 shows that

P(#short edges ≥ D/2) ≤ exp
(

(D/2 − 1)2

4/3 + D/3

)
.
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Now, pick ε and θ sufficiently small such that

(1 + ε)
δ

+
√

2((1 + ε)2 − cos θ) < 1, (7.2)

observing that the left-hand side decreases in both ε and θ. We then have the
following lemma.

Lemma 7.2. For l > 0, let vj , vk lie in the annulus about vi of radii l and (1 + ε)l
for any l > 0. If �vjvivk < θ, then φj(vk) < φj(vi); i.e., vj prefers vk to vi.

Proof. We abbreviate dxy := ‖x − y‖. By the law of cosines,

d2
vjvk

≤ d2
vjvi

+ d2
vkvi

− 2dvjvidvkvi cos�vjvivk ≤ 2(1 + ε)2l2 − 2l2 cos θ

hence dvjvk
≤ l
√

2((1 + ε)2 − cos θ). Further, dvivj ≥ l. Hence, by (7.2)

(1 + ε)l < δ(l − l
√

2((1 + ε)2 − cos θ)) ≤ δ(dvivj − dvjvk
) < α(dvivj − dvjvk

).

On the other hand, dvio − dvjo ≤ (1 + ε)l, so dvko − dvio < α(dvivj − dvjvk
);

i.e.,
dvko + αdvjvk

< dvio + αdvivj ,

our conclusion.

In R
d, no more than N0 = N0(d, θ) points can be placed such that the angle

�xviy > θ for every pair x, y. This follows by a simple packing argument. As
a result, in any annulus as above there can be at most N0 vertices linked to vi.
Now, if Lx denotes the number of vertices linked to vi in the annulus of radii x

and (1 + ε)x centered at vi, we can thus count the total number of long edges as

�log1+ε diamK�∑
i=�log1+ε ζi�

L(1+ε)i ≤ N0(log1+ε diamK − log1+ε ζi + 1),

where ζi = minj {‖vi − vj‖, r}. Now, P(N0(log1+ε diamK−log1+ε ζi+1) ≥ D/2)
is just P(ζi ≤ diamK(1 + ε)1−D/2N0). As our points are chosen independently,
the union bound gives P(ζi ≤ diamK(1 + ε)1−D/2N0) ≤ (n − 1)πd(diamK(1 +
ε)1−D/2N0)d. Thus,

P(#long edges ≥ D/2) = O(n exp(−cD))

for some constant c.
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As P(d(vi) ≥ D) ≤ P(#short edges ≥ D/2) + P(#long edges ≥ D/2), we
thus have P(d(vi) ≥ D) = O(n exp(−c′D)) for some c′ > 0.

Finally, note that if we set ∆0 = 3 ln n
c′ (here 3 can be replaced with 2 + ε), we

have that P(deg(vi) ≥ ∆0) = O(n−2). Hence, by the union bound, we have

P(∆ (Tα) ≥ ∆0) ≤
n∑

i=1

P(deg(vi) ≥ ∆0) = nO(n−2) = O(n−1),

so the maximum degree of Tα is bounded by ∆0 a.a.s.

7.2. Proof of Theorem 4.3

The upper bound follows from a simple adaptation of 2 in [Berger et al. 03], so
we focus on the lower bound. We shall use the following, which is adapted from
Lemma 1 in [Berger et al. 03].

Lemma 7.3. The probability that, for 1 < i1 < . . . < ik, the path vik
→ vik−1 →

. . . → vi1 → v1 exists in Tα is 1/ ((i1 − 1)(i2 − 1) · · · (ik−1 − 1)).

Proof. We shall fix the positions—but not the labels—of vertices in Vik−1. As
edges are determined only from the positions, the target of vik

is any member
of Vik−1, chosen uniformly with probability 1/(ik − 1). If we condition on the
target being vik−1 , we may view the vertex labels prior to vik−1 as still unchosen,
and thus we may repeat our argument to obtain the lemma.

To prove our lower bound, we bound the length of the vn → v1 path in Tα. Note
that the probability that the length of this path is at most L is given by

1
n − 1

+
L∑

r=2

∑
1<i1<...<ir−1<n

1
(i1 − 1) · · · (ir−1 − 1)(n − 1)

≤ 1
n − 1

L∑
r=1

(1 + ln n)r−1

r!
. (7.3)

Now, if ar = (1+ln n)r−1

r! , then ar+1 = ar
1+ln n
r+1 , and hence for a given n the

sequence {ar}∞r=1 is unimodal with maximum a�ln n�. If we let L = �ln n/2, then
Stirling’s approximation shows aL (and hence all lower terms) to be o(n/ ln n),
and hence (7.3) tends to zero. Thus, with probability tending to 1 the path from
vn → v1 is greater than L = �ln n/2.

7.3. Proof of Theorem 4.4

We shall handle only the case α > δ > 1, as the other case is similar.
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We will require a small technical fact, which is a (more or less) direct conse-
quence of the compactness of K.

Lemma 7.4. Let x ∈ K. Then there exists an r0 > 0 and η > 0 such that
Vol(K ∩ B(x, r)) ≥ ηπdr

d for all r ≤ r0.

Now, for each i = 2, . . . , n, we shall set ri = ( 2 ln(i−1)
ηπd(i−1) )

1/d. The probability that
all vertices in Vi−1 are a distance at least ri from vi is (1−Vol(B(vi, ri)∩K))i−1 ≤
(1 − ηπdr

d)i−1 ≤ exp(−2 ln(i − 1)) = (i − 1)−2. Hence, we may assume that for
each i ≥ i0, Vi−1 ∩B(vi, ri) �= ∅ with probability

∑n
i=i0

(i− 1)−2, which tends to
zero as i0 = i0(n) → ∞.

The following fact is a companion to Lemma 7.1 and is proved in the same
way.

Lemma 7.5. Fix 2 ≤ i ≤ n. If r = minj<i ‖vi − vj‖ then ‖vi − vti‖ < r
(

δ+1
δ−1

)
.

In particular, note that if B(vi, ri)∩ Vi−1 �= ∅ then ‖vi − vti‖ < ri( δ+1
δ−1 ). If, in

addition, ‖vi−o‖ > β−1ri( δ+1
δ−1 ) then ei is β-local. The probability that vi falls in

B(o, β−1ri( δ+1
δ−1 )) is bounded by β−d ln(i−1)

η(i−1) . Thus, the expected number of such

“close” points is at most β−d

η

∑n
i=1

ln(i−1)
i−1 = O((ln n)2). By Lemma 6.3, the

actual number of such points is O((ln n)2) with probability tending to 1 (taking
λ = c(ln n)2/3, say, for c sufficiently great). Thus, the only edges that can fail to
be β-local are these “close” points as well as the first i0. Setting i0 = O((ln n)2)
thus allows us to conclude that the number of local edges is n(1 − o(1)) with
probability tending to 1.

7.4. Proof of Theorem 4.5, β = 1/2

Our argument will be via the second-moment method, using Lemma 6.4. The
key idea is that, for α = 1, the γ-region for each point vi ∈ Vn is (with high
probability) an ellipse. In particular, reflecting all points except vi in such an
ellipse about the minor axis does not alter their their values with respect to φi.
Thus, the probability that any given edge is local is about 1

2 . Unfortunately, as
two γ-regions always overlap (they always contain the point o, for example), we
must overcome issues of dependency in applying Lemma 6.4.

We shall let Xi be the indicator that vertex vi is local, hence X =
∑n

i=1 Xi

counts the number of local vertices. For a given point x ∈ K, we shall let E(x, t)
denote the (closed) ellipse with foci x and o and area t.
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We shall partition the vertices Vn into epochs, indexed by 0, 1, . . . , �lg n, where
vertex vi belongs to epoch l(i) := �lg i. To each epoch we associate a set of
parameters that are given (with foresight) by the following:

• ti = 2−i/2,

• ri =
(
1 − 2−1/7

)i/2
,

• θi =
(
1 − 2−1/7

)i
,

• and hi =
(

2−ε
4

)i/2 for some 0 < ε < 2 − 1
1−2−1/7 .

Given these parameters, we shall construct the following events:

• A(vi, l): E(vi, tl) ⊆ K,

• B(vi, l): |(E(vi, tl) − B(o, hl) − B(vi, hl)) ∩ Vi| > 1, ‖vi − o‖ > rl,
E(vi, tl) ∩ B(o, hl) ∩ Vi−1 = ∅, and E(vi, tl) ∩ B(vi, hl) ∩ Vi−1 = ∅,

• C(vi, vj , l): �viovj > θl.

The following geometric lemma will be of critical importance.

Lemma 7.6. If t = o(r2) and r → 0, then there exists a constant c > 0 such that
the distance from o to any point in E(vi, t)∩E(vj , t) is bounded by c t2

r5(1−cos θ
2 )

.

Finally, when examining the covariance of two indicators Xi and Xj, we will
need the (high probability event) that

1. neither vi or vj lies too close to the boundary of K nor too close to o,

2. the ellipses E(vi, tl) and E(vj , tl) each contain points from Vn\ {vi, vj}
which do not lie near the ends of the major axes, and

3. vi and vj form a sufficiently great angle with o.

We define this event D according to our above notation as

D(vi, vj , l) = A(vi, l) ∩ A(vj , l) ∩ B(vi, l) ∩ B(vj, l) ∩ C(vi, vj , l).

We then have the following technical lemma.
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Lemma 7.7. The following estimates hold:

n∑
i=1

P(A(vi, l(i) ∩ B(vi, l(i)))) = o(n), (7.4)

n∑
i=1

n∑
j>i

P(D(vi, vj , l(j))) = o(n2), (7.5)

and

n∑
i=1

n∑
j>i

P(A(vi, l(j)) ∩ B(vi, l(j))) + P(A(vj , l(j)) ∩ B(vj, l(j))) = o(n2). (7.6)

Here, the E denotes the complement of an event E . We can now prove Theo-
rem 4.5.

Proof of Theorem 4.5 (Part 1). Expectation. Fix 1 ≤ i ≤ n. We shall construct a
map T i of the underlying probability space Kn. On the complement of the set
A(vi, l(i))∩B(vi, l(i)), T i acts as the identity. Otherwise, for each vertex vj �= vi

the map T i is the identity if vj �∈ E(vi, tl(i)) and otherwise reflects vj about
the minor axis of E(vi, tl(i)). The assumption A(vi, l(i)) makes this operation
well defined. Further, T i is probability-preserving as rigid reflection preserves
Lebesgue measure.

Under B(vi, l(i)), the target of vi lies inside E(vi, tl(i))−B(o, hl(i))−B(vi, hl(i)).
As E(vi, tl(i)) − B(o, hl(i)) − B(vi, hl(i)) is symmetric about the minor axis of
E(vi, tl(i)), T i exchanges the events Xi = 1 and Xi = 0 under A(vi, l(i)) ∩
B(vi, l(i)). Hence, we have

P(Xi = 1) = 1/2 + O (1 − P (A(vi, l(i)) ∩ B(vi, l(i)))) .

Thus, we can compute

E[X ] =
n∑

i=1

1/2 + O (1 − P (A(vi, l(i)) ∩ B(vi, l(i)))) = n/2 + o(n), (7.7)

where the last equality follows from (7.4).
Variance. Computation of the variance is similar. We shall fix 1 ≤ i < j ≤ n.

We now construct two maps Si
l on Kn for each l. The map Si

l fixes all those vj

that fall outside E(vi, tl) as well as vi. Those vertices that fall inside E(vi, tl)
are reflected about the minor axis of this ellipse.

If we set l0 = lg lg n, we can see that for l ≥ l0 we have rl → 0 and
tl = o(r2

l ). Hence, by our choice of the parameters tl, rl, hl, and θl as well
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as Lemma 7.6 we see that on the event D(vi, vj , l(j)) the regions E(vi, tl(j)) −
B(vi, hl(j)) − B(o, hl(j)) and E(vj , tl(j)) − B(vj , hl(j)) − B(o, hl(j)) are disjoint
as long as l(j) ≥ l0, and hence Si

l(j) and Sj
l(j) commute. Further, both these

maps are probability-preserving on D(vi, vj , l(j)), so we see that the events
{Xi = ε1 ∧ Xj = ε2} ∩ D(vi, vj , l(j)) consist of the orbit of any one of them un-
der the group generated by Si

l(j) and Sj
l(j) and hence are equiprobable. Thus,

E[XiXj ] ≤ 1/4 + P
(
D(vi, vj , l(j))

)
. As a result, we have that

Cov[XiXj ] = E[XiXj ] − E[Xi]E[Xj ]

≤ 1/4 + P
(
D(vi, vj , l(j))

)
−
(
1/2 − 1/2P(A(vi, l(j)) ∩ B(vi, l(j)))

)
×
(
1/2 − 1/2P(A(vj , l(j)) ∩ B(vj , l(j)))

)
≤ P

(
D(vi, vj , l(j))

)
+ 1/4

(
P(A(vi, l(j)) ∩ B(vi, l(j))) + P(A(vj , l(j)) ∩ B(vj , l(j)))

)
.

(7.8)

Hence, we can compute

Var[X ] =
n∑

i=1

Var[Xi] + 2
n∑

i=1

n∑
j>i

Cov[XiXj ]

≤ n + 2
n∑

i=1

∑
j>i

Cov[XiXj ]

(by (7.8)) ≤ n + 2
n∑

i=1

n∑
j>i

(
P
(
D(vi, vj , l(j))

)

+ 1/4
(
P(A(vi, l(j)) ∩ B(vi, l(j)))

+ P(A(vj , l(j)) ∩ B(vj , l(j)))
))

(by (7.5) and (7.6)) = o(n2). (7.9)

Thus, (7.7) and (7.9) and Lemma 6.4 allow us to conclude that X = E[X ](1+
o(1)) = n/2(1 + o(1)) with probability tending to 1.

The rest of the proof is devoted to establishing Lemmas 7.6 and 7.7. We first
require a few geometric estimates.
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Lemma 7.8. Let t → 0. If v is chosen uniformly in K, then E(v, t) ⊆ K with
probability 1 − O(t2).

Proof. We bound the failure probability. Note that E(v, t) �⊆ K is equivalent to
the event that the semimajor axis length of E(v, t) exceeds half the distance of
v to o (the focal distance) by an amount greater than the distance from vi to
the boundary of K. This is established on the ball by noting that the curvature
of the boundary is 1 everywhere, whereas the curvature at the extremes of the
major axis of (γ-region) ellipses tends to infinity.

We label the semimajor and semiminor axis lengths a and b and let r = ‖v−o‖
2

such that a2 = b2 + r2.
Let us examine the excess a−r. Note that (a2−r2) = (a+r)(a−r) ≥ 2r(a−r),

hence a−r ≤ a2−r2

2r . Now the area of our ellipse is t, thus πa
√

a2 − r2 = πab = t.

An appeal to the quadratic formula yields

a2 =
1
2

(
r2 + r2

√
1 +

4t2

π2r4

)
≤
(

r2 +
t2

π2r2

)
. (7.10)

Here we use the fact that, for all x > 0, we have
√

1 + x ≤ 1 + x/2. Thus we
have a2−r2

2r ≤ t2

2π2r3 .
Fixing r > r′ > 0 for some constant r′ < 1

2
√

π
, we are thus assured that

if vi falls a distance at least t2

2π2(r′)3 (1 + o(1)) from the boundary of K then
E(v, t) ⊆ K. For r ≤ r′, E(v, t) intersects the boundary of k only if 2a ≥ 1/

√
π,

since the sum of the distances from any point in ∂E(v, t) is 2a. Now, as

a2 =
t2

π2a2
+ r2 ≤ t2

π2r2
+ r2 ≤ t2

π2(r′)2
+ (r′)2,

we see that for t sufficiently small we have a < 1/(2
√

π).
Thus the only chance of failure comes from a point landing too close to the

boundary of K, and, as above, this gives a failure probability of O(t2).

Proof of Lemma 7.6. For the moment, assume that vi and vj have the same length to
the center o. Label the common focal length r (half the distance to the center),
and label the farthest point of intersection of the two ellipses h. See Figure 4.

Consider the triangle on the right of Figure 4. Note that the sum of the
lengths of the two smaller sides must equal the length of the major axis of the
ellipse. Letting a be the semimajor axis length and x be the unlabeled edge
in the figure, this implies that 2a = x + h. Next, the law of cosines tells us
that h2 + 4r2 − 4rh cos θ

2 = x2. Using our relation between x and h we obtain
h = a2−r2

a−r cos θ
2
.
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} 2 r

{h
θ
2

c

v iv j

Figure 4. The intersection of two ellipses with a common focus and focal length
forming an angle θ.

Recall that in Lemma 7.8 we already established the necessary asymptotics,
so by (7.10) we have

a2 = r2

(
1 +

t2

π2r4
(1 + o(1))

)
,

under the assumption that t2/r4 = o(1); i.e., t = o(r2). Taking square roots,
we obtain the similar expansion a = r(1 + t2

2π2r4 (1 + o(1))), again under the
assumption t = o(r2). Thus we conclude that

h =
a2 − r2

a − r cos θ
2

≤ c
t2

r5
0(1 − cos θ

2 )
,

for some c > 0.
The case of vi and vj at different distances from o follows by noting that

lengthening one ellipse along its major axis while keeping the other fixed (main-
taining the area in both) causes h to decrease.

Now we need estimates on A(vi),B(vi), etc.

Lemma 7.9. For l = �lg lg n, . . . , �lg n and vi, vj ∈ Vn, there exist constants
c1, c2, c3, c4 > 0 such that

P(A(vi, l)) ≤ c1t
2
l ,

P(B(vi, l)) ≤ c2r
2
l + (1 − tl(1 + o(1)))2

l(i)−1 + c32l(i)h2
l ,

P(C(vi, vj , l)) = θl.
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In particular,

P(D(vi, vj , l)) ≤ 2c1t
2
l + (1 − tl(1 − o(1)))2

l(i)−1 + (1 − tl(1 − o(1)))2
l(j)−1

+ c32l(i)h2
l + c32l(j)h2

l + 2c2r
2
l + c4θi.

Proof. The estimate on P(A(vi, l)) follows from Lemma 7.8.
The probability ‖vi − o‖ ≤ rl is πr2

l . The probability that some point vi′

such that i′ < i falls in E(vi, tl) ∩ B(vi, hl) or E(vi, tl) ∩ B(o, hl) is at most
(i − 1)2πh2

l ≤ 2l(i)2πh2
l . Finally, the probability that every point vi′ such that

i′ < i misses E(vi, tl) is at most (1−Area(E(vi, tl)))i−1 ≤ (1−tl(1−o(1)))2
l(i)−1.

Here we use the fact that 2l(i)−1 ≤ i and the bound Area(E(vi, tl)) = tl(1−o(1))
(the o(1) term is due to those vi that fall near the boundary of K). These facts
combine to give the estimate on P(B(vi, l)).

The equation P(C(vi, vj , l)) comes simply from the symmetry of K.

We are now in a position to verify Lemma 7.7.

Proof of Lemma 7.7. We shall focus on Equation (7.5), the methods of which also give
(7.4) and (7.6). Thus, we estimate

∑n
i=1

∑n
j>i P(D(vi, vj , l(j))). As the RHS of

all estimates in Lemma 7.9 depend only on relevent epochs, we can obtain the
upper bound

n∑
i=1

n∑
j>i

P(D(vi, vj , l(j))) ≤
�lg n�∑

i=�lg lg n�
2i

�lg n�∑
j=i+1

2j P(D(v2i , v2j )) + O(n lg n)

(by Lemma 7.9) ≤
�lg n�∑

i=�lg lg n�
2i

�lg n�∑
j=i+1

2j

(
2c1t

2
j + (1 − tj(1 − o(1)))2

i−1

+ (1 − tj(1 − o(1)))2
j−1 + c32ih2

j + c32jh2
j

+ 2c2r
2
j + c4θj

)
+ O(n lg n).

(7.11)

Here, the O(n lg n) term comes from neglecting those epochs for which Lemma
7.9 does not apply. As our goal is to bound the above by a o(n2) term we shall
further neglect this error term and focus on the sum.

We evaluate the sum on each term. First, consider
�lg n�∑

i=�lg lg n�
2i
∑
j>i

2jt2j ≤
�lg n�∑
i=1

2i
∑
j>i

2jt2j =
�lg n�∑
i=1

2i
∑
j>i

2j2−j = O(n lg n).
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Here, and in the remainder, it is understood that i, j ≤ �lg n.
Similarly, we have

�lg n�∑
i=�lg lg n�

2i
∑
j>i

2jr2
j ≤

�lg n�∑
i=1

2i
∑
j>i

2j(1 − 2−1/7)j = O(n),

as the inner sum is bounded by a geometric sum with modulus less than 1. The
same estimate thus also shows

∑�lg n�
i=�lg lg n� 2i

∑
j>i 2jθj = O(n).

Next, we compute

�lg n�∑
i=�lg lg n�

2i
∑
j>i

2j(2jh2
j) ≤

�lg n�∑
i=1

2i
∑
j>i

(2 − ε)j = o(n2),

given that the inner sum is bounded by
∑�lg n�

j=1 = O
(
(2 − ε)lg n

)
= o(n).

Finally, we check the sum

�lg n�∑
i=�lg lg n�

2i
∑
j>i

2j(1 − tj(1 − o(1)))2
i−1.

We shall use the bound tj(1 − o(1)) ≥ tj/2 for j ≥ �lg lg n. Thus,

�lg n�∑
i=�lg lg n�

2i
∑
j>i

2j(1 − tj(1 − o(1)))2
i−1

≤
�lg n�∑

i=�lg lg n�
2i
∑
j>i

2j exp(−tj(1 − o(1))(2i − 1))

≤
�lg n�∑

i=�lg lg n�
2i
∑
j>i

2j exp(−ti(2i − 1)/2)

≤ O(n)
�lg n�∑

i=�lg lg n�
2i exp(−2−i/2(2i − 1)/2)

≤ O(n)
�lg n�∑

i=�lg lg n�
2i exp(−2i/2−2) = O(n),

by comparison to
∑∞

i=1 2ie2i/2−2
< ∞. Noting that (1 − tj(1 − o(1)))2

i−1 ≥
(1− tj(1−o(1)))2

j−1 as j > i, the estimate shows that
∑�lg n�

i=�lg lg n� 2i
∑

j>i 2j(1−
tj(1 − o(1)))2

j−1. = O(n) as well.
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Thus, as (7.11) is a finite sum of sums each bounded by o(n2), (7.5) holds.
The other estimates fall to the same methods.

Proof of Theorem 4.5 (Part 2). With β fixed, we shall assume in what follows that
|α− 1| = o(γ) for a parameter γ → 0. Further, we assume that p is a point such
that ‖o − p‖ = r is bounded away from zero.

We consider the γ-region about p and construct inscribed and circumscribed
figures about the γ-region. Let l1 be the intersection of the line through o

and p and the γ region. The length of l1 is thus (1 + o(1))r. Let l2 be the
segment perpendicular to l1 that intersects the midpoint of po. The length of
l2 is (1 + o(1))r

√
γ. The convex hull of l1 ∪ l2 forms a rhombus R1 contained

entirely in the γ-influence region with area (1 + o(1))r2√γ. We can also form
a circumscribed rectangle R2 that is axis-parallel to segments l1 and l2 and has
asymptotically twice the area of the rhombus.

Now let p be one of our randomly chosen points vi, and further assume it has
distance ‖vi − o‖ bounded away from 0 and 1/

√
π, which happens with positive

probability. Next, set γ = (nr)−2, which causes the rhombus and rectangle
to have areas (1 + o(1))n−1 and (1 + o(1))2n−1, respectively. Further, for n

sufficiently great, the rhombus, ellipse, and rectangle all lie in K. Thus, the
event that one of {v1, . . . , vn} − {vi} falls in the rhombus and all others avoid
the rectangle is at least

(
n

1

)
Area(R1)(1 − Area(R2))n−2

=
(

n

1

)
n−1(1 + o(1))(1 − 2n−1(1 + o(1)))n−2 > c1 > 0,

for some positive constant c1.
Now, for γ bounded above and hence the length of l2 bounded above, we see

that
Area(H(vi, β) ∩ R1)

Area(R1)
> c2 > 0.

Summarizing, the probability that there is exactly one point in the rhombus
apart from vi and that all other points fall outside the rectangle is bounded below
by some positive constant. Further, the probability that a point chosen uniformly
in the rhombus falls in H(vi, β) is bounded below by a positive constant. Thus,
the total probability that the target of vi is local is bounded below by a positive
constant, which shows that E[Xi] > c > 0 for some constant c, hence E[ρ(β)] >

c > 0. The upper bound is similar.
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