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A Phase Transition for the
Diameter of the Configuration
Model
Remco van der Hofstad, Gerard Hooghiemstra, and Dmitri Znamenski

Abstract. In this paper, we study the configuration model (CM) with independent and
identically-distributed (i.i.d.) degrees. We establish a phase transition for the diameter
when the power-law exponent τ of the degrees satisfies τ ∈ (2, 3). Indeed, we show that
for τ > 2 and when vertices with degree 1 or 2 are present with positive probability,
the diameter of the random graph is, with high probability, bounded from below by a
constant times the logarithm of the size of the graph. On the other hand, assuming
that all degrees are 3 or more, we show that, for τ ∈ (2, 3), the diameter of the graph
is, with high probability, bounded from above by a constant times the log log of the
size of the graph.

1. Introduction

Random graph models for complex networks have received a tremendous amount
of attention in the past decade. (See [Albert and Barabási 02, Newman 03, Stro-
gatz 01] for reviews on complex networks and [Barabási 02] for a more expository
account.) Measurements have shown that many real networks share two funda-
mental properties. The first is the fact that typical distances between vertices
are small, which is called the “small world” phenomenon (see [Watts 99]). For
example, on the Internet, IP-packets cannot use more than a threshold of physi-
cal links, and if the distances in terms of the physical links is large, e-mail service
would simply break down. Thus, the graph of the Internet has evolved in such a
way that typical distances are relatively small, even though the Internet is rather
large. The second and maybe more surprising property of many networks is that
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the number of vertices with degree k falls off as an inverse power of k. This
is called a power-law degree sequence, and resulting graphs often go under the
name scale-free graphs (see [Faloutsos et al. 99] for a discussion of where power
laws occur in the Internet).

The observation that many real networks have the above two properties has
incited a burst of activity in network modeling using random graphs. These
models can, roughly speaking, be divided into two distinct classes of models:
static models and dynamic models. In static models, we model with a graph
of a given size a snapshot of a real network. A typical example of this kind
of model is the configuration model (CM) that we describe below. A related
static model, which can be seen as an inhomogeneous version of the Erdős-Rényi
random graph, has been treated in great generality [Bollobás et al. 07]. A much
studied class of examples of dynamic models consist of the so-called preferential
attachment models (PAMs), where added vertices and edges are more likely to
be attached to vertices that already have large degrees. PAMs often focus on
the growth of the network as a way to explain the power-law degree sequences.

Physicists have predicted that distances in PAMs behave similarly to distances
in the CM with similar degrees. Distances in the CM have attracted considerable
attention (see, e.g., [Esker et al. 06, Fernholz and Ramachandran 07, van der
Hofstad et al. 05, van der Hofstad et al. 07]), but distances in PAMs far less
(see [Bollobás and Riordan 04a, van der Hofstad and Hooghiemstra 07]), which
makes it hard to verify this prediction. Together with other work by the first
two authors [van der Hofstad and Hooghiemstra 07], the current paper takes a
first step towards a rigorous verification of this conjecture. At the end of this
introduction we will return to this observation, but let us first introduce the CM
and present our diameter results.

1.1. The Configuration Model

The CM is defined as follows. Fix an integer N . Consider an independent and
identically-distributed (i.i.d.) sequence of random variables D1,D2, . . . , DN . We
will construct an undirected graph with N vertices where vertex j has degree Dj .
We will assume that LN =

∑N
j=1 Dj is even. If LN is odd, then we will increase

DN by 1. This single change will make hardly any difference in what follows,
and we will ignore this effect. We will later specify the distribution of D1.

To construct the graph, we have N separate vertices, and incident to vertex
j, we have Dj stubs or half-edges. The stubs need to be paired to construct the
graph. We number the stubs in a given order from 1 to LN . We start by pairing
at random the first stub with one of the LN − 1 remaining stubs. Once paired,
two stubs form a single edge of the graph. Hence, a stub can be seen as the left-
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or the right-half of an edge. We continue the procedure of randomly choosing and
pairing the stubs until all stubs are connected. Unfortunately, vertices having
self-loops, as well as multiple edges between vertices, may occur, so that the CM
is a multigraph. However, self-loops are scarce when N → ∞ (see, e.g., [Bollobás
01] or [Britton et al. 06]).

The above model is a variant of the configuration model [Bollobás 01], which,
given a degree sequence, is the random graph with that given degree sequence.
The degree sequence of a graph is the vector of which the kth coordinate equals
the fraction of vertices with degree k. In our model, by the law of large numbers,
the degree sequence is close to the distribution of the nodal degree D of which
D1, . . . , DN are i.i.d. copies.

The probability mass function and the distribution function of the nodal degree
law are denoted by

P(D = k) = fk, k = 1, 2, . . . , and F (x) =
�x�∑
k=1

fk, (1.1)

where �x� is the largest integer smaller than or equal to x. We pay special
attention to distributions of the form

1 − F (x) = x1−τL(x), (1.2)

where τ > 2 and L is slowly varying at infinity. This means that the random
variables Dj obey a power law, and the factor L is meant to generalize the model.
We denote the expectation of D by µ, i.e.,

µ =
∞∑

k=1

kfk. (1.3)

1.2. The Diameter in the Configuration Model

In this section we present our results on the bounds on the diameter. The
distance considered in this paper is the ordinary graph distance, i.e., the distance
d(A,B) between the vertices A and B in graph G is the minimal number of edges
of a connecting path. The average or typical distance of a (connected) graph G

is the graph distance between two uniformly chosen connected vertices from the
vertex set. The diameter of a graph G, denoted by diam(G), is

diam(G) = sup
A,B

d(A,B), (1.4)

where the supremum is taken over all pairs of connected vertices in the graph. We
use the abbreviation whp for a statement that occurs with probability tending
to 1 if the number of vertices of the graph N tends to ∞.
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Theorem 1.1. (Lower bound on diameter.) For τ > 2, assuming that f1+f2 > 0 and f1 < 1,

there exists a positive constant α such that whp the diameter of the configuration
model is bounded below by α log N .

A more precise result on the diameter in the CM [Fernholz and Ramachandran
07] proves that, under rather general assumptions on the degree sequence of the
CM, the diameter of the CM divided by log N converges to a constant. This
result is also valid for related models, such as the Erdős-Rényi random graph,
but the proof is quite involved. Since Theorem 1.1, together with Theorem 1.2
below, proves that the diameter of the CM has a phase transition when τ ∈ (2, 3),
and the proof of Theorem 1.1 is substantially simpler than the more precise result
in previous work [Fernholz and Ramachandran 07], we decided to include this
proof (see Section 2). While Theorem 1.1 is substantially weaker, the fact that a
positive constant times log N appears is most interesting, as we will discuss now
in more detail.

Indeed, the result in Theorem 1.1 is most interesting in the case when τ ∈
(2, 3). The average distance for τ ∈ (2, 3) is proportional to log log N [van der
Hofstad et al. 07, Theorem 1.2], whereas we show here that the diameter is
bounded below by a positive constant times log N when f1 + f2 > 0 and f1 < 1.
Therefore, we see that the average distance and the diameter are of a different
order of magnitude. The pairs of vertices where the distance is of the order log N

are thus scarce. The proof of Theorem 1.1 reveals that these pairs are along long
lines of vertices with degree 2 that are connected to each other. Also in the
previous proof [Fernholz and Ramachandran 07], one of the main difficulties is
the identification of the precise length of these long thin lines.

Our second main result states that when τ ∈ (2, 3), the above assumption that
f1 + f2 > 0 is necessary and sufficient for log N lower bounds on the diameter.
In Theorem 1.2 below, we assume that there exists a τ ∈ (2, 3) such that, for
some c > 0 and all x ≥ 1,

1 − F (x) ≥ cx1−τ , (1.5)

which is slightly weaker than the assumption in (1.2). We further define for
integer m ≥ 2 and a real number σ > 1,

CF = CF (σ,m) =
2

| log (τ − 2)| +
2σ

log m
. (1.6)

Then, our main upper bound on the diameter when (1.5) holds is as follows.

Theorem 1.2. (A loglog upper bound on the diameter.) Fix m ≥ 2. We assume that
P(D ≥ m+1) = 1, that E[D] = µ < ∞, and that (1.5) holds for some τ ∈ (2, 3).
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Then, for every σ > (3 − τ)−1, the diameter of the configuration model is, whp,
bounded above by CF log log N .

Summarizing, we show for τ > 2 that when vertices of degree 1 or 2 are present
then a constant times log N is, whp, a lower bound for the diameter; whereas,
for τ ∈ (2, 3), assuming that all degrees are at least 3, the diameter is, whp,
bounded from above by a constant times log log N .

1.3. Discussion and Related Work

Theorem 1.2 has a counterpart for preferential attachment models [van der Hof-
stad and Hooghiemstra 07]. In these PAMs, at each integer time t, a new vertex
with m ≥ 1 edges attached to it is added to the graph. The new edges added at
time t are then preferentially connected to older edges: i.e., conditionally on the
graph at time t − 1, which is denoted by G(t − 1), the probability that a given
edge is connected to vertex i is proportional to di(t− 1) + δ, where δ > −m is a
fixed parameter and di(t−1) is the degree of vertex i at time t−1. A substantial
literature exists (see, e.g., [Bollobás et al. 01, Cooper and Frieze 03]), proving
that the degree sequences of PAMs in rather great generality satisfy a power law
(see, e.g., the references in [Deijfen et al., to appear]). In the above setting of
linear preferential attachment, the exponent τ is equal to [Jordan 06, Deijfen et
al., to appear]

τ = 3 +
δ

m
. (1.7)

A log log t upper bound on the diameter holds for PAMs with m ≥ 2 and
−m < δ < 0, which, by (1.7), corresponds to τ ∈ (2, 3) [van der Hofstad and
Hooghiemstra 07].

Theorem 1.3. (A loglog upper bound on the diameter of the PAM.) Fix m ≥ 2 and δ ∈ (−m, 0).
Then, for every σ > 1

3−τ , and with

CG(σ) =
4

| log (τ − 2)| +
4σ

log m
,

the diameter of the preferential attachment model is, with high probability, bounded
above by CG log log t, as t → ∞.

Observe that the condition m ≥ 2 in the PAM corresponds to the condition
P(D ≥ m + 1) = 1 in the CM, where one half-edge is used to attach the vertex,
while in PAMs, vertices along a path have degree at least 3 when m ≥ 2. Also
note from the definition of CG and CF that distances in PAMs tend to be twice
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as big compared to distances in the CM. This is related to the structure of the
graphs. Indeed, in both graphs, vertices of high degree play a crucial role in
shortest paths. In the CM vertices of high degree are often directly linked to
each other, while in the PAM, they tend to be connected through a third (later)
vertex that links to both vertices of high degree.

Unfortunately, there is no log t lower bound in the PAM for δ > 0 and m ≥ 2,
or equivalently τ > 3. However, there is a (1 − ε) log t/ log log t lower bound
for the diameter when m ≥ 1 and δ ≥ 0 [van der Hofstad and Hooghiemstra
07]. When m = 1, results exist on log t asymptotics of the diameter (see, e.g.,
[Bollobás and Riordan 04b, Pittel 94]).

The results in Theorems 1.1–1.3 are consistent with the nonrigorous physics
predictions that distances in the PAM and in the CM, for similar degree se-
quences, behave similarly. It is an interesting problem, for both the CM and
PAM, to determine the exact constant C ≥ 0 such that the diameter of the
graph of N vertices divided by log log N converges in probability to C. For the
CM, results in [Fernholz and Ramachandran 07] imply that C > 0; for the PAM,
this is not known.

We now turn to related work. Many distance results for the CM are known.
For τ ∈ (1, 2), distances are bounded [Esker et al. 06]; for τ ∈ (2, 3), they
behave as log log N [Reittu and Norros 04, van der Hofstad et al. 07, Cohen and
Havlin 03]; whereas for τ > 3, the correct scaling is log N [van der Hofstad et
al. 05]. Observe that these results induce lower bounds for the diameter of the
CM, since the diameter is the supremum of the distance, where the supremum
is taken over all pairs of vertices. Similar results for models with conditionally
independent edges exist (see, e.g., [Bollobás et al. 07, Chung and Lu 02, Esker
et al., to appear, Norros and Reittu 06]). Thus, for these classes of models,
distances are quite well understood. Fernholz and Ramachandran proved that
the diameter of a sparse random graph, with specified degree sequence, has,
whp, diameter equal to c log N(1 + o(1)), for some constant c [Fernholz and
Ramachandran 07]. Note that our Theorems 1.1 and 1.2 imply that c > 0
when f1 + f2 > 0, while c = 0 when f1 + f2 = 0 and (1.5) holds for some
τ ∈ (2, 3).

There are few results on distances or diameter in PAMs. It has been proved
that in the PAM and for δ = 0, for which τ = 3, the diameter of the resulting
graph is equal to log t

log log t (1 + o(1)) [Bollobás and Riordan 04a]. Unfortunately,
the matching result for the CM has not been proved, so this does not allow us
to verify whether the models have similar distances.

This paper is organized as follows. In Section 2, we prove the lower bound on
the diameter formulated in Theorem 1.1, and in Section 3 we prove the upper
bound in Theorem 1.2.
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2. A Lower Bound on the Diameter: Proof of Theorem 1.1
We start by proving the claim when f2 > 0. The idea behind the proof is simple.
Under the conditions of the theorem, one can, whp, find a path Γ(N) in the
random graph such that this path consists exclusively of vertices with degree
2 and has length at least 2α log N . This implies that the diameter is at least
α log N , since the above path could be a cycle.

Below we define a procedure that proves the existence of such a path. Consider
the process of pairing stubs in the graph. We are free to choose the order in which
we pair the free stubs, since this order is irrelevant for the distribution of the
random graph. Hence, we are allowed to start with pairing the stubs of the
vertices of degree 2.

Let N(2) be the number of vertices of degree 2 and SN(2) = (i1, . . . , iN(2)) ∈
N

N(2) the collection of these vertices. We will pair the stubs and at the same
time define a permutation Π(N) = (i∗1, . . . , i

∗
N(2)) of SN(2), and a characteristic

χ(N) = (χ1, . . . , χN(2)) on Π(N), where χj is either 0 or 1; Π(N) and χ(N) will
be defined inductively in such a way that for any vertex i∗k ∈ Π(N), χk = 1,
if and only if vertex i∗k is connected to vertex i∗k+1. Hence, χ(N) contains a
substring of at least 2α log N 1s precisely when the random graph contains a
path Γ(N) of length at least 2α log N .

We initialize our inductive definition by i∗1 = i1. The vertex i∗1 has two stubs,
we consider the second one and pair it to an arbitrary free stub. If this free stub
belongs to another vertex j �= i∗1 in SN(2), then we choose i∗2 = j and χ1 = 1;
otherwise, we choose i∗2 = i2 and χ1 = 0. Suppose, for some 1 < k ≤ N(2),
that the sequences (i∗1, . . . , i

∗
k) and (i1, . . . , χk−1) are defined. If χk−1 = 1, then

one stub of i∗k is paired to a stub of i∗k−1, and another stub of i∗k is free; else, if
χk−1 = 0, then vertex i∗k has two free stubs. Thus, for every k ≥ 1, the vertex i∗k
has at least one free stub. We pair this stub to an arbitrary remaining free stub.
If this second stub belongs to vertex j ∈ SN(2) \ {i∗1, . . . , i∗k}, then we choose
i∗k+1 = j and χk = 1; else, we choose i∗k+1 as the first stub in SN(2) \ {i∗1, . . . , i∗k}
and χk = 0. Hence, we have defined that χk = 1 precisely when vertex i∗k is
connected to vertex i∗k+1.

We show that whp there exists a substring of 1s of length at least 2α log N in
the first half of χN , i.e., in χ 1

2
(N) = (χi∗1 , . . . , χi∗�N(2)/2�). For this purpose, we

couple the sequence χ 1
2
(N) with a sequence B 1

2
(N) = {ξk}, where ξk are i.i.d.

Bernoulli random variables taking value 1 with probability f2/(4µ), and such
that, whp, χi∗k ≥ ξk for all k ∈ {1, . . . , �N(2)/2�}. We write PN for the law of the
CM conditionally on the degrees D1, . . . , DN . Then, for any 1 ≤ k ≤ �N(2)/2�,
the PN -probability that χk = 1 is at least

2N(2) − CN(k)
LN − CN(k)

, (2.1)
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where, as before, N(2) is the total number of vertices with degree 2 and CN(k)
is one plus the total number of paired stubs after k − 1 pairings. By definition
of CN(k), for any k ≤ N(2)/2, we have

CN(k) = 2(k − 1) + 1 ≤ N(2). (2.2)

Due to the law of large numbers we also have that whp

N(2) ≥ f2N/2, LN ≤ 2µN. (2.3)

Substitution of (2.2) and (2.3) into (2.1) yields that the right side of (2.1) is at
least

N(2)
LN

≥ f2

4µ
.

Thus, whp, we can stochastically dominate all coordinates of the random se-
quence χ 1

2
(N) with an i.i.d. Bernoulli sequence B 1

2
(N) of Nf2/2 independent

trials with success probability f2/(4µ) > 0. More precisely, for two vectors x

and y, we define x � y when we have xi ≥ yi for all coordinates i. Then,

lim
N→∞

P

(
χ 1

2
(N) � B 1

2
(N)

)
= 1.

It is well known (see, e.g., [Erdős and Rényi 70]) that in i.i.d. Bernoulli sequences
the probability of existence of a run of 2α log N 1s converges to 1 whenever

2α log N ≤ �
log (Nf2/2)

| log (f2/(4µ))| ,

for some 0 < � < 1.
We conclude that whp the sequence B 1

2
(N) contains a substring of 2α log N

1s. Since whp χN � B 1
2
(N), the sequence χN also contains, whp, the same

substring of 2α log N 1s, and hence there exists a required path consisting of at
least 2α log N vertices with degree 2. Thus, whp the diameter is at least α log N ,
and we have proved Theorem 1.1 in the case that f2 > 0.

We now complete the proof of Theorem 1.1 when f2 = 0 by adapting the
above argument. When f2 = 0, and since f1 +f2 > 0, we must have that f1 > 0.
Let l∗ > 2 be the smallest integer such that fl∗ > 0. This l∗ must exist, since
f1 < 1. Denote by N∗(2) the total number of vertices of degree l∗ of which its
first l∗ − 2 stubs are connected to a vertex with degree 1. Thus, effectively, after
the first l∗ − 2 stubs have been connected to vertices with degree 1, we are left
with a structure that has two free stubs. These vertices will replace the N(2)
vertices used in the above proof. It is not hard to see that whp N∗(2) ≥ f∗

2 N/2
for some f∗

2 > 0. Then, the argument for f2 > 0 can be repeated, replacing
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N(2) by N∗(2) and f2 by f∗
2 . In more detail, for any 1 ≤ k ≤ �N∗(2)/(2l∗)�,

the PN -probability that χk = 1 is at least

2N∗(2) − C∗
N(k)

LN − C∗
N(k)

, (2.4)

where C∗
N(k) is the total number of paired stubs after k − 1 pairings of the

free stubs incident to the N∗(2) vertices. By definition of C∗
N(k), for any k ≤

N∗(2)/(2l∗), we have

CN(k) = 2l∗(k − 1) + 1 ≤ N∗(2). (2.5)

Substitution of (2.5), N∗(2) ≥ f∗
2 N/2, and the bound on LN in (2.3) into (2.4)

gives us that the right side of (2.4) is at least

N∗(2)
LN

≥ f∗
2

4µ
.

Now the proof of Theorem 1.1 in the case where f2 = 0 and f1 ∈ (0, 1) can be
completed as above. We omit further details.

3. A loglog Upper Bound on the Diameter for τ ∈ (2,3)

In this section, we investigate the diameter of the CM when P(D ≥ m+1) = 1, for
some integer m ≥ 2. We assume (1.5) for some τ ∈ (2, 3) and that E[D] = µ < ∞,
so that LN ≤ 2µN whp. We will show that under these assumptions CF log log N

is an upper bound on the diameter of the CM, where CF is defined in (1.6).
The proof is divided into two key steps. In the first, in Proposition 3.1, we

give a bound on the diameter of the core of the CM consisting of all vertices
with degree at least a certain power of log N . This argument is very close in
spirit to one in previous work [Reittu and Norros 04], the only difference being
that we have simplified the argument slightly. After this, in Proposition 3.4,
we derive a bound on the distance between vertices with small degree and the
core. We note that Proposition 3.1 only relies on the assumption in (1.5), while
Proposition 3.4 only relies on the fact that P(D ≥ m + 1) = 1, for some m ≥ 2.
The proof of Proposition 3.1 can easily be adapted to a setting where the degrees
are fixed, by formulating the appropriate assumptions on the number of vertices
with degree at least x for a sufficient range of x. This assumption would replace
(1.5). Proposition 3.4 can easily be adapted to a setting where there are no
vertices of degree smaller than or equal to m. This assumption would replace
the assumption P(D ≥ m + 1) = 1, for some m ≥ 2. We refrain from stating
these extensions of our results and start by investigating the core of the CM.
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We take σ > 1
3−τ and define the core of the CM, CoreN , to be

CoreN = {i : Di ≥ (log N)σ}, (3.1)

i.e., the set of vertices with degree at least (log N)σ. Also, for a subset A ⊆
{1, . . . , N}, we define the diameter of A to be equal to the maximal shortest
path distance between any pair of vertices of A. Note, in particular, that if
there are pairs of vertices in A that are not connected, then the diameter of A

is infinite. In the following proposition, the diameter of the core is bounded.
This proposition appeared earlier [Reittu and Norros 04, Proposition 3.13]. We
included the proof for completeness.

Proposition 3.1. (Diameter of the core.) For every σ > 1
3−τ , the diameter of CoreN is,

whp, bounded above by
2 log log N

| log (τ − 2)| (1 + o(1)). (3.2)

Proof. We note that (1.5) implies that whp the largest degree D(N) = max1≤i≤N Di

satisfies
D(N) ≥ u1, where u1 = N

1
τ−1 (log N)−1, (3.3)

because, when N → ∞,

P(D(N) > u1) = 1 − P(D(N) ≤ u1) = 1 − (F (u1))N ≥ 1 − (1 − cu1−τ
1 )N

= 1 −
(

1 − c
(log N)τ−1

N

)N

∼ 1 − exp(−c(log N)τ−1) → 1. (3.4)

Define
N (1) = {i : Di ≥ u1} (3.5)

so that, whp, N (1) �= ∅. For some constant C > 0, which will be specified later,
and k ≥ 2, we define recursively

uk = C log N
(
uk−1

)τ−2
, and N (k) = {i : Di ≥ uk}. (3.6)

We start by identifying uk.

Lemma 3.2. (Identification of uk.) For each k ∈ N,

uk = Cak(log N)bkN ck , (3.7)

with

ck =
(τ − 2)k−1

τ − 1
, bk =

1
3 − τ

− 4 − τ

3 − τ
(τ − 2)k−1, ak =

1 − (τ − 2)k−1

3 − τ
.

(3.8)
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The proof of Lemma 3.2 is left to the reader. The key step in the proof of
Proposition 3.1 is the following lemma.

Lemma 3.3. (Connectivity between N (k−1) and N (k).) Fix k ≥ 2 and C > 4µ/c (see (1.3)
and (1.5), respectively). Then, the probability that there exists an i ∈ N (k) that
is not directly connected to N (k−1) is o(N−γ), for some γ > 0 independent of k.

Proof. We note that, by definition,∑
i∈N (k−1)

Di ≥ uk−1|N (k−1)|. (3.9)

Also,
|N (k−1)| ∼ Bin

(
N, 1 − F (uk−1)

)
, (3.10)

and we have that, by (1.5),

N [1 − F (uk−1)] ≥ cN(uk−1)1−τ , (3.11)

which, by Lemma 3.2, grows as a positive power of N , since ck ≤ c2 = τ−2
τ−1 <

1
τ−1 . We use a concentration of probability result

P(|X − E[X]| > t) ≤ 2e−
t2

2(E[X]+t/3) , (3.12)

which holds for binomial random variables [Janson 02] and gives that the proba-
bility that |N (k−1)| is bounded below by N [1−F (uk−1)]/2 is exponentially small
in N . As a result, we obtain that for every k and whp∑

i∈N (k)

Di ≥ c

2
N(uk)2−τ . (3.13)

We note (see, e.g., [van der Hofstad et al. 07, (4.34)]) that for any two sets of
vertices A, B, we have that

PN(A not directly connected to B) ≤ e
−DADB

LN , (3.14)

where, for any A ⊆ {1, . . . , N}, we write

DA =
∑
i∈A

Di. (3.15)

In the event where |N (k−1)| ≥ N [1− F (uk−1)]/2 and where LN ≤ 2µN , we then
obtain by (3.14) and Boole’s inequality that the PN -probability that there exists
an i ∈ N (k) such that i is not directly connected to N (k−1) is bounded by

N exp
{
−ukNuk−1[1 − F (uk−1)]

2LN

}
≤ N exp

{
−cuk(uk−1)2−τ

4µ

}
= N1− cC

4µ ,

(3.16)
where we have used (3.6). Taking C > 4µ/c proves the claim.
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We now complete the proof of Proposition 3.1. Fix

k∗ =
⌈ log log N

| log (τ − 2)|
⌉
. (3.17)

As a result of Lemma 3.3 and since k∗N−γ = o(1), we have that every vertex
in N (k−1) is directly connected to a vertex in N (k) for all k ≤ k∗. Further, all
vertices in N (1) are directly connected, since u2

1/N = N
2

τ−1−1 log N → ∞ as a
positive power of N for τ ∈ (2, 3) (compare with the exponent in (3.14)). We
conclude that, whp, the diameter of N (k∗) is at most 2k∗ + 1.

Therefore, we are done when we can show that

CoreN ⊆ N (k∗). (3.18)

For this, we note that
N (k∗) = {i : Di ≥ uk∗}, (3.19)

so that it suffices to prove that uk∗ ≤ (log N)σ, for any σ > 1
3−τ . According to

Lemma 3.2,
uk∗ = Cak∗ (log N)bk∗ N ck∗ . (3.20)

It is not hard to see that N ck∗ = O(1), (log N)bk∗ = (log N)
1

3−τ +o(1), and
Cak∗ = O(1), so that

uk∗ = (log N)
1

3−τ +o(1). (3.21)

By picking N sufficiently large, we can make 1
3−τ + o(1) ≤ σ. This completes

the proof of Proposition 3.1.

For an integer m ≥ 2, we define

C(m) = σ/ log m. (3.22)

Proposition 3.4. (Maximal distance between periphery and core.) Assume that P(D ≥ m+1) = 1,
for some m ≥ 2. Then, for every σ > (3 − τ)−1, the maximal distance between
any vertex and the core is, whp, bounded from above by C(m) log log N .

Proof. We start from a vertex i and will show that the probability that the distance
between i and CoreN is at least C(m) log log N is o(N−1). This proves the claim.
For this, we explore the neighborhood of i as follows. From i, we connect the
first m + 1 stubs (ignoring the other ones). Then, successively, we connect the
first m stubs from the closest vertex to i that we have connected to and have not
yet explored. We call the arising process, when we have explored up to distance
k from the initial vertex i, the k-exploration tree.
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When we never connect two stubs between vertices we have connected to,
then the number of vertices we can reach in k steps is precisely equal to (m +
1)mk−1. We call an event where a stub on the k-exploration tree connects to
a stub incident to a vertex in the k-exploration tree a collision. The number
of collisions in the k-exploration tree is the number of cycles or self-loops in it.
When k increases, the probability of a collision increases. However, for k of order
log log N , the probability that more than two collisions occur in the k-exploration
tree is small, as we will prove now.

Lemma 3.5. (Not more than one collision.) Take k = �C(m) log log N�. Then, the PN-
probability that there exists a vertex of which the k-exploration tree has at least
two collisions, before hitting the core CoreN , is bounded by (log N)dL−2

N , for
d = 4C(m) log (m + 1) + 2σ.

Proof. For any stub in the k-exploration tree, the probability that it will create a
collision before hitting the core is bounded above by (m + 1)mk−1(log N)σL−1

N .
The probability that two stubs will both create a collision is, by similar argu-
ments, bounded above by

[
(m + 1)mk−1(log N)σL−1

N

]2
. The total number of

possible pairs of stubs in the k-exploration tree is bounded by(
(m + 1)(1 + m + . . . + mk−1)

)2

≤
(
(m + 1)mk

)2

,

so that, by Boole’s inequality, the probability that the k-exploration tree has at
least two collisions is bounded by(

(m + 1)mk
)4

(log N)2σL−2
N . (3.23)

When k = �C(m) log log N�, we have that
(
(m + 1)mk

)4

(log N)2σ ≤ (log N)d,
where d is defined in the statement of the lemma.

Finally, we show that, for k = �C(m) log log N�, the k-exploration tree will whp
connect to the core.

Lemma 3.6. (Connecting exploration tree to core.) Take k = �C(m) log log N�. Then, the
probability that there exists an i such that the distance of i to the core is at least
k is o(N−1).

Proof. Since µ < ∞ we have that LN/N ∼ µ. Then, by Lemma 3.5, the proba-
bility that there exists a vertex for which the k-exploration tree has at least two
collisions before hitting the core is o(N−1). When the k-exploration tree from a
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vertex i does not have two collisions, then there are at least (m − 1)mk−1 stubs
in the kth layer that have not yet been connected. When k = �C(m) log log N�
this number is at least equal to (log N)C(m) log m+o(1). Furthermore, the expected
number of stubs incident to the CoreN is at least N(log N)σ

P(D1 ≥ (log N)σ)
so that whp the number of stubs incident to CoreN is at least (compare (1.5))

1
2
N(log N)σ

P(D1 ≥ (log N)σ) ≥ c

2
N(log N)

2−τ
3−τ . (3.24)

By (3.14), the probability that we connect none of the stubs in the kth layer of
the k-exploration tree to one of the stubs incident to CoreN is bounded by

exp

{
−cN(log N)

2−τ
3−τ +C(m) log m

2LN

}
≤ exp

{
− c

4µ
(log N)

2−τ
3−τ +σ

}
= o(N−1),

(3.25)
because whp LN/N ≤ 2µ, and since 2−τ

3−τ + σ > 1.

Proof of Theorem 1.2. Take any two vertices, say A and B. Then, Proposition
3.4 shows that, whp, the distance from node A to the core is bounded by
C(m) log log N , and similarly for node B. According to Proposition 3.1, any two
nodes within the core are within mutual distance of size 2k∗(1 + o(1)), where k∗

is given in (3.2). This shows that the diameter of the graph is, whp, bounded
above by

2C(m) log log N +
2 log log N

| log (τ − 2)| = CF log log N,

where the additional contribution of o(k∗) is compensated by the fact that σ >

(3 − τ)−1.
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gree Sequence of a Scale-Free Random Graph Process.” Random Structures and
Algorithms 18:3 (2001), 279–290.

[Bollobás et al. 07] B. Bollobás, S. Janson, and O. Riordan. “The Phase Transition in
Inhomogeneous Random Graphs.” Random Structures and Algorithms 31 (2007),
3-122.

[Britton et al. 06] T. Britton, M. Deijfen, and A. Martin-Löf. “Generating Simple
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