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Generic Damping Functions
for Propagating Importance
in Link-Based Ranking
Ricardo Baeza-Yates, Paolo Boldi, and Carlos Castillo

Abstract. This paper introduces a family of link-based ranking algorithms that
propagate page importance through links. The algorithms include a damping function
that decreases with distance, thus a direct link implies greater endorsement than a link
via a longer path. PageRank is the most widely known ranking function of this family.

The main objective of this paper is to determine whether this family of ranking
techniques is of some interest per se and how different choices for the damping func-
tion affect rank quality and convergence speed. Even though our results suggest that
PageRank can be approximated with other, more simple forms of rankings that may be
computed more efficiently, our focus is more speculative in nature, given that it aims
at separating the kernel of PageRank, that is, link-based importance propagation, from
the way propagation decays over paths.

We focus on three damping functions that have, respectively, linear, exponential,
and hyperbolic decay on the lengths of the paths. The exponential decay corresponds
to PageRank, and the other functions are new. The work we carry includes algorithms,
analysis, comparisons, and experiments that study their behavior under different pa-
rameters in real web graph data.

Amongst other results, we show how to calculate a linear approximation that in-
duces a page ordering that is almost identical to PageRank’s using a fixed number of
iterations. Comparisons were made using Kendall’s τ on large domain datasets.

1. Introduction

While traditional information retrieval (IR) methods are used by web search
engines to some extent, the web is much more extensive, more dynamic, and
less coherent than traditional text collections [Arasu et al. 01]. The web is an
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open medium in which everyone can publish information; this has been key to its
success but, at the same time, acts as a major source of problems for information
retrieval researchers.

Fortunately, the web provides an extra source of information that is not present
in traditional text repositories: there are hyperlinks among pages, and these
hyperlinks convey information—they are not placed at random. For instance, a
pair of pages linked together would be much more likely to belong to the same
topic than two pages taken at random [Davison 00].

1.1. Link Analysis

In the web, we can identify three levels of link analysis:

• The microscopic level of link analysis is related to the statistical properties
of links of individual nodes.

• The macroscopic level of link analysis is related to the structure of the web
at large.

• The mesoscopic level of link analysis is related to the properties of areas
or regions of the web.

The macroscopic level of description of the web started with a seminal paper
by Broder et al., in which a global structure was described based on the presence
of a large strongly connected component [Broder et al. 00]. This is called the
bow-tie structure of the web, presented in Figure 1. Further refinements of this
model identified areas inside the CORE component [Donato et al. 05, Baeza-
Yates et al. 04].

A related macroscopic description is the Jellyfish structure (described in [Tauro
et al. 01]) for autonomous systems in the Internet topology. According to this

Figure 1. Schematic depiction of the macroscopic “bow-tie” structure of the web
[Broder et al. 00].
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Figure 2. Schematic depiction of the macroscopic “jellyfish” structure of the
Internet [Tauro et al. 01].

view, depicted in Figure 2, we can identify a core portion, surrounded by areas
of decreasing link density and with many nodes forming long, loosely-connected
chains or tentacles.

The microscopic level of description on the web has been done by several
authors (e.g., [Huberman 01, Barabási 02]) and is based on the observation that
the distribution of degrees on the web is very skewed, not showing the typical
Poisson distribution observed in classical random graphs [Erdős and Rényi 60].
In scale-free networks, such as the web, the distribution of the number of links
of a page p follows a power law:

Pr(page p has k links) ∝ k−θ. (1.1)

Scale-free networks have a few highly-connected links that act as “hubs” con-
necting many other nodes to the network. The connectivity of scale-free networks
is resistant to random removal of edges [Callaway et al. 00] and can be explained
in part by a “preferential attachment” process [Barabási and Albert 99], also
called a rich-get-richer phenomenon or Yule process.

Mesoscopic link analysis is related to the properties of the neighborhood of a
node, the context in which most of the link-based ranking functions work. A way
of describing the neighborhood of a node is known as the “hop-plot”: a plot of
the number of different neighbors at different distances, such as the one depicted
in Figure 3.

The class of functional rankings that we describe in this paper, including
PageRank, belong to this level of analysis, given that most of the ranking of a
node comes from its short-range connections. This will be clearer later on in this
article, in particular in Section 4.



�

�

“imvol3” — 2008/3/31 — 17:33 — page 448 — #4
�

�

�

�

�

�

448 Internet Mathematics

Figure 3. Schematic depiction of the “hop-plot”: a plot of the number of neighbors
at different distances.

The mesoscopic level is also the level of description at which local structures,
such as communities or clusters of nodes, can be observed.

Figure 4 shows a visual summary of the levels of link-based analysis that we
have described.

Macroscopic    Mesoscopic             Microscopic

Figure 4. Levels of link-based analysis.

1.2. Ranking through Links

The fact that there might be thousands, or even millions, of pages available for
any given topic makes the problem of ranking these pages into a short list one the
main problems of web IR, thus requiring a method of estimating relevance. Links
can be used for this task, if we accept that links frequently imply an endorsement
or “vote” [Lifantsev 00], that goes from the author of the source document to the
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author of the target document. The efficiency of link-based ranking algorithms
indicates that this hypothesis is true in general, but of course, links are placed
on webpages for a wide variety of reasons [Haas and Grams 98], and not all those
reasons can be interpreted as a positive recommendation.

One of the measures of importance of a scientific paper is the number of
citations that the article receives. Following this idea, several authors proposed
to use link counts for ranking webpages [Marchiori 97, Carrière and Kazman
97, Joo and Myaeng 98, Li 98]. However, it quickly become clear that just
counting the links was not a very reliable measure of authority (it was not in
scientific citations either), because it is very easy to manipulate in the context
of the web, where creating a page costs almost nothing.

An extensive survey of link ranking methods is presented in [Borodin et al. 05].
We describe here three of the main algorithms: PageRank, HITS, and Salsa.

The PageRank technique, introduced by Page et al., actually tries to mend this
problem by looking at the importance of a page in a recursive manner: “a page
with high PageRank is a page referenced by many pages with high PageRank”
[Page et al. 98]. The algorithm not only counts the direct links to a page but
also includes indirect links. The same is valid for scientific and bibliographic
citations in general.

PageRank is a simple, robust, and reliable way to measure the importance
of webpages, has a clear interpretation as a Markovian process, and can be
computed in a very efficient way. For these reasons, most of today’s commercial
search engines are believed to use it as a part of their ranking function.

The HITS algorithm [Kleinberg 99] is another method for ranking webpages.
It starts by building a set of pages related to a topic by querying a search engine,
and then it expands this set by using incoming and outgoing links, by crawling
the web or by querying a search engine again. Next, two scores per page are
computed: a hub score and an authority score. A page with a high hub score is
a page that links to many pages with a high authority score. A page with a high
authority score is a page linked by many pages with high hub score. Despite
the circularity of this definition, both hub and authority scores can be computed
efficiently by an iterative computation.

In a variation of the HITS algorithm [Bharat and Henzinger 98], the edges are
weighted considering the websites to which the source and target nodes of the
edges belong. If both edges are in the same site, the weight is zero, and if both
edges are in different sites, then the weight of the edge is inversely proportional
to the number of inter-site links between them. This makes the algorithm more
resistent to manipulation and provides better ranking in practice.

SALSA [Lempel and Moran 01] is related to the idea of hubs and authorities.
In SALSA, each page generates two nodes: a hub node and an authority node.
All the out-links of the page are attached to the hub node, and all the in-links
of the page are attached to the authority node. Next, two random walks are
carried, one starting from the “hubs side” and one starting from the “authorities



�

�

“imvol3” — 2008/3/31 — 17:33 — page 450 — #6
�

�

�

�

�

�

450 Internet Mathematics

side.” The probabilities of each state (node) in the stationary states in these two
walks are interpreted as two scores for each page.

Given the large size of the graphs arising in web information retrieval appli-
cations, scalability is an issue. Most algorithms for large web graphs are limited
to a semi-streaming model [Haveliwala 99]. In this model in the case of graph
algorithms, the graph is stored on secondary memory as an adjacency list (occu-
pying space in the order of the number of edges), and there is an amount of main
memory available that is in the order of the number of nodes. The computation
takes place by making a limited number of sequential scans of the graph.

1.3. Our Contribution

In this paper we describe general ranking functions that depend on incoming
paths of varying length, and we show that PageRank belongs to this class of
functions. We also provide stream algorithms for computing these ranking func-
tions that use memory in the order of the number of nodes and disk space in the
order of the number of edges.

Next, we question how these functions relate to each other (i.e., if they pro-
duce similar rankings), and finally we test one of the ranking functions for an
information retrieval task (ranking a set of pages).

The rest of this paper is organized as follows: Section 2 describes the datasets
and experimental framework that we use in the rest of the paper. Section 3 intro-
duces the notion of functional ranking, and Section 4 describes several damping
functions. Section 5 compares the ranking functions analytically and experimen-
tally. Finally, Section 6 tests the precision of one of the damping functions, and
Section 7 presents our conclusions.

This paper extends the results presented in preliminary form in [Baeza-Yates
et al. 06].

2. Datasets and Experimental Framework

In the following sections we experiment with several web datasets. We use several
snapshots from the web obtained by the Laboratory of Web Algorithmics, Di-
partimento di Scienze dell’Informazione, Università degli studi di Milano. These
data sets are available at http://law.dsi.unimi.it/. In particular, we used the
uk-2002, it-2004, and eu-int-2005 web graphs. They correspond to a 18-
million-page crawl of the .uk domain in 2002, a 40-million-page crawl of the
.it domain in 2004, and a 860,000-page crawl from the .eu.int domain in
2005.

In addition to real Web data, we also considered a synthetic scale-free net-
work produced according to the evolving model described by [Kumar et al. 00]
(a combination of preferential attachment and random links) with parameters
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suggested by Pandurangan et al. [Pandurangan et al. 02]. In the generated
graph the exponents for the power law in the center part of the distributions
are −2.1 for in-degree and PageRank, and −2.7 for out-degree. We generated a
100,000-node graph without disconnected nodes.

To compare ranking orders among different ranking functions, we used
Kendall’s τ [Kendall and Gibbons 90]: this is one of the most widely used and
intuitive nonparametric correlation indices, which has recently received much
attention within the web community for its possible applications to rank aggre-
gation [Fagin et al. 03b, Fagin et al. 03a, Dwork et al. 01] and for determining
the convergence speed in the computation of PageRank [Kamvar et al. 03b].
Kendall’s τ is usually defined as the normalized difference between the number
of concordances (i.e., pairs on which the two orders agree) and the number of
discordances (i.e., pairs on which the two orders disagree). There are some vari-
ants of this measure, which differ on the way ties are treated. Kendall’s τ is
always in the range [−1, 1]: τ = 1 happens if the two total orders induced by
the ranks are the same, whereas τ = −1 happens when the two total orders are
opposite of each other; τ = 0 can be interpreted as lack of correlation.

3. Propagating Rank through Links

In this section, we introduce the notion of functional ranking, a general family
of ranking functions that includes PageRank. To describe PageRank formally,
we consider a web graph of N pages. Let AN×N be the adjacency matrix in this
graph, with ai,j = 1 if and only if there is a link from page i to page j. This
link matrix is hardly ever used as it is, mainly because it is not normalized and
it has “dangling nodes.”

3.1. Normalization

In the web, creating an out-link is free, so there is an incentive for webpage
authors to create pages with many out-links; this is the reason why a metaphor
of “voting” is enforced [Lifantsev 00] in which each page has only one “vote”
that has to be split among its linked pages. This is typically done in link-based
ranking by normalizing A row-wise: the normalization process means that every
webpage can only decide how to divide its own score among the pages to which it
leads, but it cannot distribute more score than the score it has received. Another
way to look at normalization is that the matrix is turned into the transition
matrix of a stochastic process.

The normalization does not need to give each out-link the same value, due
to the evidence that web links have different purposes such as navigating in a
multi-page set, expanding the contents of the current page, pointing to another
resource, etc. [Haas and Grams 98]. Also, links within the same site can be
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considered self-links and as such do not confer as much authority as a link be-
tween different sites; indeed, there are ranking methods like BHITS [Bharat and
Henzinger 98] that treat them differently. Other characteristics of links, such
as the exploration level at which they appear in websites [Liu and Ma 05], or if
they are at the beginning or the bottom of individual pages, or inside a certain
HTML element, can also be used for non-uniform normalization [Baeza-Yates
and Davis 04].

To simplify our treatment, we will assume uniform normalization, so if a page
has d out-links, each of those links has a weight of 1/d, but the results of this
paper can be applied to other forms of normalization.

3.2. Dangling Nodes

Special attention should be paid to the possible presence of nodes with no out-
going arcs (known as “sinks” in graph theory): in fact, dangling nodes fail to
produce a row-stochastic matrix, because the rows of dangling nodes are filled
with zeroes. Dangling nodes can be dealt with by adding an extra node that is
linked to and from all other nodes or by introducing new arcs from each dan-
gling node to every node in the graph [Eiron et al. 04]. In our analysis, we shall
assume that all dangling nodes have been eliminated already in some way, so
that we do not have to worry about their presence. All the algorithms we will
present can be modified so that dangling nodes can be dealt with explicitly and
with virtually no additional cost.

Let P be the row-normalized link matrix of the graph with N nodes. PageRank
r(α) is defined as the stationary distribution of the Markov chain with state
transitions given by the matrix

αP + (1− α)1T v,

where α ∈ [0, 1) is a parameter called damping factor (sometimes also called
dampening factor) and v is a fixed preference vector that may represent the
interests of a particular user or another ranking vector that is used for weighting
pages. Note that the above matrix is ergodic (at least, if every entry of v is
strictly positive), so it has exactly one stationary distribution. Even though
most of our results can be easily restated with a non-uniform preference vector
v, for the sake of clarity we shall only consider the uniform preference 1/N in
the rest of the paper.

As previously observed, the PageRank vector r(α) can be written as

r(α) = (1− α)
∞∑

t=0

αt 1
N

1Pt

or in matrix form

r(α) = (1− α)
1
N

1(I− αP)−1, ||αP|| < 1
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[Fogaras 03, Boldi et al. 05]. There is, in fact, an equivalent, very intriguing way
of rewriting this formula [Newman et al. 01] that leads to a conclusion similar to
those of Brinkmeier [Brinkmeier 06]: given a path, that is, a sequence of edges
in the graph p = 〈x1, x2, . . . , xk〉, such that node xi is connected to node xi+1,
we define its branching contribution as follows:

branching(p) =
1

d1d2 · · · dk−1
,

where dj is the out-degree, this is, the number of outgoing arcs, of node xj .
Then, the ranking of node i according to PageRank is

ri(α) =
∑

p∈Path(−,i)

(1 − α)α|p|

N
branching(p),

where Path(−, i) is the set of all paths into node i and |p| is the length of path p;
this is because (Pt)ij contains the sum of the branching contributions of all paths
of length t from i to j, as one can easily show by induction on t (a path of length
0 and branching 1 is also included in the summation). This way of expressing
the PageRank of a node is interesting, because it highlights the fact that the
rank of a node is essentially obtained as a weighted sum of contributions coming
from every path entering into the node, with weights that decay exponentially
in the length of the path.

A natural generalization of this idea consists in taking into consideration a
ranking R of the general form:

R =
∞∑

t=0

damping(t)
1
N

1 ·Pt

or, equivalently,

Ri =
∑

p∈Path(−,i)

damping(|p|) 1
N

branching(p),

where the damping function is a suitable choice of weights.
We call this form of ranking a functional ranking, as it is parametrized by a

damping function. This generalizes Lifantsev’s model in which the damping fac-
tor is a matrix of voting trust that is fixed during the computation [Lifantsev 00],
whereas in our case this explicitly depends on the iterations. Our damping func-
tion could be even more general by using D(t), a damping matrix instead of
damping(t) 1

N 1; in this paper we analyze only the latter form. Fogaras proposed
using decreasing link weights depending on path lengths in the reverse link graph
and used exponentially decreasing weights as in PageRank for finding good web
browsing “starting points” in the web graph [Fogaras 03]. Another, yet unex-
plored, possible direction would be to consider damping functions that depend
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on other properties of the paths (e.g., whether the path passes through some
node out of a certain set) rather than on their length.

As we have seen, generic PageRank is a functional ranking where the damping
function

damping(t) = (1− α)αt

decays exponentially fast (something similar was first considered in citation anal-
ysis back in 1953! [Katz 53]).

3.3. Characteristic Path Lengths

In scale-free networks, the distances between pairs of nodes follow a Gaussian
distribution [Albert et al. 99]. Analytic estimations for the average distance of
a graph of scale-free network of n nodes include the following:

• O(log(n)) [Watts and Strogatz 98];

• O(log(n)/ log(np)) in sparse graphs with p links [Chung and Lu 01];

• 1 + log(n/z1)/ log(z2/z1) where z1 is the average in-degree, and z2 is the
average number of nodes at distance 2 [Newman et al. 01]; and

• O(log(n)/ log(log(n))) [Bollobás and Riordan 04].

The above results apply to different static scale-free networks, not to the evo-
lution of a particular scale-free network over time. Empirical observations in
several different domains demonstrate that given a specific graph, its diame-
ter may shrink over time, even if its number of nodes n is increasing [Leskovec
et al. 05].

In the static graphs we have (.eu.int, .uk, and .it), we did the following
experiment: starting from a node picked at random, we followed the links back-
wards and counted the number of nodes at different distances. Figure 5 plots the
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Figure 5. Average distances versus number of nodes in three web graphs.
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Figure 6. Distribution of the average number of nodes at a certain distance from
a given node, in three web samples.

average distances found, which appear to be related (sub)logarithmically with
the size of the graph. Figure 6 shows the distribution obtained in these samples.
For this experiment, we are not counting the pages without in-links.

The act of linking a page represents human endorsement and should not be
affected by the size of the graph. Nor should the act of following a link, in terms
of a random surfer, be affected. However, an algorithm for propagating this
endorsement through links for computing a ranking function needs to account
for the typical distances involved. This requirement is typical in a situation where
local properties have a global impact: for example, the addition of a single arc
could drastically reduce the diameter of a graph.

In most cases, researchers have used exponential damping with base 0.85 or
0.90 in graphs that are much smaller than the full web (concept graphs, social
networks, email graphs, etc.), meaning that a potentially much larger fraction
of the nodes contributed towards link ranking. We consider that, in a smaller
graph, the damping function should decay faster.

If graphs of different sizes show different path lengths, what is the effect of this
in the ranking calculation? Let’s suppose that for a graph with N1 nodes it is
found, by experimental or analytic means, that a good parameter for PageRank
is α∗

1. Now, we would like to have a good parameter α∗
2 for a graph with the

same properties, except that the size of the new graph is N2 < N1.
One possible approach, remaining consistent with what we have done so far,

is to view the sum of the damping functions up to the average path lengths of
the graphs (L1, L2) as having to be similar in order for both rankings to behave
in a similar way. If we take this approach, the solution is

L1∑
t=0

(1− α)αt =
L2∑
t=0

(1− α)αt,

1− (α∗
1)

L1+1 = 1− (α∗
2)

L2+1,
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α∗
2 = (α∗

1)
L1+1
L2+1 ,

α∗
2 ≈ (α∗

1)
log(N1)
log(N2) .

An example that can be put into practice is the following: let’s consider a web
graph with N1 = 11.5×109 pages (the size of the full web estimated by [Gulli and
Signorini 05]) and another graph with only N2 = 50× 106 pages (the size of the
web of a large country); the second graph is roughly three orders of magnitude
smaller.

If it is shown empirically that α∗
1 = 0.85 is a good value for the PageRank

parameter for the whole web, then α∗
2 = 0.81 should have a similar behavior in

the 50-million-page set, which is natural as the path lengths are shorter. If the
subset of webpages were even smaller, for instance, N2 = 106 pages (the size
of the web of a large organization), then α∗

2 = 0.76, and for smaller graphs of
N2 = 105 nodes, α∗

2 = 0.72. We recommend using these values for graphs that
are not comparable in size to the full web graph.

4. Damping Functions

First, we show which class of damping functions generates well-defined functional
rankings. For every pair of nodes i and j, and for every length t [Brinkmeier 06,
Corollary 2.4], ∑

p∈Path(i,j),|p|=t

branching(p) ≤ 1.

A more general property holds:

Theorem 4.1. For every node i and every length t,∑
p∈Path(i,−),|p|=t

branching(p) = 1.

Proof. We proceed by induction on t. For t = 0, there is only one path from i of
length 0, and its branching is 1. For the inductive step the above expression can
be rewritten by observing that, if i has out-degree di, every path from i of length
t + 1 is the concatenation of i with a path of length t from an out-neighbor of i:∑

p∈Path(i,−),|p|=t+1

branching(p) =
∑

j:i→j

1
di

∑
p∈Path(j,−),|p|=t

branching(p)

=
∑

j:i→j

1
di

= 1.
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As a consequence, to guarantee that the functional ranking is well-defined and
normalized (i.e., that rank values sum to 1), we need

N∑
i=1

∑
p∈Path(−,i)

damping(|p|) 1
N

branching(p) = 1;

that is,
∞∑

t=0

damping(t)
1
N

∑
p∈Path(−,−),|p|=t

branching(p) = 1.

Using Theorem 4.1,
∑

p∈Path(−,−),|p|=t branching(p) = N , so the latter equality
is equivalent to

∞∑
t=0

damping(t) = 1.

Hence, every choice of the damping function such that the sum of dampings is
1 yields a well-defined normalized functional ranking. However, not all choices
are equivalent, so we have to find out which functions generate better rankings.
Since a direct link should be more valuable as a source of evidence than a distant
link, we focus on damping functions that are decreasing on t, the length of the
paths. We also focus on normalized ranking functions, as they are easier to
combine with other signals to produce a combined ranking for an object.

For calculating functional rankings, we use the general algorithm shown in
Figure 7. Informally, the general process is to initialize a set of vectors of size
proportional to the number of nodes and then perform passes over the graph until
a stop condition is met. At each pass, an accumulator is being increased for each
node. The next sections provide details on the initialization, stop condition, and
iteration steps for each calculation.

4.1. Linear Damping

Let’s start by considering a simple damping function such as

damping(t) =

{
2(L−t)
L(L+1) , t < L

0, t ≥ L;

that is, a damping function that decreases linearly with distance and that reaches
zero at distance L. The trivial case L = 1 gives a uniform ranking, and L = 2
is ranking by in-degree; as in the latter case, all paths of length ≥ 2 are not
considered.
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From the definition,

R =
∞∑

t=0

damping(t)vPt =
L∑

t=0

2(L− t)
L(L + 1)

vPt

=
2

L(L + 1)
v

L−1∑
t=0

(L− t)Pt

=
2

L(L + 1)
v(L(I−P)−P(I−PL))((I −P)2)−1 ,

provided that (I−P)2 is not singular.
An advantage of this type of ranking is that only the first few levels are

taken into consideration, so the number of iterations is fixed. The rationale
for this is that after a certain distance the information given by links can be
disregarded.

For computing this functional ranking, we can define the following sequence:

R(0) =
2

L + 1
v,

R(k+1) =
(L− k − 1)

(L− k)
RkP .

The functional ranking with linear damping is
∑L−1

k=0 R(k). For computing this
ranking, the generic algorithm shown in Figure 7 can be used, with

START : 2v[i]/(L + 1),
STOP : k = L,

DAMP(k) : (L− k)/(L− (k− 1)).

4.2. Exponential Damping: PageRank

As we already noted, PageRank can be seen as a functional ranking where the
damping function decays exponentially:

damping(t) = (1− α)αt.

Given that longer paths are of lower importance in the calculation of Page-
Rank, it could be approximated by using only a few levels of links. It has been
shown that by using only the nodes at distance 1 from a target node (equivalent
to linear damping with L = 2), PageRank values can be approximated with 30%
of average error [Chen et al. 04]. Using nodes at distance 2, the average error
drops to 20%, and at distance 3 to 10%. After that, there are no significant
improvements by adding a few more levels, and the cost (the number of nodes
to be explored) is much higher.
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Since PageRank is the principal eigenvector of the modified graph matrix, it
can be easily approximated by the iterative power method algorithm, as sug-
gested by [Page et al. 98] in their original paper; this iterative algorithm gives
good approximations (both in norm and with respect to the induced node order)
in few iterations, even though convergence speed and numerical stability decay
when α gets close to 1 [Haveliwala and Kamvar 03b, Haveliwala and Kamvar 03a].
Other methods to compute PageRank have been proposed, some of them using
techniques for the solution of systems of linear equations, some others concen-
trating on some specific features of the web as a graph that determine forms of
locality in the computation of PageRank (see, for example, [Page et al. 98, Haveli-
wala 99, Golub and Greif 04, Lee et al. 04, Kamvar et al. 03b, Kamvar et al. 03a]).

Of course, the generic algorithm shown in Figure 7 can be used, with

START : (1− α)v[i],
STOP : convergence,

DAMP(k) : α.

Require: N: number of nodes, v: preference vector
1: for i : 1 . . . N do {Initialization}
2: S[i] ← R[i] ← START
3: end for
4: for k : 1 . . . ∞ do {Iteration step}
5: if STOP then
6: break
7: end if
8: Aux ← 0
9: for i : 1 . . . N do {Follow links in the graph}

10: for all j such that there is a link from i to j do
11: Aux[j] ← Aux[j] + R[i]/out-degree(i)
12: end for
13: end for
14: for i : 1 . . . N do {Add to ranking value}
15: R[i] ← Aux[i] × DAMP(k)
16: S[i] ← S[i] + R[i]
17: end for
18: end for
19: return S

Figure 7. Template algorithm for computing a functional damping. START,
STOP, and DAMP(k) differ for each functional ranking.
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4.3. Quadratic Hyperbolic Damping: TotalRank

Recently, a ranking method called TotalRank has been proposed [Boldi 05]. The
method aims at eliminating the necessity for an arbitrary parameter by integrat-
ing PageRank over the entire range of α. If r(α) is the vector of PageRank, then
TotalRank is defined as

T =
∫ 1

0

r(α)dα .

T can be written as

∫ 1

0

r(α)dα =
1
N

∞∑
t=0

∫ 1

0

(1 − α)αt1 ·Ptdα

=
1
N

∞∑
t=0

1
(t + 1)(t + 2)

1 ·Pt,

where the first equality is obtained by applying Theorem 1.27 of [Rudin 86].
By using the definition of the logarithm of a matrix,

ln(I−P) = −
∞∑

k=1

Pk

k
,

we can write TotalRank as

T = P−1(I + (I−P−1) ln(I−P))

provided that P is not singular and P �= I.
TotalRank is a weighted sum of the scores associated with paths of varying

lengths, in which the weights are hyperbolically decreasing on the lengths of the
paths. In other words, TotalRank is a functional ranking with damping function

damping(t) =
1

(t + 1)(t + 2)
=

1
t + 1

− 1
t + 2

,

and it is well defined since
∑∞

t=0 damping(t) = 1.
It is known that the cost of calculating TotalRank is the same as the cost of

calculating PageRank via the power method [Boldi et al. 05], even though some
more iterations are required to obtain the same precision.

4.4. General Hyperbolic Damping: HyperRank

TotalRank is part of a more general family of weighting schemes for paths of
different lengths that can be approximated using

s(β) =
1

Nζ(β)

∞∑
t=0

1
(t + 1)β

1 ·Pt .
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Again, this way of ranking follows the general scheme, with damping function
chosen as

damping(t) =
1

ζ(β)(t + 1)β
.

Here, we are using Riemann’s zeta function, ζ(β) =
∑∞

t=1 t−β for normalization,
and we need β > 1 for it to converge. Note that when β = 2 we get weights
similar to those of TotalRank, in which the tth coefficient is 1/((t + 1)(t + 2))
whereas here it is 1/(ζ(2)(t + 1)2).

A meaningful choice for β should be made considering the distribution of paths
of different lengths in a scale-free graph. A large α in PageRank, or a small β in
HyperRank, means increasing the effect of longer paths in the score.

Let us define a vector sequence R(t) as follows:

R(0) =
1

Nζ(β)
,

R(k+1) =
(

k + 1
k + 2

)β

R(k)P .

It is easy to see that
∑∞

t=0 R(k) = s(β), because R(k) = 1/(N ·ζ(β)(k+1)β)1·Pk;
this observation allows us to use the generic algorithm of Figure 7 with the
following parameters:

START : v[i]/ζ(β),
STOP : convergence,

DAMP(k) : (k/(k + 1))β .

Note that convergence speed is much slower than ordinary PageRank, espe-
cially when β is close to 1, the norm of the kth summand being bound by
1/(1 + 1/k)β. Interestingly enough, though, convergence speed is reasonable if
β is sufficiently large.

4.5. An Empirical Damping

An empirical damping function would consider how much the value of an endorse-
ment decreases by following longer paths in the real web graph. This cannot be
known exactly, but we can attempt to measure it indirectly. Pages that are
linked to each other share a greater degree of similarity than pages chosen at
random [Davison 00]; evidence from topical crawlers [Srinivasan et al. 05] shows
that when doing breadth-first exploring, the topic “drifts” as the distance in-
creases. On the same line of thought, we propose to use the decrease of text
similarity as an approximation to an “empirical” damping function. It has been
shown that text similarity and link distance are anti-correlated up to 4–5 links
[Menczer 04].
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Figure 8. Link distance versus average text similarity in a sample of 18 million
pages from the .uk domain. A link distance of one means direct linking. The
text similarity appears to decrease linearly in the first few levels.

In order to assess the correlation between link distance and similarity, we
performed the following experiment: We considered a web graph corresponding
to a partial snapshot of the .uk domain with 18 million pages and sampled 200
nodes at random. For each sampled node, we followed links backwards to obtain
nodes at a minimum distance of 1, 2, 3, 4, or 5 links. Then, we sampled 12,000
pairs at each minimum distance at random and computed their similarities with
the original nodes. Similarity was measured using the normalization of TF.IDF
[Baeza-Yates and Ribeiro-Neto 99], without stemming or stop-word removal.

The resulting averages are shown in Figure 8, with standard deviation error
bars. Text similarity clearly decreases with distance, and in some applications
the empirical distribution of text similarity versus distance could be used as an
“empirical” damping function. Different measures of text similarity can yield
different distributions; for instance [Wu et al. 04] used the number of repeated
words and phrases between pages and obtained a faster decrease in similar-
ity. Our results show that in our data set a linear damping with L = 8 or
L = 9 approximates better the decrease of text similarity with distance than
an exponential damping (as suggested in [Menczer 04]). text similarity does
not seem to decrease exponentially fast, so there is no a priori reason to prefer
exponential damping (pagerank) over other functional rankings. An observa-
tion by [Menczer 04] is that for different communities, the link structure could
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be different. For instance, academic webpages might be better connected than
commercial pages, so an empirical damping function should measure first which
is the correlation of link distance to text similarity in the specific collection that
we want to rank.

5. Comparing Damping Functions

A comparison of the damping functions described in the previous section is shown
in Figure 9: of course, hyperbolic damping functions decay asymptotically more
slowly than exponential damping, but note that for short paths the latter may
dominate the former in many cases.

We can empirically observe that the ranking orders produced by different
functional rankings are different. Nevertheless, in this section, we show that the
ranking order produced by one functional ranking can be approximated with
great precision by carefully choosing the parameters. This approximation has to
be done mostly by considering the weight of the first few levels of links.

The possibility of approximating the order of one functional ranking with
another is interesting, for instance, to approximate PageRank using LinearRank
(given that the latter uses a fixed number of iterations), or by another functional
ranking in the future. In this section we also include approximations of PageRank
with TotalRank and HyperRank for completeness.
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Figure 9. Weights given by the different damping functions for values of α and β.
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5.1. Approximating PageRank with TotalRank

It has been observed experimentally that the rank correlation (Kendall’s τ) be-
tween TotalRank and PageRank is maximal when α ≈ 0.7 [Boldi 05]; the max-
imum value for τ is over 0.95, so for that specific choice of α, PageRank and
TotalRank induce almost equivalent ranking orders.

We now want to approach the same problem in an analytic fashion; to be
more exact, we aim to study the difference between TotalRank and PageRank
by calculating the difference between their respective damping functions:

dampingTotalRank(t) =
1

(t + 1) (t + 2)
,

dampingPageRank(α)(t) = (1− α) αt .

As they are normalized, both damping functions have the same summation over
the entire range of t. Our approach is to consider the summation of their differ-
ences up to a maximum length for a path. As the two functions are decreasing,
the difference in the first levels makes most of the difference in the rankings. If
� is the maximum path length in which we are interested, we aim at minimizing
this sum:

�∑
t=0

(
1

(t + 1) (t + 2)
− (1− α) αt

)
= α�+1 − 1

� + 2
.

The minimum absolute value is 0, and it is obtained when α is equal to

α∗(�) =
1

�+1
√

� + 2
= 1− log �

�
+ O

(
log2 �

�2

)
.

Figure 10 shows α∗(�) as a function of �. Recall that for the World Wide Web
graph, the average length of a path between two nodes, when a path exists,
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Figure 10. The difference of the sum of the weights for various combinations of
α and � (left), and α∗(�) for minimizing the difference of the sum of weights
between PageRank and TotalRank (right).



�

�

“imvol3” — 2008/3/31 — 17:33 — page 465 — #21
�

�

�

�

�

�

Baeza-Yates et al.: Generic Damping Functions for Propagating Importance in Link-Based Ranking 465

has been estimated in about 16 [Broder et al. 00] or 19 [Albert et al. 99], but
clearly today it is over 20. Now, in the range of path lengths between 15 and
20, the value of α∗(�) parameters that minimizes the difference between the
exponentially decaying weights of PageRank and the hyperbolically decaying
weights of TotalRank is roughly 0.85. Note that 0.85 is also the most typically
used value for the damping factor, so this merits further study.

5.2. Approximating PageRank with HyperRank

Now we want to approximate the values of the damping in

r(α) =
1− α

N

∞∑
t=0

αtPt ,

using the values in

s(β) =
1

Nζ(β)

∞∑
t=0

1
(t + 1)β

Pt.

We proceed again by considering paths up to a certain length:

�∑
t=0

(
1

ζ(β)(t + 1)β
− (1 − α)αt

)
.

The minimum can be zero, and it is attained at

α∗(�, β) = �

√√√√1− 1
ζ(β)

�∑
t=0

1
(t + 1)β

.
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Figure 11. The best α for minimizing the difference of the sum of weights between
PageRank and HyperRank, for various parameter combinations (left), and a two-
dimensional view of the same plot (right).
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The α that minimizes the difference of sumation of damping functions for differ-
ent values of β and of the maximum path lengths � is shown in Figure 11.
In the case of β = 2, for instance, for path lengths up to 10 to 20, the best α is
between 0.75 and 0.85.

5.3. Approximating PageRank with LinearRank

For approximating the damping function of PageRank with the damping function
of LinearRank, we consider the summation of the differences up to a certain path
length. If � ≤ L,

�∑
t=0

(
(1− α)αt − 2(L− t)

L(L + 1)

)
,

and if � > L,

L−1∑
t=0

(
(1− α)αt − 2(L− t)

L(L + 1)

)
+

�∑
t=L

(1− α)αt.

We will assume that � ≤ L, so the evaluation of the difference between the two
rankings is done in an area where both rankings have non-zero values. The L
that minimizes the difference for a given combination of α and � is

L∗(α, �) = � +
(2� + 1)α�+1 + 1 +

√
(1 + α�+1)2 + 4�(� + 2)α�+1

2(1− α�+1)

= � + 1 + O
(
�α(�+1)/2

)
,

and we have plotted it for different values of α and � in Figure 12.
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Figure 12. Best L for minimizing the difference of the sum of weights between
LinearRank and PageRank, for various parameter combinations (left), and a two-
dimensional view of the same plot (right).
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5.4. Experimental Comparison of Ranking Orders

In this section, we present experimental results about the similarity between the
ranking orders induced by functional rankings discussed in the previous sections.
To perform the experiments, we used data from the U.K. web graph.

Figure 13 shows how PageRank compares with HyperRank for various pairs
of α and β. In the limit α, β → 1 both rankings are equivalent, and they remain
similar in a large region of the parameter space. In this figure, we can see that
the rankings obtained with HyperRank and PageRank can be almost equivalent
(Kendall’s τ ≥ 0.95). Furthermore, the analysis shown in Section 5.2, which only
considers paths of lengths less than 5, provides a very good approximation for
the optimal combination of parameters. This means that, in fact, the difference
in the damping functions in the first few levels is crucial.

The exponents β required for giving a good approximation of PageRank are
very small when α ≥ 0.7, limiting the practical applicability of HyperRank, as
it does not converge more quickly than PageRank.

This comparison was corroborated by an analogous series of experiments where
we used another (dis)similarity measure [Fagin et al. 03b]: this measure, called
intersection metric, is essentially an averaged normalized measure of the sym-
metric difference between the two top-k sets according to two given rankings;
the intersection metric evaluates to 1 when the top lists are disjoint. To allow
comparison with Kendall’s τ , we choose to graphically represent in Figure 14
one minus the intersection metric; the choice of k is of course relevant, but the
results are uniform for sufficiently large k.

As far as LinearRank and PageRank are concerned, long paths and large α
should be considered to obtain a sufficiently similar ranking, as shown in Fig-
ure 15. In the range of α = 0.8 . . . 0.9, paths of roughly 10 to 20 links should be
considered to obtain rankings that are almost equivalent.
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Figure 13. Comparison (using Kendall’s τ ) between PageRank and HyperRank,
with various damping parameters in the U.K. web graph (left). The optimum
predicted in the analysis with � = 5 is very close to the real one (right).
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Figure 14. Comparison (using the top-k intersection metric) between PageRank
and HyperRank, with various damping parameters in the U.K. web graph, for
k = 1, 000 (left) and k = 100, 000 (right).

The predicted optimum given in Section 5.3 with � = 5 (i.e., considering only
the summation of the differences between both damping functions up to paths of
length 5) is very close to what was obtained in practice. For α = 0.8, calculating
LinearRank with L = 10 (which means the same number of iterations) gives
τ ≥ 0.98; for α = 0.9, calculating LinearRank with L = 15 also gives τ ≥ 0.98. In
both cases, the ranking order of PageRank is approximated by the ranking order
of LinearRank with very high precision. (A similar comparison was performed
using the intersection metric instead, obtaining quite similar results.)

As a final remark, observe that (as shown in Figure 16) even though Linear-
Rank is a good approximation to PageRank, stopping PageRank computation
after � iterations usually gives a better (in the sense of Kendall’s τ) approxima-
tion to real PageRank than LinearRank parametrized by �, especially for small
α, where convergence is fast. Whether this observation could be extended to the
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Figure 15. Comparison (using Kendall’s τ ) between PageRank and LinearRank
in the U.K. web graph, with various damping parameters (left). Again, the
predicted optimum with � = 5 is very close to the actual optimum (right).
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Figure 16. Comparison (using Kendall’s τ ) between PageRank stopped after
five iterations and LinearRank with � = 5 in the U.K. web graph, with various
damping parameters.

precision of both ranking functions for information retrieval tasks is a problem
that merits further experiments and investigation.

5.5. Comparison with In-Degree

In this section, we study the behavior of the ranking functions for different values
of their parameters. We are using data from the .uk web graph and a 8,500-node
synthetic graph. We first measured the variance of the values from the ranking
function, as we consider that a high variance is good in a ranking function as
the relative values differ more. We also measured the relationship between the
ranking function and in-degree for different values of the parameters in terms
of the correlation coefficient and ranking orders (Kendall’s τ). The results are
shown in Figure 17.

The variance is higher as α increases. As far as the relationship with in-degree
is concerned, for company home pages it has been observed that the logarithm
of the in-degree is correlated with PageRank [Upstill et al. 03]. Our results are
consistent with this observation. Not surprisingly, the correlations are higher
in the generative model. We observe a maximum correlation at α = 0.7 in the
synthetic graph and at α = 0.5 in the web graph. We also notice that the
correlation drops significantly as α gets larger, because a large α means that
longer paths have an effect in the calculation; note, that this phenomenon does
not significantly affect the correlation coefficient that is still very large.

A high correlation between PageRank and in-degree is bad from the point of
view of a search engine, because it makes link spam easier. In particular, as
the correlation coefficient is higher in the .uk web graph near 0.5, if we choose
α close to this value, we are helping link spammers. Note, however, that a
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Figure 17. Variance of PageRank (left), and its relationship with in-degree in
terms of the correlation coefficient (middle) and Kendall’s τ coefficient (right), for
varying values of the parameter α, in the .uk web graph (top) and the synthetic
graph (bottom).

high correlation was foreseeable because (as shown in [Chen et al. 04]), even
approximating PageRank with only one level of links gets 70% accuracy.
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Figure 18. Variance of general hyperbolic rank for some values of β (left), and
its relationship with in-degree in terms of the correlation coefficient (middle) and
Kendall’s τ coefficient (right). Experiments were performed on the .uk graph
(top) and the synthetic graph (bottom).
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The behavior of the Kendall’s τ coefficient that measures the similarity be-
tween ranking orders is the opposite of the one observed in the real graph. This
also happens for HyperRank: in Figure 18 we made the same measurements for
this functional ranking, and the results were consistent (the graph seems inverted
because a low value of β has the same effect as a high value of α: longer paths
have more importance in the calculation).

The differences in the behavior of the ranking order in the synthetic graph
might be explained by the fact that the generative model we are using does
not capture some of the properties that might be relevant for the ranking order
under a functional ranking such as the clustering coefficient. Also, the synthetic
graph is assortative (highly linked pages are mostly linked to other highly linked
pages), while the real web graph is disassortative (most of the neighbors of highly
linked pages have small in-degree).

6. Experimental Evaluation of Precision

Finally, we would like to determine if a damping function that does not decay ex-
ponentially as PageRank does still induces a ranking function that is appropriate
for information retrieval tasks.

With this aim in mind, we used the webTREC Gov2 collection.1 This col-
lection consists of about 25 million documents obtained in 2004 from a crawl
of a large subset of the .gov (U.S. government) domain. The most important
characteristic of this collection is that it includes relevance judgments for a set
of information retrieval tasks.

We picked 50 of them at random and manually created keyword queries for
this evaluation, following the policy used in the standard ad hoc TREC tasks.
We then used the Managing Gigabytes for Java (mg4j) framework to select from
the collection 1000 pages matching each query accordingly and we reordered the
query results according to the scores resulting from different link-based ranking
strategies.

At this point, we shifted our attention to the LinearRank ranking that uses lin-
ear damping to see if LinearRank with a small number of iterations can provide
a ranking that is competitive with PageRank. On this graph, the PageRank cal-
culation took 39 iterations to converge on the L1-norm of the difference between
two iterations to less than 10−6.

For the evaluation we computed the standard precision and recall measures
[Baeza-Yates and Ribeiro-Neto 99] and averaged them across all queries. Preci-
sion at result number N (also denoted as “precision at N” or simply “P@N”) is
the fraction of correct results in the first N results returned by the system; the

1Available from the University of Glasgow for research purposes. For inquiries about this
collection, see http://ir.dcs.gla.ac.uk/test collections/gov2-summary.htm.
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“correct” results in our case are taken from the quality assessments included in
this reference collection. This is shown in Figure 19(top).

Another indicator that is usually measured is recall, which is the proportion
of correct results that the system finds among the total number of correct pages.
It is customary to interpolate the precision for different recall levels, and this is
shown in Figure 19(bottom).

Of course, using link ranking improves the precision over no ranking at all, and
PageRank and LinearRank behave very similarly. For instance, if we compare the
PageRank (which requires 39 iterations) with LinearRank at distance 5 (which
requires 5 iterations only), we observe that the precision of the first element is
8% better for PageRank, of the first five elements is 17% better for PageRank,
but for the first ten elements it is 2% better for LinearRank. From that point
over, both rankings are roughly equivalent.
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based on precision at N (top) and interpolated precision (bottom).



�

�

“imvol3” — 2008/3/31 — 17:33 — page 473 — #29
�

�

�

�

�

�

Baeza-Yates et al.: Generic Damping Functions for Propagating Importance in Link-Based Ranking 473

This means that LinearRank at distance 5 can provide a level of precision
for information retrieval tasks that is quite similar to that of PageRank. This is
applicable in contexts where link-based rankings cannot be computed in advance
but a computation at query time is necessary. For instance, this occurs if we
need to analyze links over a subgraph that is generated at query time.

7. Conclusions

In this paper we have defined a broad class of link-based ranking algorithms based
on the contribution of damping factors along all the different paths reaching
a page. We introduced four particular damping decays: linear, exponential,
quadratic hyperbolic, and general hyperbolic, where exponential is equivalent to
PageRank and quadratic hyperbolic to TotalRank.

We studied the differences and similarities between these ranking algorithms,
and we found that functional rankings using different damping functions can
(if the parameters are chosen carefully) provide similar orderings. LinearRank
can be used for calculating a ranking that is as good as PageRank for IR tasks.
Also, the parameters for the damping functions depend on the characteristic
path lengths in the graph, which are known to grow sub-logarithmically on the
size of the graph.

More work needs to be done in order to find other damping functions that
compute rankings similar to PageRank but are easier and faster to compute.
We use a global ranking similarity, but another measure could be the ranking
similarity in the top 20 results of real queries. In this setting our results can
change, so future work will include this variation.

Because of their high cost, link-based ranking methods that involve iterative
calculations at query time are probably not used by large-scale search engines at
present, but the functional ranking with linear damping that we have presented
can provide a good approximation with few iterations. Moreover, the approach
that we have taken could also be applied to multivalued ranking functions such
as HITS [Kleinberg 99] and topic-sensitive PageRank [Haveliwala 02] to obtain,
for instance, a method for approximating the hubs and authority scores using
less iterations and a linear damping function.

Our approach also helps to understand how easy or difficult it is to collude
many pages to modify the ranking of a given page. Clearly, there are many
different factors: path lengths, damping function, branching degrees, and the
number of colluded pages. The graph structure of the collusion will affect those
factors, and we plan to analyze them. In particular, under the assumption that
is easier to “spam” closer links, PageRank damping is more affected by collusion
than the rest of the damping functions presented here. This idea has been further
studied by using a truncated exponential damping function for spam detection
[Becchetti et al. 06].
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We have used damping coefficients that are described by a simple function, but
we do not need this restriction. We could learn the best coefficients for an ad-hoc
damping function from a given web collection. The aim, in this case, would be
to optimize the precision in a sample of queries and their relevant answers, or to
accurately filter spam given a sample of spam pages.
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Paolo Boldi, Università degli Studi di Milano, Dipartimento di Scienze dell’ Infor-
mazion, via Comelico 39/41, 20135 Milan, Italy (boldi@dsi.unimi.it)
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