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High Degree Vertices
and Eigenvalues in the
Preferential Attachment Graph
Abraham Flaxman, Alan Frieze, and Trevor Fenner

Abstract. The preferential attachment graph is a random graph formed by adding a
new vertex at each time-step, with a single edge which points to a vertex selected at
random with probability proportional to its degree. Every m steps the most recently
added m vertices are contracted into a single vertex, so at time t there are roughly t/m
vertices and exactly t edges. This process yields a graph which has been proposed as
a simple model of the World Wide Web [Barabási and Albert 99]. For any constant
k, let ∆1 ≥ ∆2 ≥ · · · ≥ ∆k be the degrees of the k highest degree vertices. We show

that at time t, for any function f with f(t) → ∞ as t → ∞, t1/2

f(t)
≤ ∆1 ≤ t1/2f(t), and

for i = 2, . . . , k, t1/2

f(t)
≤ ∆i ≤ ∆i−1 − t1/2

f(t)
, with high probability (whp). We use this

to show that at time t the largest k eigenvalues of the adjacency matrix of this graph
have λk = (1 ± o(1))∆

1/2
k whp.

1. Introduction

Recently, there has been much interest in understanding the properties of real-
world large-scale networks such as the structure of the Internet and the World
Wide Web. For a general introduction to this topic, see Bollobás and Riordan
[Bollobás and Riordan 02], Hayes [Hayes 00], or Watts [Watts 99]. One approach
is to model these networks by random graphs. Experimental studies by Albert,
Barabási, and Jeong [Albert et al. 99], Broder et al. [Broder et al. 00], and
Faloutsos, Faloutsos, and Faloutsos [Faloutsos et al. 99] have demonstrated that
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2 Internet Mathematics

in the World Wide Web/Internet the proportion of vertices of a given degree
follows an approximate inverse power law, i.e., the proportion of vertices of
degree k is approximately Ck−α for some constants C,α. The classical models
of random graphs introduced by Erdős and Renyi [Erdös and Rényi 59] do not
have power law degree sequences, so they are not suitable for modeling these
networks. This has driven the development of various alternative models for
random graphs.

One approach to remedy this situation is to study graphs with a prescribed
degree sequence (or prescribed expected degree sequence). This is proposed as
a model for the web graph by Aiello, Chung, and Lu in [Aiello et al. 00]. Mihail
and Papadimitriou also use this model [Mihail and Papadimitriou 02] in their
study of large eigenvalues, as do Chung, Lu, and Vu in [Chung et al. 03a, Chung
et al. 03b].

An alternative approach, which we will follow in this paper, is to sample
graphs via some generative procedure which yields a power law distribution.
There is a long history of such models, outlined in the survey by Mitzenmacher
[Mitzenmacher 04]. We will use the preferential attachment model to generate
our random graph. The preferential attachment random graph has been the
subject of recently revived interest. It dates back to Yule [Yule 25] and Simon
[Simon 55]. It was proposed as a model for the web by Barabási and Albert
[Barabási and Albert 99], and their description was elaborated by Bollobás and
Riordan in [Bollobás and Riordan]. It was used by Bollobás, Riordan, Spencer,
and Tusnády [Bollobás et al. 01], who proved that the degree sequence does
follow a power law distribution. Bollobás and Riordan obtained several addi-
tional results regarding the diameter and connectivity of such graphs [Bollobás
and Riordan]. We use the generative model of [Bollobás and Riordan] (see also
[Bollobás et al. 01]) and build a graph sequentially as follows:

• At each time-step t, we add a vertex vt, and we add an edge from vt to some
other vertex u, where u is chosen at random according to the distribution:

Pr[u = vi] =

{
dt(vi)
2t−1 , if vi �= vt;
1

2t−1 , if vi = vt;

where dt(v) denotes the degree of vertex v at time t. This means that
each vertex receives an additional edge with probability proportional to
its current degree. The probability of choosing vt (and forming a loop) is
consistent with this, since we’ve already committed “half” an edge to vt

and are deciding where to put the other half.

• For some constant m, every m steps we contract the most recently added
m vertices to form a supervertex.
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Let Gm
t denote the random graph at time-step t with contractions of size m.

Note that contracting each set of vertices {im + 1, im + 2, . . . , (i + 1)m} of G1
t

yields a graph identically distributed with Gm
t .

It is worth mentioning that there are several alternative simple models for the
World Wide Web and for general power law graphs. A generalization of the
preferential attachment model is described by Drinea, Enachescu, and Mitzen-
macher in [Drinea et al. 01], and degree sequence results analogous to [Bollobás
et al. 01] are proved for this model by Buckley and Osthus in [Buckley and
Osthus]. A completely different generative model, based on the idea that new
web pages are often consciously or unconsciously copies of existing pages, is de-
veloped by Kleinberg et al. and Kumar et al. in [Kleinberg et al. 99], [Kumar et
al. 99], [Kumar et al. 00]. Cooper and Frieze analyze a model combining these
approaches in [Cooper and Frieze 01].

Several previous results have studied the structure of low-degree vertices in
the preferential attachment graph. For example, the results in [Bollobás et al.
01] concern degrees up to t1/15. The maximum degree vertex of the preferential
attachment graph is the subject of Theorem 17 of [Bollobás and Riordan 02],
where an elegant static description of the preferential attachment graph is used to
show that ∆1/

√
t converges in distribution to a certain nonnegative distribution.

The technique used there extends to give the asymptotic distribution of ∆i/
√

t

for any constant i. Our first theorem also deals with the highest degree vertices:

Theorem 1.1. Let m and k be fixed positive integers, and let f(t) be a function with
f(t) → ∞ as t → ∞. Let ∆1 ≥ ∆2 ≥ · · · ≥ ∆k denote the degrees of the k

highest degree vertices of Gm
t . Then

t1/2

f(t)
≤ ∆1 ≤ t1/2f(t)

and for i = 2, . . . , k,
t1/2

f(t)
≤ ∆i ≤ ∆i−1 − t1/2

f(t)
,

whp.1

Unfortunately, the slowly growing function f(t) in the result above cannot be
removed. Indeed, Theorem 17 of [Bollobás and Riordan 02] and its extension to
the k largest degrees shows that for any constants a < b we have

lim
t→∞Pr

[
∆1 ∈ (at1/2, bt1/2)

]
> 0 and lim

t→∞Pr
[
∆i − ∆i−1 ∈ (at1/2, bt1/2)

]
> 0.

1In this paper, an event E is said to hold with high probability (whp) if Pr[E] → 1 as t → ∞.
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The next theorem relates maximum eigenvalues and maximum degrees. It
mirrors results of Mihail and Papadimitriou [Mihail and Papadimitriou 02] and
Chung, Liu and Vu [Chung et al. 03a, Chung et al. 03b] for fixed degree expec-
tation models and at a high level, the proof follows the same lines as these two
papers. Experimentally, a power law distribution for eigenvalues was observed
in “real-world” graphs in [Faloutsos et al. 99].

Theorem 1.2. Let m and k be fixed positive integers, and let f(t) be a function with
f(t) → ∞ as t → ∞. Let λ1 ≥ λ2 ≥ · · · ≥ λk be the k largest eigenvalues of
the adjacency matrix of Gm

t . Then for i = 1, . . . , k we have λi = (1 ± o(1))∆1/2
i

whp.

Our proofs of these theorems require two lemmas.

Lemma 1.3. Let dm
t (s) denote the degree of vertex s in Gm

t , and let a(k) = a(a +
1)(a+2) · · · (a+k−1) denote the rising factorial function. Then for any positive
integer k,

E
[
(dm

t (s))(k)
]
≤ (2m)(k)2k/2

(
t

s

)k/2

.

To simplify the exposition, we speak of a supernode, which is simply a collection
of vertices viewed as one vertex. So the degree of a supernode is the sum of the
degrees of the vertices in the supernode, and an edge is incident to a supernode
if it is incident to some vertex in the supernode.

Lemma 1.4. Let S = (S1, S2, . . . , S�) be a collection of disjoint supernodes, and
let pS(r;d, t0, t) denote the probability that each supernode Si has degree ri + di

at time t conditioned on dt0(Si) = di. Let d =
∑�

i=1 di and r =
∑�

i=1 ri. If
d = o(t1/2) and r = o(t2/3), then

pS(r;d, t0, t) ≤
(

�∏
i=1

(
ri + di − 1

di − 1

))(
t0 + 1

t

)d/2

exp
{

2 + t0 − d

2
+

2r

t1/2

}
.

In the next section, we prove Lemma 1.3, Lemma 1.4, and Theorems 1.1 and
1.2.
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2. Proofs

2.1. Proof of Lemma 1.3

An earlier version of the paper bounded E
[
(dm

t (s))k
]
. This was a quite involved

calculation. One of the referees suggested that we bound E
[
(dm

t (s))(k)
]

because
this would be simpler using an idea from [Bollobás and Riordan 02]. This is
indeed the case, as the reader can see next.

Let Zt = dm
t (s) denote the degree of vertex s at time t (when the graph

contains t edges), and let Yt be an indicator variable for the event that the edge
added at time t is incident to s.

Then we have

E
[
Z

(k)
t

]
= E
[
E
[
(Zt−1 + Yt)(k)

] ∣∣∣∣ Zt−1

]

= E
[
Z

(k)
t−1

(
1 − Zt−1

2t − 1

)
+ (Zt−1 + 1)(k)

(
Zt−1

2t − 1

)]

=
(

1 +
k

2t − 1

)
E
[
Z

(k)
t−1

]
.

Since Z
(k)
s ≤ (2m)(k), we have

E
[
Z

(k)
t

]
≤ (2m)(k)

t∏
t′=s+1

(
1 +

k

2t′ − 1

)
≤ (2m)(k) exp

{
k

2

t∑
t′=s+1

1
t′ − 1

2

}
.

We upper bound the sum with an integral,

t∑
t′=s+1

1
t′ − 1

2

≤
∫ t

x=s

1
x − 1

2

dx = log
t − 1

2

s − 1
2

,

and the bound on the expectation becomes

E
[
Z

(k)
t

]
≤ (2m)(k)

(
t − 1

2

s − 1
2

)k/2

= (2m)(k)

(
t

s

)k/2( 2 − 1/t

2 − 1/s

)k/2

.

Since 2−1/t
2−1/s ≤ 2, we may conclude that

E
[
Z

(k)
t

]
≤ (2m)(k)2k/2

(
t

s

)k/2

.

�
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2.2. Proof of Lemma 1.4

We calculate the probability as the union of disjoint events by fixing the times
when the degrees of the Si change. Let τ (i) = (τ (i)

1 , . . . , τ
(i)
ri ), where τ

(i)
j is the

time when we add an edge incident to Si and increase the degree of Si from
di + j − 1 to di + j. We will see that in the calculation it doesn’t matter much
which Si increases in degree, so we let d =

∑�
i=1 di and r =

∑�
i=1 ri and define

τ = (τ0, τ1, . . . , τr+1) to be the ordered union of the τ (i), with τ0 = t0 and
τr+1 = t.

Let p(τ ;d, t0, t) denote the probability that (super)nodes Si increase in degree
at exactly the times specified by τ between time t0 and t given dt0(si) = di.
Then

p(τ ;d, t0, t) =

(
�∏

i=1

ri∏
k=1

di + k − 1

2τ
(i)
k − 1

)⎛⎝ r∏
k=0

τk+1−1∏
j=τk+1

(
1 − d + k

2j − 1

)⎞⎠
=

(
�∏

i=1

(ri + di − 1)!
(di − 1)!

)(
r∏

k=1

1
2τk − 1

)

× exp

⎧⎨
⎩

r∑
k=0

τk+1−1∑
j=τk+1

log
(

1 − d + k

2j − 1

)⎫⎬
⎭ .

We bound the inner sum by an integral

τk+1−1∑
j=τk+1

log
(

1 − d + k

2j − 1

)
≤

τk+1−1∑
j=τk+1

log
(

1 − d + k

2j

)

≤
∫ τk+1

τk+1

log
(

1 − d + k

2x

)
dx.

Then, since∫
log
(

1 − d + k

2x

)
dx = −x log(2x) +

2x − (d + k)
2

log(2x − (d + k)),

we have∫ τk+1

τk+1

log
(

1 − d + k

2x

)
dx

= −τk+1 log(2τk+1) +
2τk+1 − (d + k)

2
log(2τk+1 − (d + k))

+ (τk + 1) log(2τk + 2) − 2τk + 2 − (d + k)
2

log(2τk + 2 − (d + k)).
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By grouping like terms and noting that τ0 = t0 and τr+1 = t, we have

r∑
k=0

∫ τk+1

τk+1

log
(

1 − d + k

2x

)
dx

= (t0 + 1) log(2t0 + 2) − 2t0 + 2 − d

2
log(2t0 + 2 − d)

− t log(2t) +
2t − (d + r)

2
log(2t − (d + r))

+
r∑

k=1

(
(τk + 1) log(2τk + 2) − 2τk + 2 − (d + k)

2
log(2τk + 2 − (d + k))

− τk log(2τk) +
2τk − (d + k − 1)

2
log(2τk − (d + k − 1))

)

= A +
r∑

k=1

Bk,

where A is the term outside the summation and Bk is the kth term of the sum.

We concentrate first on the term Bk. Rearranging terms yields

Bk = τk log(1 + 1/τk)

+ log(2τk + 2) +
2τk + 2 − (d + k)

2
log
(

1 − 1
2τk + 2 − (d + k)

)
− 1

2
log(2τk + 1 − (d + k)).

Since 1 + x ≤ ex, this is bounded as

Bk ≤ 1
2

log(2τk + 2) − 1
2

log
(

1 − d + k + 1
2τk + 2

)
+

1
2
.

Now we turn our attention to A. Rearranging terms, we have

A = − (t0 + 1) log
(

1 − d

2t0 + 2

)
+

d

2
log(2t0 + 2 − d) + t log

(
1 − d + r

2t

)

− d + r

2
log(2t − (d + r)).
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So

eA =
(

1 − d

2t0 + 2

)−(t0+1)

(2t0 + 2 − d)d/2

(
1 − d + r

2t

)t

× (2t − (d + r))−(d+r)/2

=
(

1 − d

2(t0 + 1)

)−
�
1− d

2(t0+1)

�
(t0+1)

×
(

1 − d + r

2t

)t−(d+r)/2(
t0 + 1

t

)d/2

(2t)−r/2.

Since 1 − x ≤ e−x−x2/2 for 0 < x < 1, we have

(
1 − d + r

2t

)t−(d+r)/2

≤ exp
{
−d + r

2
+

(d + r)2

8t
+

(d + r)3

16t2

}
.

So

eA+
�

Bk ≤
(

1 − d

2(t0 + 1)

)−
�
1− d

2(t0+1)

�
(t0+1)

× exp
{
−d + r

2
+

(d + r)2

8t
+

(d + r)3

16t2

}

×
(

t0 + 1
t

)d/2

(2t)−r/2

×
(

r∏
k=1

((
1 − d + k + 1

2τk + 2

)−1/2

(2τk + 2)1/2

))
er/2

= err(r, d, t0, t)
(

t0 + 1
t

)d/2

(2t)−r/2

×
(

r∏
k=1

((
1 − d + k + 1

2τk + 2

)−1/2

(2τk + 2)1/2

))
,

where

err(r, d, t0, t) =
(

1 − d

2(t0 + 1)

)−
�
1− d

2(t0+1)

�
(t0+1)

exp
{
−d

2
+

(d + r)2

8t
+

(d + r)3

16t2

}
.
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Inserting the bounds for A +
∑

Bk into the bound on p(τ ;d, t0, t), we have

p(τ ;d, t0, t) ≤
(

�∏
i=1

(ri + di − 1)!
(di − 1)!

)
err(r, d, t0, t)

(
t0 + 1

t

)d/2

(2t)−r/2

×
(

r∏
k=1

(
1 − d + k + 1

2τk + 2

)−1/2

(2τk + 2)1/2(2τk − 1)−1

)
.

Now observe that

(
1 − d + k + 1

2τk + 2

)−1/2

(2τk + 2)1/2(2τk − 1)−1 =

(2τk + 1 − (d + k))−1/2

(
1 +

3
2τk − 1

)
.

In order to bound the probability of interest, we sum p(τ ;d, t0, t) over all ordered
choices of τ :

pS(r;d, t0, t) =
∑

τ(1),...,τ (�)

p(τ ;d, t0, t)

≤
(

r

r1, . . . , r�

) ∑
t0+1≤τ1<···<τr≤t

(
�∏

i=1

(ri + di − 1)!
(di − 1)!

)
err(r, d, t0, t)

×
(

t0 + 1
t

)d/2

(2t)−r/2

×
(

r∏
k=1

(2τk + 1 − (d + k))−1/2

(
1 +

3
2τk − 1

))

= r!

(
�∏

i=1

(
ri + di − 1

di − 1

))
err(r, d, t0, t)

(
t0 + 1

t

)d/2

(2t)−r/2

×
∑

t0+1≤τ1<τ2···<τr≤t

(
r∏

k=1

(2τk + 1 − (d + k))−1/2

(
1 +

3
2τk − 1

))
.

Now we make a change of variables, introducing τ ′
k = τk−�(d+k)/2	. For some

τk, τk+1, this can result in τ ′
k = τ ′

k+1, so we relax the strict inequalities to less-
than-or-equals. Also, since d and k are both at least 1, we have 2�(d+k)/2	 ≥ 2.
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So

∑
t0<τ1<τ2<···<τr≤t

(
r∏

k=1

(2τk + 1 − (d + k))−1/2

(
1 +

3
2τk − 1

))

≤
∑

(t0−�d/2�+1)≤τ ′
1≤τ ′

2≤···≤τ ′
r≤(t−�(d+r)/2�)

(
r∏

k=1

(2τ ′
k + 1)−1/2

(
1 +

3
2τ ′

k + 1

))
.

We simplify this sum by unordering the variables,

∑
(t0−�d/2�+1)≤τ ′

1≤τ ′
2≤···≤τ ′

r≤(t−�(d+r)/2�)

(
r∏

k=1

(
(2τ ′

k + 1)−1/2 + 3 (2τk + 1)−3/2
))

=
1
r!

⎛
⎝ t−�(d+r)/2�∑

τ ′=t0−�d/2�+1

(
(2τ ′ + 1)−1/2 + 3 (2τ ′ + 1)−3/2

)⎞⎠r

,

and then using an integral, which we start from x = 0, since t0 − �d/2	+ 1 ≥ 1,

t−�(d+r)/2�∑
τ ′=t0−�d/2�+1

(2τ ′ + 1)−1/2 + 3 (2τ ′ + 1)−3/2

≤
∫ t−(d+r)/2

x=0

(
(2x + 1)−1/2 + 3 (2x + 1)−3/2

)
dx

≤ (2t − (d + r) + 1)1/2 − 1 − 3(2t − (d + r) + 1)−1/2 + 3)

≤ (2t − (d + r) + 1)1/2 + 2

= (2t)1/2

(
1 − d + r − 1

2t

)1/2(
1 +

2
(2t − (d + r) + 1)1/2

)
.

Again using 1 + x ≤ ex, we have(
1 − d + r − 1

2t

)r/2

≤ exp
{
−r(d + r − 1)

4t

}
and (

1 +
2

(2t − (d + r) + 1)1/2

)r

≤ exp
{

2r

(2t − (d + r) + 1)1/2

}
.

So

pS(r;d, t0, t) ≤
(

�∏
i=1

(
ri + di − 1

di − 1

))
err(r, d, t0, t)

(
t0 + 1

t

)d/2

exp
{
−r(d + r − 1)

4t
+

2r

(2t − (d + r) + 1)1/2

}
.
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For d = o(t1/2) and r = o(t2/3), we have

err(r, d, t0, t) exp
{
−r(d + r − 1)

4t
+

2r

(2t − (d + r) + 1)1/2

}

≤
(

1 − d

2(t0 + 1)

)−
�
1− d

2(t0+1)

�
(t0+1)

exp
{

1 − d

2
− r2

8t
+

2r

t1/2

}
.

Since x−x ≤ e, this completes the proof of the lemma. �

2.3. Proof of Theorem 1.1

We partition the vertices into those added before time t0, before t1, and after t1
and argue about the maximum degree of vertices in each set. Here,

t0 = log log log f(t) and t1 = log log f(t).

We break the proof of Theorem 1.1 into five claims.

Claim 2.1. In Gm
t , the degree of the supernode of vertices added before time t0 is at

least t
1/3
0 t1/2 whp.

Proof. Let A1 denote the event that the supernode consisting of the first t0
vertices has degree less than t

1/3
0 t1/2. We bound the probability of this event

using Lemma 1.4 with � = 1. Since at time t0 the supernode of all vertices added
by this time has all of the edges, we take d = d1 = 2t0. Then

Pr[A1] ≤
t
1/3
0 t1/2−2t0∑

r1=0

(
r1 + 2t0 − 1

2t0 − 1

)(
t0 + 1

t

)d/2

e2+t0−d/2+2r/t1/2

≤ (t1/3
0 t1/2)

(t1/3
0 t1/2)2t0−1

(2t0 − 1)!

(
t0 + 1

t

)t0

e2+t0+2t
1/3
0

≤ t
2t0/3
0

e2t0−1

(2t0 − 1)2t0−1
(t0 + 1)t0e2+t0+2t

1/3
0

≤ e3t0+2t
1/3
0 +2

(2t0 − 1)t0/3−1

= o(1).

Claim 2.2. In Gm
t , no vertex added after time t1 has degree exceeding t−2

0 t1/2 whp.
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Proof. Let A2 denote the event that some vertex added after time t1 has degree
exceeding t−2

0 t1/2. Then we have

Pr[A2] ≤
t∑

s=t1

Pr[dt(s) ≥ t−2
0 t1/2] =

t∑
s=t1

Pr
[
(dt(s))

(3) ≥
(
t−2
0 t1/2

)(3)]

≤
t∑

s=t1

t60t
−3/2 E

[
dt(s)(3)

]
.

Using Lemma 1.3, this bound becomes

Pr[A2] ≤
t∑

s=t1

t60t
−3/2(2m)(3)23/2

(
t

s

)3/2

≤ (2m)(3)23/2t60

t∑
s=t1

s−3/2

≤ (2m)(3)23/2t60t
−1/2
1 = o(1).

Claim 2.3. In Gm
t , no vertex added before time t1 has degree exceeding t

1/6
0 t1/2 whp.

Proof. Let A3 denote the event that some vertex added before t1 has degree
exceeding t

1/6
0 t1/2. We use Lemma 1.3 for a third moment argument as above:

Pr[A3] ≤
t1∑

s=1

(
t
1/6
0 t1/2

)−3

(2m)(3)23/2

(
t

s

)3/2

= (2m)(3)23/2t
−1/2
0

t1∑
s=1

s−3/2

≤ (2m)(3)23/2t
−1/2
0 = o(1).

Claim 2.4. The k highest degree vertices of Gm
t are added before time t1 and have

degree ∆i bounded by t−1
0 t1/2 ≤ ∆i ≤ t

1/6
0 t1/2 whp.

Proof.

(Upper bound on ∆i.) By Claim 2.2, all vertices added after time t1 have
degree at most t−2

0 t1/2 whp. Combining this with Claim 2.3, we have
∆1 ≤ t

1/6
0 t1/2 whp.

(Lower bound on ∆i.) The conditions from Claims 2.1, 2.2, and 2.3 imply
the lower bound. To see this, suppose the conditions of these claims are
satisfied, but assume for contradiction that at most k − 1 vertices added
before t1 have degree exceeding t−1

0 t1/2. Then the total degree of vertices
added before t0 is less than k(t1/6

0 t1/2) + t0(t−1
0 t1/2) ≤ 2kt

1/6
0 t1/2. But

this contradicts the condition of Claim 2.1, which says the total degree of
vertices added before t0 is at least t

1/3
0 t1/2.
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(Added before t1.) By Claim 2.2, all vertices added after time t1 have degree
at most t−2

0 t1/2 whp. So the lower bound on ∆i shows the k highest degree
vertices are added before time t1 whp.

Claim 2.5. The k highest degree vertices of Gm
t have ∆i ≤ ∆i−1 − t1/2/f(t) whp.

Proof. Let A4 denote the event that there are two vertices among the first t1 with
degrees exceeding t−1

0 t1/2 and within t1/2/f(t) of each other.
Let p�,s1,s2 = Pr[dt(s1) − dt(s2) = � | A3], for |�| ≤ √

t/f(t). Then

Pr[A4 | A3] ≤
∑

1≤s1<s2≤t1

t1/2/f(t)∑
�=−t1/2/f(t)

p�,s1,s2 .

Since

p�,s1,s2 ≤
t
1/6
0 t1/2∑

r1=t−1
0 t1/2

2t1∑
d1,d2=1

p(s1,s2)((r1, r1 − �); (d1, d2), t1, t)

≤ t
1/6
0 t1/2

2t1∑
d1,d2=1

(
2t

1/6
0 t1/2

d1 − 1

)(
2t

1/6
0 t1/2

d2 − 1

)(
t1 + 1

t

)(d1+d2)/2

et0+2+4t
1/6
0

≤ t
1/6
0 t1/2

2t1∑
d1,d2=1

(
2t

1/6
0 t1/2

)d1+d2−2

(t1 + 1)2t1t−(d1+d2)/2e2t0

≤ t
1/6
0 (2t1)224t1t

2t1/3
0 (t1 + 1)2t1e2t0t−1/2

= o(t−2
1 t−1/2f(t)),

we have

Pr[A4 | A3] ≤
∑

1≤s1<s2≤t1

t1/2/f(t)∑
�=−t1/2/f(t)

p�,s1,s2 = o(1).

So

Pr[A4] = Pr[A4 | A3] Pr[A3]+Pr[A4 | A3] Pr[A3] ≤ Pr[A3]+Pr[A4 | A3] = o(1).
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2.4. Proof of Theorem 1.2

We partition the vertices into three sets; let Si be the vertices added after time
ti−1 and at or before time ti, for

t0 = 0, t1 = t1/8, t2 = t9/16, t3 = t.

To reduce the number of subscripts necessary, we use G to denote the graph Gt.
For any graph H, we let MH denote the adjacency matrix of H, and we

let λi(H) denote the ith largest eigenvalue of MH . We will use the identity
(Rayleigh’s Principle)

λi(H) = min
L

max
x∈L,x�=0

xT MHx
xT x

, (2.1)

where L ranges over all (n−i+1)-dimensional subspaces of R
n. (See, for example,

[Strang 88]).
Our approach, as in [Mihail and Papadimitriou 02], [Chung et al. 03a, Chung

et al. 03b], is to show that whp G contains a star forest F with stars of degree
asymptotic to the maximum degree vertices of G. Then we will show G \ F has
small eigenvalues. Then Rayleigh’s Principle is sufficient to conclude that the
large eigenvalues of G cannot be too different from the large eigenvalues of F .

To do this, we need reasonable bounds on the degrees and codegrees in G.
Recall that dm

s (r) is the degree at time s of the vertex added at time r with
contractions of size m.

Claim 2.6. For any ε > 0 and any f(t) with f(t) → ∞ as t → ∞ the following
holds whp: for all s with f(t) ≤ s ≤ t, for all vertices v ∈ Gm

s , if v was added at
time r, then dm

s (v) ≤ s1/2+εr−1/2.

Proof. We use Lemma 1.3 and the union bound. Let � = �3/ε	.

Pr
[ t⋃

s=f(t)

s⋃
r=1

{dm
s (r) ≥ s1/2+εr−1/2}

]

≤
t∑

s=f(t)

s∑
r=1

Pr
[
dm

s (r) ≥ s1/2+εr−1/2
]

=
t∑

s=f(t)

s∑
r=1

Pr
[
(dm

s (r))(�) ≥
(
s1/2+εr−1/2

)(�)]
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≤
t∑

s=f(t)

s∑
r=1

s−�(1/2+ε)r�/2 E
[
(dm

s (r))�
]

≤
t∑

s=f(t)

s∑
r=1

s−�(1/2+ε)r�/2(2m)(�)2�/2(s/r)�/2

= (2m)(�)2�/2
t∑

s=f(t)

s1−ε�.

Since � ≥ 3/ε,

t∑
s=f(t)

s1−ε� ≤
∫ ∞

f(t)−1

x1−ε�dx =
1

ε� − 2
(f(t) − 1)2−ε� = o(1).

Claim 2.7. Let S′
3 be the set of vertices in S3 that are adjacent to more than one

vertex of S1 in G. Then |S′
3| ≤ t7/16 whp.

Proof. Let B1 be the event that the conditions of Claim 2.6 hold with f(t) = t2
and ε = 1/16. Then for a vertex v ∈ S3 added at time s,

Pr[|N(v) ∩ S1| ≥ 2 | B1] ≤
(

m

2

)(
s1/2+εt1
2s − 1

)2

≤ m2s−7/8t1/4.

Let X denote the number of v ∈ S3 adjacent to more than one vertex of S1.
Then

E [X | B1] ≤
t∑

s=t2+1

m2s−7/8t1/4 ≤ m2t1/4

∫ t

t2

x−7/8dx ≤ 8m2t3/8.

We finish the claim with Markov’s inequality,

Pr[X ≥ t7/16 | B1] ≤ E[X | B1]/t7/16 = o(1).

Now, let F ⊆ G be the star forest consisting of edges between S1 and S3 \ S′
3.

Claim 2.8. Let ∆1 ≥ ∆2 ≥ · · · ≥ ∆k denote the degrees of the k highest degree
vertices of G. Then λi(F ) = (1 − o(1))∆1/2

i whp.
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Proof. Let H be the star forest H = K1,d1 ∪ K1,d2 ∪ · · · ∪ K1,dk
, with d1 ≥ d2 ≥

· · · ≥ dk. Then for i = 1, . . . , k, λi(H) = d
1/2
i . So it is sufficient to show that

∆i(F ) = (1 − o(1))∆i(G) for i = 1, . . . , k.
Claim 2.4 shows that the k highest degree vertices of G are added before time

t1, so these vertices are all in F . The only edges to these vertices that are not
in F are those added before time t2 and those incident to S′

3. By Theorem 1.1,
we have ∆1(Gm

t2 ) ≤ t
7/9
2 = t7/16 and, also by Theorem 1.1, ∆i(G) ≥ t1/2/ log t

for i = 1, . . . , k, whp. Claim 2.7 says that whp |S′
3| ≤ t7/16, and so whp

∆i(F ) ≥ ∆i(G) − t7/16 − mt7/16 = (1 − o(1))∆i(G).

Let H = G \ F . We now show that λ1(H) is o(λk(F )). This completes the
proof of Theorem 1.2 because, for any subspace L, we have

max
x∈L,x�=0

xT MGx
xT x

= max
x∈L,x�=0

xT MF x
xT x

± O

(
max
x�=0

xT MHx
xT x

)
,

and so, for i ≤ k, Rayleigh’s Principle gives λi(G) = λi(F )(1 ± o(1)).

Claim 2.9. λ1(H) ≤ 6mt15/64 whp.

Proof. We bound the eigenvalues of H in six parts. Let

Hi = H[Si], Hij = H(Si, Sj),

where H[S] is the subgraph of H induced by the vertex set S, and H(S, T ) is
the subgraph containing only edges with one vertex in S and the other in T .

To bound λ1(Hi), we use the fact that the maximum eigenvalue of a graph is
at most the maximum degree of the graph. This is easily verified from (2.1).

We use Claim 2.6 with f(t) = t1 and ε = 1/64 to conclude that whp

λ1(H1) ≤ ∆1(H1) = max
v≤t1

{dm
t1 (v)} ≤ t

1/2+ε
1 = t33/512,

λ1(H2) ≤ ∆1(H2) ≤ max
t1≤v≤t2

{dm
t2 (v)} ≤ t

1/2+ε
2 t

−1/2
1 = t233/1024,

λ1(H3) ≤ ∆1(H3) ≤ max
t2≤v≤t3

{dm
t3 (v)} ≤ t

1/2+ε
3 t

−1/2
2 = t15/64.

To bound λ1(Hij), we begin by considering the case m = 1. Then, for i < j,
each vertex in Sj has at most one edge in Hij , so Hij is a star forest. As observed
in Claim 2.8, the eigenvalues of a star forest are directly related to the degrees
of the stars.

When m > 1, we let G′ denote a preferential attachment graph with t edges
and m = 1. Recall that by contracting vertices {(i − 1)m + 1, . . . , im} into a
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single vertex i, we obtain a graph identically distributed with G. There is a
simple representation of this observation in terms of linear algebra: we can write
the adjacency matrix of G in terms of the adjacency matrix of the graph G′:

MG = CT
mMG′Cm,

where Cm is the t × t/m matrix with ith column

[ 0 · · · 0︸ ︷︷ ︸
(i−1)m

1 · · · 1︸ ︷︷ ︸
m

0 · · · 0︸ ︷︷ ︸
(t/m−i)m

]T .

Similarly, we can write the adjacency matrix of Hij in terms of the adjacency
matrix of H ′

ij using this “contraction matrix” Cm.
Note that for y = Cmx, we have yT y = m(xT x). So

λ1(Hij) = max
x�=0

xT MHij
x

xT x
= max

x�=0

xT CT
mMH′

ij
Cmx

xT x
= max

y : y=Cmx�=0
m

yT MH′
ij
y

yT y

≤ m max
y �=0

yT MH′
ij
y

yT y
= mλ1(H ′

ij).

We use Claim 2.6 with f(t) = t1 and ε = 1/64 as above to conclude that whp

∆1(H ′
12) = max

v≤t2
{d1

t2(v)} ≤ t
1/2+ε
2 = t297/1024

∆1(H ′
23) = max

t1≤v≤t3
{d1

t3(v)} ≤ t
1/2+ε
3 t

−1/2
1 = t29/64.

Finally, all edges in H ′
13 are between S1 and S′

3, so Claim 2.7 shows that
∆1(H ′

13) ≤ t7/16 whp.
We now conclude that whp

λ1(Hij) ≤ mλ1(H ′
ij) ≤ m∆1(H ′

ij)
1/2 ≤ mt15/64,

and so whp

λ1(H) ≤
3∑

i=1

λ1(Hi) +
∑
i<j

λ1(Hij) ≤ 6mt15/64.
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