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(communicated by Maria Cristina Pedicchio)

Abstract

A regular category is said to be mormal when it is pointed
and every regular epimorphism in it is a normal epimorphism.
Any abelian category is normal, and in a normal category one
can define short exact sequences in a similar way as in an
abelian category. Then, the corresponding 3 x 3 lemma is equiv-
alent to the so-called subtractivity, which in universal algebra
is also known as congruence 0-permutability. In the context of
non-pointed regular categories, short exact sequences can be
replaced with “exact forks” and then, the corresponding 3 x 3
lemma is equivalent, in the universal algebraic terminology, to
congruence 3-permutability; equivalently, regular categories sat-
isfying such 3 x 3 lemma are precisely the Goursat categories.
We show how these two seemingly independent results can be
unified in the context of star-regular categories recently intro-
duced in a joint work of A. Ursini and the first two authors.

1. Introduction
In an abelian category, the 3 x 3 lemma states that given a commutative diagram

oO<—0<—0
oe<—20

N
.

[P

—_— — 9,

where all three columns and the second row are short exact sequences, the top row is
a short exact sequence if and only if so is the bottom row. This can be split up into
upper and lower 3 x 3 lemmas, where the upper 3 x 3 lemma states only that the
short exactness of the top row follows from the short exactness of the bottom one,
and the lower 3 x 3 lemma states the converse implication. There is also a middle
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3 x 3 lemma, which states that if the composite of the two morphisms in the middle
row is null and if the top and the bottom rows are short exact, then the middle row is
also short exact. It was recently proved by the second author [18] that, in any normal
category (i.e., a pointed regular category where every regular epimorphism is a normal
epimorphism), the upper and the lower 3 x 3 lemmas are equivalent, and they hold
precisely when the normal category is subtractive [17]. The middle 3 x 3 lemma turns
out to be stronger than the other two, and it is equivalent to protomodularity [3].

The “denormalized 3 x 3 lemma”, studied by D. Bourn in [5], replaces short exact
sequences with exact forks, i.e., kernel pairs of regular epimorphisms. It was shown by
S. Lack in [19] that the denormalized 3 x 3 lemma holds in any Goursat category [7, 6]
and, more recently, it was proved by the first and third authors [14] that in a regular
category, the denormalized 3 x 3 lemma is actually equivalent to the category being a
Goursat category. Moreover, just as in the normalized case, the upper and the lower
denormalized 3 x 3 lemmas are equivalent.

These two independent works are now brought together in the present article where
we revisit them in the categorical context of a star-regular category proposed in [13],
where it becomes possible to treat the normalized and the denormalized 3 x 3 lemmas
simultaneously. The notion of a star-regular category is in some sense a merger of two
notions: that of a regular category [1] and that of a category equipped with an ideal
N of morphisms [9]. In [13], in a category with an ideal N, we defined a star to be an
ordered pair of parallel morphisms (kj, ks): K = X, where the first morphism in the
pair belongs to N. The star-kernel (also called kernel star) of a morphism f: X — Y
is defined as a universal star such that fky = fko. Then star-reqularity refers to the
property that every regular epimorphism is a coequalizer of its star-kernel. In the
case when A is the class of zero morphisms in a pointed category, which we call the
pointed context, star-regular categories become precisely the normal categories, since
there the notion of a star-kernel reduces to the usual notion of a kernel. In the case
when N is the class of all morphisms, which we call the total context, star-kernels
are precisely the kernel pairs, and so star-regular categories are the same as regular
categories. Background material regarding stars, star-kernels and star-regularity is
presented in Sections 2 and 3 below; at the same time, in Section 3 we clarify the
connection between our general context and the quasi-pointed context of [4].

Replacing kernel pairs with star-kernels and the Goursat property with the “sym-
metric saturation property” [12], we extend from regular categories to star-regular
categories the equivalence of the denormalized 3 x 3 lemma and the Goursat prop-
erty (this is carried out in Sections 4 and 5). We achieve this under an additional
axiom of the existence of “enough trivial objects” (studied separately in Section 3),
which does hold true both in the total and (quasi-)pointed contexts. The main result,
Theorem 5.2, states that, for a star-regular category with enough trivial objects, the
upper 3 x 3 lemma, the lower 3 x 3 lemma and the symmetric saturation property
are equivalent. Applying our result to the pointed context, the symmetric satura-
tion property translates into subtractivity and we get precisely the equivalence of
subtractivity and the normalized 3 x 3 lemma in normal categories.

Finally, in Section 6 we extend from normal categories to star-regular categories
the equivalence of the short five lemma and the middle 3 x 3 lemma. In fact, in a
star-regular category with enough trivial objects, the short five lemma is equivalent
to the short five lemma for regular epimorphisms (Theorem 6.2) and both imply that
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the middle 3 x 3 lemma holds (Proposition 6.3). The equivalence between these three
lemmas is established in Theorem 6.5 in the case when regular epimorphisms are “sat-
urating” [12] — an extra condition which always holds both in the total and pointed
contexts. Applying this result to the total context we see that the denormalized middle
3 x 3 lemma holds true in any regular category. This reveals an interesting “concep-
tual duality” between the pointed and total contexts, where in the total context the
upper/lower 3 x 3 lemmas are stronger than the middle 3 x 3 lemma, whereas in the
pointed context they are weaker.

2. Stars, constellations and star-regular categories

In this section we briefly exhibit some basic notions and properties concerning
“stars”; we refer to [13] for further details.

Let C denote a category with finite limits, and A/ a distinguished class of morphisms
that forms an ideal, i.e., for any composable pair of morphisms g, f, if either g or f
belongs to A/, then the composite gf belongs to N. An N-kernel of a morphism
f: X =Y is defined as a morphism k: K — X such that fk € N and k is universal
with this property (note that such k is automatically a monomorphism). A pair of
morphisms, denoted by o = (01,02): S = X with o1 € N is called a star; it is called
a monic star when the pair (o1, 02) is jointly monomorphic. A star o = (01, 03) with
both 01,09 € N is said to be a bi-star.

A commutative diagram

(e

S—=X
gl f
T —Y

T

of stars and morphisms (here fo = 7¢g means that fo, = 719 and fos = T2g) is called
a star-pullback when given another such commutative (outer) diagram

'\\
, S—=X
N o
N\
\\ gl f
\
T —Y

T

there exists a unique morphism h: S — S such that gh = ¢’ and oh = o’.
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A commutative square of stars

is said to be a constellation; the commutativity €8 = pa means that the following
diagram commutes:

E
Y1 ﬁJAl P1
F<a— H —ar— [

P2 Az P2

|
X E X.

€1 €2

A universal constellation (over the stars ¢ and €) is a constellation as above such
that for any other (outer) constellation

there exists a unique morphism h: H' — H such that ah = o' and Sh = 3'.

Ezample 2.1. (The total context) A double equivalence relation is an (internal) equiv-
alence relation in the category of equivalence relations, pictured as a diagram

H—F

|

F——=X.

In particular, it gives a constellation of (monic) stars. Then, the universal constellation
is given by the following classical construction (see [8], [16]):

H =FOE = {(z,y,t,2) € X* | tFy ANtFz NxEt NyEz}.

Remark 2.2. (The pointed context) A constellation in the pointed context simply
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amounts to a commutative square of morphisms

B2

H—

g

€2

Such a constellation is universal exactly when it is a pullback.

Given a relation o = (01, 02): R = X on an object X, we denote by o* the biggest
subrelation of g which is a (monic) star; it can be constructed by setting o* =
(01k, 02k), where k is the A-kernel of p;. In particular, if we denote the discrete
(equivalence) relation on an object X by Ax =(lx,1x): X = X, then A% =
(kx,kx), where kx denotes the A/-kernel of 1y.

The star-kernel of a morphism f: X — Y is a universal star k = (k1,62): K = X
with the property fr; = frs (such a star is then automatically a monic star); it is
easy to see that the star-kernel of f coincides with n}, where k¢ denotes the kernel
pair of f.

Following the terminology used in [13], a category C equipped with an ideal N/
is called a multi-pointed category. If, moreover, every morphism admits an A/-kernel,
then C will be called a multi-pointed category with kernels.

Definition 2.3. [13] A regular multi-pointed category C with kernels is said to be
star-regular when every regular epimorphism in C is a coequalizer of a star.

In the total context, a star-regular category is precisely a regular category. In the
pointed context, a star-regular category is the same as a normal category [18], i.e., a
regular category in which any regular epimorphism is a normal epimorphism.

Throughout the paper, we omit those proofs which closely mimic corresponding
results in the total or pointed context that are usually well known. Below is one such
result:

Lemma 2.4. [13] In a multi-pointed category, consider a commutative diagram

i

€

f m

-

=

A (&3
—= X —=C

of morphisms and stars.

(a) Suppose k is a star-kernel of d and m is a monomorphism. Then, the left square
s a star-pullback if and only if X is a star-kernel of c.

(b) Suppose c is a coequalizer of \ and e is an epimorphism. Then, the right square
is a pushout if and only if d is a coequalizer of k.

The following lemma, in the total context, appears as Proposition 1.1 in [5]:
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Lemma 2.5. In a star-regular category, consider a commutative diagram

A (&
P—=X—C

e

K—=—=Y—>0Q

of stars and morphisms, where k is a star-kernel of d and c is a regular epimorphism.
Any two of the following conditions imply the third one:

(a) m is a monomorphism;
(b) X is a star-kernel of c¢;
(c) the left hand side square is a star-pullback.

3. Existence of enough trivial objects

An object X is said to be N -trivial when 1x € N; equivalently, X is N-trivial
when any morphism whose domain or codomain is X belongs to A'. When A -kernels
exist, we have that if a composite fg belongs to N and g is a strong epimorphism,
then also f belongs to A/. This implies that N -trivial objects are closed under strong
quotients.

Definition 3.1. We say that there are enough trivial objects in a multi-pointed cat-
egory C when N is a closed ideal [15], i.e., any morphism in A factors through an
N-trivial object, and moreover, the class of N-trivial objects is closed under subob-
jects and squares (the latter meaning that, for any A/-trivial object X, the object
X% =X x X is N-trivial).

In a regular multi-pointed category, a sufficient condition for the presence of enough
trivial objects is when A is a closed ideal and N -trivial objects have neither proper
subobjects nor proper quotients. More elaborately, we have the following (see also
Proposition 3.4 below):

Proposition 3.2. In a multi-pointed category C with finite powers, if N is a closed
ideal and N -trivial objects do not have proper subobjects (i.e., every monomorphism
with N -trivial codomain is an isomorphism), then the following conditions are equiv-
alent:

(a) There are enough trivial objects in C.

(b) FEvery morphism W — 1 from an N -trivial object W to the terminal object is a
monomorphism.

(c) Every morphism W — X whose domain is an N -trivial object, is a monomor-
phism.
When C is a regular category, the conditions above are also equivalent to the following
one:

(d) N -trivial objects do not have proper reqular quotients (i.e., any regular epimor-
phism with N -trivial domain is an isomorphism,).
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Proof. (a)<(b): The morphism W — 1 is a monomorphism if and only if in the
pullback

Wx W —sWw

o

W——=>1

71 is an isomorphism. Suppose W is N-trivial. If (a) holds, then W x W is also N/-
trivial and hence the diagonal (1w, lyw): W — W x W is an isomorphism. Since
is its right inverse, it follows that 7 is also an isomorphism. Conversely, if (b) holds,
then 71 is an isomorphism and hence W x W is N-trivial. This implies that (a) holds,
since N -trivial objects do not have proper subobjects, and hence their subobjects are
trivially N -trivial.

(b)<(c): This follows from the fact that if in the commutative triangle

w X
1
the bottom left arrow is a monomorphism, then so is the top one.

(¢)<(d) is straightforward (for (d)=-(c) use the fact any morphism decomposes as
a regular epimorphism followed by a monomorphism). O

According to the following proposition, under the presence of A -kernels, the case
when N is a closed ideal such that N-trivial objects do not have proper subobjects
gives precisely the proto-pointed context in the sense of [13] (see also [22]).

Proposition 3.3. For any category C, the following conditions are equivalent:

(a) Ewvery object in C has smallest subobject and C has pullbacks of smallest subob-
jects along arbitrary morphisms.

(b) C has a closed ideal N for which N -kernels exist and such that N -trivial objects
do not have proper subobjects.

Moreover, when the above conditions are satisfied, the class N above is unique and
consists of those morphisms f which factor through the smallest subobject of the
codomain of f. Further, N -trivial objects are precisely those who do not have proper
subobjects.

Proof. (a)=-(b): Let N/ be defined as at the end of the proposition. It is easy to see
that A is an ideal and that A/-trivial objects are precisely those who do not have
proper subobjects. The A/-kernel of a morphism f: X — Y can be constructed as the
pullback of the smallest subobject of Y along f. In particular, the N-kernel of an
identity morphism 1x: X — X is the smallest subobject k: K — X of X. Since k is
the smallest subobject of X, its domain K cannot have a proper subobject and thus
K is N-trivial. Since any morphism n: W — X in the class A/ factors through & (by
definition of ), we can conclude that A is a closed ideal.

(b)=(a): Let X be an object in C and consider the A-kernel kx: Kx — X of an
identity morphism 1x: X — X. Then kx € N and since A is a closed ideal, it factors
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through an N-trivial object. The fact that kx is a monomorphism implies that Kx is
a subobject of the same trivial object, which in turn implies that Kx is itself trivial.
Now, we prove that kx is the smallest subobject of X. Let m: M — X be any other
subobject. Consider the A/-kernel n of m. Since the composite mn belongs to N, it
must factor through kyx, and so kx! = mn for some monomorphism [. Then, [ is a
subobject of Ky and hence must be an isomorphism, since by assumption N -trivial
objects do not have proper subobjects. Thus kx factors through m as kx = mnl~".
Thus we have shown that N-kernels of identity morphisms are precisely the smallest
subobjects, which trivially implies that A is the class of those morphisms f which
factor through the smallest subobject of the codomain of f. Finally, the pullback of
a smallest subobject of an object X, along arbitrary morphism f: W — X, can be
constructed as the N -kernel of f. O

When the existence of N-kernels is required together with the existence of enough
trivial objects, we get precisely the quasi-pointed context studied in [4]:

Proposition 3.4. For a finitely complete category C, the following conditions are
equivalent:

(a) C has an initial object 0 such that the morphism 0 — 1 from 0 to the terminal
object 1 is a monomorphism, i.e., C is a quasi-pointed category.

(b) C has a closed ideal N for which N -kernels exist, N -trivial objects do not have
proper subobjects, and there are enough N -trivial objects.

Moreover, when the above conditions are satisfied, the class N in (b) above is unique
and is equal to the class of those morphisms which factor through an initial object.
Further, N -trivial objects are precisely the initial objects.

Proof. (a)=(b): Then, for any object X, the unique morphism 0 — X is the small-
est subobject of X. Applying Proposition 3.3, we get that the class A consisting of
those morphisms which factor through 0 is a closed ideal for which A-kernels exist
and such that N -trivial objects do not have proper subobjects. Further, then objects
who do not have proper subobjects are precisely the initial objects, and hence, by
Proposition 3.3, initial objects are precisely the N -trivial objects. Now, apply Propo-
sition 3.2 to conclude that there are enough A/ -trivial objects. This proves (b), while
uniqueness of A follows from Proposition 3.3.

(b)=(a): By assumption A/ -trivial objects are those that do not have proper sub-
objects. Then, since A is a closed ideal and C is nonempty (it contains the terminal
object), there must exist at least one such object 0. We show that 0 is an initial object.
First, observe that for any object X there can exist at most one morphism 0 — X,
for, if there are two different morphisms, their equalizer will be a proper subobject of
0. Let kx: K — X be the smallest subobject of X (which exists by Proposition 3.3
— it is the A-kernel of 1x as shown in the proof of the same proposition). Then K
does not have proper subobjects and so in the pullback

O0x K 2> K

o

0—1
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the morphism 77, which is a monomorphism since K — 1 is a monomorphism (by
Proposition 3.2), must be an isomorphism. This shows that there exists a morphism
from 0 to K, and hence there exists a morphism from 0 to X. We have thus shown that
0 is an initial object. By Proposition 3.2, the morphism 0 — 1 is a monomorphism. [

Obviously, both in the total and pointed contexts, there are enough trivial objects.
As it follows from Proposition 3.4, the proto-pointed context admitting enough trivial
objects is precisely the quasi-pointed context. In the quasi-pointed context, for any
two objects X and Y there exists at most one morphism X — Y which belongs to
N. Then, the notion of a star-kernel reduces to the notion of an N-kernel, just as
in the pointed context. Further, star-exact sequences introduced in Section 4 below
become precisely the short exact sequences defined in [4] in sequentiable categories,
which are protomodular regular quasi-pointed categories (and hence they are also
protomodular star-regular categories, as it follows from Proposition 3 in [4] which, in
our terminology, states that in a protomodular quasi-pointed category a morphism is
a regular epimorphism if and only if it is a coequalizer of its star-kernel).

Quasi-pointed varieties of universal algebras which are not pointed are precisely
those where the empty set is an algebra. Among these, star-regular ones are those
where the identity x = y holds in the corresponding algebraic theory, which forces
the category to be equivalent to the ordered set ({0,1}, <) regarded as a category.
This shows that the only “interesting” example of star-regularity in quasi-pointed
(one-sorted) varieties of algebras is the star-regularity in the pointed context, which
is exactly the context studied in [11] (which, in modern terminology, is the context of
pointed O-regular varieties). Some interesting examples of star-regular quasi-pointed
categories that are mot pointed do occur, however, in other algebraic contexts. For
instance, the category Grpdy of groupoids over a fixed set X of objects, which can
be presented as a variety of many-sorted algebras (where sorts would be pairs of
elements of X), is a quasi-pointed star-regular category which is rarely pointed (see
Example 6.6). Similar remarks apply when we consider Grpdy (C) internal to any
variety C (see e.g., [10], where the special case of Mal’tsev varieties is investigated).
In particular, when C is the variety of groups, Grpd y (C) is equivalent to the category
of crossed modules over a fixed group X.

We conclude this section with the following result, which will be useful in the
subsequent section:

Proposition 3.5. Let C be a reqular multi-pointed category with kernels. The follow-
ing conditions are equivalent:

(a) If a relation o: R = X is a bi-star, then R is an N -trivial object.

(b) If (s1,82): S = X is a relation such that sin,sen € N, thenn € N.

(c) In a diagram
H E

F:WiX

B
p—

with the usual commutativity conditions, if € is a monic star and ¢ is a star,
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then 3 is a star.

(d) C has enough trivial objects.

Proof. The less trivial part of the proof is the implication (d)=-(a). We begin by
considering kx: Kx — X, the N-kernel of 1x. Since kx belongs to N, it factors
through an A-trivial object T. So Kx is a subobject of T, hence it is also an N-
trivial object. Now, if p is a bi-star, then both p; and ps factor through kx; say
p1 =kxA1 and ps = kxAo. We get a monomorphism (A1, A2): R — Kx x Kx and,
consequently, R is an N-trivial object. O

4. Star-exact sequences and the 3 x 3 lemma

In a star-regular category, a (short) star-ezact sequence is a diagram

K—=x-1-v,
where k = (k1, k2) is a star-kernel of f and f is a coequalizer of k1 and ko (which,
by star-regularity, is the same as to say that f is a regular epimorphism). In the
total context, the notion of a star-kernel of a morphism becomes the notion of a
kernel pair of a morphism and a star-exact sequence is just an exact fork, while in the
pointed context they represent a kernel of a morphism and a short exact sequence,
respectively.

In this section we formulate a 3 x 3 lemma for star-exact sequences. Its diagram-
matic shape, therefore, resembles the denormalized 3 x 3 lemma [5], although it cap-
tures both the denormalized 3 x 3 lemma for the total context as well as the 3 x 3
lemma in the pointed context [4] (and more generally, the 3 x 3 lemma in the “quasi-
pointed context”, see [4]), which in the case of abelian categories gives the classical
3 x 3 lemma.

In a star-regular category, our 3 x 3 lemma concerns a commutative diagram

H——=F G
[ol ]
F—=x—1>v (1)
| Jm)
D=—=W— 2

of stars and morphisms. In particular, the commutativity of means that is
a constellation. A commutative diagram (1) will be called a 3 x 3 diagram when
all columns are star-exact sequences. The upper 3 x 3 lemma states that in a 3 x 3
diagram (1), if the second and third rows are star-exact sequences, then so is the first
row; the lower 3 x 3 lemma states that, if the first and second rows are star-exact
sequences, then so is the third row. The middle 3 x 3 lemma states that, in a 3 x 3
diagram (1), where fyp1 = fpo and the first and third rows are star-exact sequences,
the second row is a star-exact sequence. In the total context, the upper and the lower
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3 x 3 lemmas are equivalent, and they hold in a regular category precisely when it is a
Goursat category [14]. In the pointed context, they are also equivalent, and they hold
precisely when the normal category is subtractive [18]. In the total context the middle
3 x 3 lemma always holds true and, consequently, the denormalized 3 x 3 lemma
for regular categories is usually stated only in the upper and lower formulations.
However, in the pointed context, the middle 3 x 3 lemma is very meaningful since it
characterizes protomodular categories [4, 18].

In the rest of this section we study conditions which lead to a technical simplifi-
cation of our upper and lower 3 x 3 lemmas (see Section 5). This study is essentially
a direct generalization of the corresponding study in the total context carried out
in [5]. For the generalization to work, we need existence of enough trivial objects (see
Section 3), which we have both in the total and pointed contexts.

While our approach to the 3 x 3 lemma for star-exact sequences is very similar to
the one adopted in [5] for the denormalized 3 x 3 lemma, it is quite different from the
approach to the normalized 3 x 3 lemma used in [18] which is based on the classical
diagram chasing method (a direct “denormalization” of the approach used in [18]
seems to fail).

In a star-regular category, when all columns and rows in a given diagram (1) are
star-exact sequences, then certain properties concerning and must hold (for
the first part, we require the existence of enough trivial objects). In the total context,
necessarily represents the double equivalence relation FIOFE and is a pushout
(Proposition 2.1 in [5]) and in the pointed context it is easy to see that must
be a pullback and a pushout. For the general context, these conditions translate

into: is a universal constellation and is a pushout. We can get the condition
on the pushout from the following proposition, which is an immediate consequence
of Lemma 2.4 (b):

Proposition 4.1. In any star-regular category, let (1) be a 3 x 3 diagram with a

star-exact middle row. The square is a pushout if and only if d is a coequalizer of
d.

We get the condition on the universal constellation from the following theorem,
which will be proved throughout the rest of this section:

Theorem 4.2. In a star-reqular category with enough trivial objects, consider a com-
mutative diagram of stars and morphisms (1), where the first column is a star-exact
sequence, € is a star-kernel of e, ¢ is a star-kernel of f, and v is monic. Then the
following conditions are equivalent:

(a) ¢ is a monic star;
(b) B is a star-kernel of b;
(c) is a universal constellation.

The above theorem extends Theorem 2.2 of [5] to the star-regular context. More-
over, our proof of the above theorem follows, step-by-step, the proof given in [5].
The technical observations contained in this proof, as well as the theorem itself, are
used in Section 5 to establish the equivalence of the upper and lower 3 x 3 lemmas
in star-regular categories with enough trivial objects.
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We begin by observing that under the presence of enough trivial objects, we have
a stability property for star-kernels with respect to products:

Lemma 4.3. Suppose that C is a multi-pointed category with enough trivial objects.
Then, a pair € = (e1,e2): E =2 X is a star if and only if so is the pair € X € = (g1 X
€1,62 X €2): Ex E = X x X. Moreover, € is a star-kernel of e: X — W if and only
if e X € is a star-kernel of e x e: X x X — W x W.

Proof. The non-trivial part of the proof is to show that € x ¢ is a star whenever ¢ is.
This follows by applying Proposition 3.5(c) to the diagram

ExE—sXxX

T

I ——<) G
€ O

The following proposition characterizes universal constellations involving a star ¢
and a monic star €. The requirement that € below is a monic star can be dropped in
the total context, in which case the result below becomes precisely Remark 2.2 of [5].

Proposition 4.4. In a multi-pointed category C with enough trivial objects, consider

a constellation
E
1 0
X

where € is a monic star. If C has enough trivial objects, then the following conditions
are equivalent:

(a) The constellation (2) is universal.

(b) The commutative diagram

(B1,82)

—ExFE

H
a“ exe (3)
F

X xX

(p1,92)
is a star-pullback.

Proof. First, note that diagram (2) commutes if and only if diagram (3) commutes.
Lemma 4.3 guarantees that € x ¢ is also a star. It is easy to see that the universal
property of the constellation is the same as the universal property of the star-pullback.

O

The following propositions characterize universal constellations which are part of
diagrams involving stars and morphisms.
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Proposition 4.5. In a star-regular category with enough trivial objects, consider a
commutative diagram of stars and morphisms

=}
-

9

where the left column is a star-exact sequence and € is the star-kernel of e. Then
is a universal constellation if and only if 6 is monic.

Proof. Use Proposition 4.4, Lemma 4.3 and apply Lemma 2.5 to the following dia-
gram:

(B1,82) BB e B

H——
H eXe
F

Using a similar argument as in the proof of the above proposition, we have:

Proposition 4.6. In a multi-pointed category with enough trivial objects, consider a
commutative diagram of stars and morphisms

B
H——=F G
F:;X*)f Y,

where ¢ is a star-kernel of f and ~ is monic. Then s a universal constellation if
and only if B is a star-kernel of b.

Proof. Use Proposition 4.4, Lemma 4.3 and apply Lemma 2.4(a) to the following
diagram:
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B
H——=F b G
(Oflva2>l l(ﬁlﬂ) {71,72)
FxF——=XxX Y xY.
pXp fxf O

Altogether, this proves Theorem 4.2.

5. The equivalence of the upper and lower 3 x 3 lemmas

Thanks to Theorem 4.2, the upper 3 x 3 lemma can be equivalently reformulated as
follows: in a 3 x 3 diagram (1), if the second and third rows are star-exact sequences,
then b is a regular epimorphism. Similarly, the lower 3 x 3 lemma becomes: in a 3 x 3
diagram (1), if the first and second rows are star-exact sequences, then § (which
becomes a relation) is a star-kernel of d. In this section we shall investigate each of
these lemmas separately.

We begin by recalling some terminology from [12]. By a diamond we mean a
commutative diagram

WyX\fY
N

(Note that this use of the term “diamond” is different from the one in [16].) We say
that the diamond (4) is:

e left saturated if the direct image e(n}> along e of the star-kernel 7% of f is the
star-kernel of d:

(4)

e(m}) =K
e right saturated if, symmetrically, f(k}) = Kj;
e saturated if it is both left and right saturated;

e a reqular diamond if all morphisms in the diamond are regular epimorphisms.

Definition 5.1. [12] C is said to have the symmetric saturation property if the fol-
lowing equivalent conditions hold:

(a) Any left saturated regular diamond is right saturated.
(b) Any right saturated regular diamond is left saturated.

(¢) Left/right saturated regular diamonds are the same as the saturated ones.

Theorem 5.2. In a star-regular category C with enough trivial objects, the following
conditions are equivalent:

(a) The upper 3 x 3 lemma holds in C.
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(b) The lower 3 x 3 lemma holds in C.

(¢) C has the symmetric saturation property.

Proof. (a)<(c): Suppose first the upper 3 x 3 lemma holds true. From a left saturated
regular diamond (4) build a diagram (1) by attaching to the diamond star-kernels of
its edges, and the induced factorizations, and completing the top left square in (1)
with a universal constellation. By Proposition 4.6 and by the left saturation of the
diamond, the first column in (1) is a star-exact sequence. Then (1) is a 3 x 3 diagram.
Applying the upper 3 x 3 lemma we get that the diamond is right saturated.

The converse is trivial: to get the upper 3 x 3 lemma, apply the saturation assump-
tion to the diamond that appears as the bottom right square in a 3 x 3 diagram.

(b)<(c): Suppose first the lower 3 x 3 lemma holds true. From a right saturated
regular diamond (4) build a diagram (1) by attaching to the diamond star-kernels
of its edges e, f,g, and the induced factorization from the star-kernel of e to the
star-kernel of g, which is a regular epimorphism since the diamond is right saturated.
Then, take the top left square of (1) to be the universal constellation. Complete the
bottom left square of (1) via the regular image of the star-kernel of f along e. By
Proposition 4.6, the first column is a star-exact sequence. Now, by Proposition 4.6
again the first row is a star-exact sequence. Applying the lower 3 x 3 lemma we get
precisely the left saturation of the diamond.

Conversely, consider a 3 x 3 diagram (1) where the first two rows are exact. By
Theorem 4.2, § is monic, and since a is a regular epimorphism, we get that § is the
image of ¢ under e. Now, the bottom right square is right saturated, and therefore
left saturated, which gives the exactness of the bottom row. O

As shown in [12], in the total context the symmetric saturation property is equiv-
alent to the Goursat property, while in the pointed context, it is equivalent to sub-
tractivity. So the above result unifies Proposition 1 of [14] (which is then exactly
Theorem 5.2 in the total context) with Theorem 5.4 of [18] (which is the same as
Theorem 5.2 in the pointed context).

The following corollary of the above theorem partially refines the theorem:

Corollary 5.3. In each of the pointed, proto-pointed and total contexts, for a star-
reqular category C the following conditions are equivalent:

(a) The upper 3 x 3 lemma holds in C.
(b) The lower 3 x 3 lemma holds in C.

(¢) C has enough trivial objects and has the symmetric saturation property.

Proof. In the total and in the pointed contexts this becomes precisely Theorem 5.2,
since in these contexts there always are enough trivial objects. Also, after Theo-
rem 5.2, to prove the equivalence of the above conditions in the proto-pointed con-
text, it suffices to prove that the upper and the lower 3 x 3 lemmas each imply the
presence of enough trivial objects. According to Proposition 3.2, showing the pres-
ence of enough trivial objects is equivalent to showing that trivial objects do not
have proper quotients. For this, the following fact, which follows directly from Propo-
sition 3.3, will be needed: for any object X, a morphism W — X x X from the class
N always factors through the diagonal X — X x X. Let Z be a trivial object and let
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q: Z — @ be a regular epimorphism. Then the object @), being a regular quotient of a
trivial object is itself trivial. Now, using the fact mentioned above, the following 3 x 3
diagram can be constructed, with the middle and the bottom rows being star-exact:

(1z,1z) q
Y e—— AR

Q
(1z,1z)H u(lelQ)
ZxqQZ é; A g Q
lzxgz 1z
?;Z

—_—
\( 1Q
B —

ZXQZ Q

q
The upper 3 x 3 lemma implies that the top row is star-exact, and hence, by star-
regularity, ¢ is a coequalizer of the pair (1z,1z): Z = Z, which shows that ¢ is an
isomorphism. To deduce that g is an isomorphism from the lower 3 x 3 lemma, we
should construct the following 3 x 3 diagram:

1z

A4
(1Z,1Z)“/ Rq Rq
(1z,1z)
Z
Z

(9,9) lo

Since the top and the middle rows are star-exact, the lower 3 x 3 lemma implies
that the lower row is star-exact. In particular, this gives that the star (¢,¢): Z = Q
is monic, and hence ¢ is a monomorphism. Since ¢ is at the same time a regular
epimorphism, it follows that ¢ is an isomorphism. O

Remark 5.4. The above corollary can be used to deduce that our upper and lower
3 x 3 lemmas fail in the proto-pointed context of the category Rng of unitary rings.
This can be also seen directly, by choosing Z in diagrams (5) and (6) to be the ring Z
of integers, and @) any of its proper quotients. Since Rng has a good theory of ideals
(see [22, 13]), this shows that in general, in a category with a good theory of ideals,
both the upper and the lower 3 x 3 lemmas may fail.
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6. The middle 3 x 3 lemma

In the context of star-regular categories, the short five lemma states that, given a
commutative diagram of horizontal star-exact sequences

©
Fe—ex-toy

1

D:5§WT>Z,

if @ and g are isomorphisms then e is an isomorphism.

In the pointed context, this becomes the classical short five lemma, while in the
total context this lemma (which can be called the “denormalized short five lemma”)
always holds true. Indeed, the fact that ¢ and ¢ are both reflexive relations, together
with a being an isomorphism, imply that e is both a monomorphism and a split
epimorphism, thus an isomorphism.

Lemma 6.1. In a star-reqular category where the short five lemma holds, given a
commutative diagram (7) of horizontal star-exact sequences, e is a regular epimor-
phism whenever a and g are regular epimorphisms (we say in this case that the short
five lemma for regular epimorphisms holds).

Proof. Suppose the short five lemma holds. We would like to show that in the diagram

*

Fy
Kiji»Y

| )

Kaq

with a and g regular epimorphisms, e is also a regular epimorphism. This diagram
can be decomposed as follows, where ip = e is the factorization of e as a regular
epimorphism p followed by a monomorphism i:

In the above diagram we get the induced star o: K4 = I due to the fact that a
is a regular epimorphism. Since the left hand side of the bottom part of the above
diagram is a star-pullback, applying Lemma 2.4 we get that o is the star-kernel of di.
Now, the short five lemma implies that ¢ is an isomorphism, and hence e is a regular
epimorphism, as desired. O
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Theorem 6.2. In a star-reqular category with enough trivial objects, the short five
lemma holds if and only if the short five lemma for reqular epimorphisms holds.

Proof. The “only if” part is given by Lemma 6.1. To prove the “if” part, consider
a commutative diagram of horizontal star-exact sequences (7), with a and g being
isomorphisms. Then, e is a regular epimorphism. Since the category is star-regular, to
prove that e is an isomorphism it suffices to show that the star-kernel } of e factors
through the star-kernel A% = (kx,kx) of 1x, which is the same as to show that x}
has a diagonal form % = (¢’,€’). First, observe that s factors through ¢:

K.
/o

i f
F— X ——Y
O

D:(;;WT)Z'

Since the composite ex* = dab is a bi-star, from Proposition 3.5(b) we get b € N.
This implies that & is a bi-star. Then, % is of the from &} = (kxc1, kxc2), where kx
denotes the N -kernel of 1x: X — X. We want to show that ¢; = ¢2. Notice that A%
factors through ¢ via some monomorphism m. Using the fact that a is an isomorphism
and § is monic we easily get mec; = b = mcy. This implies that ¢; = cs. O

Proposition 6.3. In a star-regular category with enough trivial objects, if the short
five lemma holds then the middle 3 x 3 lemma holds.

Proof. Let (1) be a 3 x 3 diagram such that first and third rows are star-exact
sequences and f¢1 = fpo. Then f is a regular epimorphism by Lemma 6.1. We can
form the following commutative diagram: let x%: Ky = X be the star-kernel of f
and e: Ky =+ D and w: F' — Ky the induced morphisms such that Je = e/@} and
kyw = . Then, by taking the star-kernel £ : Kz =% Ky of the regular epimorphism
€ we can generate a commutative diagram

HLK§:E;E4>

where Rw = . By Proposition 3.5(c), % is a star. Since § is monic, applying Theo-
rem 4.2 to the right hand side 3 x 3 diagram above, we can conclude that % is the
star-kernel of b. Consequently, w is an isomorphism. To finish, we just apply the short
five lemma to the left part of the above diagram to conclude that w is an isomorphism.
This proves that the middle row in diagram (1) is a star-exact sequence. O
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Definition 6.4. [12] A morphism f: X — Y is said to be saturating if the diamond
1 X f
x
X / \ Y
N
Y
is right saturated.

Any morphism is saturating in both total and (proto-)pointed contexts.

Theorem 6.5. Let C be a star-regular category with enough trivial objects and satu-
rating reqular epimorphisms. Then the following conditions are equivalent:

(a) The middle 3 x 3 lemma holds in C.
(b) The short five lemma holds in C.

(¢) The short five lemma for reqular epimorphisms holds in C.

Proof. (a)=(b): Consider a commutative diagram of horizontal star-exact sequences

¥ f
F—=X——>Y
F=—=%W—~V.

From the top row of the above diagram, construct a commutative diagram

B
KFﬁKX*b>KY

@ f

F——= X ——Y

1)

where, by Proposition 3.5(c), 8 is a star. Then, by Theorem 4.2, 3 is a star-kernel
of b and since f is saturating, b is a regular epimorphism. Therefore, the top row is
star-exact. Now, in the above diagram, replace the bottom part with the diagram we
had in the beginning:
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KF:;KX4b>KY

©
F X ! Y

_—

F:6§W4d>Y.

By the middle 3 x 3 lemma (with the role of rows and columns switched), the middle
column is a star-exact sequence. Consequently, e is the coequalizer of A% = (kx, kx)
and thus it is an isomorphism.

(b)=(a) by Proposition 6.3, and (b)<(c) by Theorem 6.2. O

Ezample 6.6. In the quasi-pointed context, Theorem 6.5 gives a characterization of
sequentiable categories introduced in [4]. Among examples of sequentiable categories
are the categories Grpdy of groupoids over a fixed set X of objects. More generally,
the category Grpdy(C) of internal groupoids in a regular category C over a fixed
object X of objects is sequentiable, as noted in [4]. The category Grpd y (C) is pointed
if and only if the diagonal X — X x X is an isomorphism.

Combining the above result with Theorem 5.2, we obtain:

Corollary 6.7. Let C be a star-regular category with enough trivial objects and sat-
urating regular epimorphisms. Then the following conditions are equivalent:

(a) The complete 3 x 3 lemma holds in C (i.e., the lower, upper and middle 3 x 3
lemmas hold in C).

(b) Any left saturated diamond (4) with regular epimorphic edges f,g,d, is both
reqular and saturated.

Ezample 6.8. Among the classes of multi-pointed categories C satisfying all condi-
tions stated in Corollary 6.7 are the following ones:

e In the total context, they are precisely the Goursat categories, i.e., regular
categories where composition of kernel pairs is 3-permutable. Corresponding
varieties of universal algebras are known as 3-permutable varieties in universal
algebra.

e In the proto-pointed context they are precisely the sequentiable categories (this
follows from our results as well as from those obtained in [4]). In particular, in
the pointed context, we get precisely the homological categories [2], i.e., pointed
regular protomodular categories. Corresponding pointed varieties of universal
algebras are precisely the pointed classically ideal determined varieties [20, 21].
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