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ROUQUIER COMPLEXES ARE FUNCTORIAL OVER
BRAID COBORDISMS
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Abstract
Using the diagrammatic calculus for Soergel bimodules devel-
oped by B. Elias and M. Khovanov, we show that Rouquier
complexes are functorial over braid cobordisms. We explicitly
describe the chain maps which correspond to movie move gen-

erators.
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1. Introduction

Let g be a semisimple lie algebra, W its Weyl group, V' the geometric representation
of W (i.e. the span of the root system), and R the ring of polynomial functions
on V, equipped with an action of W. Soergel in [14] introduced a full monoidal

Received July 29, 2009, revised February 6, 2010; published on September 16, 2010.

2000 Mathematics Subject Classification: 57TM27, 20F36.

Key words and phrases: Soergel bimodule, Rouquier complex, link homology, braid cobordism.
This article is available at http://intlpress.com/HHA/v12/n2/a4

Copyright (© 2010, International Press. Permission to copy for private use granted.



110 BEN ELIAS aND DAN KRASNER

subcategory SC of graded R-bimodules which was to play a significant role in the
representation theory of g and other related fields. There is an isomorphism between
the (additive) Grothendieck ring of SC and the Hecke algebra H associated to W,
where the Kazhdan-Lusztig generators b; of H lift to bimodules B; which are easily
described. The full subcategory generated monoidally by these bimodules B; is here
called §Cq, and its objects are commonly referred to as Bott-Samelson bimodules.
The category including grading shifts and direct sums of Bott-Samelson bimodules is
refered to as SCo, and its idempotent closure, which contains all direct summands, is
SC; its objects are called Soergel bimodules.

Soergel bimodules are intrinsically linked to the geometry of flag varieties, hence
their importance for geometric representation theory. See [15, 16, 17| for more
details. We will focus on the strong connections between SC, and knot theory that
have come to light more recently, and trace the history below.

Let F'r denote the free monoid generated by overcrossings and undercrossings
on n + 1 strands. Let Br denote the braid group, the quotient of F'r by the braid
relations. We distinguish between a braid, which is an element of Br, and a braid
diagram, which is an element of F'r, or a word in crossings. Let 1 denote the identity
of F.

An action of a group G on a category C is, for every g € G, an endofunctor F,; of
C such that F, o F}, is isomorphic to Fyo. The philosophy of categorification tells us
that one can often enrich the structure by understanding the natural transformations
between functors, like the relations between these isomorphisms. In the case of Br,
the category of braid cobordisms BrCob gives us a reasonable notion of what this
extra structure should be. This category has braid diagrams as objects (viewed as
1-manifolds with boundary), and cobordisms of these diagrams as morphisms. The
relations of the braid group lift to isomorphisms in BrCob. Therefore, we may define a
functorial braid group action as a functor from BrCob to the category of endofunctors
of C (morphisms are natural transformations); on isomorphism classes, this returns
an action of Br on C. The introduction to [8] contains a nice general description of
this concept.

The category BrCob is equivalent to a combinatorially defined category, where
cobordisms are replaced by movies (see Carter-Saito, [2]). For instance, the Reide-
meister 3 move on a braid diagram is now a movie between two objects, whose inverse
is another Reidemeister 3 move. To make a braid group action functorial would be
to construct, for each movie between diagrams g and h, a natural transformation
between F, and Fj, such that these natural transformations satisfy the same rela-
tions as movies do (relations amongst movies are typically called movie moves).

Rouquier, in [13], discovered that one could use complexes of Soergel bimodules
to construct an action of the braid group. To the i*" overcrossing (resp. undercross-
ing) Rouquier associates a complex, which has R in homological degree 0 and B; in
homological degree —1 (resp. 1). To a word in these generators, one associates the
tensor product of these basic complexes. For w € Fr we denote by F,, the Rouquier
complex for w, viewed as an object in the homotopy category of SC2. We also have a
fully faithful functor from the homotopy category of SCs to the endofunctor category
of the homotopy category of R-bimodules, given by tensoring with a complex; we
abuse notation and use F,, to refer to this functor as well. Rouquier showed that two
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words in F'r which are equal in Br correspond to homotopic complexes, and therefore
we get an action of Br on the homotopy category of R-bimodules.

Note that the complex Fj is simply R in homological degree 0. Therefore the
(degree 0) endomorphisms of Fj are just multiplication by scalars. Thanks to certain
adjunction properties, the endomorphisms of any functor F,, will consist only of
rescaling, and the space of maps modulo homotopy between complexes associated to
equivalent words in the braid group will be 1-dimensional.

On a seemingly unrelated note, M. Khovanov and L. Rozansky in [6] and [7] dis-
covered a new invariant of tangles. To a tangle, one associates a matriz factorization,
which is essentially a 2-periodic complex. In [6], the corresponding link homology
theory is a categorification of the sl(n)-polynomial and in [7] that of the HOMFLY-
PT polynomial. Moreover, they show (see Ch. 9 and 10 of [6]) that this theory is
projectively functorial or functorial up to sign on tangle cobordisms for si(n)-link
homology and, similarly, on braid cobordisms for HOMFLY-PT link homology. That
is, for every cobordism S of tangles one can associate a map ¢g of matrix factoriza-
tions, and for a composition of cobordisms one has ¢s, 0 ¢5, = £¢ds,05,- The proof
of this equality is simple and abstract. Using arguments similar to the previous para-
graph, one shows that the space of matrix factorization maps is 1-dimensional, and
thus these two sides must agree up to a scalar. Since both sides are typically isomor-
phisms and the calculation may be done over Z, this scalar must be £1. The maps
¢ are complicated, and while in theory the paper might give enough information to
define them explicitly (in Ch 8-10), it would take an incredibly diligent reader to do
so. Moreover, for a certain saddle cobordism S, the map ¢g (which they call 5 in
Ch. 9 of [6]) can not be defined in a consistent way as to avoid the sign issue above;
in other words, functoriality must fail on tangle cobordisms, and only functoriality
up to a sign can hold.

In [5], Khovanov united this matrix factorization theory with Rouquier’s work.
To obtain a knot from a braid one may take its closure, wrapping the top boundary
around to the bottom. Given a word in the braid group, one can cycle a crossing
from the beginning of the word to the end and this will not change its closure: the
closure of zy is the same as the closure of yr. When replacing a braid with its
Rouquier complex, Khovanov made the key observation that taking the braid closure
should effectively correspond to equating the left and right actions of R, also known
as taking Hochschild homology, for which HH(M ® N)= HH(N @ M). Rouquier
complexes naturally have two gradings, the homological grading and the internal
grading of Soergel bimodules, and taking their Hochschild homology adds a third
grading (its own homological grading). Khovanov showed that, up to degree shifts,
this construction yields an equivalent triply-graded complex to the one produced by
Khovanov-Rozansky HOMPLY-PT link homology for that braid closure.

Khovanov and Thomas in [8] demonstrate numerous places where braid group
actions on categories lift functorially or projectively functorially to braid cobordisms.
Section 3.3 deals with the case of Rouquier complexes, where they show that Rouquier
complexes lift projectively functorially. The proof is again the same (at least, when it
comes to checking most movie moves): knowing that Hom spaces are 1-dimensional
and that an isomorphism exists, any choice of isomorphism for the movie will satisfy
the movie moves up to a sign. However, nothing is done explicitly: the only maps
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of complexes which are given are the simple ones corresponding to birth and death
movies. To our knowledge, no one has bothered to take the functoriality maps of
Khovanov and Rozansky and translate them to the context of Rouquier complexes,
nor is it clear how this would be done. Khovanov and Thomas do suggest that many
of these projective functors can be made into genuine functors, although their method
of proof does not lend itself to showing this.

Recently, in [4], the first author in conjunction with Khovanov gave a presentation
of the category SC; in terms of generators and relations. It was shown that the entire
category can be drawn graphically, thanks to the biadjointness and cyclicity proper-
ties that the category possesses. Each B; is assigned a color, and a tensor product
is assigned a sequence of colors. Morphisms between tensor products can be drawn
as certain colored graphs in the plane, whose boundaries on bottom and top are the
sequence of colors associated to the source and target. Morphisms are invariant under
isotopy of the graph embedding, and satisfy a number of other relations, described
herein. In addition to providing a presentation, this graphical description is useful
because one can use pictures to encapsulate a large amount of information; compli-
cated calculations involving compositions of morphisms can be visualized intuitively
and written down suffering only minor headaches.

Because of the simplicity of the diagrammatic calculus, we were able to calculate
explicitly the chain maps which correspond to each generating cobordism in the braid
cobordism category, and check that these chain maps satisfy the same relations that
braid cobordisms do. The general proofs are straightforward and computationally
explicit, performable by any reader with patience, time, and colored chalk. This makes
the results of Rouquier and Khovanov that much more concrete, and implies the
following new result.

Theorem 1.1. There is a (genuine) functor F from the category of combinato-
rial braid cobordisms to the category of complexes in SCo up to homotopy, lifting
Rouquier’s complexes.

In fact, this functor is essentially unique, with the freedom being a choice of scalar
and a choice of sign.

To save time and avoid extra calculations, we too will on occasion use the 1-
dimensionality of Hom spaces. Knowing that two maps are homotopic up to a scalar,
we use the machinery developed by Clark, Morrison, and Walker [3], which allows
one to calculate the scalar in question on a certain summand of a complex. The
alternative would be to multiply eight 6x6 matrices by hand, several times. However,
this machinery is unnecessary, and explicit calculations (and a LOT of colored chalk)
could replace it.

This introduction has motivated Theorem 1.1 by discussing the links between
Rouquier complexes and link homology. HOMFLY-PT link homology is an impor-
tant link invariant. Many computations of HOMFLY-PT link homology were done by
B. Webster [19], and by J. Rasmussen in [11] and [12]. In the latter paper [12], Ras-
mussen showed that given a braid presentation of a link, for every n € N there exists
a spectral sequence with E'-term its HOMFLY-PT homology and the E*°-term its
sl(n) homology. This was a spectacular development in understanding the structural
properties of these theories, and has also proven very useful in computation (see for
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example [10]). In order to apply our pictures to help calculate link homology, one
should also come up with a diagrammatic picture for the higher Hochschild homology
of Soergel bimodules. At the given moment this does not yet exist, although some
insights have emerged. When the complete picture is developed, it should hopefully
give an explicit and easily computable description of HOMFLY-PT link homology and
functoriality therein, and possibly also the spectral sequences to other link homolo-
gies.

The careful reader might worry that functoriality of link homology would contra-
dict the statement of [6], mentioned earlier, that their invariant of tangle cobordisms
has an unavoidable sign issue. There are two ways of moving from braids to links:
thinking of the braids in a larger category of tangles (which has cups and caps), or
taking the braid closure. The former will lead to additional cobordisms dealing with
cups and caps, like the saddle and its map 7 mentioned above, which ruin functorial-
ity. The latter consists, for Rouquier complexes, in applying the Hochschild homology
functors. As functors, they will naturally preserve the extra structure of braid cobor-
dism maps. We have shown that, for links which come from braid closures, their
HOMFLY-PT link homology is functorial over cobordisms which come from braid
cobordisms. This does not contradict [6].

Soergel bimodules are generally defined over certain fields k in the literature,
because one is usually interested in Soergel bimodules as a categorification of the
Hecke algebra, and in relating indecomposable bimodules to the Kazhdan-Lusztig
canonical basis. However, we invite the reader to notice that the diagrammatic con-
struction in [4] can be made over any ring, and in particular over Z. In fact, all our
proofs of functoriality still work over Z. We discuss this in detail in section 5.2. In [9],
the second author uses the work done here to define HOMFLY-PT and si(n)-link
homology theories over Z, a construction which is long overdue. We also plan to
investigate the Rasmussen spectral sequence in this context.

The organization of this paper is as follows. In Section 2 we go over all the previous
constructions that are relevant to this paper. This includes the graphical presentation
of SC, the combinatorial braid cobordism category, and Rouquier’s complexes which
link SC to braids. In Section 2.5 we describe the conventions we will use in the remain-
der of the paper to draw Rouquier complexes for movies. In Section 3 we define the
functor from the combinatorial braid cobordism category to the homotopy category
of SC, and in Section 4 we check the movie move relations to verify that our functor
is well-defined. These checks are presented in numerical order, not in logical order,
but a discussion of the logical dependency of the proofs, and of the simplifications
that are used, can be found in Section 4.1. Section 5 contains some useful statements
for the interested reader, but is not strictly necessary. Some additional light is shed
on the generators and relations of SC in Section 5.1, where it is demonstrated how
the relations arise naturally from movie moves. In Section 5.2 we briefly describe how
one might construct the theory over Z, so that future papers may use this result to
define link homology theories over arbitrary rings.
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2. Constructions

2.1. The Soergel Categorification

For Soergel’s original definition see [14], and for an easier version, see [17]. For
more details, see [4].

Let I be a finite subset of Z. We work in type Aj, which is the sub-Dynkin diagram
of A given by vertices I. We say i, j € Z are adjacent if |i — j| = 1, and are distant
if | — j| > 2. We do not include I in the notation when it is generic.

The Hecke algebra H(I) of type A has a presentation as an algebra over Z [t, fl]
with generators b;, ¢ € I and the Hecke relations

b = (t+t )b (1)
bibj = bjbz for distant ’L,] (2)
bibjbi + bj = b]blbj + b; for adjacent i, j. (3)

Let R(I) be the coordinate ring of the geometric representation of type A;. Let us
call the category of Bott-Samelson bimodules SC; (I). It is a full monoidal subcategory
of R(I)-bimodules, whose objects are all free as left R(I)-modules, which is generated
by certain objects B;, i € I. These objects satisfy

B;® B; 2 B;{1} @ B;{-1}
B; ® B; =2 B; ® B, for distant 1, j
B, ® B; ® B; ® B; = B; ® B; ® B; ® B; for adjacent i, j.

4
)
6

~ — ~—

1S

~— o~ —

The Grothendieck group of SC; (or rather, of its additive and grading closure
isomorphic to H, with [B;] being sent to b;, and [R{1}] being sent to ¢.

We write the monomial b;, b;, - - - b;, € H as b; where 2 = 41 ... 144 is a finite sequence
of indices; by abuse of notation, we sometimes refer to this monomial simply as z. If
1 is as above, we say the monomial has length d. We call a monomial non-repeating if
iy, # 9y for k # [. The empty set is a sequence of length 0, and by = 1. Similarly, write
B;, ® ---® B;, as B;. Note that By = R, the monoidal identity.

Each object in SC; has a biadjoint with respect to ®, and B; is self-biadjoint. Let
w be the t-antilinear anti-involution on H which fixes b;, i.e. w(t*b;) = t~%b,(;) where
o reverses the order of a sequence. Then the contravariant functor sending an object
to its biadjoint will descend on the Grothendieck group to w.

Let e: H - Z [t,t’l] be the Z [t, t’l]—linear map which is uniquely specified by
e(zy) = e(yz) for all x,y € H and €(b;) = t?, whenever % is a non-repeating sequence
of length d. Let (,): H x H — Z [t,t~'] be the map which sends (z,y) — €(w(z)y).
These structures (the pairing, w, €) clearly commute with various inclusions H(I) C
H(T).

One useful feature of SC; is that it is easy to calculate the dimension of Hom

spaces in each degree. Let HOM(M, N) dZEfEB Hom(M, N{m}) be the graded

mEZ
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vector space (actually an R-bimodule) generated by homogeneous morphisms of all
degrees. Because each B; is free as a left R-bimodule, HOM(B;, B]_') is a free left
R-module, and its graded rank over R turns out to be (b;, b;).

Remark 2.1. Soergel’s proof of the compatibility of (,) and HOM is geometric. For [4],
proving the equivalence of their diagrammatic category and Soergel’s category was
effectively proving that the diagrammatic category also was compatible with (,) (the
proof of which used a cognate of Theorem 2.7 below). However, once this compatibility
is shown, calculating the size of HOM spaces is easy, and by counting dimensions one
can show Theorem 2.7 and similar results. We will use this to show that certain
Hom spaces have dimension 1 or 0 (in specific degrees), which will help to classify
morphisms and homotopies between Rouquier complexes.

For two subsets I C I' C Z, the categories SC(I) and SC(I’) are embedded in
bimodule categories over different rings R(I) and R(I’), but there is nonetheless a
faithful inclusion of categories SC(I) — SC(I’). This functor is not full: the size of R
itself will grow, and HOM(By, By) = R. However, the graded rank over R does not
change, since the value of € does not change over various inclusions. Effectively, the
only difference in Hom spaces under this inclusion functor is base change on the left,
from R(I) to R(I"). We say the inclusion functor is fully faithful after base change.

As a result of this, most calculations involving morphisms between Soergel bimod-
ules will not depend on which I we work over. A graphical version of this property is
forthcoming. In particular, the calculations we do for the braid group on m strands
will also work for the braid group on m + 1 strands, and so forth.

2.2. Soergel Diagrammatics

We review the diagrammatic presentation of SC; by generators and relations,
found in [4]. See that paper for further details. We will not describe the equivalence
between this presentation and that of Soergel. We will first deal with the case where
I=1{1,2,...,n}, and then discuss what the inclusions of categories from the previous
section imply for the general setting.

Remark 2.2. Technically, SC; is equivalent to Soergel’s original construction, but it
is not the same as the category in [4], which we call SC}. The latter is a category
of R’ bimodules, where R’ = k|x1,...,Zn41] is the coordinate ring of the standard
representation of S,11, not the geometric representation. Our ring is R = R'/(e1),
where e; = o1 + - - - + 2,4 1. Any symmetric polynomial is in the center of SC/, which
means that taking the quotient of the category by e is a simple affair. This is discussed
briefly in [4], Section 4.5. So long as n + 1 is invertible in k, one can express the images
of z; in R as linear combinations of f; € R, where f; is the image of x; — x;11 and
corresponds precisely to the “double dot” colored 7 in SC; (see below). From this, it
is fairly easy to define the equivalence of categories between SC; and the quotient of
SC} by e1. We leave it as an exercise to show that, when one rewrites the relations
involving polynomials from SC} in double dot form, one gets the dot sliding relations
below.

When n + 1 is not invertible (for instance, when working over Z), R is a proper
k-submodule of R'/(e1). In this circumstance, working with SCy (as defined below)
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is more natural than taking the e; quotient, and agrees with Soergel’s original con-
struction. See Section 5.2 for more about working over Z.

An object in SC; is given by a sequence of indices 2, also called B;, which is
visualized as d points on the real line R, labelled or “colored” by the indices in order
from left to right. Morphisms are given by pictures embedded in the strip R x [0, 1]

(modulo certain relations), constructed by gluing the following generators horizontally

and vertically:
t ¢ Y A
X X X

For instance, if “blue” corresponds to the index 7 and “red” to j, then the lower
right generator is a morphism from jij to iji. The generating pictures above may exist
in various colors, although there are some restrictions based on adjacency conditions.

With apologies to readers without access to a color version of this paper, we will
refer to the darker color as “blue” and the lighter color as “red.” Occassionally we
will use a third color, which is represented with a dashed “orange” line.

We can view a morphism as an embedding of a planar graph, satisfying the fol-
lowing properties:

1. Edges of the graph are colored by indices from 1 to n.

2. Edges may run into the boundary R x {0, 1}, yielding two sequences of colored
points on R, the top boundary z and the bottom boundary j. In this case, the
graph is viewed as a morphism from j to 1.

3. Only four types of vertices exist in this graph: univalent vertices or “dots”, triva-
lent vertices with all three adjoining edges of the same color, 4-valent vertices
whose adjoining edges alternate in colors between ¢ and j distant, and 6-valent
vertices whose adjoining edges alternate between ¢ and j adjacent.

The degree of a graph is +1 for each dot and -1 for each trivalent vertex. 4-valent
and 6-valent vertices are of degree 0. The term graph henceforth refers to such a graph
embedding.

By convention, we color the edges with different colors, but do not specify which
colors match up with which ¢ € I. This is legitimate, as only the various adjacency
relations between colors are relevant for any relations or calculations. We will specify
adjacency for all pictures, although one can generally deduce it from the fact that
6-valent vertices only join adjacent colors, and 4-valent vertices join only distant
colors.

As usual in a diagrammatic category, composition of morphisms is given by vertical
concatenation, and the monoidal structure is given by horizontal concatenation.

In writing the relations, it will be useful to introduce pictures for the “cup” and
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U=Y
N=X

We then allow k-linear sums of graphs, and apply the relations below to obtain our
category SC1. Some of these relations are redundant For a more detailed discussion
of the remarks in the remainder of this section, see

(7)

[\J ®
[ ©
rY

= (X 1)
X

Il
JR—Y
I

0
d
Y\
L =

X

xX>—

(12)

Remark 2.3. Any two embedded graphs which are connected by isotopy (fixing the
boundary) are linked by the relations (8) through (12), so the morphism specified
by a particular graph embedding only depends on its isotopy class. We could have
described the category more simply by defining a morphism to be an isotopy class of
a certain kind of planar graph. However, it is useful to understand that these “isotopy
relations” exist, because they will appear naturally in the study of movie moves (see
Section 5.1).

The embedded graphs constructed from our generating pictures can have no hori-
zontal lines. However, we can allow embedded graphs with horizontal lines to represent
any graph in its isotopy class which is constructible. Thanks to the isotopy relations,
the resulting morphism is unambiguous.

X = )—( (13)

Remark 2.4. Relation (13) effectively states that a certain morphism is invariant
under 90 degree rotation. To simplify drawings later on, we often draw this mor-

phism as follows:

Note that morphisms will still be isotopy invariant with this convention.
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Here are the remainder of the one color relations.
Y: | = Y (14)
? = O (15)

1| +|:=2# (16)

In the following relations, the two colors are distant.

|
X =Y e
=y

II = II (20)

In this relation, two colors are adjacent, and both distant to the third color.

“‘X"’ = 'X\‘\ (2 1 )

In this relation, all three colors are mutually distant.

O o
\ = N 22
s‘ Q
O
\)
S o N

Remark 2.5. Relations (17) through (22) indicate that any part of the graph colored
1 and any part of the graph colored j “do not interact” for ¢ and j distant. That is,
one may visualize sliding the j-colored part past the i-colored part, and it will not
change the morphism. We call this the distant sliding property.

In the following relations, the two colors are adjacent.

g% -
' T
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¥ -

-J=qepese-th

The last equality in (26) is implied by (16), so it is not necessary to include as a
relation. In this final relatlon, the colors have the same adjacency as {1,2,3}.

Remark 2.6. Because of isotopy invariance, the object B; in SC; is self-biadjoint. In
particular, instead of viewing the graph in R x [0,1] as a morphism from 2z to j, we
could twist it around and view it in the lower half plane (with no bottom boundary)
as a morphism from ) to 2o (j).

We refer to any connected component of a graph which is a dot connected directly
to the boundary as a boundary dot, and to any component equal to two dots connected
by an edge as a double dot.

Relations (16), (20), and (26) are collectively called dot slides. They indicate how
one might attempt to move a double dot from one region of the graph to another.

The following theorem and corollary are the hardest results from [4], and imply
that HOM spaces are compatible with the pairing (,) on H.

Theorem 2.7. Morphisms where the color i does not appear on the boundary are
in the span of those graphs which do not include the color i at all, except in double
dots in the leftmost (alternatively, rightmost) region of the graph. This result may be
obtained simultaneously for multiple indices i.

Corollary 2.8. The space HOMgc, (0,0) is the free commutative polynomial ring
generated by f;, the double dot colored i, for various i € I. This is a graded ring,
where the degree of f; is 2.

Remark 2.9. There is a natural identification of the polynomial ring of double dots
and the coordinate ring R of the geometric representation. Because of this, a combi-
nation of double dots is occasionally referred to as a polynomial. Placing double dots
in the lefthand or righthand region of a diagram will correspond to the left and right
action of R on Hom spaces.

Remark 2.10. Consider I C I' C Z. If we have a morphism in SC;(I’) between two
objects in SC1(I), then each color k € I' \ I does not appear in the boundary, so by
Theorem 2.7 we can assume k only appears in double dots on the left. The result
is a morphism in SC;(I), with extra colors appearing in double dots. This is the
diagrammatic proof that HOMgsc (1) (4,5) @ k[fx, k € I'\ I] — HOMs¢(1)(4,) is an
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isomorphism, and the inclusion functor is fully faithful after base change. If we wished
to define SC;(I) for some I C {1,...,n}, the correct definition would be to consider
graphs which are only colored by indices in I.

We quickly note the diagrammatic proof for the isomorphisms (4) through (6). To

show the equality
":%()’(+)t() (28)

use (14) to extend dots from the two lines toward each other, and then use (16)
rotated by 90 degrees to connect the dots. This is a decomposition of id;; into two
orthogonal idempotents, each of which factor through B;. This implies B; ® B; =
B;{1} @ B;{—1}. An alternative orthogonal decomposition is given by the following
implication of (26), which involves an adjacent color.

"=()t<+)l()_)x< (29)

Relation (17) expresses the isomorphism
B, ® Bj = Bj ® B;

for i and j distant.
Relation (24) is another orthogonal decomposition, and expresses the isomorphisms

B; ® Biy1 ® B; = C; & B; (30)
Bi+1 R B; ® Bi+1 =C; @ Bi+17 (31)

where C; is an object in the Karoubi envelope SC. We will not need the details, so
we refer the reader to [4] for a better understanding,.

We will primarily work within the category SCs, the additive graded version of
SC;. However, since this includes fully faithfully into SC, all calculations work there
as well.

2.3. Braids and Movies

We will always use the combinatorial braid cobordism category BrCob as a
replacement for the topological braid cobordism category. For details see Carter and
Saito [2].

The category of (n + 1)-stranded braid cobordisms can be defined as follows. The
objects are arbitrary sequences of braid group generators O;, 1 <1 < n, and their
inverses U; = O, 1 These sequences can be drawn using braid diagrams on the plane,
where O; is an overcrossing (the i + 15 strand crosses over the i*® strand) and U;
is an undercrossing. Objects have a monoidal structure given by concatenation of
sequences. A movie is a finite sequence of transformations of two types:

I. Reidemeister type moves, such as
710;U;Ty < T1 72,
710;0;79 > 710;0;19 for distant i, j
710;0i110;12 < 110;110;0;1172,

where 77 and 79 are arbitrary braid words.
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II. Addition or removal of a single O; or U; from a braid word
TITo < 7'10?:17'2.

These transformations are known as movie generators. Morphisms in BrCob will
consist of movies modulo two kinds of relations. The first are known as mowvie moves,
and can be found in figures 1 and 2. Movie moves 1 — 10 are composed of type I
transformations and 11 — 14 each contains a unique type II move. We denote the
location of the addition or removal of a crossing in these last 4 movies by little black
triangles. There are many variants of each of these movies: one can change the relative
height of strands, can reflect the movie horizontally or vertically, or can run the movie
in reverse. We refer the reader to Carter and Saito [2], section 3.

The second kind of relations are locality moves. Locality moves merely state that
if two transformations are performed on a diagram in locations that do not interact
(they do not share any of the same crossings) then one may change the order in which
the transformations are performed. This merely insures that BrCob is monoidal. Any
potential functor from BrCob to a monoidal category C which preserves the monoidal
structure will automatically satisfy the locality moves. Because of this, we need not
mention the locality moves again.

Definition 2.11. Given a braid diagram P (or an object in the cobordism category),
the diagram P is given by reversing the sequence defining P, and replacing all over-
crossings with undercrossings and vice versa. If one identifies O; as U[l, then this
corresponds precisely to taking the inverse in F'r.

2.4. Rouquier Complexes

Rouquier defined a braid group action on the homotopy category of complexes in
SCo (see [13]). To the i*! overcrossing, he associated a complex B;{1} — By, and to
the undercrossing, By — B;{—1}. In each case, By is in homological degree 0. The
differential in each complex is a boundary dot. Drawn graphically, these complexes

look like:
Xl o=l —o
-1 0

QK 0—> o L>|{1}._>o

-7 0 1

We are using some new and abusive notation: the (blue) circle here is a place
holder for empty space, and the blue line indicates the object B; itself, not its identity
morphism. See the next section for the conventions being used.

To a braid one associates the tensor product of the complexes for each crossing.
Rouquier showed in [13] that the braid relations hold amongst these complexes. We
will not assume this result.

The category that Rouquier complexes live in depends on the number of strands,
but not in an essential way. Since adding strands is fully faithful after base change,
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it will only change the base ring but will not change the free rank of Hom spaces
between two Rouquier complexes, or the pictures which describe specific morphisms.
Therefore, all calculations involving Rouquier complexes are entirely “local” in that
one can study only a part of a braid diagram.

2.5. Conventions

These are the conventions we use to draw Rouquier complexes henceforth.

An object in 8C; should be a sequence of colors (say, points on a line). Suppose
we take the Rouquier complex for a braid OiOi e Oi It is clear that summands
in the complex correspond precisely to subsequences of %, so that the object B; will
appear exactly once for each subsequence j of 4. These can be represented as points
on a line, but it would be a headache to remember which subsequence corresponded
to which object (after all, two distinct subsequences could yield the same object).
Instead, we add colored placemarks which indicate that this particular i; was not in
the subsequence.

Since it would be difficult to distinguish between colored points and colored place-
marks, we cheat a little. We represent the object B; not as a point on a line, but by
drawing its identity morphism 1p,, a vertical line. We represent a placemark with
a colored circle, which for all practical purposes can be treated as the empty graph.
This convention is used above in the definition of Rouquier complexes.

Each differential from one summand to another will be a dot map, with an appro-
priate sign coming from tensor product rules. This dot map either sends a line to
a circle, or a circle to a line, using the convention above. We say the line/circle is
switched.

1. The dot would be a map of degree 1 if B; had not been shifted accordingly.
In SC,, all maps must be homogeneous, so we could have deduced the degree
shift in B; from the degree of the differential. Because of this, it is not useful
to keep track of various degree shifts of objects in a complex. We will draw all
the objects without degree shifts, and all differentials will therefore be maps
of graded degree 1 (as well as homological degree 1). It follows from this that
homotopies will have degree -1, in order to be degree 0 when the shifts are put
back in. One could put in the degree shifts later, noting that By always occurs
as a summand in a tensor product exactly once, with degree shift 0.

2. Similarly, one need not keep track of the homological dimension. By will always
occur in homological dimension 0.

3. We will use blue for the index associated to the leftmost crossing in the braid,
then red and dotted orange for other crossings, from left to right. The adjacency
of these various colors is determined from the braid.

4. We read braid diagrams from bottom to top, and write tensor products from
left to right. In figure 3, we take the complex for the blue crossing, and tensor
by the complex for the red crossing. When translated into pictures, blue always
appears to the left of red.

5. One can deduce the sign of a differential between two summands using the Lieb-
nitz rule, d(ab) = d(a)b+ (—1)!%lad(b). In particular, since a line always occurs
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U ™
\ N

Figure 3: The blue complex tensor the red complex

in the basic complex in homological dimension 41, the sign on a particular dif-
ferential is exactly given by the parity of lines appearing to the left of the map.
For example,

P AUES RN
<> ._9. .><...>,...
><I

..——» .

6. When putting an order on the summands in each homological degree, we use a
lexicographic order. There is a unique summand of smallest homological degree
m, which we take as our template. In homological degree m + d there will be a
total of d switches, that is, lines turned to circles or circles to lines. Order the
summands in that degree by which lines/circles were switched. For instance,
when d = 2, the first summand has the 1st and 2nd switches, the next has 1st
and 3rd, and so forth.

l.l.
\ .ll. .I.. LN ]

Q| e e e

/7 IR

7. Starting in the next section and henceforth, a differential will always be a hori-
zontal arrow, while a map of chain complexes will be a vertical arrow.

3. Definition of the Functor

We extend Rouquier’s complexes to a functor F from the combinatorial braid
cobordism category to the category of chain complexes in SCo modulo homotopy.
Rouquier already defined how the functor acts on objects, so it only remains to define
chain maps for each of the movie generators, and check the movie move relations.
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There are four basic types of movie generators: birth/death of a crossing, slide,
Reidemeister 2 and Reidemeister 3.

Birth and Death generators.

=Xt X=H""t
H=X =

Reidemeister 2 generators.

=] W
:lI.u] I < .>-l
- oo
I
a| | =] »8—
l.[u] .[<”>l-
< e
N o

Slide generators.

ML i 1“1 2| ] 'H' A 'H‘
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Reidemeister 3 generators. There are 12 generators in all: 6 possibilities for the
height orders of the 3 strands (denoted by a number 1 through 6), and two directions
for the movie (denoted ”a” or ”b”). Thankfully, the color-switching symmetries of the
Soergel calculus allow us to explicitly list only 6 (see figures 4 and 5). The left-hand
column lists the generators, and the chain complexes they correspond to; switching
colors in the complexes yields the corresponding generator listed on the right. Each
of these variants has a free parameter x, and the parameter used for each variant is

actually independent from the other variants.

Remark 3.1. Using sequences of R2-type generators and various movie moves we
could have abstained from ever defining certain R3-type variants or proving the movie
moves that use them. We never use this fact, and list all on pages 128 and 129 for
completeness.

Claim 3.2. Up to homotopy, each of the RS generators is independent of x.

Proof. We prove the claim for generator la in figure 4; all the others follow from
essentially the same computation. One can easily observe that there are very few
summands of the source complex which admit degree -1 maps to summands of the
target complex. In fact, the unique (up to scalar) non-zero map of homological degree
-1 and graded degree -1 is a red trivalent vertex: a red fork which sends the single red
line in the second row of the source complex to the double red line in the second row
of the target complex. Given two chain maps, one with free variable z and one with
say «’, the homotopy is given by the above fork map, with coefficient (z — 2’). The
homotopies for the other variants are exactly the same, save for the position, color,
and direction of the fork (there is always a unique map of homological and graded
degree -1). O

Remark 3.3. In our personal work, we found by explicit calculation that the param-
eters x are the only part of the whole ensemble which homotopy affects: the above
maps (with choice of ) are the unique chain maps for which the movie move relations
work, up to scalar. Abstract arguments will soon show that the choice is 1-dimensional
modulo homotopy.

Remark 3.4. For all movie generators, there is a unique summand of both the source
and the target which is Bp. We have clearly used the convention that for Type I movie
generators, the induced map from the By summand in the source to the By summand
in the target is the identity map. Ignoring this convention, each of the above maps
may be multiplied by an invertible scalar. Some relations must be imposed between
these scalars, which the reader can determine easily by looking at the movie moves
(each side must be multiplied by the same scalar). Movie move 11 forces all slide
generators to have scalar 1. Movie move 13 forces all R3 generators to have scalar 1.
Movie move 14 and 2 combined force the scalar for any R2 generator to be +1, and
then movie moves 2 and 5 force this sign to be the same for all 4 variants. Movie
move 12 shows that the scalar for the birth of an overcrossing and the death of an
undercrossing are related by the sign for the R2 generator. So the remaining freedom
in the definition of the functor is precisely a choice of one sign (R2) and one scalar
(birth/death).
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4. Checking the Movie Moves

4.1. Simplifications

Since F has been defined explicitly, one can compose chain maps on both sides of
a movie move and explicitly find the homotopy which gives the difference. In general,
this is not difficult, though it is time-consuming. We do a number of calculations
below, and have done even more in preparation for this paper (the interested reader
is welcome to contact us for scans of our notes). Still, there are too many variants of
too many movie moves to check them without resorting to a number of simplifications.

Thanks to Clark, Morrison, and Walker [3], a significant amount of work can be
bypassed using a clever argument. We now repeat some results from that paper.

Notation 4.1. Let P,Q,T designate braid diagrams. Hom(P, Q) will designate the
hom space between Fp, F in the homotopy category of complexes in SC>. We write
HOM for the graded vector space of all morphisms of complexes (not necessarily in
degree 0).

Lemma 4.2. (see [3]) Suppose that Movie Move 2 holds. Then there is an adjunc-
tion isomorphism Hom(PO;, Q) — Hom(P, QU;), or more generally Hom(PT, Q) —
Hom(P,QT). Similarly for other wariations: Hom(O;P,Q) — Hom(P,U;Q),
Hom(P, QO;) — Hom(PU;,Q), etc.

Proof. Given amap f € Hom(PO;, @), we get a map in Hom(P, QU;) as follows: take
the R2 movie from P to PO;U,, then apply f ® idy, to QU;. The reverse adjunction
map is similar, and the proof that these compose to the identity is exactly Movie
Move 2. O

Corollary 4.3. For any braid diagram P, Hom(P, P) = Hom(1, PP).
Note that in the braid group, PP = 1.

Lemma 4.4. Suppose that Movie Moves 3, 5, 6, and 7 hold. Then if P and Q are
two braid diagrams which are equal in the braid group, then Hom(P,T) =2 Hom(Q,T).

Proof. Movie Moves 3,5,6, and 7 together imply that if two braid diagrams are equal
in the braid group, then they have isomorphic complexes. O

The complex associated to 1 is just By in homological degree 0. So HOM(1,1) =
HOM(By, By), which we have already calculated is the free polynomial ring generated
by double dots. In particular, the degree 0 morphisms are just multiples of the identity.
We have now proven:

Corollary 4.5. Suppose that Movie Moves 2,8,5,6,7 all hold. If P and Q are braid
diagrams which are equal in the braid group, then Hom(P, Q) =k, a one-dimensional
vector space.

The practical use of finding one-dimensional Hom spaces is to apply the following
method.

Definition 4.6. (See [3]) Consider two complexes A and B in an additive k-linear
category. We say that a summand of a term in A is homotopically isolated with respect
to B if, for every possible homotopy h from A to B, the map dh + hd: A — B is zero
when restricted to that summand.
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Lemma 4.7. Let ¢ and ¢ be two chain maps from A to B, such that ¢ = cy up to
homotopy, for some scalar ¢ € k. Let X be a homotopically isolated summand of A.
Then the scalar ¢ is determined on X, that is, ¢ = cp on X.

The proof is trivial, see [3]. The final result of this argument is the following
corollary.

Corollary 4.8. Suppose that Movie Moves 2,3,5,6,7 all hold. If P and Q) are braid
diagrams which are equal in the braid group, and ¢ and v are two chain maps in
Hom(P, Q) which agree on a homotopically isolated summand of P, then ¢ and ¢ are
homotopic.

Proof. Because the Hom space modulo homotopy is one-dimensional, we know there
exists a constant ¢ such that ¢ = ci. The agreement on the isolated summand implies
that ¢ = 1. O

Type I movie generators are isomorphisms of complexes, and movie moves 1
through 10 therefore all consist of morphisms P to @, for P and @ equal in the
braid group. Finding a homotopically isolated summand and checking the equality of
the chain maps on that summand alone will greatly reduce any work that needs to
be done. This can be applied to movie moves 1,4,8,9,10, since the others are assumed
already. However, some calculations are easy enough to perform by brute force that
we do them explicitly anyway.

One final simplification, also found in Clark, Morrison, and Walker, is that modulo
Movie Move 8 all variants of Movie Move 10 are equivalent. Hence we can prove Movie
Move 10 by investigating solely the overcrossing-only variant.

The simplifications above apply to any functorial theory of braid cobordisms, so
long as Hom(1, 1) is one-dimensional. Now we look at what we can say specifically
about homotopically isolated summands for Rouquier complexes.

Any homotopy must be a map of degree -1 (if we ignore degree shifts on objects, as
in our conventions), which means that the corresponding graph must have a trivalent
vertex. There are very few maps of negative degree in SCs, a fact which immediately
forces most homotopies to be zero. The possible negative degree maps can be calcu-
lated using the pairing on H, as discussed in Section 2.1. In fact, the only nonzero
maps which occur in homotopies outside of Movie Move 10 are:

XXX XAy

Here is an example of the usefulness of such methods:

Remark 4.9 (Proof of Movie Move 10). There are no negative degree maps from
By to B;, for any i. In an overcrossing-only braid, By occurs alone in the maximal
homological grading, so that d = 0 on that summand. The penultimate homological
grading is a direct sum of various B;, so that h =0 on By, and the summand is
homotopically isolated. Moreover, the Reidemeister 3 chain map for overcrossings
sends By to itself by the identity map. Therefore, both sides of the overcrossing-only
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variant of Movie Move 10 act by the identity on this summand, and therefore are
equal as chain maps. The remainder of the Movie Move 10 variants fall from Movie
Move 8.

4.2. Movie Moves

When discussing the possible variants of each movie move, we will ignore variants
accomplished by a horizontal flip. These just correspond to color-changing symme-
tries, and do not affect any calculations. All variants involve changing the height
order of the strands, performing a vertical flip, or doing the movie in reverse order.
On occasion the vertical flip and the horizontal flip agree.

Note (Logical sequence in the proofs of the movie moves). We list the movie moves in
numerical order, as opposed to logical order of interdependence. To use the technical
lemma about homotopically isolated summands we first need to check movie moves
2,3,5,6,7. The reader will see that we prove these through direct computation, relying
on none of the other moves.

MM1. There are eight variants, of which we present two explicitly here. For the
first (figure 6) we write out the matrices in full, and let the reader multiply them; for
the second (figure 7) we just give the composition. In any variant, the slide generator
behaves the same: a crossing will have coefficient —1, an identity map coefficient 1.
Reversing direction uniformly changes the sign on the cups (or caps) in the R2 move.
The only interesting part of the check uses a twist of relation (11). Note that every
summand is homotopically isolated, so this check can be done on By, and is trivial.
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Figure 6: Movie Move 1 associated to slide generator 1
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Figure 7: Movie Move 1 associated to slide generator 3

MMZ2. There are 4 variants to deal with here; we describe only one, and similar
reasoning to that of MM1 will convince the reader that the other 3 are readily verified.

The composition has the following form:
\/ %

| — - %
o RN
I Wi

e ol | — -
II——>III><--->*-I- _ ml lm
N2y

I _— e
Figure 8: Movie Move 2

MM3. All 4 variants are essentially immediate after glancing at the slide generators,
but we list one for posterity.



134 BEN ELIAS anpD DAN KRASNER

/N

WV

x

—_—

P
—

2=
N
—
—

—

~
X

P a—
—

/N
\/

o< | <
S| T <> —
!
A
\/
Il

N\
\/

Figure 9: Movie Move 3

MM4. At this point the conscientious reader will find all 8 variants of movie move 4
quite easy, for the regularity of the slide chain maps allows one to write the composi-
tions for the left and right-hand side at once. The maps only differ at the triple-color
crossings, so we have to make use of relation (22).

I ] Rty
T b i |
UL g

Figure 10: Movie Move 4

MMS5. There are two variants of this movie, with the calculation for both almost
identical. We consider one variant. The compostion has the following form:
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MMG6. Again there are two variants and the calculation is almost as easy as the one
for MM35; the only difference is that here we actually have to produce a homotopy.
We check one variant; left arrows are the identity, right the composition, and dashed
the homotopy. Checking that the homotopy works requires playing with relation (16).
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Figure 12: Movie Move 6

MMY7. There are 6 variants of MM7, one for each R3 generator; nevertheless, this
is still a bit of a drudge as each one requires a homotopy and a minor exercise in the
relations. We display the movie associated to generator la and leave it to the very
determined reader to repeat a very similar computation the remaining 5 times. The
chain maps for the left-hand side of the movie are pictured in figure 13 at the top of
the next page.

The composition and homotopy is in figure 14 at the top of page 137.
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Figure 13: Movie Move 7

We now check that the prescribed maps give a homotopy between the composi-
tion and the identity. The verification for the left-most map is simply relation (24).
The verification for the right-most map is immediate, and that of the third map is
elementary. This leaves us with the second map. Here dH + Hd =

0 X 0 0 0 0 0 P 0
0-XC 0| + |1 (9 Y6 | = [0 v v
oY o 0 0 0 0 A 0

which save for the central entry is precisely the identity minus the composition.
Equality of the central entry follows from the computation:

II-yX5- (0K = XX -X- XX -y X-yX +vX
= X+ W X- Xy XY - = ey -X

Note. This computation was done using relation (26) numerous times.
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Figure 14: Homotopy for Movie Move 7

MMS8. There are twelve variants of MMS8, and in every case, one can find a homo-
topically isolated summand. As an example, we use the variant in figure 15.

The different variants will change which summands are in which homological
degree, but the total set of summands in each complex is unchanged. It is easy
to check that the only possible degree -1 maps between any summand in the top
complex and any summand in the bottom is a trivalent vertex from “blue” on top
to “blue-blue” on bottom, or the same with red, or vice versa for the reverse movie.
Moreover, only one of these appears in any given variant! This is because “blue-blue”
and “red-red”, viewed as bottom summands, require 4 switches to get from one to
the other, meaning that they either occur in columns 0 and 4, in columns 1 and 3, or
both in column 2. Similarly, “blue” and “red”, viewed as top summands, either occur
in columns 0 and 2, or both in column 1. These choices are incompatible with the
existence of both homotopies. This is also true of the reverse movie, which switches
the role of top and bottom complexes.

In the forward movie where “red” and “blue” both appear in the middle column
on top, the right column is homotopically isolated. In the forward movie where “red”
appears on the left and “blue” on the right, one of these is homotopically isolated. In
the reverse movie, By is always homotopically isolated, since all homotopies kill it,
and the differential will not bring it to “blue-blue” or “red-red”.
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Finally, one must calculate equality of the maps on that homotopically isolated
summand. For the reverse movie, or any movie where By is homotopically isolated,
the equality of both sides is now clear. We give an example in Figure 15. For the
remaining variants, this only requires multiplying two matrices, which we leave to
the reader.

MMS9. There are a frightful 48 versions of MM9, coming from all the different R3
moves that can be done (12 in all), the type of crossing that appears in the slide,
and the vertical flips. Homotopically isolated summands come to the rescue. First,
note that in every R3 generator, both the rightmost and the leftmost summands are
homotopically isolated (and at least one of these is involved in a nonzero map). This is
unchanged by the addition of a new distant color (call it orange) in MM9, so one can
check equality on either the rightmost or the leftmost term, choosing one for which
the chain maps are nonzero. If the distant color does not appear in this summand,
then the chain map on that summand is precisely as in the R3 move, for both sides.
If the distant color does appear, then a sign equal to the parity of the non-orange
lines is introduced (which is equal on both sides), and we use the distant sliding rules
to equate the corresponding morphisms.

B LS
SO 1
R
oo I
10 I 0

Figure 16: Movie Move 9

MM10. The sheer burden of writing down the complexes and calculating the chain
maps for even one version of MM10 is best avoided at all costs. We have already
checked MM10 in Remark 4.9.

MM11. There are 16 variants of MM11: 2 choices of crossing, a vertical flip, and
the direction of the movie. Half of these have chain maps that compose to zero on
both sides, since the birth of a right crossing or the death of a left crossing is the zero
chain map. The rest are straighforward. We give an example below in figure 17.
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Figure 17: Movie Move 11

MM12. There are 8 variants: a choice of R2 move, a vertical flip, and the direction
of the movie. Again, half of these are zero all around. Here are two variants; the other
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Figure 18: Movie Move 12

MM13. There are 24 variants, of which half are zero. For the remaining variants, the
check requires little more than just writing down the composition, since the required
homotopy in each instance is quite easy to guess. In figure 19 we describe the variant
associated to the first R3 generator.
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Figure 19: Movie Move 13
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MM14. Since none of the R3 generators of type 1 or 2 is compatible with MM14,
we are left with 8 variants: 4 R3 generators and 2 directions (the vertical flip is
irrelevant ). Half are zero. In addition to this, the initial frame of the movie corresponds
to a complex supported in homological degree 0 only, so we only need write down
what happens there. In figure 20 below we describe the variant associated to the R3
generator 3a.
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Figure 20: Movie Move 14

Any terms coming from the blue cup on the left will vanish due to (15). Therefore,
both sides are equal to the last column of the last matrix on the left.
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5. Additional Comments

5.1. The Benefits of Brute Force

We have explicitly defined a functor from the braid cobordism category into the
homotopy category of complexes in SCs. Even though our proof was not explicit,
this implies that a brute force plug-and-chug proof would work. Thus we do not rely
essentially on the fact that Hom(By, Bp) is 1-dimensional, even though the proofs do.

A consequence of this is that one can replace SCo with any larger category C
for which SCy is a (non-full) subcategory, and we will still get a functor to the
homotopy category of C. There is no requirement that Hom(Bg, By) is 1-dimensional
in C. For instance, it would be interesting to define such a category C for which
all birth and death maps are nontrivial (although the authors have yet to find an
interesting extension of this type). Changing the birth and death maps would only
require reproving movie moves 11 through 14.

One other benefit to checking everything by hand is in knowing precisely which
coefficients are required, and thus understanding the dependence on the base ring
k. In all the movie moves we check in this paper, and have checked personally, each
differential, chain map, and homotopy has integral coefficients (or free variables which
may be chosen to be integral). In fact, every nonzero coefficient that didn’t involve
a free variable was £1, and free variables may be chosen such that every coeflicient
is 1,0, or —1. The same should be true for MMS8 through MM10 as well (Khovanov
and Thomas [8] already showed that Rouquier complexes lift over Z to a projective
functor, which implies the existence of homotopy maps over Z). The next section
discusses the definition of this functor in a Z-linear category.

Checking the movie moves also provides some intuition as to why SC; has the rela-
tions that it does. As an illustrative example, consider the overcrossing-only variation
of Movie Move 10 and the unique summand of lowest (leftmost) homological degree:
it is a sequence of 6 lines. On this summand, the left hand movie and the right hand
movie correspond to the maps pictured in figure 21.

Thus equality of these two movies on the highest term, modulo relation (17), is
exactly relation (27). Similarly, the highest terms in various other movie moves utilize
the other relations, as in the chart below.

MM | Relation
1 (11)
2 (8)
3 (17)
4 (22)
5 (15)
8 (12)
9 (21)
10 (27)

We can view these relations heuristically as planar holograms encoding the equality
of cobordisms.

Type II movie moves (11 through 14) do not contribute any relations or require-
ments not already forced by Type I movie moves (although they do fix the sign of
various generators as in Remark 3.4).
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Figure 21: The most complicated term in MM10.

More relations are used to imply that certain maps are chain maps, or that homo-
topies work out correctly. For example, relation (18) is needed for the slide generator
to be a chain map. Almost every relation in the calculus is used in a brute force
check of functoriality. However, there are two exceptions: (13) and (25). Both these
relations are in degree -2, and degree -2 does not appear in chain maps or homotopies,
so they could not have appeared. However, it is not hard to use the rest of the one

color relations to show that

Hence, (13) will hold, so long as R acts freely on morphisms. A similar statement
can be made for (25).

We do not present a proof, but the authors have convinced themselves of the
following: Take an arbitrary categorification of the Hecke algebra with generators
B;, and construct Rouquier-style complexes. Under suitable assumptions on Hom
spaces (we do not fix the pairing on H, but assume R acts freely, and the behavior
of negative degree maps is the same), the existence of the above generators and
the relations between them are implied by functoriality. We conjecture vaguely that
SCy is universal amongst categories for which Rouquier complexes could be defined
functorially up to Type I movie moves, under suitable conditions.
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5.2. Working over Z

Knot theorists should be interested in a Z-linear version of the Soergel bimodule
story, because it could theoretically yield a “functorial” link homology theory over Z.
Any thorough discussion would involve poring over the proofs in [4] for coefficients,
so we provide no proofs.

Ignoring the second equality in (26), which is redundant, every relation given has
coefficients in Z. One could use these relations to define a Z-linear version of SC;
and SCo, and then use base extension to define the category over any other ring. The
functor can easily be defined over Z, as we have demonstrated, and all the brute force
checks work without resorting to other coefficients. Theorem 1.1 still holds for the
Z-linear version of SCs.

In fact, the same proof (using homotopically isolated summands) should work over
Z, so long as the arguments in [4] which simplify graphs will also work over Z. We
would need to show that Hom(By, By) = Z in the Z-linear version of SCq, and that
certain HOM spaces are zero in negative degrees. Graph simplification implies that
the inclusion SCo(I) — SCo(I') is fully faithful after base change, so we may enlarge
our index set I, and assume that I = {1,...,n}. We can calculate Hom spaces from a
pairing on H, so long as Hom spaces are torsion-free and SCs actually categorifies H.
One begins by checking the isomorphisms (4) through (6). The only one which is in
doubt is B; ® B; = B;{—1} & B;{1}, since (28) requires the use of 3 in order to split
the identity map into idempotents. Thankfully, we may use (29) as a replacement
(and our enlarged index set guarantees that some color adjacent to ¢ exists).

Remark 5.1. This statement does not imply that SC will categorify the Hecke algebra
when defined over Z. There may be missing idempotents, or extra non-isomorphic
idempotents, so that the Grothendieck ring of the idempotent completion may be too
big or small.
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