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CATEGORIFIED SYMPLECTIC GEOMETRY AND
THE STRING LIE 2-ALGEBRA

JOHN C. BAEZ anD CHRISTOPHER L. ROGERS
(communicated by J. Daniel Christensen)

Abstract

Multisymplectic geometry is a generalization of symplectic
geometry suitable for n-dimensional field theories, in which the
nondegenerate 2-form of symplectic geometry is replaced by a
nondegenerate (n + 1)-form. The case n = 2 is relevant to string
theory: we call this ‘2-plectic geometry.” Just as the Poisson
bracket makes the smooth functions on a symplectic manifold
into a Lie algebra, the observables associated to a 2-plectic man-
ifold form a ‘Lie 2-algebra,” which is a categorified version of a
Lie algebra. Any compact simple Lie group G has a canonical
2-plectic structure, so it is natural to wonder what Lie 2-algebra
this example yields. This Lie 2-algebra is infinite-dimensional,
but we show here that the sub-Lie-2-algebra of left-invariant
observables is finite-dimensional, and isomorphic to the already
known ‘string Lie 2-algebra’ associated to G. So, categorified
symplectic geometry gives a geometric construction of the string
Lie 2-algebra.

1. Introduction

Symplectic geometry is part of a more general subject called multisymplectic geom-
etry, invented by DeDonder [8] and Weyl [16] in the 1930s. In particular, just as the
phase space of a classical point particle is a symplectic manifold, a classical string
may be described using a finite-dimensional ‘2-plectic’ manifold. Here the nondegen-
erate closed 2-form familiar from symplectic geometry is replaced by a nondegenerate
closed 3-form.

Just as the smooth functions on a symplectic manifold form a Lie algebra under the
Poisson bracket operation, any 2-plectic manifold gives rise to a ‘Lie 2-algebra.” This
is a categorified version of a Lie algebra: that is, a category equipped with a bracket
operation obeying the usual Lie algebra laws up to isomorphism. Alternatively, we
may think of a Lie 2-algebra as a 2-term chain complex equipped with a bracket
satisfying the Lie algebra laws up to chain homotopy.
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Now, every compact simple Lie group G has a canonical 2-plectic structure, built
from the Killing form and the Lie bracket. Which Lie 2-algebra does this example
yield? Danny Stevenson suggested that the answer should be related to the already
known ‘string Lie 2-algebra’ of G. Our main result here confirms his intuition. The
Lie 2-algebra associated to the 2-plectic manifold G' comes equipped with an action
of G via left translations. The translation-invariant elements form a Lie 2-algebra in
their own right, and this is the string Lie 2-algebra.

This gives a new geometric construction of the string Lie 2-algebra. For another
construction, based on gerbes — or alternatively, central extensions of loop groups
— see the paper by Baez, Crans, Schreiber and Stevenson [2]. It will be interesting
to see what can be learned from comparing these approaches.

The plan of the paper is as follows. In Section 2l we begin with a review of our recent
paper [3] on 2-plectic geometry, Lie 2-algebras, and the classical bosonic string. The
goal is to describe the Lie 2-algebra associated to a 2-plectic manifold. We only state
theorems needed for the work at hand, referring the reader to the previous work for
proofs and background material. More information on multisymplectic geometry can
be found in papers by Cantrijn, Ibort, and de Leén [5] and by Carinena, Crampin,
and Ibort [7]. Further details regarding the application of multisymplectic geometry
to classical field theory can be found in the work of Kijowski [12], Gotay, Isenberg,
Marsden, and Montgomery [9], Hélein [10], and Rovelli [14]. For Lie 2-algebras, see
Baez and Crans [1] and also Roytenberg [15], whose approach we will follow in this
paper.

In Section |3 we consider a Lie group acting on a 2-plectic manifold, preserving
the 2-plectic structure. This group then acts on the associated Lie 2-algebra, and the
invariant elements form a Lie sub-2-algebra. In Section 4] we apply this idea to the
canonical 2-plectic structure on a compact Lie group G, where G acts on itself by left
translations. Finally, in Section 5/ we show that the resulting Lie 2-algebra is none
other than the string Lie 2-algebra.

Acknowledgements

We thank Danny Stevenson for suggesting that our construction of Lie 2-algebras
from 2-plectic manifolds might yield the string Lie 2-algebra when applied to a com-
pact simple Lie group. We also thank Dmitry Roytenberg for helpful conversations.

2. 2-plectic geometry and Lie 2-algebras

We begin by defining 2-plectic manifolds and Lie 2-algebras. Then we explain how
a 2-plectic manifold gives a Lie 2-algebra.

Definition 2.1. A 3-form w on a C* manifold X is 2-plectic, or more specifically
a 2-plectic structure, if it is both closed:

dw =0,

and nondegenerate:
YoeT, X, L,w=0=v=0,



CATEGORIFIED SYMPLECTIC GEOMETRY AND THE STRING LIE 2-ALGEBRA 223

where we use t,w to stand for the interior product w(v,-,-). If w is a 2-plectic form
on X, then we call the pair (X,w) a 2-plectic manifold.

Note that the 2-plectic structure induces an injective map from the space of vector
fields on X to the space of 2-forms on X. This leads us to the following definition:

Definition 2.2. Let (X, w) be a 2-plectic manifold. A 1-form « on X is Hamiltonian
if there exists a vector field v, on X such that

do = —t, w.

o

We say v,, is the Hamiltonian vector field corresponding to . The set of Hamil-
tonian 1-forms and the set of Hamiltonian vector fields on a 2-plectic manifold are
both vector spaces and are denoted as Ham(X) and Vect g (X), respectively.

The Hamiltonian vector field v, is unique if it exists, but note there may be 1-forms
« having no Hamiltonian vector field. Furthermore, two distinct Hamiltonian 1-forms
may differ by a closed 1-form and therefore share the same Hamiltonian vector field.

We can generalize the Poisson bracket of functions in symplectic geometry by
defining a bracket of Hamiltonian 1-forms. This can be done in two ways:

Definition 2.3. Given «, € Ham(X), the hemi-bracket {«,(}, is the 1-form
given by

{aaﬂ}h = ‘Cvaﬁv

where L, is the Lie derivative along the vector field v,.

Definition 2.4. Given o, f € Ham(X), the semi-bracket {«, 3}, is the 1-form given
by

{a, B} = tuslo,w-
These brackets in general will differ by an exact 1-form:
Proposition 2.5. Given a, 3 € Ham(X),
{a, B}, = {a, B}, + diw, B
Proof. See Proposition 2 in [3]. O

The space Ham(X) is closed under both brackets, but neither bracket satisfies all
the axioms of a Lie algebra. The hemi-bracket fails to be skew-symmetric, while the
semi-bracket fails to satisfy the Jacobi identity.

Proposition 2.6. Let o, 3,7 € Ham(X) and let vy, vg, vy be the respective Hamilto-
nian vector fields. The hemi-bracket {-, -} has the following properties:

1. The bracket of Hamiltonian forms is Hamiltonian:

d{a7ﬂ}h = 7L[va,v5]wa (1)
so in particular we have

’U{a“@v}h = [va,vﬁ].
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2. The bracket is skew-symmetric up to an exact 1-form:
{o, B}y + dSap = —{B,a}y (2)
with S5 = —(tv, B + Loz ).
3. The bracket satisfies the Jacobi identity:
{a, {8,711, = He Bh  vh, + {8 vk h (3)

Proof. See Proposition 3 in [3]. O

Proposition 2.7. Let o, 3,7 € Ham(X) and let vy, vg, v+ be the respective Hamilto-
nian vector fields. The semi-bracket {-,-}s has the following properties:

1. The bracket of Hamiltonian forms is Hamiltonian:
d {Oé, ﬁ}s = _L[va,vﬁ]w7 (4)
so in particular we have
U{aﬂ}s = [Umvg].

2. The bracket is antisymmetric:

{a’ﬁ}s:_{ﬁ’a}s' (5)
3. The bracket satisfies the Jacobi identity up to an exact 1-form:
{057 {ﬁ”y}s}s + dJOtﬂ,’Y = {{a’ ﬂ}b 77}3 + {ﬂa {aa ’Y}s}s (6)
With Ja,gy = —lygboglo, W-
Proof. See Proposition 4 in [3]. O

The observation that these brackets satisfy the Lie algebra laws ‘up to exact
1-forms’ leads to the notion of a Lie 2-algebra. Here we define a Lie 2-algebra to
be a 2-term chain complex of vector spaces equipped with structures analogous to
those of a Lie algebra, for which the usual laws hold up to coherent chain homotopy.
Alternative definitions equivalent to the one given here are presented in [1] and [15].
Definition 2.8. A Lie 2-algebra is a 2-term chain complex of vector spaces L =
(Lo & L;) equipped with the following structure:

e a chain map [-,-]: L ® L — L called the bracket,

e a chain homotopy S: L ® L — L from the chain map

L®L— L
@y [z,y]

to the chain map

LoL—L
TRy r— —[y, ]

called the alternator,
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e a chain homotopy J: L ® L ® L — L from the chain map
LRL®L — L
Ty z— [z, [y, 2]

to the chain map

LRLRL — L
TRy ® 2z [[z,y],2] + [y, [z, 2]]
called the Jacobiator.

In addition, the following equations are required to hold:

[, J(y, z,w)] + J (@, [y, 2], w) + (@, 2, [y, w]) + [J (2, y, 2), w] + [2, I (z,y,w)]
= J(m,y, [Z,UJD + J([az,y},z,w) + [y7 J(J?,Z,U))}

+J(y [z, 2], w) + J(y, 2, [z, w]), (7)

J(z,y,2) + J(y, z, 2) = —[S(z,y), 2], (8)

J(@,y,2) + J(2,2,y) = [x,5(y, 2)] = S([2,y],2) = S(y, [2,2]), (9)
Sz, [y, 2]) = S([y, 2], ). (10)

Definition 2.9. A Lie 2-algebra for which the Jacobiator is the identity chain homo-
topy is called hemistrict. One for which the alternator is the identity chain homotopy
is called semistrict.

Given a 2-plectic manifold (X,w), we can construct both a hemistrict and a
semistrict Lie 2-algebra. Both of these Lie 2-algebras have the same underlying
2-term complex, namely:

L=Ham(X) <L oc*Xx)Zolol ...

)

where d is the usual exterior derivative of functions. This chain complex is well-
defined, since any exact form is Hamiltonian, with 0 as its Hamiltonian vector field.

The hemistrict Lie 2-algebra is equipped with a chain map called the hemi-
bracket:

{,}): L®L— L.
In degree 0, the hemi-bracket is given as in Definition 2.3:
{avﬁ}h = £vaﬁ~
In degree 1, it is given by:
{avf}hzcvafv {f7a}h:0'
In degree 2, we necessarily have

{fvg}h =0.
Here «, € Ham(X), while f,g € C*(X).
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Similarly, the semistrict Lie 2-algebra comes with a chain map called the semi-
bracket:

{,},:L®L— L.

In degree 0, the semi-bracket is given as in Definition [2.4:

{a, B} = toslo,w.

In degrees 1 and 2, we set it equal to zero:

{Oé,f}S:O7 {f»a}S:O7 {f,g}szo.

The precise constructions of these Lie 2-algebras are given as follows:

Theorem 2.10. If (X,w) is a 2-plectic manifold, then there is a hemistrict Lie
2-algebra L(X,w)n, where:

the space of 0-chains is Ham(X),

the space of 1-chains is C*°(X),

the differential is the exterior derivative d: C*°(X) — Ham(X),

the bracket is {-, }n,

the alternator is the bilinear map S: Ham(X) x Ham(X) — C*(X) defined by

Sa,p = —(tv, B+ tyz), and

the Jacobiator is the identity chain homotopy, hence given by the trilinear map
J: Ham(X) x Ham(X) x Ham(X) — C*(X)

with Jo. 5., = 0.

Proof. See Theorem 5 in [3]. O

Theorem 2.11. If (X,w) is a 2-plectic manifold, then there is a semistrict Lie
2-algebra L(X,w)s, where:

the space of 0-chains is Ham(X),
the space of 1-chains is C*°(X),
the differential is the exterior derivative d: C*°(X) — Ham(X),
the bracket is {-, }s,
the alternator is the identity chain map, hence given by the bilinear map
S: Ham(X) x Ham(X) — C*(X)
with Sq.3 =0, and
the Jacobiator is the trilinear map
J: Ham(X) x Ham(X) x Ham(X) — C*°(X)
defined by Jo, 5y = —lLvgbuglv, W-

Proof. See Theorem 6 in [3]. O

A Lie 2-algebra homomorphism is a chain map between the underlying chain com-
plexes that preserves the bracket up to ‘coherent chain homotopy.” More precisely:
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Definition 2.12. Given Lie 2-algebras L and L’ with bracket, alternator and Jacobi-
ator [-,-], S, J and [-,]', S’, J' respectively, a homomorphism from L to L’ consists
of:

e a chain map ¢ = (¢g, ¢1): L — L', and

e a chain homotopy ®: L ® L — L’ from the chain map
LeL — L
@y r— [d(z), d(y)]

to the chain map

LeL — L
z®yr— ¢([z,9]),
such that the following equations hold:

S'(¢o(x), bo(y)) — d1(S(x,y)) = (x,y) + C(y, ), (11)

I (¢o(@), do(y), ¢o(2)) — d1(J (2,9, 2))
= [bo(2), @y, 2)]" = [po(y), ®(x,2)] = [(,y), bo(2)]
= O([z, 4], 2) = (y, [z, 2]) + (z, [y, 2]).  (12)
The details involved in composing Lie 2-algebra homomorphisms are given by
Roytenberg [15]. We say a Lie 2-algebra homomorphism with an inverse is an iso-
morphism.

In fact, our previous work [3] shows that the hemistrict and semistrict Lie 2-
algebras associated to a 2-plectic manifold are isomorphic:

Theorem 2.13. There is a Lie 2-algebra isomorphism
¢: L(X,w)h — L(X,w)s

given by the identity chain map and a chain homotopy ®: L ® L — L that is nontrivial
only in degree 0, where it is given by

(b(av ﬂ) = Ly, B
for a, 8 € Ly = Ham(X).
Proof. See the proof of Theorem 7 in [3]. O

So, while the semistrict and hemistrict Lie 2-algebras defined above look different
at first sight, we may legitimately speak of ‘the’ Lie 2-algebra associated to a 2-plectic
manifold. We shall refer back to this result several times in the subsequent sections.

3. Group actions on 2-plectic manifolds

Next suppose we have a Lie group acting on a 2-plectic manifold, preserving the
2-plectic structure. In this situation both the hemistrict and semistrict Lie 2-algebras
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constructed above have Lie sub-2-algebras consisting of invariant Hamiltonian forms
and functions.

More precisely, let p: G x X — X be a left action of the Lie group G on the
2-plectic manifold (X,w), and assume this action preserves the 2-plectic structure:

Pyw = w
for all g € G. Denote the subspace of invariant Hamiltonian 1-forms as follows:
Ham(X)% = {a € Ham(X) | Vg € G g = a}.

The Hamiltonian vector field of an invariant Hamiltonian 1-form is itself invariant
under the action of G:

Proposition 3.1. If a € Ham(X)Y and v, is the Hamiltonian vector field associated
with a, then g, Vo = Vo for all g € G.

Proof. The exterior derivative commutes with the pullback of the group action.
Therefore, if v1, vo are smooth vector fields, then da(pg, v1, f1g,v2) = da(vy,v2), since
we are assuming « is G-invariant. Since o« € Ham(X), then da = —¢,_w, so

W(Vas fhg V1, fg,V2) = W(Va, V1, V2) = W(lg, Va, fg, V1, fg,V2),

where the last equality follows from p4*w = w. Therefore,

W(Va = Mg, Vas fig, V1, g, v2) = 0.
Since w is nondegenerate, and vy, vo are arbitrary, it follows that pg v4 = va. O

Let C*°(X)Y denote the subspace of invariant smooth functions on X:
Co(X) ={f € C®(X) | Vg € G uyf = fopg = [},
and let LY denote the 2-term complex composed of Ham(X)“ and C>(X)%:
LE = Ham(X)9 & ¢ (x)C,

where d is the exterior derivative.

The invariant differential forms on X form a graded subalgebra that is stable
under exterior derivative and interior product with an invariant vector field. Since
the hemi-bracket and semi-bracket introduced in Definitions 2.3l and 2.4] are nothing
but compositions of these operations, they restrict to well-defined chain maps:

{,n: LY® LY — LC,

{,}: LC @ LE — LC.
More precisely, we have the following proposition:
Proposition 3.2. If a, 3 € Ham(X)% and f € C®(X)Y, then:
{avf}hv{fvo‘}h € COO(X)G}
{a, f}, {f,a}, € C=(X)C,
{a, B}, € Ham(X),
{a, B}, € Ham(X)©.
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Proof. By definition, {f,a}, = {a, f}, = {f,a}, =0. Therefore they are trivially
invariant under the group action. If « is an invariant Hamiltonian 1-form, then by
Proposition 3.1 its Hamiltonian vector field v, is invariant. Since {«, 8}, = £,,08 =
diy, B+ o, dB and {a, B} = ty,te,w, it then follows from the above remarks that
{a, B}, and {«, B}, are themselves invariant. O

An important consequence of Proposition 3.2 is that LE forms a Lie sub-2-algebra
of the hemistrict Lie 2-algebra L(X,w)n, which we call L(X,w)¢. Tt also forms a Lie
sub-2-algebra of L(X,w)s, which we call L(X,w)¥. Furthermore, the isomorphism

L(X,wh 2 L(X,w)s
of Theorem 2.13| restricts to an isomorphism between these Lie sub-2-algebras:
L(X,w)f = L(X,w).
We summarize these results in the next three corollaries:
Corollary 3.3. If u: G x X — X is a left action of the Lie group G on the 2-plectic
manifold (X,w) and for all g € G, Hgw = w, then there is a hemistrict Lie 2-algebra
L(X,w), where:

e the space of 0-chains is Ham(X)%,

e the space of 1-chains is C=(X)Y,

e the differential is the exterior derivative d: C*(X)% — Ham(X)%,

o the bracket is {-, }n,

e the alternator is the bilinear map S: Ham(X)® x Ham(X)¢ — C®(X)¢ de-

fined by Sa.p = — (Lo, B+ to,), and

o the Jacobiator is the identity, hence given by the trilinear map J: Ham(X)

x Ham(X)% x Ham(X)% — C°°(X)% with J, 3., = 0.

G

Corollary 3.4. If u: G x X — X is a left action of the Lie group G on the 2-plectic
manifold (X,w) and for all g € G, pyw = w, then there is a semistrict Lie 2-algebra
L(X,w)¥, where:
e the space of 0-chains is Ham(X)%,
e the space of 1-chains is C=(X)Y,
e the differential is the exterior derivative d: C*(X)¢ — Ham(X)%,
o the bracket is {-, }s,
e the alternator is the identity, hence given by the bilinear map S: Ham(X)%
x Ham(X)%(X)¢ — C>(X)Y with Sa.p =0, and
e the Jacobiator is the trilinear map J: Ham(X)® x Ham(X) x Ham(X)%
— C®(X)C defined by Jop,y = —to, oyl w-
Corollary 3.5. The isomorphism
¢: L(X,w)h — L(X,w)s
restricts to a Lie 2-algebra isomorphism

¢: L(X,w)f — L(X,w)¢.
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Proof. As noted in Theorem [2.13) the isomorphism between L(X,w), and L(X,w)s
is given by the identity chain map and a chain homotopy ® that is nontrivial only in
degree 0:

(I)(a7 /6) = Lvaﬁa

where a, 8 € Ly = Ham(X). If o and 8 are invariant under the action of G, then it
follows from Proposition [3.1/ that ¢, (3 is an invariant smooth function. Hence the
chain homotopy ® restricts to a chain homotopy ®: L¢ @ L¢ — LC. O

4. The 2-plectic structure on a compact simple Lie group

Every compact simple Lie group has a canonical 2-plectic structure. This structure
has been discussed in the multisymplectic geometry literature [5), 11], and it plays a
crucial role in several branches of mathematics connected to string theory, including
the theory of affine Lie algebras, central extensions of loop groups, gerbes, and Lie
2-groups [2, 4, 6], [13].

Recall that if G is a compact Lie group, then its Lie algebra g admits an inner
product (-,-) that is invariant under the adjoint representation Ad: G — Aut(g). For
any nonzero real number k, we can define a trilinear form

Ok(x,y,2) = k(z, [y, 2])

for any z,y, z € g. Since the inner product is invariant under the adjoint representa-
tion, it follows that the linear transformations ad, : g — g given by ad,(z) = [y, z] are
skew adjoint. That is, (ady(x),2) = —(x,ady(z)) for all z,y, z € g. It follows that 6
is totally antisymmetric. Moreover, 6 is invariant under the adjoint representation
since [Ady(z), Ady(y)] = Ady([z, y]).

Let Ly: G — G and Ry: G — G denote left and right translation by g, respectively.
Using left translation, we can extend 6 to a left invariant 3-form v, on G. More
precisely, given g € G and vy, v2,v3 € TyG define a smooth section v, of A3T*G by

Vklg(v1,v2,v3) = Ok (Lg-1,v1, Ly-1,v2, Ly-1,03).

It is straightforward to show that vy is also a right invariant 3-form. Indeed, since
Ady = Ly« 0 Ry-1,, the invariance of ¢;, under the adjoint representation implies
RYvy = vg. From the left and right invariance we can conclude

dl/k = 0,

since any p-form on a Lie group that is both left and right invariant is closed.

Now suppose that G is a compact simple Lie group. Then g is simple, so it has
a canonical invariant inner product: the Killing form, normalized to taste. With this
choice of inner product, the trilinear form 6y is nondegenerate in the sense of Defini-
tion 2.1k

Proposition 4.1. Let G be a compact simple Lie group with Lie algebra g. If © € g
and Oy (x,y,2) =0 for all y,z € g, then x = 0.

Proof. Recall that if g is simple, then it is equal to its derived algebra [g, g]. Hence
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we may write any z € g as @ = » .-, [y;, 2;]. Therefore,
k<$,1‘> = kz<x7 [yiv ZW]> = Zok(xayiv Zl) =0,
i=1 i=1

which implies = 0 since (-, -) is an inner product. O

It is easy to see that the nondegeneracy of 6 implies the nondegeneracy of vy.
Therefore, vy is a closed, nondegenerate 3-form. We summarize the preceding discus-
sion in the following proposition:

Proposition 4.2. Let G be a compact simple Lie group with Lie algebra g. Let {-,-)
be the Killing form, and let k be a nonzero real number. The left-invariant 3-form vy
on G corresponding to 0), € A3g* is 2-plectic. So, (G, vy) is a 2-plectic manifold.

Now we wish to identify the Hamiltonian 1-forms associated with the 2-plectic
structure v, that are invariant under left translation. We denote the space of all left
invariant 1-forms as g*. The left invariant Hamiltonian 1-forms, their corresponding
Hamiltonian vector fields, and the left invariant smooth real-valued functions will be
denoted as Ham(G)%, Vecty (G)L, and C(G)%, respectively.

If feC®(G)~, then by definition f = foL, for all g € G. Hence f must be
a constant function, so C*(G)* may be identified with R. The following theorem
describes the left invariant Hamiltonian 1-forms:

Theorem 4.3. Fvery left invariant 1-form on (G,vy) is Hamiltonian. That is,
Ham(G)" = g*.

Proof. Recall that if « is a smooth 1-form and vy, v; are smooth vector fields on any
manifold, then

da(vg,v1) = vo(a(vr)) — vi(a(ve)) — a([ve, v1]).
Suppose now that « is a left invariant 1-form on G and v, v1 are left invariant vector
fields. Then the smooth functions «(v1) and a(vg) are also left invariant and therefore
constant. Therefore the right-hand side of the above equality simplifies and we have
da(ve,v1) = —a([vg, v1]).

Let o € g* and let (-,-) be the inner product on g used in the construction of vy.
There exists a left invariant vector field v, € g such that a(z) = k(v,, z) for all z € g.
Combining this with the above expression for da gives

da(z,y) = —k{va, [z,9]),
which implies
da = —iy, V.
Hence a € Ham(G), and Ham(G)Y = Ham(G) N g* = g*. O
The most important application of Theorem 4.3 is that it allows us to use Corol-
laries 3.3 and 3.4/ to construct hemistrict and semistrict Lie 2-algebras both having g*

as their space of 0-chains, where g is the Lie algebra of a compact simple Lie group.
We summarize these facts in the following two corollaries:
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Corollary 4.4. If G is a compact simple Lie group with Lie algebra g and 2-plectic
structure vy, then there is a hemistrict Lie 2-algebra L(G, k), where:

o the space of 0-chains is g*,

e the space of 1-chains is R,

o the differential is the exterior derivative d: R — g* (i.e., d =0),
o the bracket is {-,}n,

e the alternator is the bilinear map S: g* x g* — R defined by

Sa,ﬁ = _(Lvaﬁ + L’Uﬁa)ﬂ
and

o the Jacobiator is the identity, hence given by the trilinear map
Jig-xg-xg-—R
with Jo,3,4 = 0.

Corollary 4.5. If G is a compact simple Lie group with Lie algebra g and 2-plectic
structure vy, then there is a semistrict Lie 2-algebra L(G, k)s, where:

e the space of 0-chains is g*,

e the space of 1-chains is R,

o the differential is the exterior derivative d: R — g* (i.e., d =0),

o the bracket is {-,}s,

e the alternator is the identity, hence given by the bilinear map S: g* x g* = R

with So,3 =0, and
o the Jacobiator is the trilinear map J: g* x g* x g* — R defined by

Jo,B.y = —lvglug o, Vi-

Note that we obtain a hemistrict Lie 2-algebra L(G, k), and a semistrict Lie
2-algebra L(G,k)s for every nonzero real number k. It is also important to recall
that Corollary [3.5 implies the hemistrict Lie 2-algebra L(G), k), is isomorphic to the
semistrict Lie 2-algebra L(G, k)s.

From the proof of Theorem 4.3, we see that there is a nice correspondence between
left invariant Hamiltonian 1-forms and left invariant Hamiltonian vector fields, which
relies on the isomorphism between g and its dual space via the inner product (-, -). As
a result, we have the following proposition, which will be useful in the next section:

Proposition 4.6. If G is a compact simple Lie group with 2-plectic structure vy and
(+,+) is the inner product on the Lie algebra g of G used in the construction of v,
then Vecty (G)Y = g and there is an isomorphism of vector spaces

@: Vecty (G =5 Ham(G)*

such that o(v) = k(v,-) is the unique left invariant Hamiltonian 1-form whose Hamil-
tonian vector field is v.
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Proof. We show only uniqueness since the rest of the proposition follows immediately
from the arguments made in the proof of Theorem [4.3. Let o and (3 be left invariant
1-forms. The arguments made in the aforementioned proof imply da = —t¢,, v and
dB = —ty,Vk, Where v, and vg are the unique left invariant vector fields such that
a = k(vg,-) and B = k(vg, ). If v, is the Hamiltonian vector field for both o and
then ty, Vg = ty,vk. Hence by the nondegeneracy of the 2-plectic structure, v, = vg
which implies a = 3. O

5. The string Lie 2-algebra

We have described how to construct hemistrict and semistrict Lie 2-algebras from
any compact simple Lie group G and any nonzero real number k using the 2-plectic
structure v,. Now we show that these are isomorphic to the ‘string Lie 2-algebra’
of G.

It was shown in previous work [1] that semistrict Lie 2-algebras can be classified
up to equivalence by data consisting of:

a Lie algebra g,

e a vector space V,

e a representation p: g — End(V),

e an element [j] € H3(g,V) of the Lie algebra cohomology of g.

A semistrict Lie 2-algebra L is constructed from this data by setting the space of
0-chains Ly equal to g, the space 1-chains L; equal to V', and the differential to be
the zero map: d = 0. The bracket [-,-]: L ® L — L is defined to be the Lie bracket on
g in degree 0, and defined in degrees 1 and 2 by:

[x,a] = pl’(a)’ [aa (E] = _pm(a)a [aa b] =0,

for all x € Ly and a,b € Ly. The Jacobiator is taken to be any 3-cocycle j representing
the cohomology class [j].

From this classification we can construct the string Lie 2-algebra gj, of a compact
simple Lie group G by taking g to be the Lie algebra of GG, V' to be R, p to be the
trivial representation, and

J(@,y,2) = k‘<l‘, [yv Z]>7

where k € R. When k # 0, the 3-cocycle j represents a nontrivial cohomology class.
Note that since p is trivial, the bracket of gj, is trivial in all degrees except 0.

It is natural to expect that the string Lie 2-algebra is closely related to the Lie
2-algebra L(G, k)s described in Corollary 4.5 since both are semistrict Lie 2-algebras
built using solely the trilinear form 6, on g. Indeed, this turns out to be the case:

Theorem 5.1. If G is a compact simple Lie group with Lie algebra g and 2-plectic
structure vy, then the string Lie 2-algebra gj, is isomorphic both to the semistrict Lie
2-algebra L(G,k)s and to the hemistrict Lie 2-algebra L(G, k).

Proof. Recall that in degree 0, the bracket of gj is the Lie bracket [-,-] of g and
the bracket of L(G, k)s is the bracket {-,-}s introduced in Definition 2.4. In all other
degrees, both brackets are the zero map. To simplify notation, g} and L(G, k)s will
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denote both the Lie 2-algebras and their underlying chain complexes. We will show
that there exists a Lie 2-algebra isomorphism between g} and L(G, k)s by constructing
a chain map

¢: gp — L(G, F)s
and a chain homotopy
®: g; @ gy, — L(G, k)s,
satisfying the conditions listed in Definition 2.12. Indeed, we will show that the maps

{-,'}s0(¢p®¢) and ¢ o[-, -] are actually equal.
By Proposition 4.6, there exists a vector space isomorphism

@: Vecty (G =5 Ham(G)F,

which takes x € Vecty(G)Y to the left invariant Hamiltonian 1-form ¢(z) whose
Hamiltonian vector field is x. The degree 0 components of g} and L(G, k)5 are g and
g%, respectively. From Proposition 4.6/ and Theorem 4.3, we have

g = Vecty (G)L, g* = Ham(G)~.

Using these equalities and the above isomorphism, we can define ¢y: g — g* to be
the chain map ¢ in degree 0 with

po(z) = ().
The degree 1 component of both gj and L(G,k)s is R, and so we define ¢ in
degree 1 to be the identity map on R.

If 2,y € g, then it follows from Proposition 4.6 that ¢o(z), ¢o(y), and ¢o([z,y]) are
the unique left invariant Hamiltonian 1-forms whose Hamiltonian vector fields are =z,
y, and [z, y], respectively. But Proposition 2.7 implies

d{do(z), do(y)}s = — Lz Vi
Hence [z,y] is also the Hamiltonian vector field of {¢o(z), ¢o(y)},. It then follows
from uniqueness that {¢o(x), ¢o(y)}s = do([z,y]). Therefore the chain maps
{'7 '}s © (¢ ® ¢) QZ ® g?c - L(G’ k)s
and

¢ol,]: g @y — L(G, k)s

are equal and hence the chain homotopy ® can be taken to be the identity. It then
follows that the equations in Definition 2.12 hold trivially, and the chain map ¢ is
invertible by construction. Finally, by applying Corollary 3.5, we see that gj, is also
isomorphic to the hemistrict Lie 2-algebra L(G, k)y. O

Roytenberg [15] has shown that given a simple Lie algebra g and k € R, one can
construct a hemistrict Lie 2-algebra g},;, where:

e the space of O-chains is g,

e the space of 1-chains is R,

e the differential d is the zero map,

e the bracket is the Lie bracket of g in degree 0 and trivial in all other degrees,
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e the alternator is the bilinear map S(z,y) = —2k{x,y), and

e the Jacobiator is the identity.

He also showed that this hemistrict Lie 2-algebra gl! was isomorphic to the already
known semistrict version of the string Lie 2-algebra, which we are calling g3. Com-
bining his result with Corollary 3.5/ and Theorem 5.1, it becomes clear that we are
dealing with the same Lie 2-algebra in four slightly different guises:

gr 2 o), = L(G, k), = L(G, k)s.

In particular, we may view the Lie 2-algebras L(G, k), and L(G,k)s as geometric
constructions of g},; and g3, respectively.
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