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AN ALGORITHM FOR LOW DIMENSIONAL GROUP
HOMOLOGY
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(communicated by Graham Ellis)

Abstract
Given a finitely presented group G, Hopf’s formula expresses
the second integral homology of G in terms of generators and
relators. We give an algorithm that exploits Hopf’s formula to
estimate Ho(G; k), with coefficients in a finite field &, and give
examples using G = SLs over specific rings of integers. These
examples are related to a conjecture of Quillen.

1. Introduction

The purpose of this note is to give an algorithm that allows us to estimate the
second homology group of any finitely presented group. More precisely, given a finitely
presented group G and a finite field k, the second homology group Hs(G;k) with
coefficients in k is a finite dimensional vector space over k, where G acts on k trivially.
Our algorithm gives an upper bound for the dimension of H(G; k) and, in particular
cases, the algorithm calculates precisely this dimension. Existing algorithms such
as those included with the the GAP [7] packages “cohomolo” [9] and “HAP” [5]
are effective on finite groups and special classes of infinite groups. The algorithm
presented here is novel in that it effectively finds a bound for the homology of any
finitely presented group.

A motivational problem for low dimensional group homology is the study of homol-
ogy for groups of the form GL;(A), where GL; is a finite rank general linear group
scheme and A is a ring of arithmetic interest. An approach to this problem is to con-
sider the diagonal matrices inside GL;. Let D; denote the subgroup formed by these
matrices. Then the canonical inclusions D; C GL; for j = 0,1, ... induce homomor-
phisms on group homology with k-coefficients

PP Hi(Dj(A); k) — Hy(GL(A); k),

where k is the field of prime order p, 7 is called the homological dimension and j the
rank. In this context, a celebrated conjecture of Quillen [13] p. 591] implies that pf]’-p

is an epimorphism for A = Z[1/p, {,], p a regular odd prime, ¢, a primitive p*® root of
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28 JOSHUA ROBERTS

unity and any values of 4 and j. For a survey on the current status of this conjecture
we cite [1].
By a spectral sequence argument applied to the group extension

1 —SL;(A) —» GL;(A) = D1(4) — 1

given by the determinant map, we can reformulate Quillen’s conjecture in terms of
H,(SL;(A); k). In the particular case j = 2, this homology has been studied exten-
sively by using the theory of buildings. However, based on this theory we can cal-
culate this homology only for ¢ sufficiently large [2]. The problem of calculating
H;(SLy(A); k) in low dimensions turns out to be highly non-trivial even when i = 2.
Examples in Section 4 confirm the results in [1], as well as give a new finding:

Theorem. The dimension of Ho(SLo(Z[1/7,(7]);F7) as a vector space over Fy is at
most 6.

Our calculations were done with the computational algebra program GAP, and a
GAP-ready text file containing this code can be found at:

http://intlpress.com/HHA/v12/n1/a3/GAPcode.txt
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2. First homology group

We consider a group given by a finite set of generators and a finite set of relators.
If we denote this group by G, then there is a short exact sequence

1-R—-F—-G—1,

where F' is a finitely-generated free group and R is a normal subgroup of F' such that
if F acts on R by conjugation then R is a finitely-generated F-module. Here if F' and
R are two groups not necessarily commutative then an F-module structure on R is
an assignment r +— rf for r € R and f € F such that

’I"l

T,

(7"17”2)f = 7"{7"57

pfifz — (7,f1)fz7

where, if not otherwise stated, all groups are given multiplicatively. In this context,
it is well known that the first homology of a group is just another name for its
abelianization [4, p. 8]. In particular, if we denote by H;(G) this abelian group, then
there is a short exact sequence

1— R[F,F| - F — H1(G) — 1,

where [F, F] denotes the subgroup of F' generated by the commutators in F' and the
juxtaposition denotes the operation of taking the subgroup generated by the parts.
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Letting F act on R[F,F] by conjugation, we recognize that R[F, F| is a finitely-
generated F-module. Indeed, the commutator formula

1 1

€ 2'71x,2343471

2y, 2] = (wy) 2" ayz =y~ 2 lyz = [2,2)Yy, 2]

proves that since F' is a finitely-generated group then [F, F| is a finitely-generated
F-module under conjugation and the same is assumed about R. This argument leads
to a deterministic algorithm that gives the structure of Hy(G). The input is a finite
list of generators for F', say S, and a finite list of generators for the F-module R, say
T. The output is a list of integers describing the structure of the finitely-generated
abelian group H;(G).

2.1. The first homology algorithm

Algorithm 1: FIRSTHOMOLOGY(F, R)

Input: Free Group F, Relators R

Output: List of abelian invariants of the finitely presented group F/R
1 M := Relation matrix of F/R
2 N := Smith normal form of M
3 return Diagonal entries of N

The GAP command AbelianInvariants() carries out (roughly) the above algo-
rithm. An algorithm for reducing a matrix to a Smith Normal form is given in |8
p. 343]. Recall that given a finite presentation for F//R that consists of n generators S
and m relators T, there is the associated n x m relation matrix M whose (4, j) entry
is the sum of the exponents of all occurrences of the jth generator in the ith relator.
The resulting list of diagonal entries of N is the set of entries in the (i,4) position for
¢ =1---min(n,m) and consists of positive integers and zeros. The number of zeros
is the rank of H;(G) and each positive integer n corresponds to a copy of Z,, in the
torsion part of Hy(G).

This result can be extended to the case when the homology of G is taken with
trivial coefficients in a finite field say k. In this case, the first homology group of G
is denoted by H1(G;k) and is a finite dimensional vector space over k. Its dimension
can be determined from the universal coefficients [4, p. 36] short exact sequence

1—k® H(G) — Hi(G; k) — Tor(Hy(G), k) — 1,

where Hy(G) is the free cyclic group and Tor(—, k) is a functor vanishing on free
abelian groups. The algorithm takes as input the finite lists .S and 7" from the previous
algorithm together with the characteristic p of the finite field k. The output is an
integer representing the dimension of the vector space Hi(G; k).

2.2. The first homology with coefficients algorithm

Algorithm 2: FIRSTHOMOLOGYCOEFFICIENTS(F, R, p)
Input: Free Group F', Relators R, Prime p = char(k)
Output: Dimension of the vector space k @ Hy(G; k) over k

1 T :=FIRSTHOMOLOGY(F, R)

2 X =]

3 for z € X do
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4 if x =0 mod p then

5 append z to X
6 end if
7 end for

8 return Size(X) {number of elements in the list X'}

3. Second homology group

Our investigation can be extended to the second homology group of G which is an
abelian group that we denote H3(G). By a celebrated formula due to Hopf [4] p. 42]
this group fits into the following exact sequence:

1—[F,R]— RN[F,F]— H3(G) — 1,

where [F, R] is the subgroup of F generated by the commutators [f,r] with f € F
and r € R. The commutator formula

[,y = 2 My~ Pay® = a7 2Ty ey )2y = (e, 9y, 2]
proves that [F, R] is a finitely-generated F-module under conjugation. However the
intersection R N [F, F] is not determined by any algorithm, and we can only estimate
the group Ha(G) as a subgroup of the factor group R/[F, R]. This factor group is
abelian since [F, R] contains [R, R] and if we let F" act on it by conjugation, then this
action is trivial. In particular, since R is a finitely-generated F-module it follows that
the factor group R/[F, R] is a finitely-generated abelian group. Consequently, Ho(G)
is a finitely-generated abelian group whose structure we would like to determine.
We start with the following exact sequence

R F F
[F,R] [F.F] R[FF]

in which the last two terms are deterministically determined as explained above.
Moreover, starting with a finite list of generators T for the F-module R, we can
design a deterministic algorithm to find a set of generators for Hy(G).

To simplify the discussion, let & denote the finite field of prime order p and start
our investigation with the homology with trivial coefficients in k. By the universal
coeflicients theorem we have a short exact sequence

1 — k® H2(G) — H2(G; k) — Tor(H1(G), k) — 1

1— HQ(G) —

— 1 (1)

whose last term can be determined as follows. For input we start with the abelian
invariants of Hi(G) found by the first algorithm together with the order p of the
field k. The output is an integer say a representing the dimension of the vector space
Tor(H,(G), k) over k. The algorithm is deterministic.

3.1. The Tor Algorithm

Algorithm 3: TOR(F, R, p)
Input: Free Group F, Relators R, Prime p = char(k)
Output: Dimension of Tor(H;(G), k) over k
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A :=F1rsTHOMOLOGY(F, R)
X =]
for z € A do
if x 20 and z =0 mod p then
append z to X
end if
end for
return Size(X)

The first term k ® Ha(G) of the exact sequence is a finite dimensional vector space
over k whose dimension can only be estimated from above by an algorithm that we
will describe next. From the exact sequence (1) we extract the short exact sequence

R R[F, F)
1— Hy(G) — — . — 1
D EmR T AR
whose last term is a subgroup of the free abelian group F/[F, F]. It is a standard
fact that any subgroup of a finitely-generated free abelian group is free abelian and
consequently the above sequence splits. In particular, by tensoring with £ we obtain
a short exact sequence of vector spaces over k:
R R[F, F)
1—k® Hy(G E® ——= —k ’ 1
RS S RS g R e
where the last term can be rewritten as R[F, F]/RP[F, F]. Here RP denotes the sub-
group of F' generated by the p-powers of elements of R. In particular, there is a short
exact sequence of finitely-generated abelian groups

R|F,F| F F
[F,F]  Re[F,F|] R[FF)

whose last two terms are deterministically computable by our first algorithm.

0 N O Ut W N =

1—-k®

— 1

Definition 3.1 ([6] p. 6]). For an abelian group A, define the p-primary subgroup
of A to be

po(A)={ac A] a?" =1 for some i > 0}.
The order of this subgroup is of the form p°. Call e the p>°-rank of A.
The p*> rank of a finitely-generated abelian group A can be calculated by taking as

input the abelian invariants of A and the prime p.
By passing to p-primary subgroups, sequence 3.1/ gives another short exact sequence

ket o () - (mem)

since the first term is p-torsion. We observe that while F'/R[F, F] can be given in
terms of S and T, the factor group F/RP[F, F] can be given in the same way but
replacing T by TP, the finite list of p-powers of elements in T'.

3.2. The Rank Algorithm
Algorithm 4: PRIMEPRIMARYRANK(F, R, p)
Input: Free Group F, Relators R, Prime p
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Output: p>-rank of F/R
1 A :=FirRsTHOMOLOGY (F, R)

2Y =]

3 fora e Ado

4 if a # 0 and a = 0 mod p then

5 y := p-adic valuation of a

6 append y to Y

7 end if

8 end for

9 s:=Sum(Y) {s is the sum of the elements of Y’}
10 return s

The GAP command PadicValuation(n,p) gives the p-adic valuation of an integer
n.

To summarize, let

a = dimension of Tor(H;(G), k),

F
b= poo—rank of W,
¢ = p®-rank of m,
d = dimension of Hy(G; k),
e = dimension of k ® [RRM’

where a is determined by the Tor Algorithm, b and ¢ by the Rank Algorithm, and e
is yet to be studied. By the additive property of the dimension and the p>°-rank, we
deduce, from the exact sequences above, the following reduction formula:

d=a+b—c+e.

Since a, b, ¢ are more or less standard, the integer e is the key difficulty we aim to
approach experimentally.

We first describe an algorithm that reduces an element of a group via a rewriting
system.

3.3. Reduce word algorithm

Algorithm 5: REDUCEWORD(F, R, Z, R’ p)
Input: Free Group F, Relators R, Test Word z, Sublist R’ of R, Prime p
Output: Reduced word of z in F/[F, R|RPR’

1 G:=F/|F,R|RPR’

2 RG := Rewriting system for G

3 x := Reduced word of (2) in the rewriting system RG

4 return z

We use the rewriting system given by the Knuth-Bendix completion algorithm [11]
implemented on GAP via the KBMAG package [10].
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3.4. The find basis algorithm

Algorithm 6: FINDBASIS(F, R, p, R')
Input: Free Group F, Relators R, Prime p, Sublist R’ of R
Output: Size of a generating set for [F, R|RPR'/|F, R|R?

1 X: =R

2 for z € X do

3 a2’ := REDUCEWORD(F, R, z, Difference(X, [z]),p) {Difference(A, B) is the

complement of B in A}

4 if 2’ = identity then

5 X := Difference(X, [])

6 end if

7 end for

8 return Size(X)

The algorithm attempts to check for linear independence of each element z of
R’ with respect to R’ — {z} in [F, R]RPR'/[F, R]RP. Whenever z is found by the
rewriting system to be dependent of R’ — {«}, it is removed from R’. The end result
will be a list of potentially linearly independent generators.

We conclude this discussion with the grand scheme algorithm which takes as input
a finite list of generators S and a finite list of relators T for a group G together
with a prime p and gives as output an integer d representing an upper bound for the
dimension of Hy(G; k), where k is a field of characteristic p.

3.5. The second homology with coefficients algorithm

Algorithm 7: SECONDHOMOLOGYCOEFFICIENTS(F, R, p, R')
Input: Free Group F', Relators R, Prime p, Sublist R’ of R generating R/[F, R]RP
Output: An integer d such that dim (H2(G;k)) < d

1 a:= ToR(F,R,p)

2 b:= PRIMEPRIMARYRANK(F, R[F, F],p)

3 ¢:= PRIMEPRIMARYRANK(F, RP[F, F|,p)

4 e:= FINDBASIS(F, R, p, R')

5d=a+b—c+e

6 return d

It is important to note that the reduction of test words in the algorithm REDUCE-
WORD is the word problem (for a description of the word problem see [3]). As such,
a result of a word not being the identity is an indeterminate result. However, if G
is finite, or, more generally, if the rewriting is confluent, then the reduction in the
rewriting system is deterministic and a basis is achieved (the confluence for finite
groups is guaranteed in theory only; in practice it may take a long time or require
more space than is available). At any rate, this is not typically the case-the word
problem is undecidable in general; thus the result of FINDBASIS is, in general, the
cardinality of a generating set that is not necessarily a basis. Therefore in these cases
we do not find the dimension of Hy(G; k), only an upper bound.
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4. Examples

In this section, we apply the grand scheme algorithm above to some select groups.
The first example is to illustrate the effect the algorithm has on groups with small-

ish presentations. The other three examples are the groups of primary interest. In
Section 5| we will discuss these calculations.

Ezxample 4.1. The symmetric groups X, on n letters:

G =13,

S = [a,b],

T = [a®,b%, (a'b)?, (a®ba2b)?],
p=2,

d=2.

Next we consider three linear groups over Z[1/p, (,], where (, is a primitive p-root
of unity. Presentations for groups of this from can be found in [1, pp. 447, 453].

Ezxample 4.2.

G = SLa(Z[1/3, ¢5)),
S = [z,u1,a,b,bg, b1, ba, w],
T = [b; ' 2%02% a, w2 uyugus, 23, [z, ua], [ur, wa], a?, [a?, 2], [a%, ui],
a " 'zaz,a  fugauy, [bs, b, b 3a?, b 3boby b,
(bobfla_lul)?’7 a_Qb_lulbz_?’b_lbglz3bz_1u1],
p=3,
d=0,

where s,t € {1,2}.
Example 4.3.
G = SLy(Z[1/5, ¢5)),
S = [Z, uy, u2,a, b7 b07 b17 b2, b37 b4a w]a
T = b7 2%02% a, w2 ugugus, 2°, [z, wi], [ui, ugl, a*, [a?, 2], [a?, ui),
a tzaz, a tuau;, [bs, b4 ,b73a%, b7 3bob1babsby,
(bgbl_laflul)?’, (b0b51a71u2)3, (b0b§1a71U3)3,
(boby b5 bsa ™ ugug)?, (boby b3 thsa ugus)?,

(boby b3 tbsa  uguz)®, "2 b tubz T3 by 23 b T ),

where i,j € {1,2} and s,t € {1,2,3,4}.
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Ezxample 4.4.
G = SLy(Z[1/7, &),
S = [z,u1,us,us,a,b, by, by, ba, bz, by, bs, b, w],
T = [b; 12323, w2t ugugus, 27, [z, us), [us, uj), at,[a?, 2], [a®, ],
a Y zaz, a" fuzaug, [bs, by, b 3a?, b 3bob1babsbabsbe, by w1 b, tw,
(boby ta™ up)?, (boby ta " ug)?, (bgbglaflu;e))‘g,
(boby b5 thsa ™ ugua)?, (boby tbs thaa T ugus)®, (boby thy thsa T ugus)®,
(boby b5 tb3babsby ta fugugus)®, a2 bz T3 by 23 b T ),
p=T,
d =6,
where i,j € {1,2,3} and s,t € {1,2,3,4,5,6}.

5. Discussion and future work

Details on the above examples are as follows:

o FExample [4.1. The rewriting system given by the KBMAG package for Y5 is
confluent; therefore

dlmH2(25,IF2) =2
The algorithm took about 50 milliseconds to run, reflecting the relatively simple
presentation.
o Ezxample [4.2. The rewriting system given by the KBMAG package for
SLa(Z[1/3,¢3]) is not confluent; the algorithm took about six hours to finish.
In this case, the non-confluence of the system did not affect the results as the

rewriting system was able to show that all elements of R reduced to identity
modulo [F, R]R3, so

dim HQ(SLQ(Z[l/S, Cg]; ]F3) = 0.

o FExample [4.3. The rewriting system given by the KBMAG package for
SLy(Z[1/5,¢5]) is not confluent. As in Example 2 the non-confluence of the
system did not affect the results and

dimH2(SL2(Z[1/5, C5]) =0.
The algorithm took about two days to finish.

o FEzample [{.4. The rewriting system given by the KBMAG package for
SLo(Z[1/7,¢7]) is not confluent. In this case, the algorithm took a total of about
five days to finish. Also, this is the only case tested in which the non-confluence
actually mattered. Since the algorithms were not able to show that the dimen-
sion of R/[F, R]R" is 0, we only have the upper bound

dim Hy(SLa(Z[1/7,¢7]); Fr) < 6.

We note that for Examples 4.3 and 4.4, it was necessary to run the algorithm
several times to obtain the results above since the parameters of the KBMAG package
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allow a limited number of equations to be generated in the rewriting system. Each
iteration eliminated elements of R from the generating list until the results stabilized.
For instance, in Example 4.4, the initial iteration gave a result of e < 16 and d < 10,
the second iteration gave that e < 13 and d < 7. The third and fourth iterations each
gave a result of e < 12 and so the upper bound on d is 6.

Finally, in implementing these algorithms to find a bound on Hs(G) it is useful
to first perform Tietze transforms on the presentations involved to attempt to sim-
plify the presentations. In many cases, the number of generators and relators can be
reduced, thus simplifying the calculations. A description of Tietze transformations
can be found in [12] pp. 89-99]. In Example 4.4, SLo(Z[1/7,(7]) is given via a pre-
sentation consisting of 14 generators and 64 relators. A series of Tietze transforms,
implemented via GAP, simplifies to a presentation with six generators and 34 relators.
This significantly impacts the results of the algorithm.

Our future work will involve refining and improving the algorithms above. Initially
we were concerned only with writing algorithms that gave results-the efficiency of
these algorithms was not a concern. For the linear groups above as p increases the
number of relators grows exponentially; thus the algorithms will take longer and
longer to finish. Going from p = 2 to p = 7, the time required increased from several
hours to several days.

We also will develop other methods for finding generators of Ho(G) and Ha(G; k)
independent from those above. In particular, we attempt to find lower bounds on
the dimension of Hy(G; k). The strategies for both problems will be based on linear
algebra involving rewriting systems for T in F/[F, F] and will appear in a future

paper.
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