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HOMOTOPY THEORY OF PRESHEAVES OF Γ-SPACES

HÅKON SCHAD BERGSAKER

(communicated by J. F. Jardine)

Abstract
We consider the category of presheaves of Γ-spaces, or equiv-

alently, of Γ-objects in simplicial presheaves. Our main result
is the construction of stable model structures on this category
parametrised by local model structures on simplicial presheaves.
If a local model structure on simplicial presheaves is monoidal,
then the corresponding stable model structure on presheaves
of Γ-spaces is monoidal and satisfies the monoid axiom. This
allows us to lift the stable model structures to categories of
algebras and modules over a monoid.

Introduction

In his paper [21], Segal introduced Γ-spaces as a way to describe commutative
monoids up to homotopy, and showed that they give rise to infinite loop spaces.
Segal’s original definition of a Γ-space, as a functor from the category of finite sets
to spaces satisfying certain conditions, is what is now called a special Γ-space. In [4],
Bousfield and Friedlander considered the category of all based functors from finite
sets to simplicial sets; in particular they constructed a stable model structure on it,
in which the fibrant objects are given by the very special Γ-spaces, and the weak
equivalences are the stable equivalences of the associated spectra. As a consequence
they show that the homotopy category of this model category is equivalent to the
homotopy category of connective spectra.

Lydakis introduced a smash product for Γ-spaces in [17], making the category of
Γ-spaces into a symmetric monoidal category. This smash product is compatible with
the smash product of spectra after passage to the respective homotopy categories, thus
making the category of Γ-spaces a convenient category for modeling multiplicative
structures on connective spectra on a point set level. In [20], Schwede introduced a
different model structure for Γ-spaces, Quillen equivalent to the one considered by
Bousfield and Friedlander. This model structure satisfies the monoid axiom, an axiom
first formulated by Schwede and Shipley in [22], which implies the existence of model
structures on the categories of monoids and modules of Γ-spaces.

The main result of this paper is the construction of stable model structures on
the category of presheaves of Γ-spaces, or equivalently, of Γ-objects in simplicial

Received May 25, 2008, revised November 18, 2008; published on February 19, 2009.
2000 Mathematics Subject Classification: 55P47, 55P42, 55P43, 55P48.
Key words and phrases: model category, homotopy theory, simplicial presheaf, infinite loop space.
This article is available at http://intlpress.com/HHA/v11/n1/a3

Copyright c© 2009, International Press. Permission to copy for private use granted.
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presheaves over an arbitrary small Grothendieck site. There are several model struc-
tures on simplicial presheaves, and we are focusing on the ones with local weak equiv-
alences (Definition 1.1) as weak equivalences. We carry out the arguments without
assuming any particular choice of model structure on simplicial presheaves, but we
have to impose a cofibrancy condition on the domains of the generating sets (Hypoth-
esis 3.1). When the site consists of one morphism only, our model structure will
specialize to the one in [20].

The following theorem states the main results appearing as Theorem 4.12, Propo-
sition 4.17 and Theorem 5.1 in the main body of the paper.

Theorem 0.1. Let C be a small Grothendieck site and let Spc be the category of
simplicial presheaves on C given a model structure according to Hypothesis 3.1. Let
ΓSpc denote the category of based functors Γ → Spc, where Γ is the category of based
finite ordinals.

1. There is a cofibrantly generated left proper model structure on the category
ΓSpc with stable equivalences (Definition 4.10) as weak equivalences. The fibrant
objects in this model structure coincides with the very special (Definition 4.7)
Γ-spaces.

2. If the category Spc is a monoidal model category, then the stable model structure
on ΓSpc is monoidal and satisfies the monoid axiom. Consequently, the category
of module objects over a monoid in ΓSpc, and the category of algebra objects
over a commutative monoid in ΓSpc, inherits model structures from ΓSpc by
the results of [22].

As a part of the construction, we compare our Γ-spaces to presheaves of spectra,
and also show that the homotopy category of (presheaves of) Γ-spaces is equivalent
to the homotopy category of connective (presheaves of) spectra. This equivalence is
induced by a left Quillen functor from Γ-spaces to spectra, which maps very special
Γ-spaces to Ω-spectra, thereby producing infinite loop objects in the category of
simplicial presheaves.

As an application of the last part of Theorem 0.1 we construct an Eilenberg-Mac
Lane functor H from presheaves of simplicial abelian groups to Γ-spaces and show that
it is a Quillen equivalence between the categories of presheaves of simplicial abelian
groups and the category of HZ-modules. Corresponding results for presheaves of
simplicial rings, and presheaves of simplicial modules over presheaves of commutative
simplicial rings are also included.

Here is a quick outline of the paper. In Section 1 we recall some basic theory of
simplicial presheaves, in particular the relevant model structures. Section 2 introduces
the category of Γ-spaces, and in Section 3 we establish the strict model structure on
this category. We apply Bousfield localization to this model structure in Section 4
to obtain the stable model structure on Γ-spaces, and compare its homotopy cat-
egory to the homotopy category of connective presheaves of spectra. In Section 5
the stable model structure is lifted to the categories of modules and algebras over a
(commutative) Γ-ring. Here we also obtain a Quillen equivalence between presheaves
of simplicial modules over a presheaf of simplicial rings and modules over a Γ-ring.
To this end, we first construct a model structure on presheaves of simplicial modules,
and similarly for algebras.
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We assume familiarity with the theory of model categories, as described in, e.g.,
Goerss and Jardine [7], Hirschhorn [8] or Hovey [9]. Some knowledge of classical Γ-
spaces and simplicial presheaves is also assumed, but we recall what we need about
simplicial presheaves in the first section. To prove the main theorem we make use of
enriched left Bousfield localization as described in Barwick [2]. A quick review of this
theory, together with some notes on bisimplicial presheaves, is located in an appendix.

In this paper, we use M(X, Y ) to denote the set of morphisms between X and
Y in the category M, while Map(X,Y ) and Hom(X, Y ) will denote respectively
simplicial function complex and internal hom. More generally, when M is enriched
in a category V, the enriched hom objects will be denoted VHom(X,Y ). When more
than one category is under consideration, these objects will often be subscripted by
the categories.

Acknowledgements

This paper is part of my Ph.D. thesis done at the University of Oslo; the topic was
suggested to me by Paul Arne Østvær. I want to thank Clark Barwick, John Rognes
and Paul Arne Østvær for clarifying conversations regarding this paper and model
categories in general, and the referee for providing helpful comments and suggestions.

1. Preliminaries on spaces

In this section we recall some facts about simplicial presheaves. Let S∗ be the
category of pointed simplicial sets. Fix a small site C, i.e., a small category C with a
Grothendieck topology. The functor category Fun(Cop,S∗), which we denote Spc, is
the category of pointed simplicial presheaves on C. As the notation suggests, we will
call the objects in this category “spaces”.

Each U ∈ C represents a discrete simplicial presheaf C(−, U)+, and we will write
U for this space. Also, a simplicial set K defines a constant simplicial presheaf and
we will use K to denote this space.

The category of spaces is closed symmetric monoidal, with monoidal product ∧
defined sectionwise by

(X ∧ Y )(U) = X(U) ∧ Y (U)

for all U ∈ C. Here we are using ∧ to denote both the monoidal product of spaces X
and Y and the smash product of based simplicial sets. Let K be a based simplicial
set. Simplicial tensor K ∧ − and cotensor (−)K are defined as

(K ∧X)(U) = K ∧X(U)

XK(U) = X(U)K

for each U ∈ C.
The simplicial function complex Map(X,Y ) of two spaces X and Y is defined in

simplicial degree n to be

Map(X, Y )n = Spc(X ∧∆n
+, Y ) ,

with face and degeneracy maps induced from ∆n
+. There is also an internal hom-object
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Hom(X, Y ) of spaces defined sectionwise by

Hom(X, Y )(U) = Map(X|U, Y |U) ,

where X|U means X restricted to the local site C ↓ U .
We define homotopy groups of a space X as follows. First, let

L2 : Pre(C) → Shv(C)
be the associated sheaf functor from the category of presheaves to the category
of sheaves, which is left adjoint to the inclusion functor. Let πp

0(X) be the pre-
sheaf U 7→ π0(X(U)); the sheaf of path components is the associated sheaf π0(X) =
L2πp

0(X). For n > 1, each U ∈ C and 0-simplex x ∈ X(U), define the presheaf
πp

n(X, x) on C ↓ U as

πp
n(X,x)(V ) = πn(|X(V )|, x|V ) ,

where | − | denotes geometric realization of simplicial sets and x|V denotes the restric-
tion of x along X(U) → X(V ). The sheaf πn(X, x) = L2πp

n(X, x) is the sheaf of homo-
topy groups of X over U with basepoint x.

Definition 1.1. A morphism f : X → Y of spaces is a local weak equivalence if the
induced map of sheaves π0(X) → π0(Y ) is a bijection, and the induced maps

πn(X,x) → πn(Y, f(x))

are isomorphisms for all n > 1, U ∈ C, x ∈ X(U)0. It is a sectionwise weak equiva-
lence if f(U) : X(U) → Y (U) is a weak equivalence of simplicial sets for each U ∈ C,
and a sectionwise equivalence is in particular a local weak equivalence. Sectionwise
cofibrations and fibrations are defined similarly.

There are several known model structures on Spc. We will only consider model
structures on Spc in which the weak equivalences are given by the local weak equiv-
alences of spaces.

Theorem 1.2 (Jardine [12]). There is a cofibrantly generated proper simplicial model
structure on Spc with sectionwise cofibrations (i.e., monomorphisms) as cofibrations
and local weak equivalences as weak equivalences. This is the local injective model
structure on Spc.

To formulate the next theorem, let us define a projective cofibration of spaces to be
a map that has the left lifting property with respect to maps that are both sectionwise
fibrations and sectionwise weak equivalences.

Theorem 1.3 (Blander [3]). There is a cofibrantly generated proper simplicial model
structure on Spc with cofibrations as the projective cofibrations of spaces, and local
weak equivalences as weak equivalences. This is the local projective model structure
on Spc.

Each projective cofibration i : A → B can be factored as a monomorphism
j : A → C followed by a local injective trivial fibration p : C → B. Since p is also
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a sectionwise trivial fibration, there is a lift in the diagram

A

i

²²

j // C

p

²²
B // B ,

from which we see that i is a retraction of j; hence i is a monomorphism. This shows
that the class of projective cofibrations is contained in the class of local injective
cofibrations. In fact any set I of monomorphisms containing the set of generating
projective cofibrations determines a local model structure on Spc.

Theorem 1.4 (Jardine [16]). Let I be a set of monomorphisms containing the set of
generating projective cofibrations. There is a cofibrantly generated proper simplicial
model structure on Spc with I as the set of generating cofibrations and local weak
equivalences as weak equivalences.

An example of an intermediate model structure which differs from the local injec-
tive and local projective ones is the flasque model structure constructed by
Isaksen [11].

Remark 1.5. To each model structure on the category of spaces, there is a correspond-
ing model structure on the category of simplicial sheaves, such that the inclusion
functor from simplicial sheaves to spaces becomes a Quillen equivalence. By applica-
tion of this Quillen equivalence, all the homotopy theoretic results in this paper have
corresponding results for simplicial sheaves.

Proposition 1.6. If f : X → Y is a local weak equivalence of spaces and Z is a space,
then the induced map f ∧ 1: X ∧ Z → Y ∧ Z is a local weak equivalence.

Proof. This is stated in [14, 2.46].

Proposition 1.7. If f : X → Y is a local weak equivalence of spaces, where X and
Y are fibrant in any of the model structures constructed in Theorem 1.4, then f is a
sectionwise weak equivalence.

Proof. By [3, 1.3], the local projective model structure on spaces is a Bousfield local-
ization of the projective model structure consisting of the projective cofibrations and
sectionwise fibrations and weak equivalences, so in this case the result follows from
general properties of Bousfield localizations. But a space X which is fibrant in any
intermediate model structure is in particular fibrant in the local projective structure
and we are done.

Let M be a monoidal model category with monoidal product ∧ and let TC be the
class of trivial cofibrations in M. Recall that the monoid axiom is the statement that
all maps in (TC ∧M)-cell are weak equivalences, where X-cell denotes the closure
under transfinite compositions of pushouts of maps in X. This axiom ensures that the
categories of modules and algebras over a monoid in M inherit model structures from
M; we will elaborate somewhat on this in Section 5. If the category M is cofibrantly
generated with generating trivial cofibrations J , then to show that the monoid axiom
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holds it suffices to check that every map in (J ∧M)-cell is a weak equivalence. See [22]
for further details.

Proposition 1.8. The local injective model structure on Spc is monoidal.

Proof. Note that when X → Y is a monomorphism, so is X ∧ Z → Y ∧ Z. Given two
monomorphisms Xi → Yi, consider the pushout diagram

X1 ∧X2
//

²²

Y1 ∧X2

²²
X1 ∧ Y2

// P .

(1.1)

By evaluating in sections and quoting the corresponding result about simplicial sets,
we get that the induced pushout product map P → Y1 ∧ Y2 is a monomorphism.

If in addition X1 → Y1 is a local weak equivalence, then so is the top horizontal
map in the pushout diagram, by Proposition 1.6. Left properness of the local injective
model structure implies that the bottom map in (1.1) is a local weak equivalence, and
using the 2-out-of-3 axiom we conclude that P → Y1 ∧ Y2 is a local weak equivalence,
so Spc is monoidal.

Proposition 1.9. Let C be a site which has finite products, and consider the category
of spaces with the local projective model structure. In this case, Spc is a monoidal
model category.

Proof. The pushout product of a monomorphism and a monomorphic local weak
equivalence is a local weak equivalence by Proposition 1.8, so it suffices to check
that the pushout product of two generating projective cofibrations is a projective
cofibration.

The generating cofibrations in the local projective model structure can be chosen
as the set of maps

{K ∧ U → L ∧ U}K→L, U∈C ,

where K → L ranges over generating cofibrations of simplicial sets. Now recall the
isomorphism

(K ∧ U) ∧ (L ∧ V ) ∼= (K ∧ L) ∧ (U × V ) ,

where K and L are simplicial sets, and U, V ∈ C. Let fi : Ki ∧ Ui → Li ∧ Ui, i = 1, 2,
be two generating projective cofibrations. We can identify the pushout product of
f1 and f2 with the corresponding pushout product of K1 → L1 and K2 → L2 in
simplicial sets, smashed with the product U1 × U2. Since the functor (U1 × U2) ∧ −
preserves cofibrations, the result follows.

Proposition 1.10. Assume that Spc is given any of the model structures constructed
in Theorem 1.4, and assume in addition that the model structure is monoidal. Then
it also satisfies the monoid axiom.

Proof. Consider the class C of morphisms consisting of X ∧ Z → Y ∧ Z, where Z is
a space and X → Y is a trivial cofibration of spaces. By Proposition 1.6, this class
is contained in the class of local injective trivial cofibrations, i.e., monomorphisms
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which are also local weak equivalences. Now C-cell is also contained in the class of
local injective cofibrations, since trivial cofibrations are closed under the formation of
cell objects, and in particular every morphism in C-cell is a local weak equivalence.

In Section 4 we will apply Bousfield localization to the category of Γ-spaces. For this
we need to know that our categories are combinatorial, in the sense of Jeff Smith. An
account of this notion is given in Dugger [6]; we recall the relevant definitions below.

Definition 1.11. Let λ be a regular cardinal and M a category. An object X ∈M
is λ-presentable if the represented functor M(X,−) preserves λ-filtered colimits. The
category M is locally λ-presentable if it is cocomplete, and there exists a set {Gi} of
λ-presentable objects in M such that every object in M can be written as a λ-filtered
colimit of the Gi’s. M is locally presentable if it is locally λ-presentable for some λ.

Definition 1.12. A model category is combinatorial if it is locally presentable and
cofibrantly generated.

Remark 1.13. There is another notion which assures the applicability of Bousfield
localization developed in Hirschhorn’s book [8], called cellularity, which is more suit-
able for categories built from topological spaces.

The following basic result is found in e.g. [1, 1.12].

Proposition 1.14. Let I be a small category. Then the functor category Fun(I, Set∗)
is locally presentable.

Since Spc is isomorphic to Fun(Cop ×∆op, Set∗), we have the following result.

Corollary 1.15. The category of spaces, given any of the intermediate model struc-
tures in Theorem 1.4, is combinatorial.

2. The category of Γ-spaces

Let Γ be the full subcategory of the category of pointed sets with objects n+ =
{0, 1, . . . , n}, for n > 0, where 0 is the basepoint in n+. Let M be a pointed cate-
gory. The full subcategory of Fun(Γ,M) consisting of functors that send 0+ to the
basepoint in M is the category of Γ-objects in M, denoted ΓM. The inclusion of Γ
in the category of finite based sets, fSet∗, is an equivalence of categories, and ΓM is
equivalent to the subcategory of Fun(fSet∗,M) consisting of based functors.

When M is the category S∗ of pointed simplicial sets, objects in ΓS∗ are classically
called Γ-spaces; model structures on this category are constructed in the articles
Bousfield and Friedlander [4] and Schwede [20]. Our objects of study will be Γ-objects
in Spc, which we also call Γ-spaces. Alternatively, our Γ-spaces can be thought of as
presheaves of ordinary Γ-spaces, i.e., Fun(Cop, ΓS∗). Note that when C consists of one
morphism only, we recover the category ΓS∗, and our stable model structure will be
constructed so that we recover the stable model structure in [20].

To start with, we want to define a closed symmetric monoidal structure on Γ Spc.
Observe that Γ is symmetric monoidal under the operation ∧ : Γ× Γ → Γ given by
(m+, n+) 7→ mn+. Given two Γ-spaces F and G, the smash product F ∧G is defined
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as the left Kan extension filling out the following diagram:

Γ× Γ

∧
²²

(F,G) // Spc×Spc
−∧− // Spc .

Γ

44iiiiiiiiiiii

More explicitly, the smash product is the pointwise colimit

(F ∧G)(n+) = colim
i+∧j+→n+

F (i+) ∧G(j+) .

It follows from the universal property of the colimit that maps of Γ-spaces F ∧G → H
are in one-to-one correspondence with maps F (i+) ∧G(j+) → H(i+ ∧ j+) that are
natural in i+ and j+, and that this property characterizes F ∧G up to isomorphism.

Simplicial function complexes of Γ-spaces are defined to be

Map(F,G)n = ΓSpc(F ∧∆n
+, G)

in simplicial degree n; the face and degeneracy maps are the obvious ones. From this
we define the simplicial presheaf-hom, or space-hom, in sections by

SpcHom(F, G)(U) = Map(F |U,G|U) ,

where |U denotes pointwise restriction to the local site C ↓ U . Finally, internal hom-
Γ-spaces are defined by setting

Hom(F, G)(n+) = SpcHom(F,G(n+ ∧ −)) .

We have given the constructions of the objects involved in the following result,
which is a special case of Day’s work in [5].

Proposition 2.1. The category ΓSpc is a simplicial closed symmetric monoidal cat-
egory enriched over Spc.

A set defines a discrete simplicial set, and therefore a constant simplicial presheaf.
In particular, the sets Γ(n+, k+) define the corepresented Γ-space Γn given pointwise
by Γn(k+) = Γ(n+, k+). Let F be a Γ-space and let F ◦ Γn denote the Γ-space given
pointwise by

(F ◦ Γn)(k+) = F (Γ(n+, k+)) .

Note that the smash product of two Γ-spaces defined above coincides with the one
given sectionwise by Lydakis’ smash product of classical Γ-spaces [17]. Hence the fol-
lowing two lemmas follow immediately from the corresponding natural isomorphisms
for classical Γ-spaces in [17].

Lemma 2.2. There are natural isomorphisms:
1. SpcHom(Γn, F ) ∼= F (n+),
2. Γm ∧ Γn ∼= Γmn,
3. F ∧ Γn ∼= F ◦ Γn.

Lemma 2.3. Smashing with a Γ-space preserves monomorphisms of Γ-spaces.
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There are functors

Ln : Spc À ΓSpc : Evn (2.1)

for each n > 0, where Evn is evaluation at n+ and Ln(X) = X ∧ Γn. From Lemma 2.2
we have a natural isomorphism

Lm(X) ∧ Ln(Y ) ∼= Lmn(X ∧ Y ) . (2.2)

Proposition 2.4. The functors in (2.1) form an adjoint pair.

Proof. We need to provide a natural isomorphism

ΓSpc(X ∧ Γn, F ) ∼= Spc(X,F (n+)) .

Since Γ Spc is enriched over Spc, there is a natural isomorphism

ΓSpc(X ∧ Γn, F ) ∼= Spc(X, SpcHom(Γn, F )) ,

which combined with part (1) of Lemma 2.2 gives the result.

3. Strict model structures

In this section we establish basic results about the strict projective model structures
on Γ Spc.

Hypothesis 3.1. For the rest of this paper we will assume, unless otherwise noted,
that Spc is given one of the intermediate model structures described in Theorem 1.4,
including the local injective and local projective structures. Suppose further that the
sets of generating (trivial) cofibrations can be chosen with cofibrant domains.

Definition 3.2. A map F → G of Γ-spaces is a

• strict weak equivalence if F (n+) → G(n+) is a local weak equivalence in Spc for
all n > 0.

• strict fibration if F (n+) → G(n+) is a fibration in Spc for all n > 0.

• cofibration if it has the left lifting property with respect to the maps that are
both strict weak equivalences and projective fibrations.

Theorem 3.3. Let I and J be the sets of generating cofibrations and generating
trivial cofibrations in Spc. Then ΓSpc with the classes of strict weak equivalences,
cofibrations and strict fibrations is a cofibrantly generated proper Spc-model category,
with generating cofibrations

IΓ =
⋃

n>0

Ln(I)

and generating trivial cofibrations

JΓ =
⋃

n>0

Ln(J) .

We will refer to this model structure as the strict model structure on ΓSpc.
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Proof. This result is an application of more general results concerning strict proj-
ective model structures on diagram categories, which can be found in Hirschhorn’s
book, [8, 11.6.1, 11.7.3, 13.1.14]. The model structure is enriched in Spc by [2, 3.30].

Corollary 3.4. The adjoint functor pair (2.1) is a Quillen pair, and Evn preserves
cofibrations. In particular, cofibrations are monomorphisms.

Proof. The first statement follows immediately from Theorem 3.3, the second state-
ment follows from [8, 11.6.3].

Corollary 3.5. The Γ-space X ∧ Γn is cofibrant when X is a cofibrant space. In
particular, Γn is cofibrant.

Proof. This follows by applying Ln to the map ∗ → X.

Since Γ Spc as a category is isomorphic to Fun(Γ× Cop ×∆op, Set∗), it is locally
presentable by Proposition 1.14.

Corollary 3.6. The category of Γ-spaces with the strict model structure is combina-
torial.

Proposition 3.7. The category of Γ-spaces equipped with the strict model structure
is a monoidal model category provided Spc is monoidal.

Proof. Since the monoidal unit Γ1 is cofibrant, it suffices to check the pushout product
axiom. Let Fi → Gi, where i = 1, 2, be two cofibrations, and construct the pushout
diagram

F1 ∧ F2
//

²²

G1 ∧ F2

²²
F1 ∧G2

// P .

(3.1)

We may assume that the Fi → Gi are of the form

Xi ∧ Γni → Yi ∧ Γni ,

where Xi → Yi are cofibrations in Spc. Using the isomorphism (2.2), and the fact
that Ln1n2 preserves colimits, we can apply Ln1n2 to the pushout constructed from
the maps Xi → Yi to obtain

Ln1n2(X1 ∧X2) //

²²

Ln1n2(Y1 ∧X2)

²²
Ln1n2(X1 ∧ Y2) // Ln1n2(X1 ∧ Y2

∐
X1∧X2

Y1 ∧X2) ,

which is isomorphic to (3.1). We know that

X1 ∧ Y2

∐

X1∧X2

Y1 ∧X2 → X2 ∧ Y2

is a cofibration of spaces, by the assumption that Spc is monoidal, so we see that the
map P → Ln1n2(Y1 ∧ Y2) is a cofibration. The same argument gives the corresponding
result about trivial cofibrations.
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Proposition 3.8. The strict model structure on ΓSpc satisfies the monoid axiom
when Spc does.

Proof. We need to show that the maps in (JΓ ∧ ΓSpc)-cell are weak equivalences.
Consider first a map f of the form

Ln(X) ∧ F → Ln(Y ) ∧ F

where X → Y is a generating trivial cofibration in Spc. Evaluating at k+, we get

X ∧ (Γn ∧ F )(k+)
f(k+) // Y ∧ (Γn ∧ F )(k+) ,

so f(k+) is in J ∧ Spc for all k+. Now, if g is in (JΓ ∧ ΓSpc)-cell, then it is a transfinite
composition of pushouts of maps fi in JΓ ∧ ΓSpc. Since each fi(k+) is in J ∧ Spc,
and colimits in Γ Spc are computed pointwise, g(k+) is in (J ∧ Spc)-cell. Using the
assumption that the monoid axiom holds in Spc, we see that g(k+) is a weak equiv-
alence for all k+.

Lemma 3.9. A filtered colimit of strict equivalences is a strict equivalence.

Proof. Local weak equivalences of spaces are preserved under filtered colimits, since
sheaves of homotopy groups commute with filtered colimits, and the lemma follows
since colimits of Γ-spaces are defined pointwise.

Proposition 3.10. Strict equivalences of Γ-spaces are preserved when smashed with
a cofibrant Γ-space.

Proof. Let f : F → G be a strict equivalence. The induced map F ◦ Γn → G ◦ Γn is
clearly a strict equivalence, so by Lemma 2.2, the map f ∧ 1: F ∧ Γn → G ∧ Γn is a
strict equivalence.

Now let C be a cofibrant Γ-space. Since Γ Spc is cofibrantly generated with gener-
ating cofibrations IΓ, C is a retract of an IΓ-cell complex, where by IΓ-cell complex
we mean that the unique map ∗ → C is a transfinite composition of pushouts of
maps in IΓ. Weak equivalences are closed under retracts, so it suffices to consider
C = colimα<γ Cα, γ an ordinal, where the maps Cα → Cα+1 are given by pushout
diagrams

X ∧ Γn //

i∧1

²²

Cα

²²
Y ∧ Γn // Cα+1 .

(3.2)

Here i : X → Y is a cofibration of spaces.
Smashing (3.2) with F and G gives us two pushout diagrams as the top and

bottom faces of a cubical diagram. Assuming by induction that F ∧ Cα → G ∧ Cα is
a strict equivalence, we see that the gluing lemma (see [7, II.8.12]) can be applied to
conclude that F ∧ Cα+1 → G ∧ Cα+1 is a strict equivalence. Since F ∧ C → G ∧ C is
the colimit of the maps F ∧ Cα → G ∧ Cα we can conclude by applying Lemma 3.9.
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4. Stable model structures

In this section we will construct the stable model structures for (presheaves of)
Γ-spaces and compare it to the model category of (presheaves of) spectra. In fact,
parts of our construction relies on this comparison; we will begin by recalling the
theory of spectra on a site.

For us, a spectrum is a sequence of objects Ek ∈ Spc indexed by non-negative
integers k together with structure maps

S1 ∧ Ek → Ek+1

for each k. Maps of spectra are sequences of maps fk : Ek → F k compatible with the
structure maps in the sense that the diagram

S1 ∧ Ek //

1∧fk

²²

Ek+1

fk+1

²²
S1 ∧ F k // F k+1

commutes for all k. Denote the category of spectra by Spt.
A spectrum E is levelwise fibrant if each Ek is fibrant, and is an Ω-spectrum if the

adjoints Ek → ΩfEk+1 of the structure maps are weak equivalences. The (derived)
loop functor Ωf : Spc → Spc is by definition a fibrant replacement (−)f followed by
the simplicial cotensor (−)S1

on spaces. Note that we do not require our Ω-spectra
to be levelwise fibrant. A map f : E → F of spectra is a cofibration if f0 : E0 → F 0

is a cofibration of spaces and the induced maps

(S1 ∧ F k)
⋃

S1∧Ek

Ek+1 → F k+1

are cofibrations of spaces for all k > 0. The map f is a stable equivalence of spectra if
it induces isomorphisms πn(E) → πn(F ) of stable homotopy sheaves for all integers
n and U ∈ C, where the stable homotopy sheaf πn(E) is by definition the colimit of
the system

· · · → πn+k(Ek) → πn+k+1(S1 ∧ Ek) → πn+k+1(Ek+1) → . . . .

The following result was first proved by Jardine in [13, 2.8] for the local injective
model structure on Spc; Hovey has results for spectra in more general model categories
in [10, 3.3].

Theorem 4.1. Let Spc be given any intermediate model structure. With the above
notions of stable cofibrations and stable equivalences, the category Spt of spectra is a
cofibrantly generated proper Spc-model category. A spectrum is stably fibrant if and
only if it is a levelwise fibrant Ω-spectrum.

Let F be a Γ-space, which we now consider as a based functor from all finite based
sets to Spc. The functor F induces a functor F̄ : S∗ → s Spc from simplicial sets to
simplicial spaces, by applying F in each simplicial degree. We can compose F with
the diagonal functor d : s Spc → Spc to get a functor

dF̄ : S∗ → Spc .
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Proposition 4.2. Let K → L be a weak equivalence of simplicial sets. Then the
induced map dF̄ (K) → dF̄ (L) is a sectionwise equivalence, and in particular a local
weak equivalence.

Proof. This follows from the corresponding result for classical Γ-spaces in [4, 4.9],
since dF̄ (K)(U) coincides with the corresponding construction for the classical
Γ-space F (U).

Each pair of based sets A,B induces natural maps

A ∧ F (B) → F (A ∧B)

whose adjoints A → Spc(F (B), F (A ∧B)) are described by sending an element a to
the map F (a ∧ −). These maps induce simplicial maps

X ∧ F̄ (Y ) → F̄ (X ∧ Y ),

where X and Y are based simplicial sets. By applying the diagonal functor this results
in maps

X ∧ dF̄ (Y ) → dF̄ (X ∧ Y ) . (4.1)

The spectrum associated to a Γ-space F , which we denote Sp(F ), is defined on
each level as Sp(F )n = dF̄ (Sn). Here Sn = S1 ∧ · · · ∧ S1 (n times.) As a special case
of (4.1), we have

Sm ∧ dF̄ (Sn) → dF̄ (Sm+n)

which gives us the structure maps for Sp(F ).

Lemma 4.3. The functor Sp(F ) has the following properties:

1. Sp(F )0 = F (1+)

2. Sp(Γn) = S×n

3. Sp(X ∧ F ) = X ∧ Sp(F ), for spaces X.

Let E be a spectrum. We obtain a Γ-space Φ(E) by defining

Φ(E)(n+) = SpcHomSpt(S×n, E) ,

where S denotes the sphere spectrum. Here SpcHomSpt(−,−) denotes the space of
morphisms in the category of spectra, defined sectionwise in the same way as for
Γ-spaces; i.e.,

SpcHomSpt(E, F )(U) = MapSpt(E|U,F |U)

for all U ∈ C. A morphism θ : m+ → n+ induces a map θ∗ : S×n → S×m by copying the
θ(i)’th factor into the i’th factor. This map in turn induces Φ(E)(m+) → Φ(E)(n+).

Lemma 4.4. The spectrum Sp(F ) coincides with the coequalizer of the diagram

∨
θ : m+→n+

S×n ∧ F (m+)
1∧F (θ)//
θ∗∧1

//
∨
k+
S×k ∧ F (k+) .
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Proof. Since colimits in Spt, Spc and S∗ are computed pointwise, it suffices to show
that the following diagram

∨
θ : m+→n+

(Si
q)
×n ∧ F (m+)(U)q

1∧F (θ)//
θ∗∧1

//
∨
k+

(Si
q)×k ∧ F (k+)(U)q

f // F (Si
q)(U)q

is a coequalizer of sets, for all i, q > 0, where f is described as follows. A collection
of k ordered elements xj in Si

q specifies a map k+ → Si
q, and by applying F we get

a map (Si
q)
×k → Set∗(F (k+)(U)q, F (Si

q)(U)q). Take the adjoint of this and sum over
k+ to get f . We omit the straightforward element chase.

Proposition 4.5. The functors

Sp : Γ Spc À Spt : Φ

constitute an adjoint pair. Furthermore, this adjunction can be extended to a Spc-
adjunction

SpcHomSpt(Sp(F ), E) ∼= SpcHomΓ Spc(F, Φ(E)) .

Proof. First note that we have an adjunction

Spt(X ∧ E,F ) ∼= Spc(X, SpcHom(E, F )), (4.2)

where X is a space and E,F are spectra. Now take the coequalizer in Lemma 4.4
and apply the functor Spt(−, E) and the isomorphism (4.2). The result is that
Spt(Sp(F ), E) is the equalizer of

∏
θ : m+→n+

Spc(F (m+), SpcHom(S×n, E))
∏
k+

Spc(F (k+), SpcHom(S×k, E)) .oo oo

Any map Sp(F ) → E thus corresponds to a collection of maps

F (k+) → SpcHom(S×k, E) = Φ(E)(n+)

natural in k+, i.e., a map of Γ-spaces F → Φ(E).

Proposition 4.6. The functor Sp preserves cofibrations.

Proof. It suffices to consider generating cofibrations in Γ Spc. Let X ∧ Γn → Y ∧ Γn

be a generating cofibration, where X → Y is a cofibration of spaces. By Lemma 4.3
we need to show that

X ∧ Sp(Γn) → Y ∧ Sp(Γn)

is a cofibration of spectra, but this is immediate since Sp(Γn) = S×n is a cofibrant
spectrum and Spt is a Spc-model category.

Definition 4.7. A Γ-space F is special if the maps

F (n+) → F (1+)× · · · × F (1+)

induced by the n usual projections from n+ to 1+ are weak equivalences for all n > 1.
If, in addition, the map

F (2+) → F (1+)× F (1+)

induced by a projection and the fold map is a weak equivalence, then F is very special.
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Note that when F is special the maps

F (1+)× F (1+) F (2+)∼oo ∇ // F (1+)

induce a commutative monoid structure on the sheaf π0(F (1+)). If F is very special,
then π0(F (1+)) is in fact a sheaf of abelian groups.

Proposition 4.8. The functor Sp sends very special Γ-spaces to Ω-spectra. The func-
tor Φ sends fibrant spectra to strictly fibrant very special Γ-spaces.

Proof. Let F be a very special Γ-space, and let F → Ff be a strictly fibrant replace-
ment. Since F̄ (Sn) → F̄f (Sn) is a strict equivalence of simplicial spaces, the induced
map dF̄ (Sn) → dF̄f (Sn) of spaces is a local equivalence by Proposition 6.1. We need
to show that the map dF̄f (Sn) → ΩfdF̄f (Sn+1) is a local weak equivalence. Since F
is very special, so is Ff , and in fact the maps

Ff (n+) → Ff (1+)× · · · × Ff (1+)

and
Ff (2+) → Ff (1+)× Ff (1+)

are sectionwise equivalences by Proposition 1.7 since each Ff (n+) is fibrant. Thus
Ff (U) is a very special Γ-space in the classical sense, for each U ∈ C, and by [4, 4.2]
each map dF̄f (U)(Sn) → ΩfdF̄f (U)(Sn+1) is a weak equivalence of simplicial sets.
This implies in particular that dF̄f (Sn) → ΩfdF̄f (Sn+1) is a local weak equivalence.

For the second statement, let E be a fibrant spectrum. The canonical stable equiva-
lence S ∨ · · · ∨ S→ S× · · · × S has cofibrant domain and codomain; hence the induced
map

SpcHom(S×n, E) → SpcHom(S∨n, E) ∼= SpcHom(S, E)×n

is a local weak equivalence, i.e., Φ(E) is special. Similarly, the map S ∨ S→ S× S
induced by an inclusion and the diagonal map is a stable equivalence, so Φ(E) is very
special.

Definition 4.9. The n-th homotopy sheaf πn(F ) of a Γ-space F is the n-th homotopy
sheaf of the associated spectrum Sp(F ). We write π∗(F ) for the Z-graded abelian sheaf
⊕n πn(F ).

Note that the sheaf πn(F ) is isomorphic to the sheaf associated to the presheaf
given sectionwise as πn(F (U)), for U ∈ C, where πn(F (U)) is the homotopy group of
the classical Γ-space F (U) as defined in [20, §1].

Definition 4.10. A map F → G in Γ Spc is a
• stable equivalence if the induced map π∗(F ) → π∗(G) is an isomorphism.
• stable fibration if it has the right lifting property with respect to the maps that

are both cofibrations and stable equivalences.

Recall that a spectrum E is called connective if πn(E) = 0 for n < 0. Since the
k-simplices of ∆n/∂∆n for k < n consist of the basepoint only, and since ∆n/∂∆n

is weakly equivalent to Sn, it follows from Proposition 4.2 that dF̄ (Sn) is (n− 1)-
connected, and that Sp(F ) is a connective spectrum.
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Lemma 4.11. The following holds for the adjunction in Proposition 4.5:

1. The composition F → Φ(Sp(F )) → Φ(Sp(F )f ) of the unit map and Φ applied to
a fibrant replacement of Sp(F ), is a strict weak equivalence for special Γ-spaces
F .

2. When E is a fibrant spectrum, the counit map Sp(Φ(E)) → E induces isomor-
phisms πn(Sp(Φ(E))) → πn(E) for all n > 0. In particular, Sp(Φ(E)) → E is a
stable equivalence when E is a fibrant connective spectrum.

Proof. Let F be special. The commutative diagram

F (n+) //

∼
²²

SpcHom(S×n,Sp(F )f )

∼
²²

F (1+)×n

∼
²²

SpcHom(S∨n, Sp(F )f )

∼=
²²

(Sp(F )0f )×n
∼= // SpcHom(S, Sp(F )f )×n

shows that the top map is a local weak equivalence for each n > 0.
When E is a fibrant spectrum, πn(E) ∼= πn(E0) for all n > 0, so the second state-

ment of the lemma is reduced to the statement that Sp(Φ(E))0 → E0 is a local weak
equivalence of spaces. But this map coincides with the canonical weak equivalence

Sp(Φ(E))0 = (ΦE)(1+) = SpcHomSpt(S, E) → E0 .

We let Ho(Spt)>0 denote the full subcategory of Ho(Spt) consisting of the connec-
tive spectra.

Theorem 4.12. The category Γ Spc with the classes of stable equivalences, cofibra-
tions and stable fibrations is a cofibrantly generated left proper Spc-model category,
such that the functor pair in Proposition 4.5 induces an equivalence of categories

L Sp : Ho(Γ Spc) ' Ho(Spt)>0 : RΦ .

The stably fibrant objects in ΓSpc are the very special Γ-spaces that are also strictly
fibrant. A strict fibration of stably fibrant Γ-spaces is necessarily a stable fibration. A
stable equivalence between stably fibrant Γ-spaces is a strict equivalence.

Proof. Let Σ be the set of maps consisting of

Γ1 ∨ · · · ∨ Γ1 → Γn

for all n > 1, and the shear map

Γ1 ∨ Γ1 → Γ2 .

These morphisms are induced by the same morphisms in Γ as in Definition 4.7, and
corepresent the morphisms displayed there. Since the strict model structure on ΓSpc
is combinatorial, left proper and enriched over Spc, we can apply enriched left Bous-
field localization (see Theorem 6.4) with respect to Σ to obtain a new combinatorial
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and left proper model structure on Γ Spc. For the remainder of this proof we will refer
to this model structure as the “localized model structure”.

The localized fibrant objects are given by the Σ-local objects. A Γ-space H is
Σ-local if and only if it is strictly fibrant and the maps

SpcHom(Γn, H) → SpcHom(Γ1 ∨ · · · ∨ Γ1,H)

and

SpcHom(Γ2,H) → SpcHom(Γ1 ∨ Γ1,H)

are weak equivalences of spaces, for n > 1. Composing with the isomorphism

SpcHom(Γ1 ∨ · · · ∨ Γ1,H) → SpcHom(Γ1,H)× · · · × SpcHom(Γ1,H)

and using the isomorphism (1) in Lemma 2.2, it is clear that the Σ-local objects
coincide with the strictly fibrant very special Γ-spaces.

The localized weak equivalences are defined to be those maps f : F → G that have
a cofibrant replacement fc : Fc → Gc (in the strict model structure) that induces local
weak equivalences

f∗c : SpcHom(Gc, H) → SpcHom(Fc,H)

of spaces for all Σ-local H. We have to identify the localized weak equivalences with
the stable equivalences.

Consider the following diagram

SpcHomΓ Spc(Gc,Φ(E))
∼= //

f∗c
²²

SpcHomSpt(Sp(Gc), E)

Sp(fc)
∗

²²
SpcHomΓ Spc(Fc, Φ(E))

∼= // SpcHomSpt(Sp(Fc), E),

(4.3)

where the horizontal maps come from the adjunction in Proposition 4.5. Note that
Sp(fc) is a map between cofibrant objects by Proposition 4.6. Since Spt is a Spc-model
category, Sp(fc) : Sp(Fc) → Sp(Gc) is a stable equivalence of spectra if and only if
Sp(fc)∗ is a local weak equivalence of spaces for all fibrant spectra E. It follows that
fc is a stable equivalence of Γ-spaces if and only if f∗c is a local weak equivalence for
all fibrant E. In particular, a localized weak equivalence is a stable equivalence since
by Proposition 4.8 we know that Φ(E) is a Σ-local Γ-space.

When H is a very special Γ-space the map H → Φ(Sp(H)f ) is a strict weak equiv-
alence by Lemma 4.11, and hence induces local weak equivalences of spaces in the
diagram

SpcHom(Gc,H) ∼ //

f∗c
²²

SpcHom(Gc,Φ(Sp(H)f ))

f∗c
²²

SpcHom(Fc,H) ∼ // SpcHom(Fc, Φ(Sp(H)f )) .

(4.4)

It follows from (4.3) and (4.4) that a stable equivalence is a localized weak equivalence.
Now that we have identified the localized weak equivalences with the stable equiv-

alences, Sp is a left Quillen functor by Proposition 4.6 since the localization process



52 HÅKON SCHAD BERGSAKER

does not change the class of cofibrations. The Quillen pair Sp and Φ induces derived
adjoint functors L Sp and RΦ on the homotopy categories of Γ Spc and Spt, which
by Proposition 4.8 restrict to functors

LSp : Ho(Γ Spc) À Ho(Spt)>0 : RΦ .

To show that L Sp is an equivalence, it is enough to note that Sp detects weak
equivalences, and that the counit map Sp(Φ(E)) → E is a stable equivalence for
connective fibrant spectra E by Lemma 4.11.

Proposition 4.13. Smashing with a cofibrant Γ-space preserves stable equivalences.

Proof. First note that Hom(C,H) is very special when C is cofibrant and H is
fibrant, since Γ Spc is a Spc-model category. Let f : F → G be stable equivalence
with cofibrant replacement fc : Fc → Gc, and C a cofibrant Γ-space. We have that
Map(Gc,H) → Map(Fc,H) is a weak equivalence for all fibrant H, so in particular

Map(Gc, Hom(C,H)) → Map(Fc, Hom(C,H))

is a weak equivalence for all cofibrant C and fibrant H. Together with the isomor-
phism Map(Fc, Hom(C, H)) ∼= Map(Fc ∧ C,H) this implies that fc ∧ 1 is a stable
equivalence. The commutative diagram

Fc ∧ C //

fc∧1

²²

F ∧ C

f∧1

²²
Gc ∧ C // G ∧ C ,

where the horizontal maps are strict weak equivalences by Proposition 3.10, implies
that f ∧ 1 is a stable equivalence.

Lemma 4.14. Let F → G be a monomorphism of Γ-spaces. Then there is an exact
sequence of abelian sheaves

· · · → πn+1(G/F ) → πn(F ) → πn(G) → πn(G/F ) → πn−1(F ) → . . . .

Proof. This follows from [20, 1.3] by evaluating in sections and applying the exact
sheafification functor.

Proposition 4.15. Pushouts of Γ-spaces preserve monomorphic stable equivalences.

Proof. Consider the pushout diagram

F

²²

// G

²²
F ′ // G′,

where F → G is a monomorphic stable equivalence. It follows that the map F ′ → G′

is a monomorphism, and that G′/F ′ ∼= G/F , so by Lemma 4.14 the map F ′ → G′ is
also a stable equivalence.

Proposition 4.16. The stable model structure on ΓSpc is monoidal when Spc is
monoidal.
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Proof. The first part of the pushout product axiom is immediate from Proposition 3.7.
Given a pushout diagram

Ln(X) ∧ F //

²²

Ln(Y ) ∧ F

²²
Ln(X) ∧G // P ,

it suffices to check that the induced map P → Ln(Y ) ∧G is a trivial cofibration
when X → Y is a generating cofibration of spaces and F → G is a generating trivial
cofibration of Γ-spaces.

First note that Ln(X) and Ln(Y ) are cofibrant. The left vertical map in the
pushout diagram is a monomorphism by Lemma 2.3, and a stable equivalence by
Proposition 4.13. By Proposition 4.15 the right vertical map is a stable equivalence;
the pushout product map is now seen to be a stable equivalence by the 2-out-of-3
property of stable equivalences.

Proposition 4.17. The stable model structure on ΓSpc satisfies the monoid axiom
when Spc is monoidal.

Proof. Let F → G be a trivial cofibration and let H be a Γ-space. The induced map
F ∧H → G ∧H is a monomorphism by Lemma 2.3, and we claim that the cofibre
(G/F ) ∧H is stably contractible, which by 4.14 implies that F ∧H → G ∧H is a
stable equivalence. First take a cofibrant replacement Hc → H. Since ∗ → G/F is a
stable equivalence, (G/F ) ∧Hc is stably contractible by Proposition 4.13, and also
stably equivalent to (G/F ) ∧H, which proves the claim.

By Proposition 4.15, it remains to show that a transfinite composition of stable
equivalences is a stable equivalence. Note first that homotopy groups of Γ-spaces com-
mute with filtered colimits, since this is true for spectra of simplicial sets
and sheafification is exact. A transfinite composition F0 → colimα Fα, where each
Fα → Fα+1 is a stable equivalence, induces an isomorphism

π∗F0 → colim
α

π∗(Fα) ∼= π∗(colim
α

Fα).

A symmetric spectrum is a spectrum E with a Σn-action on each En such that
the iterated structure maps

Sm ∧ En → Sm−1 ∧ E1+n → · · · → Em+n

are Σm × Σn-equivariant, where Σm × Σn is identified with a subgroup of Σm+n in
the usual way. Morphisms of symmetric spectra are morphisms of spectra that are
equivariant at each level. We denote the category of symmetric spectra by SptΣ.

Let U : SptΣ → Spt denote the forgetful functor, which is right adjoint to a
“free symmetric spectrum” functor F : Spt → SptΣ. A map f : E → F of symmet-
ric spectra is a fibration if U(f) : U(E) → U(F ) is a fibration of spectra. There
are simplicial mapping spaces of symmetric spectra, and weak equivalences of sym-
metric spectra are those maps f which induce weak equivalences of simplicial sets
Map(F,H) → Map(E, H) for all fibrant symmetric spectra H. If U(f) is a stable
equivalence of spectra, then f is a weak equivalence of symmetric spectra, but the
converse is not true.
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The following theorem is a special case of a result by Hovey [10, 8.7].

Theorem 4.18. With the above definitions of fibrations and stable equivalences SptΣ

is a cofibrantly generated proper Spc-model category, such that

F : Spt À SptΣ : U
defines a Quillen equivalence.

As the Σn-action on Sn induces an action on dF̄ (Sn), the functor Sp factors
through the category of symmetric spectra in the sense that we have a commutative
diagram

ΓSpc
Sp //

SpΣ $$HH
HH

HH
HH

H Spt

SptΣ .

U

;;xxxxxxxx

Proposition 4.19. The functor SpΣ is lax monoidal.

Proof. The corresponding functor for classical Γ-spaces (which we also denote Sp) is
lax monoidal by [19, 3.3]. We can apply this functor sectionwise and conclude, using
the fact that Sp(F )(U) = Sp(F (U)), for a Γ-space F and U ∈ C.

Note that SpΣ is not strong monoidal since SpΣ(Γm ∧ Γn) = SpΣ(Γmn) = S×mn,
while SpΣ(Γm) ∧ SpΣ(Γn) = S×m ∧ S×n. Nor is SpΣ a left Quillen functor, since the
symmetric spectrum SpΣ(Γn) = S×n is not cofibrant when n > 2.

5. Algebras and modules

A Γ-ring is a monoid in the category of Γ-spaces, i.e., a Γ-space R equipped
with a unit map S→ R and a multiplication map R ∧R → R making the usual
diagrams commute (see e.g. Mac Lane [18, VII.3].) Given a Γ-ring R, we can consider
the category of modules over R. A left R-module is a Γ-space M with an action
R ∧M → M , again making certain obvious diagrams commute, and maps of R-
modules are maps of Γ-spaces that respect the action. We let ΓModR denote the
category of left R-modules. Given a commutative Γ-ring R, we have the category of
algebras over R. An R-algebra is a monoid in the category of R-modules, and maps
of R-algebras are maps of R-modules respecting the monoid structure. Let Γ AlgR

denote the category of R-algebras.
Since Γ Spc satisfies the monoid axiom, we can apply [22, 4.1] and immediately get

model structures on the categories of modules and algebras over a monoid. Here we
are assuming the stable model structure on Γ Spc. Of course, the result is also true
for the strict model structure.

Theorem 5.1. Suppose the model structure on Spc is monoidal, and let R be a
Γ-ring.

1. The category ΓModR inherits a cofibrantly generated model structure from
ΓSpc, which is monoidal and satisfies the monoid axiom if R is commutative.
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2. If R is commutative, then the category ΓAlgR inherits a cofibrantly generated
model structure from ΓSpc, and every cofibrant R-algebra is also cofibrant as
an R-module.

The model structures in Theorem 5.1 are created by forgetful functors: a map f of
R-modules is a weak equivalence (fibration) if and only if its image U(f) under the
forgetful functor U : Γ ModR → ΓSpc is a weak equivalence (fibration), and similarly
for R-algebras.

As an application we now establish some results about the Eilenberg-Mac Lane
Γ-spaces, and the correspondence with presheaves of simplicial abelian groups and
rings. The following are the presheaf versions of results in Schwede [20]. Let sAbPre be
the category of presheaves of simplicial abelian groups, which is symmetric monoidal
under a sectionwise tensor product. For a monoid A in sAbPre, let sModPreA be
the category of A-modules, and for a commutative monoid B, let sAlgPreB be the
category of B-algebras. A map in sAbPre is a weak equivalence (fibration) if the
underlying map of spaces is a local weak equivalence (fibration.) In the same way, weak
equivalences and fibrations in sModPreA and sAlgPreB are defined on the underlying
spaces.

Let

Z : Spc À sAbPre: U (5.1)

be the adjoint pair consisting of the free simplicial abelian presheaf functor Z and
the forgetful functor U .

Theorem 5.2. With the above definitions of weak equivalences and fibrations the
category sAbPre is a cofibrantly generated model category, with generating cofibrations
Z(I) and generating trivial cofibrations Z(J), such that the adjoint pair (5.1) is a
Quillen pair. If Spc is monoidal, then the categories sModPreA and sAlgPreB are
cofibrantly generated model categories as well.

Proof. To prove the statement for sAbPre, we apply a general result found in [8,
11.3.2] concerning lifts of model structures via adjoint functors. To apply this result,
we need to check that the maps in Z(J)-cell are weak equivalences. Since local weak
equivalences commute with filtered colimits, it suffices to check that a pushout in
sAbPre of a map in Z(J) is a weak equivalence. The functor Z preserves monomor-
phisms and weak equivalences by [15, 2.1]; we proceed by showing that a pushout of
a monomorphic weak equivalence is a weak equivalence.

We need the fact that a map f : A → B of simplicial abelian presheaves is a weak
equivalence if and only if the induced map (Mf)∗ : H∗(MA) → H∗(MB) of homology
sheaves is an isomorphism, where M denotes the Moore complex functor. Let

A //

f

²²

C

g

²²
B // D

be a pushout diagram in sAbPre, where f is trivial cofibration. Applying M gives
a pushout diagram of presheaves of chain complexes, and the homomorphism Mf
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induces the following long exact sequence of homology sheaves.

· · · → Hn(MA) → Hn(MB) → Hn(cokerMf) → Hn−1(MA) → . . . .

Since f is a weak equivalence, H∗(cokerMf) = 0, which implies H∗(cokerMg) = 0,
and the corresponding long exact sequence for Mg implies that g is a weak equiva-
lence.

The model structures for sModPreA and sAlgPreB follow from [22, 4.1].

Let A be a presheaf of simplicial abelian groups. The Eilenberg-Mac Lane Γ-space
HA associated to A is defined as follows. For each n+ in Γ let HA(n+) = A×n, and
for each map f : n+ → m+ let the induced map HA(n+) → HA(m+) be defined by

(a1, . . . , an) 7→ (
∑

f(i)=1

ai, . . . ,
∑

f(i)=m

ai)

in each section. A map of simplicial abelian presheaves A → B induces a map of
Γ-spaces HA → HB. Note that HA is very special, and its associated spectrum is
a generalized Eilenberg-Mac Lane spectrum for A since πn(HA) = πn(HA(1+)) =
πn(A).

A functor L in the opposite direction is described as follows. Let F be a Γ-space,
and consider the map

p1∗ + p2∗ −∇∗ : Z̃F (2+) → Z̃F (1+) , (5.2)

where p1 and p2 are the two projections 2+ → 1+ in Γ, ∇ is the fold map, and Z̃
denotes the reduced free simplicial abelian presheaf associated to a space. The value
of L on F is now defined to be the cokernel of (5.2).

The following result is just a sectionwise application of [20, 1.2].

Lemma 5.3. The functor L is strong symmetric monoidal, while H is lax symmetric
monoidal. There is an adjunction

L : Γ Spc À sAbPre : H .

Both L and H preserve modules, rings, and commutative rings. Let A be a presheaf
of simplicial rings and B be a presheaf of commutative simplicial rings. The functors
L and H induce adjunctions

L : Γ ModHA À sModPreA : H

L : ΓAlgHB À sAlgPreB : H .

Lemma 5.4. All three adjunctions in Lemma 5.3 are Quillen adjunctions.

Proof. Let us consider the first adjunction; the results for the other two follow by the
same argument. Since trivial fibrations of spaces are closed under finite products, H
takes trivial fibrations of simplicial abelian presheaves to strictly trivial fibrations of
Γ-spaces, which coincide with the stably trivial fibrations of Γ-spaces.

The functor H also takes fibrations of simplicial abelian presheaves to strict fibra-
tions of Γ-spaces between stably fibrant Γ-spaces, which coincide with stable fibrations
between stably fibrant Γ-spaces.
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Theorem 5.5. Let A be a presheaf of simplical rings. Then the adjoint functors H
and L constitute a Quillen equivalence between the categories of presheaves of simpli-
cial A-modules and HA-modules.

Proof. The following proof is an adaption of Schwede’s argument given in [20, 4.2].
The functor H preserves weak equivalences, and detects weak equivalences since
a stable equivalence HM → HN is a strict equivalence, and, in particular, M =
HM(1+) → HN(1+) = N is a local weak equivalence. It remains to show that for
every cofibrant HA-module M the unit map M → HL(M) is a stable equivalence.

We first consider Γ-spaces of the form HA ∧X, where X is a space, and we claim
that the presheaf map πp

∗(HA ∧X) → πp
∗(HL(HA ∧X)) is a sectionwise isomor-

phism. After evaluating in sections, we are led to consider the map

π∗(HA(U) ∧K) → π∗(HL(HA ∧K)(U))

as a natural transformation of functors of the simplicial set K. But this is easily seen
to be an isomorphism for the case K = S0, and both functors are homology theories
with coefficients in A, since L(HA ∧K)(U) is just the free A(U)-module generated
by K. Thus the map is an isomorphism for all K and in particular for X(U).

The map Γ1 ∧ n+ → Γn induced by the n projections n+ → 1+ is a stable equiv-
alence, since the induced map of spectra is just the canonical inclusion S∨n → S×n.
This implies that F ∧ n+ ∼= F ∧ Γ1 ∧ n+ is stably equivalent to F ∧ Γn for all Γ-spaces
F . The composite functor HL preserves weak equivalences between cofibrant objects,
so the unit map of HA ∧X ∧ Γn is a stable equivalence by the case already proved.

Let M be a cofibrant HA-module, i.e., a retract of a colimit colimα<γ Mα, where
γ is an ordinal and the maps Mα → Mα+1 are pushouts of generating cofibrations in
ΓModHA. The generating cofibrations in ΓModHA are of the form

HA ∧X ∧ Γn → HA ∧ Y ∧ Γn ,

where X → Y is a (generating) cofibration of spaces. If we have a pushout diagram
of the form

HA ∧X ∧ Γn //

²²

Mα

²²
HA ∧ Y ∧ Γn // Mα+1

and assume that the map Mα → HL(Mα) is a stable equivalence, we can use
the first part and the gluing lemma (see e.g. [7, II.8.12]) to show that the map
Mα+1 → HL(Mα+1) is a stable equivalence. Now the induced map

colim
α<γ

Mα → colim
α<γ

HL(Mα)

is a stable equivalence, and colim HL(Mα) is stably equivalent to HL(colimMα) since
L preserves colimits and

π∗(colimHAα) ∼= colim π∗(HAα) ∼= colim π∗(Aα) ∼= π∗(colimAα) ∼= π∗H(colim Aα) .

Finally, since M is a retract of colim Mα, the unit map M → HL(M) is also a stable
equivalence.
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Theorem 5.6. Let B be a presheaf of commutative simplicial rings. Then the adjoint
functors H and L are a Quillen equivalence between the categories of presheaves of
simplicial B-algebras and HB-algebras.

Proof. Since every cofibrant HB-algebra is cofibrant as an HB-module, the proof of
Theorem 5.5 applies.

6. Appendix

6.1. Simplicial spaces
Given a simplicial space X, i.e., a bisimplicial presheaf, we obtain a space Xm,∗ by

fixing the first simplicial degree m. We say that a map X → Y is a strict equivalence
if Xm,∗ → Ym,∗ is a local weak equivalence for all m.

Proposition 6.1. Let X → Y be a strict equivalence of simplicial spaces. Then the
induced diagonal map dX → dY is a local weak equivalence of spaces.

Proof. The result only depends on the weak equivalences on simplicial presheaves,
so we are free to choose the local injective model structure where every object
is cofibrant. Now the proof in [7, IV.1.7] for bisimplicial sets carries over, mutatis
mutandis.

6.2. Enriched left Bousfield localization
Here we summarize the theory of enriched left Bousfield localization as developed

in Barwick [2]. We will ignore the set-theoretic details that appear in these statements;
they are treated carefully in Barwick’s paper.

Definition 6.2. Let V be a symmetric monoidal model category and M a V-model
category. Suppose Σ is a set of morphisms in M. A left Bousfield localization of M
with respect to Σ enriched over V is a V-model category LΣ/VM, equipped with
a left Quillen V-functor M→ LΣ/VM that is initial among left Quillen V-functors
L : M→N to V-model categories N such that Lf is a weak equivalence in N for all
f in Σ.

Definition 6.3. Let V, M and Σ be as in Definition 6.2.

• An object Z in M is Σ/V-local if it is fibrant, and for any morphism A → B in
Σ the morphism

VHom(Bc, Z) → VHom(Ac, Z)

is a weak equivalence in V.

• A morphism A → B in M is a Σ/V-local equivalence if for any Σ/V-local object
Z in M, the morphism

VHom(Bc, Z) → VHom(Ac, Z)

is a weak equivalence in V.

The following result is proved in [2, 3.18].
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Theorem 6.4. Suppose that V is a combinatorial monoidal model category and M is
a left proper and combinatorial V-model category. Suppose further that the generating
cofibrations and generating trivial cofibrations in V and M all have cofibrant domains.
Let Σ be a set of morphisms in M. Then the left Bousfield localization of M with
respect to Σ enriched over V exists, and it has the following properties:

• As a category, LΣ/VM is just M.
• The model category LΣ/VM is combinatorial and left proper.
• The cofibrations in LΣ/VM are the same as those of M.
• The fibrant objects in LΣ/VM are the Σ/V-local objects in M.
• The weak equivalences in LΣ/VM are the Σ/V-local equivalences.
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