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PRECOVERS, LOCALIZATIONS, AND STABLE HOMOTOPY

M. GRIME

(communicated by J. P. C. Greenlees)

Abstract
We prove a new localization theorem for algebraic stable cat-

egories when the localizing subcategory is generated by a pre-
covering class in the model category. We use this to show how
one may explicitly realize certain Bousfield localization functors
that arise naturally in the study of relative homological algebra
of groups.

1. Introduction

The results of this paper were originally formulated in order to provide an explicit
description of certain Bousfield localization functors in modular representation theory.
The original motivation was in attempting to generalize Rickard’s construction of
idempotent modules, [Ric97], to other triangulated categories arising from relative
cohomology theories for group algebras.

Let us state our localization result, which appears as a corollary of Theorem 3.2. If
the reader is unfamiliar with any of the terms, then he is encouraged to read Section 2,
where we will explain our conventions.

Theorem. Let E be a Frobenius category with triangulated quotient T , and let R
be a class of objects in E . Suppose that the following hypotheses are satisfied:

(i) R is a precovering class in E and all objects of E have finite R-dimension;

(ii) R is closed under shifts in T ;

(iii) for all R in R the injective hull I(R) is in R.

Let S be the localizing subcategory 〈R〉⊕ ⊆ T ; then the quotient functor, j : T →
T /S, when it exists, has a right adjoint j!.

We believe it is worth remarking on the link with the notion of a homotopy colimit.
Suppose that E is, in fact, abelian so that we may think of short exact sequences rather
than conflations. If X can be written as a countable filtered direct limit in E , then

X ∼= lim−→
n∈N

Xn,
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with Xn in R, and if the natural short exact sequence

0→ ⊕Xi → ⊕Xi → X → 0

is an R-resolution of X, then j!jX is related to the homotopy colimit of Xn via the
triangle

hocolimXn → X → j!jX →
in T . Note that if we assume the exact structure on E is given by all short exact
sequences, then there is actually an isomorphism in T

hocolim(Xi)→ X

but in general this is not the case.
In order to prove that j! exists, in greater generality, we will demonstrate the

existence of a triangle

XR → X → XR⊥ →,

with XR ∈ 〈R〉⊕, and HomT (R, XR⊥) = 0. Let us call such an object the localization
triangle of X. It follows that j!jX ∼= XR⊥ .

We now explain the structure of the paper. Section 2 will provide an explanation
of the definitions and conventions adopted throughout the paper.

In Section 3 we will show how, given an object X in E and a finite resolution by
of objects in R, one may pass to the quotient T to construct something that we will
label a homotopy approximation. We spend the bulk of the section demonstrating
that an approximation yields an object L0(X) which, with the hypotheses we place
on R, satisfies

HomT (R, L0(X)) ∼= HomT (R,X)

for all R in R.
We explain in Section 4 how one may use the results of Section 3 to show the

existence of adjoints to inclusion and quotient functors arising from the localizing
subcategoryR generates and the localizing subcategory ofR-local objects. The reader
should note that, despite the original motivation coming from Bousfield localizations,
we do not need any hypotheses on compact generation.

These results are then applied, in Section 5, to the relatively stable categories of a
group algebra. This is the application that originally motivated our construction. In
general, the relatively stable category need not be generated by the finite dimensional
modules. Thus the finite dimensional modules (compactly) generate a proper local-
izing subcategory. The quotient functor has a right adjoint by Bousfield. Note that
we obtain the same as the localizing subcategory by considering the pure projective
modules in the module category: a pure projective module is an arbitrary direct sum
of indecomposable finite dimensional modules. If we assume all modules have finite
pure projective dimension (say if the group algebra is countable as a set), then our
results provide an alternate proof that the quotient functor exists, and an explicit
construction of it in a finite number of steps.

To conclude this introduction, we will explain the ideas behind the results in Sec-
tion 3. The proof of Theorem 3.2 is quite lengthy and formal, yet it encapsulates a
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straightforward idea which we explain here. Recall that we seek a triangle

XR → X → XR⊥ →
with XR enjoying a unique lifting property; for every object R ∈ R and morphism

R→ X

in T , there should be a unique factorization in T through

XR → X.

Given the assumption that R is precovering, then for any object X in E there is a
precover in E

RX → X

and in E every map from an object in R to X factors through RX in E . Thus if we
pass to T and complete this map to a triangle

RX → X → Y →
we would have a plausible candidate for the desired localization triangle in T . How-
ever, the uniqueness of the lifting does not follow: we know we may lift to E to obtain
a factorization, but we also know that it will be far from unique. To correct our näıve
initial guess, we should make an adjustment to kill these extra maps. Suppose that
the map

RX → X

has a kernel K in E and furthermore that K is in R. On passing back to T one can
complete the map K → RX to a triangle

K → RX → XR → .

Since the composite
K → RX → X

is zero, we can complete

K //

²²

RX
//

²²

XR //

0 // X
Id // X //

to a morphism of triangles; whence we deduce a map

XR → X,

which we complete to a triangle

XR → X → XR⊥ → .

This turns out to be the localization triangle we seek. The reader will have spotted
that we have assumed K is in R, when it need not be, and in general has no reason
to be. However, if X has a finite R-dimension, then K has dimension one smaller,
and this draws the reader to looking for some inductive argument to side-step this
issue. We shall present such an argument in proving Theorem 3.2.
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2. Preliminary material

The reader is encouraged to consult [Hap92] or [Kel96] for a more thorough
explanation, or [HPS97] for a topological point of view. The conventions we adopt
are algebraic, rather than topological. Thus we will refer to Frobenius categories with
stable quotient, inflations and deflations (definition to follow) rather than model and
stable homotopy categories, fibrations and cofibrations.

First, we note that if C is any category, we will use

(X, Y )C

for the set of morphisms from X to Y in C. We will write greek letters to represent
morphisms.

An exact category is an additive k-linear category equipped with a class of dis-
tinguished pairs of morphisms (ι, ρ), called conflations (we refer to ι as an inflation
and ρ as a deflation). We require that ι is a kernel of ρ, ρ is a cokernel of ι, and they
satisfy the axioms:
• the identity morphism of the zero object is a deflation;
• the composition of two deflations is a deflation;
• given a deflation ρ : U → V and a morphism Y → V there is a pullback diagram

X
ρ′ //

²²

Y

²²
U

ρ // V

with ρ′ : X → Y a deflation,
and the dual axioms for inflations. Modulo some set theoretic concerns, one can think
of exact categories as full subcategories of a module category and conflations are a
subclass of short exact sequences.

Given an exact category, an object P is projective if, for any deflation ρ : X → Y ,
the induced map

ρ∗ : (P,X)E → (P, Y )E

is epic. Dually, I is injective if, for each inflation ι : U → V , the map

ι∗ : (V, I)E → (U, I)E

is epic. We may now define a Frobenius category.

Definition 2.1. A category E is Frobenius if it is an exact category, the classes of
injective and projective objects coincide, and for all X there is a deflation

P (X)→ X

and an inflation
X → I(X, )

and both P (X) and I(X) are in the category of pro/injective objects. We refer to
P (X) as a projective cover of X, and I(X) as an injective hull of X.
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Examples of Frobenius categories include the module category of a symmetric
algebra (e.g., a group algebra), and the category of chain complexes over an abelian
category, where conflations are short exact sequences of complexes that are split in
each degree.

There is an important theorem about Frobenius categories that is due to Happel,
[Hap92].

Theorem 2.2. Let E be Frobenius, and let P be the class of projective/injective ob-
jects; then the quotient

T :=
E
P

is a triangulated category.

A Frobenius category E is thus an example of a model category, and the quotient
T is its homotopy category; see [HPS97] for details.

It remains for us to define the notion of a precovering class.

Definition 2.3. Let E be an exact category. A class of objects R ⊆ E is precovering
if for each X in E there is an object RX in R and a morphism

RX → X

called a precover of X with the property that any morphism R→ X with R ∈ R
factors through RX → X.

We comment that there is nothing necessarily unique about RX nor the mor-
phism. Moreover, the astute reader will notice that if E is in fact Frobenius, then the
projective objects are an example of a precovering class.

We now fix a Frobenius category E , with triangulated quotient T and precovering
class R.

Definition 2.4. The category E has enough kernels with respect to R if every pre-
cover

RX → X

has a kernel.

If E has enough kernels with respect to R, let K be the kernel of RX → X. We
can now take a precover of K, take its kernel, and so on to create an R-resolution of
X. The reader should note that we are not assuming that the triple

Ki+1 → Ri → Ki

is a conflation in E .
It is worth inserting some examples at this point to illustrate the kinds of areas

where we wish to apply our ideas.

Example 2.5. We give two examples using module categories.

• Let E be mod(kG) of a finite group algebra, and let H be a subgroup of G. A
module is H-projective if it is a summand of M ⊗ IndG

H(k) for some M . The



262 M. GRIME

class of all H-projective modules is precovering, and moreover a precover of X
is

IndG
H(ResG

H(X))→ X,

with the map coming from the counit of the adjunction. Note E is abelian so
we have enough kernels.

• Let E be the category Mod(A) of all modules for some finite dimensional Frobe-
nius algebra A (i.e. one whose module category is a Frobenius category, again
kG is a concrete example). Let R be the class of modules isomorphic to (possi-
bly infinite) direct sums of finite dimensional objects. This is the class of pure
projective modules; it is precovering. If M is written as the direct limit of its
finite dimensional submodules in E ,

M := lim−→Mi,

then a precover is given by the natural map
∐

i∈I

Mi →M.

We need one more definition pertaining to R.

Definition 2.6. Let X be in E and suppose that

. . . // R2
//

²²

R1
//

²²

R0
//

²²

X

K2

==||||||||
K1

==||||||||
K0

}}}}}}}}

}}}}}}}}

is an R-resolution. If Kd is in R for some d, then we say X has finite R-dimension,
and if d is minimal among all R-resolutions we say X has R-dimension d. If no such
d exists then X has infinite R-dimension. We will write dimR(X) = d to indicate the
R-dimension.

We will finish this section by explaining our conventions for triangulated categories.
We assume the reader is familiar with the theory of triangulated categories. If not,
then we recommend the introduction to [Nee02]. If T is triangulated, and X is an
object of T , then we will write X[1] for the right shift functor. This is suspension
to the topologist, and the inverse Heller translate to a representation theorist. If
α : X → Y is a map in T , then we write

X
α // Y // cone(α) //

for the (strictly speaking, a) corresponding distinguished triangle in T . In our exam-
ples, where T is a quotient of E , triangles are in one-to-one correspondence with
conflations, and the shift functor is realized by the conflation in E

X → I(X)→ X[1]

for I(X) an injective hull of X.
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Definition 2.7. A full triangulated subcategory S ⊆ T is localizing if it is closed
under T -direct sums; i.e., if Xi is a set indexed collection of objects in S, and the
coproduct ∐

i∈I

Xi

exists in T , then it is in S. If R is an collection of objects in T , we write

〈R〉⊕

for the smallest localizing subcategory containing R (the intersection of all localizing
subcategories containing R). The localizing subcategory R⊥ of R-local objects is the
full subcategory of objects, X, satisfying

(R[n], X)T = 0

for all R ∈ R and n ∈ Z.

Definition 2.8 (Verdier localization). Let S be a localizing subcategory of T . The
Verdier localization T /S is the category obtained by formally adjoining the inverses
of all morphisms α such that cone(α) is in S.

More formally, maps in the localization are equivalence classes of roofs. Given α,
β in T such that cone(α) is in S, the equivalence class [βα−1] is represented by

Y
α

~~~~
~~

~~
~

β

ÃÃA
AA

AA
AA

X Z.

Two roofs, X ← Y → Z and X ← Y ′ → Z, lie in the same equivalence class if there
is an object Y ′′ and isomorphisms Y ′′ → Y , Y ′′ → Y ′ in T /S in which the obvious
diagrams commute.

We make one observation about the set theoretic issues involved. Morphisms are
equivalence classes of such diagrams, and a priori there is no reason to suppose that
the equivalence classes are sets. We will not concern ourselves with this question in
this note, and we shall assume that all constructions create sets within the same
universe as T .

3. Triangulated categories

3.1. Finite resolutions
We continue with the hypotheses that E is Frobenius with triangulated quotient

T , R is a precovering class in E and that all objects have R resolutions. Let X be
any object in E , and suppose further that the R-dimension of X is finite. We know
that there is a diagram with all morphisms and objects considered in E :

Rd
// Rd−1

//

²²

· · · // R1
//

²²

R0

²²

// X

Kd

<<yyyyyyyy
Kd−1

>>}}}}}}}}}
· · ·

@@¢¢¢¢¢¢¢¢
K1

>>||||||||
K0

~~~~~~~~

~~~~~~~~
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and in each subdiagram,
Ki+1 → Ri → Ki,

Ri is a precover of Ki, and Ki+1 is its kernel.
We now pass to the quotient T and construct a homotopy approximation of the

resolution in T , starting from the left by defining a sequence of maps εi, and objects
Li in T . First, we define εd to be the map Rd → Rd−1. Now we will construct εd−1.
By assumption, the composite

Rd → Rd−1 → Kd−1

is zero in E , so there is a diagram

Rd
//

²²

Rd−1
//

²²

Ld−1
//

0 // Kd−1 Kd−1
//

in which the rows are distinguished triangles in T . We complete to a morphism of
triangles

Rd
//

²²

Rd−1
//

²²

Ld−1

²²

//

0 // Kd−1 Kd−1
//

and define εd−1 to be the composite

Ld−1
// Kd−1

// Rd−2 .

Define Ld−2 to be the cone of Ld−1 → Rd−2. We note that by construction the com-
posite Ld−1 → Rd−2 → Kd−2 is also zero, so we obtain another morphism of triangles

Ld−1
εd−1 //

²²

Rd−2
//

²²

Ld−2

²²

//

0 // Kd−2 Kd−2
// .

Now we define εd−2 as the composite Ld−2 → Kd−2 → Rd−3. We can iterate this
process and we will end up with a diagram

Ld−1

εd−1

ÃÃA
AA

AA
AA

AA

¨¨

· · ·

ÁÁ=
==

==
==

= L1

ε1

ÃÃB
BB

BB
BB

B

¨¨

L0

ÃÃA
AA

AA
AA

A

¨¨

Rd
// Rd−1

//

²²

OO

· · · // R1
//

²²

OO

R0

²²

//

OO

X,

Kd

<<yyyyyyyy
Kd−1

>>}}}}}}}}}
· · ·

@@¢¢¢¢¢¢¢¢
K1

>>||||||||
K0

}}}}}}}}

}}}}}}}}

where all objects and morphisms are in T . If we wish to emphasise the dependence
on X, we will also write L0(X), for L0.
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Remark 3.1.

(i) L0 is unique in T , but, a priori, not up to unique isomorphism.

(ii) It lies in the smallest subcategory that contains Ri for 0 6 i 6 d and is closed
under triangles.

(iii) If all of the triples Ki → Ri−1 → Ki−1 are isomorphic to distinguished triangles,
then L0 is stably isomorphic to X.

(iv) If X is the direct limit of a sequence of objects, Xi in R, and moreover the
natural short exact sequence defining X:

0→ ⊕Xi → ⊕Xi → X → 0

is an R-resolution, then L0 is the homotopy colimit

hocolim(Xi)

in T .

(v) We genuinely needed the model structure to make this construction: one can
define precovers in a triangulated category, however, a triangulated category
does not have any non-trivial kernels. The best one could hope for is a diagram,

Rd
// Rd−1

// · · · // R1
// R0

// X,

in which the composite of two consecutive morphisms is zero. Whilst one could
certainly start the construction, one would quickly find that attempts to con-
struct a map from Ld−2 to Rd−3 are doomed to failure.

3.2. The main theorem
We are now in a position to state our first theorem. It asserts that under some

mild, but slightly lengthy hypotheses, the object L0 has the unique lifting property.

Theorem 3.2. Let E be a Frobenius category with triangulated quotient T , and let
R be a class of objects in E. Suppose that the following hypotheses are satisfied:

(i) R is a precovering class in E;
(ii) R is closed under shifts in T ;

(iii) for all R in R the injective hull I(R) is in R.

Further suppose that X is an object in E with finite R-dimension d and suppose that
L0 is constructed as above; then there is an isomorphism (R,L0)T ∼= (R, X)T for all
R in R.

We will break the proof down into a series of straightforward lemmas. First we
deal with surjectivity.

Lemma 3.3. The map (R, L0)T → (R,X)T in Theorem 3.2 is surjective.
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Proof. Let R→ X be any morphism in T . Lift arbitrarily to a morphism in E . This
must factor through the precover R0 → X. Recall that the ultimate step in our con-
struction yielded a morphism of triangles

L1
//

²²

R0
//

²²

L0
//

²²
0 // X X //

from which we deduce that the lift R→ R0 → X, when we pass back to T , factors
as R→ R0 → L0 → X.

Thus it remains to show that the map is an injection. The proof of injectivity is
more complicated. First, we will need a standard observation about how one may
choose to factor maps in T .

Lemma 3.4. With the hypotheses (i) and (iii) of Theorem 3.2, let R be in R and
consider a map α : R→ X in E. By assumption, this factors in E as

R
β // R0

γ // X

since R0 is a precover. Suppose that α is 0 in the quotient T , then there is a map
δ : R→ R0 in E such that:

1. the composite γδ is zero in E;
2. δ = β in T .

Proof. Since α = 0 in T it factors as R→ I(R)→ X. The assumption that I(R) is
in R is key as this means that the map I(R)→ X factors through R0. Set δ′ to be
the composite R→ I(R)→ R0. This is the amount by which we need to correct β;
thus we define δ := β − δ′.

We prove the next lemma by making one more assumption, and then we shall
prove that the assumption is true.

Lemma 3.5. Suppose that α is in the kernel of the map (R, L0)T → (R, X)T and
further assume that α factors through R0 in T ; then α = 0.

Proof. This is best illustrated diagrammatically — it is a straightforward argument,
but an algebraic proof would overload the reader with notation. We start with a
diagram

R

α

²²
L1

//

²²

R0
//

²²

L0
//

²²
0 // X X // ,

where the rows are distinguished triangles. Our extra assumption that α factors
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through R0 allows us to create a commutative diagram

R

α

²²}}||
||

||
||

L1
//

²²

R0
//

²²

L0
//

²²
0 // X X // .

An elementary diagram chase shows that the map R→ R0 → X is zero in T . Thus
we my invoke Lemma 3.4, and deduce that we can choose it to be zero in E . Thus the
map R→ R0 must factor in E , and thus in T , through K1. Since R is in R, and we
actually have a map in E from R to K1, this factors, again in E through L1, which is
a precover of K1. Thus we have a larger commutative diagram

R

¨¨ ²²

}}||
||

||
||

§§°°
°°
°°
°°
°°
°°
°°
°

K1

²²
L1

//

²²

R0
//

²²

L0
//

²²
0 // X X //

and we see that α factors through two consecutive maps in a distinguished triangle,
and must be 0 in T .

This leaves the extra assumption in Lemma 3.5 to be proven. The proof inducts
on the R-dimension.

Lemma 3.6. Any map from R→ L0 factors through R0 in T .

Proof. The statement is equivalent to the assertion that the natural map

(R, R0)T → (R, L0)T

is surjective. First we deal with the case of R-dimension 0. This is just the case that
X is in R, but then any R-resolution, after removing summands, is isomorphic (in
the category of chain complexes over E) to

· · · → 0→ 0→ X → X

and there is nothing to prove since L0 = X. To prove the general case consider the
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three maps in T
K1

²²
L1

=={{{{{{{{
// K0,

where by induction on R-dimension we may assume that L1 → K1 has the property
that every map from an object in R to K1 factors uniquely through it since K1

has R-dimension one smaller than K0 = X. For example, we may assume that the
induced map

(R,L1)T → (R,K1)T

is an isomorphism. We invoke the octahedral axiom to construct

L1
// K1

//

²²

Y

²²

//

L1
ε1 //

²²

R0
//

²²

L0
//

²²
0 // Z Z // ,

where by induction on R-dimension again, we have that (R, Y )T = 0. Apply the
functor (R, ?)T to obtain

²² ²² ²² ²²
// (R, L1)T (R, K1)T //

²²

0

²²

// (R,L1[1])T

// (R, L1)T //

²²

(R, R0)T //

²²

(R, L0)T // (R,L1[1])T

²²

//

// 0 //

²²

(R, Z)T

²²

(R, Z)T

²²

// 0

²²

//

// (R,L1[1])T (R,K1[1])T //

²²

0

²²

// (R,L1[2])T

// (R,L1[1])T //

²²

(R, R0[1])T //

²²

(R,L0[1])T // (R,L1[2])T

²²

// ,

where all rows and columns are exact. There is a standard diagram chase to be done.
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The following statements are equivalent:

(i) (R, R0)T → (R, L0)T is surjective.
(ii) (R, R0)T → (R, Z)T is surjective.
(iii) (R, Z)T → (R, K1[1])T is zero.
(iv) (R, K1[1])T → (R, R0[1])T is injective.
(v) (R, K1)T → (R,R0)T is injective.

To prove the last of these conditions, we work in E . Suppose that R→ K1 → R0 is
zero; then there is a diagram in E ,

R //

²²

I(R) // R[1]

K1
// R0

// X,

and the top row is a conflation. By assumption there is a map I(R)→ R0 which
makes

R //

²²

I(R)

²²

// R[1]

K1
// R0

// X

commutative. This can be completed to

R //

²²

I(R)

²²

// R[1]

²²
K1

// R0
// X

since I(R)→ R[1] is a cokernel of R→ I(R). There is one hypothesis yet to be used,
which we now invoke. As R is closed under shifts, the map from R[1]→ X factors
through R0, which implies that the map I(R)→ R0 factors through K1; hence R→
K1 factors through I(R) as we were required to show.

Lemmas 3.3, 3.4, 3.5 and 3.6 complete the proof of the main theorem.

4. Constructing adjoints

Suppose that E , T , and R satisfy the hypotheses of Theorem 3.2. We can use
this to deduce the existence of adjoints to certain inclusion functors via a routine
argument.

Theorem 4.1. Suppose that every object in T has finite R-dimension. Let S be the
smallest full localizing subcategory of T that contains R; then the inclusion functor

i : S → T
has a right adjoint i!.
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Proof. Given X in T we may construct L0 as above. Define i!(X) := L0(X). Notice
that for R ∈ R, Theorem 3.2 gives isomorphisms.

(i(R), X)T ∼= (R,L0(X))T ∼= (R, L0(X))S ∼= (R, i!(X))S .

Thus we just need to argue that these isomorphisms exist if we replace R with an
arbitrary object S in S. It is clear that the class of objects for which the isomorphisms
exist contains R and is closed under direct sums and triangles; hence it contains S,
and we are done.

Corollary 4.2. If the quotient j : T → T /S exists, then it has a right adjoint, j!.

Proof. Define j!(X) to be the third object in the triangle

L0(X)→ X → Y.

There is clearly a theorem to be stated if we drop the assumption on finite
R-dimension of all objects.

Theorem 4.3. Suppose that E , T , and R are as in Theorem 3.2. Let S be the smallest
localizing subcategory containing R. If the inclusion

i : S → T
has a left adjoint, i!, and if X has finite R-dimension, then necessarily i!(X) is
isomorphic to the L0(X) coming from our construction.

5. Applications in relative homological algebra

We should attempt to convince the reader that the assumptions we have placed
on E are really the kinds of things she might meet in everyday mathematics. The
original motivation for this construction came from modular representation theory.

Let A be a finite dimensional algebra over a field k. Suppose that P is some class
of objects in Mod(A) such that the quotient

Mod(A)
P

is triangulated. An example would be if A were Frobenius, and P the class of all
projective/injective objects. However, this is far from being the only interesting exact
structure we may put on a module category, as we shall see shortly.

It is natural to ask how the (isomorphism classes of) finite dimensional objects
behave inside this category. Thus we define

R := Add(mod(A))

as the class of pure projective objects. This is precovering; see [HJ07] for example.
The smallest triangulated subcategory containing R coincides with the smallest tri-
angulated subcategory containing the finite dimensional objects that is closed under
direct sums. Again, we shall use S to denote this triangle closure of R. We can now
cite some examples of uses of the localization theorems.
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Example 5.1. If every module has finite pure projective dimension, then the inclu-
sion S → T has a right adjoint by Theorem 4.1.

Example 5.2. If the inclusion has an adjoint, then we can calculate it using Theo-
rem 4.3 for those objects with finite pure projective dimension.

Examples of finite pure projective dimension abound, as we now explain. The
precise implications depend on one’s set theory.

1. If the cardinality of the underling set of A is ℵt for some finite ordinal t, then
every module has pure projective dimension at most t + 1. If the cardinality is
finite then every module has pure projective dimension 1.

2. For an algebra A over any field k, if the k-dimension of a module M is ℵt, then
M has pure projective dimension at most t + 1.

The reader is referred to [HJ07, (3.8)] for more examples. We will finish by fleshing
out the bones of these examples. As we have mentioned, the original motivation comes
from modular representation theory.

Suppose that G is a finite group, k a field of characteristic p, and that p divides
|G|. Let H be a subgroup of G. Define P to be the class of summands of all modules
induced up from H. It is now classical that Mod(kG)/P, the relatively stable cate-
gory, is triangulated. The triangles correspond to short exact sequences that split on
restriction to H. One recovers the normal notion of projective, and the usual stable
category StMod(kG), by letting H be the trivial subgroup.

One can define Rickard modules in Mod(kG)/P given a compactly generated sub-
category; however, the relative case is fundamentally different from the usual stable
module category. It is a simple exercise to show that the smallest triangulated sub-
category of StMod(kG) that contains the simple modules and is closed under direct
sums is StMod(kG). It is known, [Gri06, Ch. 7 and Appl. B], that the finite dimen-
sional objects may (compactly) generate a proper subcategory of the relatively stable
category, and thus yield a non-trivial localization functor. Our construction gives an
explicit description of it, under certain conditions:

Example 5.3. If |k| = ℵt, then all modules have finite pure projective dimension,
since |kG| = ℵt. This is no real restriction, since there are countable algebraically
closed fields, and this is more than sufficient for modular representation theory.

Example 5.4. If k is arbitrary, then one can apply Theorem 4.3 since the inclusion
has an adjoint, as we have observed.
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