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Abstract
An algebraic version of a theorem of Quillen is proved. More

precisely, for a regular Noetherian scheme S of finite Krull
dimension, we consider the motivic stable homotopy category
SH(S) of P1-spectra, equipped with the symmetric monoidal
structure described in [7]. The algebraic cobordism P1-spec-
trum MGL is considered as a commutative monoid equipped
with a canonical orientation thMGL ∈ MGL2,1(Th(O(−1))). For
a commutative monoid E in the category SH(S), it is proved
that the assignment ϕ 7→ ϕ(thMGL) identifies the set of monoid
homomorphisms ϕ : MGL→ E in the motivic stable homotopy
category SH(S) with the set of all orientations of E. This result
generalizes a result of G. Vezzosi in [12].

1. Introduction

Quillen proved in [10] that the formal group law associated to the complex cobor-
dism spectrum MU is the universal one on the Lazard ring. As a consequence, the set
of orientations on a commutative ring spectrum E in the stable homotopy category is
in bijective correspondence with the set of homomorphisms of ring spectra from MU
to E in the stable homotopy category. This result allowed a whole new approach to
understanding the stable homotopy category, which is still actively pursued today.

On the algebraic side of things, there is a similar P1-ring spectrum MGL in the
motivic stable homotopy category of a Noetherian finite-dimensional scheme S. The
formal group law associated to MGL is not known to be the universal one, although
unpublished work of Hopkins and Morel claims this if S is the spectrum of a field of
characteristic zero. Nevertheless, the set of orientations on a P1-ring spectrum in the
motivic stable homotopy category over S can be identified in the same fashion if S
is regular.

Theorem 1.1. Let S be a regular Noetherian finite-dimensional scheme, and let E be
a commutative P1-ring spectrum over S. The set of orientations on E is in bijection
with the set of homomorphisms of P1-ring spectra from MGL to E in the motivic
stable homotopy category over S.
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For a more detailed formulation, see Theorem 2.7. Our main motivation to write
this paper was to prove the universality theorem 1.1 in a form convenient for its
application in [8]. Theorem 1.1 has already been employed in [1] and [11]. In the
special case where S is the spectrum of a field, Theorem 1.1 was stated originally in
a slightly different form by G. Vezzosi in [12], although he ignored certain aspects of
the multiplicative structure on MGL.

1.1. Preliminaries
We refer to [7, Appendix] for the basic terminology, notation, constructions, defini-

tions and results. For the convenience of the reader we recall the basic definitions. Let
S be a regular Noetherian scheme of finite Krull dimension. One may think of S being
the spectrum of a field or the integers. Below we need to apply [5, Prop. 4.3.8], which
is the basic reason to work with a regular base scheme S. Let Sm/S be the category
of smooth quasi-projective S-schemes, and let sSet be the category of simplicial sets.
A motivic space over S is a functor

A : Sm/Sop → sSet

(see [7, A.1.1]). The category of motivic spaces over S is denoted M(S). This definition
of a motivic space is different from the one considered by Morel and Voevodsky in [5];
they consider only those simplicial presheaves which are sheaves in the Nisnevich
topology on Sm/S. With our definition, the Thomason-Trobaugh K-theory functor
obtained by using big vector bundles is a motivic space on the nose. It is not a
simplicial Nisnevich sheaf. This is why we prefer to work with the above notion of
“space”.

We write Hcm
• (S) for the pointed motivic homotopy category and SHcm(S) for

the stable motivic homotopy category over S as constructed in [7, A.3.9, A.5.6].
By [7, A.3.11, resp. A.5.6] there are canonical equivalences to H•(S) of [5], respec-
tively, SH(S) of [13]. Both Hcm

• (S) and SHcm
• (S) are equipped with closed symmetric

monoidal structures such that the P1-suspension spectrum functor is a strict sym-
metric monoidal functor

Σ∞P1 : Hcm
• (S)→ SHcm(S).

Here P1 is considered as a motivic space pointed by∞ ∈ P1. The symmetric monoidal
structure (∧, IS = Σ∞P1S+) on the homotopy category SHcm(S) is constructed on the
model category level by employing symmetric P1-spectra. It satisfies the properties
required by Theorem 5.6 of Voevodsky’s talk [13]. From now on we will usually omit
the superscript (−)cm.

Every P1-spectrum E = (E0, E1, . . .) represents a cohomology theory on the cat-
egory of pointed motivic spaces. Namely, for a pointed motivic space (A, a) set

Ep,q(A, a) = HomSH•(S)(Σ∞P1(A, a), Σp,q(E))

and E∗,∗(A, a) = ⊕p,qE
p,q(A, a). This definition extends to motivic spaces via the

functor A 7→ A+ which adds a disjoint basepoint. That is, for a non-pointed motivic
space A, set Ep,q(A) = Ep,q(A+, +) and E∗,∗(A) = ⊕p,qE

p,q(A). Recall that there is
a canonical element in E2n,n(En), denoted as Σ∞P1En(−n)→ E. It is represented by
the canonical map (∗, . . . , ∗, En, En ∧P1, . . .)→ (E0, E1, . . . , En, . . .) of P1-spectra.
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Every X ∈ Sm/S defines a representable motivic space constant in the simplicial
direction, taking an S-smooth scheme U to HomSm/S(U,X). It is not possible in
general to choose a basepoint for representable motivic spaces. So we regard S-smooth
varieties as motivic spaces (non-pointed) and set

Ep,q(X) = Ep,q(X+, +).

Given a P1-spectrum E we will reduce the double grading on the cohomology
theory E∗,∗ to a grading. Namely, set Em = ⊕m=p−2qE

p,q and E∗ = ⊕mEm.
To complete this section, we define a P1-ring spectrum to be a monoid (E, µ, e) in

(SH(S),∧, IS). A commutative P1-ring spectrum is a commutative monoid (E, µ, e)
in (SH(S),∧, IS). The cohomology theory E∗ defined by a P1-ring spectrum is a ring
cohomology theory. The cohomology theory E∗ defined by a commutative P1-ring
spectrum is a ring cohomology theory, however it is not necessarily graded com-
mutative. The cohomology theory E∗ defined by an oriented commutative P1-ring
spectrum is a graded commutative ring cohomology theory, as will be explained in
Subsection 1.3.

1.2. Oriented commutative ring spectra
Following Adams and Morel, we define an orientation of a commutative P1-ring

spectrum. However we prefer to use Thom classes instead of Chern classes. Consider
the pointed motivic space P∞ = colimn>0 Pn having basepoint g1 : S = P0 ↪→ P∞.

The tautological “vector bundle” T(1) = OP∞(−1) is also known as the Hopf bun-
dle. It has zero section z : P∞ ↪→ T(1). The fiber over the point g1 ∈ P∞ is A1. For a
vector bundle V over a smooth S-scheme X, with zero section z : X ↪→ V , its Thom
space Th(V ) is the Nisnevich sheaf associated to the presheaf

Y 7→ V (Y )/
(
V r z(X)

)
(Y )

on the Nisnevich site Sm/S. In particular, Th(V ) is a pointed motivic space in the
sense of [7, Defn. A.1.1]. It coincides with Voevodsky’s Thom space [13, p. 422],
since Th(V ) already is a Nisnevich sheaf. The Thom space of the Hopf bundle is then
defined as the colimit Th(T(1)) = colimn>0 Th

(
OPn(−1)

)
. Abbreviate T = Th(A1

S).
Let E be a commutative P1-ring spectrum. The unit gives rise to an element

1 ∈ E0,0(S). Applying the P1-suspension isomorphism to that element we get an
element ΣP1(1) ∈ E2,1(P1,∞). The canonical covering of P1 defines motivic weak
equivalences

P1 ∼ // P1/A1 A1/A1 r {0} = T
∼oo (1)

of pointed motivic spaces inducing isomorphisms

E(P1,∞)← E(A1/A1 r {0})→ E(T ).

Let ΣT (1) be the image of ΣP1(1) in E2,1(T ).

Definition 1.2. Let E be a commutative P1-ring spectrum. A Thom orientation of
E is an element th ∈ E2,1(Th(T(1)) such that its restriction to the Thom space of
the fibre over the distinguished point coincides with the element ΣT (1) ∈ E2,1(T ).
A Chern orientation of E is an element c ∈ E2,1(P∞) such that c|P1 = −ΣP1(1).
An orientation of E is either a Thom orientation or a Chern orientation. One says
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that a Thom orientation th of E coincides with a Chern orientation c of E provided
that c = z∗(th), or equivalently the element th coincides with th(O(−1)) given by (3)
below.

Remark 1.3. The element th should be regarded as the Thom class of the tautological
line bundle T(1) = O(−1) over P∞. The element c should be regarded as the Chern
class of the tautological line bundle T(1) = O(−1) over P∞.

Example 1.4. The following orientations given below are relevant for our work. Here
MGL denotes the P1-ring spectrum representing algebraic cobordism obtained below
in Definition 2.4, and BGL denotes the P1-ring spectrum representing algebraic
K-theory constructed in [7, Theorem 2.2.1].

• Let u1 : Σ∞P1Th(T(1))(−1)→ MGL be the canonical map of P1-spectra. Set
thMGL = u1 ∈ MGL2,1(Th(T(1))). Since the equality

thMGL|Th(1) = ΣT (1)

holds in MGL2,1(Th(1)), the class thMGL is an orientation of MGL.

• Set cK = (−β) ∪ ([O]− [O(1)]) ∈ BGL2,1(P∞). The relation (11) from [7] shows
that the class cK is an orientation of BGL.

1.3. Certain properties of oriented P1-ring spectra
Let E be a commutative P1-ring spectrum and E∗,∗ the cohomology theory it

represents. For an element λ ∈ Γ(S, O∗S), denote by Λ the morphism P1 → P1 which
maps [x : y] to [x : λy]. Let Λ∗ : E∗,∗(P1,∞)→ E∗,∗(P1,∞) be the pull-back map
induced by Λ. Let ΣP1 : E∗,∗(S)→ E∗+2,∗+1(P1,∞) be the suspension isomorphism.
Set

ε = (Σ−1
P1 ◦ (−1)∗ ◦ ΣP1)(1) ∈ E0,0(S).

Clearly ε2 = 1. The following commuting rule is proved by Morel in [4]: for any
a ∈ Ep,q and b ∈ Er,s one has a ∪ b = (−1)psεqrb ∪ a. Suppose that ε = 1 for E. Define
a Chern structure on E∗,∗ as an assignment which associates to every X ∈ Sm(S) and
every line bundle L over X a class c(L) ∈ E2,1(X) such that

(1) the class c(L) is natural,

(2) c(1) = 0 (the class of a trivial bundle vanishes), and

(3) the set {1, c(O(−1))} is a basis of the two-sided E∗,∗(S)-module E∗,∗(P1 × S).

Given a Chern structure on E∗,∗, one can state and prove the projective bundle
theorem, construct a theory of Chern classes, and construct a theory of Thom classes
by repeating literally the arguments and constructions from [6, Thm. 3.9, Thm. 3.27
and Proof of Thm. 3.35]. The resulting theory of Chern classes is uniquely defined by
the property that for line bundles the classes c1 and c coincide. The resulting theory
of Thom classes is uniquely defined by the property that for every line bundle L with
zero section z one has z∗(th(L)) = c(L). We recall the construction of the theory of
Thom classes at the end of this section.
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Below, in this section, (E, th) is an oriented commutative ring P1-spectrum. The
class c = z∗(th) ∈ E2,1(P∞) is a Chern orientation of E by [9, Prop. 6.5.1]. Clearly
the pull-back map E∗,∗(P2)→ E∗,∗(P1) is surjective. We claim now that for any
λ ∈ Γ(S, O∗S) one has Λ∗ = id. In fact, to check this just repeat the arguments from [2,
Proof of Lemma 1.6]. So ε = 1 if E is orientable.

Now one can produce a Chern structure on E∗,∗ as follows. The scheme S is regu-
lar. The functor isomorphism HomH•(S)(−,P∞)→ Pic(−) on the category Sm/S,
provided by [5, Thm. 4.3.8], sends the class of the identity map P∞ → P∞ to
the class of the tautological line bundle O(−1) over P∞. For a line bundle L over
X ∈ Sm/S, let [L] be the class of L in the group Pic(X). Let fL : X+ → P∞ be a
morphism in H•(S) corresponding to the class [L] under the functor isomorphism
above. For a line bundle L over X ∈ Sm/S, set c(L) = f∗L(c) ∈ E2,1(X). Clearly,
c(O(−1)) = c. The assignment L/X 7→ c(L) is a Chern structure on E∗,∗|SmOp since
c|P1 = −ΣP1(1) ∈ E2,1(P1,∞). With that Chern structure, E∗,∗|SmOp is an oriented
ring cohomology theory in the sense of [6]. In particular, (BGL, cK) defines an ori-
ented ring cohomology theory on SmOp.

Combining the results given above, we obtain a theory of Thom classes

V 7→ th(V ) ∈ E2rank(V ),rank(V )(Th(V ))

on E∗,∗. The latter means that the classes th(V ) are natural, multiplicative, and
satisfy the Thom isomorphism property.

Theorem 1.5. For a rank r vector bundle p : V → X on X ∈ Sm/S with zero section
z : X ↪→ V , the map

− ∪ th(V ) : E∗,∗(X)→ E∗+2r,∗+r
(
Th(V )

)

is an isomorphism of two-sided E∗,∗(X)-modules, where − ∪ th(V ) is written for the
composition map

(− ∪ th(V )
) ◦ p∗.

Additionally we have a normalization property : th(1) = ΣT (1) ∈ E2,1(Th(1)) as
one can see from the relations (2) and (3) below. In fact,

t̄h(1) = c(OP1(1)) = −c(OP1(−1)) = ΣP1(1).

(The second relation here holds by [6, Lemma 3.6].) Thus th(1) = ΣT (1).
Analogous to [13, p. 422], one obtains for vector bundles V → X and W → Y in

Sm/S a canonical map of pointed motivic spaces Th(V ) ∧ Th(W )→ Th(V ×S W ),
which is a motivic weak equivalence as defined in [7, Defn. 3.1.6]. In fact, the canonical
map becomes an isomorphism after Nisnevich (even Zariski) sheafification. In the
special case where Y = S and W = 1 is the trivial line bundle, this motivic weak
equivalence has the form Th(V ) ∧ T → Th(V ⊕ 1).

Corollary 1.6. For W = V ⊕ 1 consider the composite motivic weak equivalence

ω : Th(V ) ∧P1 → Th(V ) ∧P1/A1 ← Th(V ) ∧ T → Th(W )
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of pointed motivic spaces over S (see diagram (1) on page 213). The diagram

E∗+2r,∗+r(Th(V ))
ΣP1

// E∗+2r+2,∗+r+1(Th(V ) ∧P1)

E∗+2r,∗+r(Th(V ))
ΣT //

id

OO

E∗+2r+2,∗+r+1(Th(W ))

ω∗

OO

E∗,∗(X) id //

−∪th(V )

OO

E∗,∗(X)

−∪th(W )

OO

commutes.

Proof. The bottom square in this diagram commutes by the multiplicativity of Thom
classes and the normalization property of the class th(1). The top one commutes by
definition.

We conclude this section by recalling briefly how the associated theory of Thom
classes is constructed. Given the Chern structure above, there is a unique theory
of Chern classes V 7→ ci(V ) ∈ E2i,i(X) such that for every line bundle L on X one
has c1(L) = c(L). For a rank r vector bundle V over X consider the vector bundle
W := 1⊕ V and the associated projective space bundle P(W ) of lines in W . Set

t̄h(V ) = cr(p∗(V )⊗ OP(W )(1)) ∈ E2r,r(P(W )). (2)

It follows from [6, Cor. 3.18] that the support extension map

E2r,r
(
P(W )/(P(W )rP(1))

)→ E2r,r
(
P(W )

)

is injective and t̄h(E) ∈ E2r,r
(
P(W )/(P(W )rP(1))

)
. Set

th(E) = j∗(t̄h(E)) ∈ E2r,r
(
ThX(V )

)
, (3)

where j : ThX(V )→ P(W )/(P(W )rP(1)) is the canonical motivic weak equiva-
lence of pointed motivic spaces induced by the open embedding V ↪→ P(W ). The
assignment V/X to th(V ) is a theory of Thom classes on E∗,∗ (see the proof of [6,
Thm. 3.35]). Moreover th(O(−1)) = th in E2,1(P∞).

2. Cohomology of infinite Grassmannians

Let Gr(n, n + m) be the Grassmann scheme of n-dimensional linear subspaces
of An+m

S . The closed embedding An+m
S = An+m

S × {0} ↪→ An+m+1
S defines a closed

embedding

Gr(n, n + m) ↪→ Gr(n, n + m + 1). (4)

The tautological vector bundle is denoted T(n, n + m)→ Gr(n, n + m). The closed
embedding (4) is covered by a map T(n, n + m) ↪→ T(n, n + m + 1) of vector bundles.
Let Gr(n) = colimm>0 Gr(n, n + m), T(n) = colimm>0 T(n, n + m) and Th(T(n)) =
colimm>0 Th(T(n, n + m)). These colimits are taken in the category of motivic spaces
over S.
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Remark 2.1. It is not difficult to prove that E∗,∗(Gr(n, n + m)) is multiplicatively
generated by the Chern classes ci(T(n, n + m)) of the vector bundle T(n, n + m). This
proves the surjectivity of the map E∗,∗(Gr(n, n + m + 1))→ E∗,∗(Gr(n, n + m)) and
shows that the canonical map E∗,∗(Gr(n))→ lim←−E∗,∗(Gr(n, n + m)) is an isomor-
phism. Thus for each i there exists a unique element ci = ci(T(n)) ∈ E2i,i(Gr(n)),
which for each m restricts to the element ci(T(n, n + m)) under the obvious pull-back
map.

Theorem 2.2. Let (E, c) be an oriented commutative P1-ring spectrum. Then

E∗,∗(Gr(n)) = E∗,∗(S)[[c1, c2, . . . , cn]]

is the formal power series ring, where ci := ci(T(n)) ∈ E2i,i(Gr(n)) denotes the i-th
Chern class of the tautological bundle T(n). The inclusion incn : Gr(n) ↪→ Gr(n + 1)
satisfies inc∗n(cm) = cm for m < n + 1 and inc∗n(cn+1) = 0.

Proof. The case n = 1 is well-known (see for instance [6, Thm. 3.9]). For a finite-
dimensional vector space W and a positive integer m, let F(m,W ) be the flag variety
of flags W1 ⊂W2 ⊂ · · · ⊂Wm of linear subspaces of W such that the dimension of
Wi is i. Let Ti(m, W ) be the tautological rank i vector bundle on F(m, W ).

Let V = A∞ be an infinite-dimensional vector bundle over S and set e = (1, 0, . . .).
Then Vn denotes the n-fold product of V , and en

i ∈ Vn the vector (0, . . . , 0, e, 0, . . . , 0)
having e precisely at the i-th position. Let F (m) = colimW F(m, W ) and let Ti(m) =
colimW Ti(m, W ), where W runs over all finite-dimensional vector subspaces of Vn.
Thus we have a flag T1(m) ⊂ T2(m) ⊂ · · · ⊂ Tm(m) of vector bundles over F (m). Set
Li(m) = Ti(m)/Ti−1(m). It is a line bundle over F (m).

Consider the morphism pm : F (m)→ F (m− 1) which maps a flag W1 ⊂W2 ⊂
· · · ⊂Wm to the flag W1 ⊂W2 ⊂ · · · ⊂Wm−1. If W ⊂ Vn is a finite-dimensional vec-
tor subspace, then the restriction of pm : F (m)→ F (m− 1) to F(m,W ) is a projec-
tive space bundle over F(m− 1,W ). Thus there exists a tower of projective space
bundles F (m)→ F (m− 1)→ · · · → F (1) = P(Vn). The projective bundle theorem
implies that

E∗,∗(F (n)) = E∗,∗(k)[[t1, t2, . . . , tn]]

(the formal power series in n variables), where ti = c(Li(n)) is the first Chern class
of the line bundle Li(n) over F (n).

Consider the morphism q : F (n)→ Gr(n), which sends the flag

W1 ⊂W2 ⊂ · · · ⊂Wn

to the space Wn. It can be decomposed as a tower of projective space bundles. In
particular, the pull-back map q∗ : E∗,∗(Gr(n))→ E∗,∗(F (n)) is a monomorphism. It
maps the class ci to the symmetric polynomial

σi = t1t2 · · · ti + · · ·+ tn−i+1 · · · tn−1tn.

So the image of q∗ contains E∗,∗(k)[[σ1, σ2, . . . , σn]]. It remains to check that the image
of q∗ is contained in E∗,∗(k)[[σ1, σ2, . . . , σn]]. To do that consider another variety.
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Namely, let V 0 be the n-dimensional subspace of Vn generated by the vectors en
i ’s.

Let lni be the line generated by the vector en
i . Let V 0

i be a subspace of V 0 generated
by all en

j ’s with j 6 i. So one has a flag V 0
1 ⊂ V 0

2 ⊂ · · · ⊂ V 0
n = V 0. We denote this

flag F 0. For each vector subspace W in Vn containing V 0 consider three algebraic
subgroups of the general linear group GLW . Namely, set

PW = Stab(V 0), BW = Stab(F 0), TW = Stab(ln1 , ln2 , . . . , lnn).

The group TW stabilizes each line lni . Clearly, TW ⊂ BW ⊂ PW and Gr(n, W ) =
GLW /PW , F(n,W ) = GLW /BW Set M(n,W ) = GLW /TW . One has a tower of obvi-
ous morphisms

M(n, W ) rW−−→ F(n, W )
qW−−→ Gr(n,W ).

Set M(n) = colimW M(n,W ), where W runs over all finite-dimensional subspaces W
of Vn containing V 0. Now one has a tower of morphisms

M(n) r−→ F (n)
q−→ Gr(n).

The morphisms rW can be decomposed in a tower of affine space bundles. Hence it
induces an isomorphism on any cohomology theory. Choose a family

V 0
n = W0 ⊂W1 ⊂W2 ⊂ · · ·

of finite-dimensional subspaces of Vn such that Vn = ∪Wi. Then F (n) = ∪F(n, Wi)
and M(n) = ∪M(n,Wi). The short exact sequence

0→ lim←−
i>0

1E∗−1,∗(F(n,Wi)
)→ E∗,∗(F (n)

)→ lim←−
i>0

E∗,∗(F(n,Wi)
)→ 0

as described in [7, Lemma A.34], and a similar sequence for E∗,∗-groups of the spaces
M(n,Wi), show that the pull-back map

r∗ : E∗,∗(F (n))→ E∗,∗(M(n))

is an isomorphism. Permuting vectors en
i ’s yields an inclusion Σn ⊂ GL(V 0) of the

symmetric group Σn inGL(V 0). The action of Σn by the conjugation onGLW normal-
izes the subgroups TW and PW . Thus Σn acts as on M(n) so on Gr(n) and the mor-
phism q ◦ r : M(n)→ Gr(n) respects this action. Note that the action of Σn on Gr(n)
is trivial and the action of Σn on E∗,∗(M(n)) permutes the variable t1, t2, . . . , tn. Thus
the image of (q ◦ r)∗ is contained in E∗,∗(S)[[σ1, σ2, . . . , σn]]. Whence the same holds
for the image of q∗. The theorem is proven.

The projection from the product Gr(m)×Gr(n), to the j-th factor is called pj .
For every integer i > 0 set c′i = p∗1(ci(T(m))) and c′′i = p∗2(ci(T(n)))

Theorem 2.3. Suppose E is an oriented commutative P1-ring spectrum. There is an
isomorphism

E∗,∗((Gr(m)×Gr(n))
)

= E∗,∗(S)[[c′1, c
′
2, . . . , c

′
m, c′′1 , c′′2 , . . . , c′′n]],

where the right-hand side denotes the formal power series ring on c′i and c′′j with
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coefficients in E∗,∗(S). The inclusion

im,n : Gr(m)×Gr(n) ↪→ Gr(m + 1)×Gr(n + 1)

satisfies

i∗m,n(c′r) = c′r for r < m + 1, i∗m,n(c′m+1) = 0,

and

i∗m,n(c′′r ) = c′′r for r < n + 1, i∗m,n(c′′n+1) = 0.

Proof. This follows as in the proof of Theorem 2.2.

2.1. The symmetric ring spectrum representing algebraic cobordism
To give a construction of the symmetric P1-ring spectrum MGL, recall the

external product of Thom spaces described in [13, p. 422]. For vector bundles
V → X and W → Y in Sm/S, one obtains a canonical map of pointed motivic spaces
Th(V ) ∧ Th(W )→ Th(V ×S W ), which is a motivic weak equivalence as defined
in [7, Defn. 3.1.6]. In fact, the canonical map becomes an isomorphism after Nis-
nevich (even Zariski) sheafification.

The algebraic cobordism spectrum appears naturally as a T -spectrum, not as a
P1-spectrum. Hence we describe it as a symmetric T -ring spectrum and obtain a
symmetric P1-ring spectrum (and in particular a P1-ring spectrum) by switching
the suspension coordinate (see [7, A.6.9]). For m,n > 0, let T(n,mn)→ Gr(n,mn)
denote the tautological vector bundle over the Grassmann scheme of n-dimensional
linear subspaces of Amn

S = Am
S ×S · · · ×S Am

S . Permuting the copies of Am
S induces

a Σn-action on T(n,mn) and Gr(n, mn) such that the bundle projection is equivari-
ant. The closed embedding Am

S = Am
S × {0} ↪→ Am+1

S defines a closed Σn-equivariant
embedding Gr(n,mn) ↪→ Gr(n, (m + 1)n). In particular, Gr(n,mn) is pointed by
gn : S = Gr(n, n) ↪→ Gr(n, mn). The fiber of Gr(n,mn) over gn is An

S . Let Gr(n)
be the colimit of the sequence

Gr(n, n) ↪→ Gr(n, 2n) ↪→ · · · ↪→ Gr(n, mn) ↪→ · · ·
in the category of pointed motivic spaces over S. The pullback diagram

T(n,mn) //

²²

T(n, (m + 1)n)

²²

Gr(n, mn) // Gr(n, (m + 1)n)

induces a Σn-equivariant inclusion of Thom spaces

Th(T(n,mn)) ↪→ Th(T(n, (m + 1)n)).

Let MGLn denote the colimit of the resulting sequence

MGLn = colim
m>n

Th(T(n,mn)) (5)

with the induced Σn-action. There is a closed embedding

Gr(n,mn)×Gr(p,mp) ↪→ Gr(n + p,m(n + p)), (6)
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which sends the linear subspaces V ↪→ Amn and W ↪→ Amp to the product subspace
V ×W ↪→ Amn ×Amp = Am(n+p). In particular, (gn, gp) maps to gn+p. The inclu-
sion (6) is covered by a map of tautological vector bundles and thus gives a canonical
map of Thom spaces

Th(T(n,mn)) ∧ Th(T(p,mp))→ Th(T(n + p,m(n + p))), (7)

which is compatible with the colimit (5). Furthermore, the map (7) is Σn × Σp-
equivariant, where the product acts on the target via the standard inclusion
Σn × Σp ⊆ Σn+p. After taking colimits, the result is a Σn × Σp-equivariant map

µn,p : MGLn ∧MGLp →MGLn+p (8)

of pointed motivic spaces (see [13, p. 422]). The inclusion of the fiber Ap over gp

in T(p) induces an inclusion Th(Ap) ⊂ Th(T(p)) = MGLp. Precomposing it with the
canonical Σp-equivariant map of pointed motivic spaces,

Th(A1) ∧ Th(A1) ∧ · · · ∧ Th(A1)→ Th(Ap)

defines a family of maps ep : (Σ∞T S+)p = T∧p →MGLp. Inserting it in the inclusion
(8) yields Σn × Σp-equivariant structure maps

MGLn ∧ Th(A1) ∧ Th(A1) ∧ · · · ∧ Th(A1)→MGLn+p (9)

of the symmetric T -spectrumMGL. The family of Σn × Σp-equivariant maps (8) form
a commutative, associative and unital multiplication on the symmetric T -spectrum
MGL (see [3, Sect. 4.3]). Regarded as a T -spectrum it coincides with Voevodsky’s
spectrum MGL described in [13, 6.3].

Let T be the Nisnevich sheaf associated to the presheaf X 7→P1(X)/(P1 − {0})(X)
on the Nisnevich site Sm/S. The canonical covering of P1 supplies an isomorphism

T = Th(A1
S)

∼= // T

of pointed motivic spaces. This isomorphism induces an isomorphism MSST (S) ∼=
MSST (S) of the categories of symmetric T -spectra and symmetric T -spectra. In
particular, MGL may be regarded as a symmetric T -spectrum by just changing
the structure maps up to an isomorphism. Note that the isomorphism of categories
respects both the symmetric monoidal structure and the model structure. The canon-
ical projection p : P1 → T is a motivic weak equivalence, because A1 is contractible.
It induces a Quillen equivalence

MSS(S) = MSSP1(S)
p] // MSST (S)
p∗

oo

when equipped with model structures as described in [3] (see [7, A.6.9]). The right
adjoint p∗ is very simple: it sends a symmetric T -spectrum E to the symmetric P1-
spectrum having terms

(
p∗(E)

)
n

= En and structure maps

En ∧P1
En∧p

// E ∧ T
structure map

// En+1 .

In particular MGL := p∗MGL is a symmetric P1-spectrum by just changing the struc-
ture maps. Since p∗ is a lax symmetric monoidal functor, MGL is a commutative
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monoid in a canonical way. Finally, the identity is a left Quillen equivalence from
the model category MSScm(S) used in [7] to Jardine’s model structure by the proof
of [7, A.6.4]. Let γ : Ho(MSScm(S))→ SH(S) denote the equivalence obtained by
regarding a symmetric P1-spectrum just as a P1-spectrum.

Definition 2.4. Let (MGL, µMGL, eMGL) denote the commutative P1-ring spectrum,
which is the image γ(MGL) of the commutative symmetric P1-ring spectrum MGL
in the motivic stable homotopy category SH(S).

2.2. Cohomology of the algebraic cobordism spectrum
Let (E, th) be an oriented commutative P1-ring spectrum and let V 7→ th(V ) be

the Thom classes theory given by equation (3). We will compute E∗,∗(MGL) and
E∗,∗(MGL ∧MGL) in this short section.

By [7, Cor. 2.1.4], the group E∗,∗(MGL) fits into the short exact sequence

0→ lim←−
1E∗+2i−1,∗+i(Th(T(i)))→ E∗,∗(MGL)→ lim←−E∗+2i,∗+i(Th(T(i)))→ 0,

where the connecting maps in the tower are given by the top line of the commutative
diagram

E∗+2i,∗+i(Th(i)) E∗+2i+2,∗+i+1(Th(i)∧P1)
Σ−1

P1
oo E∗+2i+2,∗+i+1(Th(i+1))σ∗oo

E∗,∗(Gr(i))

−∪th(T(i))

OO

E∗,∗(Gr(i))idoo

ω∗◦(−∪th(T(i)⊕1))

OO

E∗,∗(Gr(i + 1)).
inc∗ioo

−∪th(T(i+1))

OO

(10)
Here ω : Th(V ) ∧P1 → Th(V ⊕ 1) is the canonical map described in Corollary 1.6
and σ : Thi ∧P1 → Thi+1 is the structure map of the P1-spectrum MGL. The pull-
backs inc∗i are all surjective by Theorem 1.5. So we proved the following

Lemma 2.5. The canonical map

E∗,∗(MGL)→ lim←−E∗+2i,∗+i(Th(T(i))) = E∗,∗(S)[[c1, c2, c3, . . .]]

is an isomorphism of two-sided E∗,∗(S)-modules.

To compute E∗,∗(MGL ∧MGL), recall that the group E∗,∗(MGL ∧MGL) fits into
the short exact sequence

0→ lim←−
1E∗+4i−1,∗+2i(Th(T(i)) ∧ Th(T(i)))→ E∗,∗(MGL ∧MGL)

→ lim←−E∗+4i,∗+2i(Th(T(i)) ∧ Th(T(i)))→ 0

by [7, Cor. 2.1.5]. Note that since Th(T(i)) ∧ Th(T(i)) ∼= Th(T(i)× T(i)), there
is a Thom isomorphism E∗+4i−1,∗+2i(Th(T(i)× T(i))) ∼= E∗−1,∗(Gr(i)×Gr(i)) by
Theorem 1.5. The lim←−

1-group is trivial because the connecting maps coincide with
the pull-back maps

E∗−1,∗(Gr(i + 1)×Gr(i + 1))→ E∗−1,∗(Gr(i)×Gr(i))

and these are surjective by Theorem 2.3. This implies the following
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Lemma 2.6. The canonical map

E∗,∗(MGL ∧MGL)→ lim←−E∗+4i,∗+2i(Th(T(i)) ∧ Th(T(i)))

= E∗,∗(S)[[c′1, c
′′
1 , c′2, c

′′
2 , . . .]]

is an isomorphism of E∗,∗(S)-modules. Here c′i is the i-th Chern class coming from
the first factor of Gr×Gr and c′′i is the i-th Chern class coming from the second
factor.

2.3. A universality theorem for the algebraic cobordism spectrum
The complex cobordism spectrum, equipped with its natural orientation, is a uni-

versal oriented ring cohomology theory by Quillen’s universality theorem [10]. In this
section we prove a motivic version of Quillen’s universality theorem. Over a field, the
statement is contained already in [12]. Recall that the P1-ring spectrum MGL carries
a canonical orientation thMGL as defined in Example 1.4. It is the canonical map

thMGL : Σ∞P1Th(T(1))(−1)→ MGL

of P1-spectra.

Theorem 2.7 (Universality Theorem). Let E be a commutative P1-ring spectrum.
The assignment

ϕ 7→ ϕ(thMGL) ∈ E2,1(Th(T(1)))

identifies the set of homomorphisms

ϕ : MGL→ E (11)

of P1-ring spectra in the motivic stable homotopy category SH(S) with the set of
orientations of E. The inverse bijection sends an orientation th ∈ E2,1(Th(T(1))) to
the unique morphism

ϕ ∈ E0,0(MGL) = HomSH(S)(MGL, E)

such that u∗i (ϕ) = th(T(i)) ∈ E2i,i(Th(T(i))), where th(T(i)) is given by (3) and
ui : Σ∞P1Th(T(i))(−i)→ MGL is the canonical map of P1-spectra.

Proof. Let ϕ : MGL→ E be a homomorphism of monoids in SH(S). The class
th := ϕ(thMGL) is an orientation of E, because

ϕ(th)|Th(1) = ϕ(th|Th(1)) = ϕ(ΣP1(1)) = ΣP1(ϕ(1)) = ΣP1(1).

Now suppose thE ∈ E2i,i(Th(O(−1))) is an orientation of E. Let V 7→ th(V ) be the
Thom classes theory given by equation (3). We will construct a monoid homomor-
phism ϕ : MGL→ E in SH(S) such that u∗i (ϕ) = th(T(i)) and prove its uniqueness.
To do so recall that the canonical map E∗,∗(MGL)→ lim←−E∗+2i,∗+i(Th(T(i))) is an
isomorphism by Lemma 2.5. The connecting maps in the tower are given by the top
line of diagram (10). The family of elements th(T(i)) is an element in the lim←−-group
because diagram (10) commutes. Thus there is a unique element ϕ ∈ E0,0(MGL) with
u∗i (ϕ) = th(T(i)).
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We claim that ϕ is a monoid homomorphism. To check that it respects the multi-
plicative structure, consider the diagram

Σ∞P1Th(T(i))(−i) ∧ Σ∞P1Th(T(j))(−j)
Σ∞

P1 (µi,j)(−i−j)
//

ui∧uj

²²

Σ∞P1Th(T(i + j))(−i− j)

ui+j

²²
MGL ∧MGL

µMGL //

ϕ∧ϕ

²²

MGL

ϕ

²²
E ∧ E

µE // E.

Its enveloping square commutes in SH(S) by the chain of relations

ϕ ◦ ui+j ◦ Σ∞P1(µi,j)(−i−j) = µ∗i,j(th(T(i+j))) = th(µ∗i,j(T(i+j))) = th(T(i)× T(j))
= th(T(i))× th(T(j)) = µE(th(T(i)) ∧ th(T(j)))
= µE ◦ ((ϕ ◦ ui) ∧ (ϕ ◦ uj)).

The canonical map E∗,∗(MGL ∧MGL)→ lim←−E∗+4i,∗+2i(Th(T(i)) ∧ Th(T(i))) is an
isomorphism by Lemma 2.6. Now the equality

ϕ ◦ ui+i ◦ Σ∞P1(µi,i)(−2i) = µE ◦ ((ϕ ◦ ui) ∧ (ϕ ◦ ui))

shows that µE ◦ (ϕ ∧ ϕ) = ϕ ◦ µMGL in SH(S).
To prove the theorem it remains to check that the two assignments described in

the theorem are inverse to each other. An orientation th ∈ E2,1(Th(O(−1))) induces
a morphism ϕ such that for each i one has ϕ ◦ ui = th(Ti). The new orientation
th′ := ϕ(thMGL) coincides with the original one, because of the chain of relations

th′ = ϕ(thMGL) = ϕ(u1) = ϕ ◦ u1 = th(T(1)) = th(O(−1)) = th.

On the other hand a homomorphism ϕ of P1-ring spectra defines an orientation
th := ϕ(thMGL) of E. The monoid homomorphism ϕ′ we obtain then satisfies u∗i (ϕ

′) =
th(T(i)) for every i > 0. To check that ϕ′ = ϕ, recall that MGL is oriented, so we may
use Lemma 2.5 with E = MGL to deduce an isomorphism

MGL∗,∗(MGL)→ lim←−MGL∗+2i,∗+i(Th(T(i))).

This isomorphism shows that the identity ϕ′ = ϕ will follow from the identities
u∗i (ϕ

′) = u∗i (ϕ) for every i > 0. Since u∗i (ϕ
′) = th(Ti) it remains to check the rela-

tion u∗i (ϕ) = th(T(i)). It follows from the

Lemma 2.8. There is an equality ui = thMGL(T(i) ∈ MGL2i,i(Th(T(i))).

In fact, u∗i (ϕ) = ϕ ◦ ui = ϕ(ui) = ϕ(thMGL(T(i))) = th(T(i)). The last equality in
this chain of relations holds, because ϕ is a monoid homomorphism sending thMGL

to th. It remains to prove Lemma 2.8. We will do this in the case i = 2. The general
case can be proved similarly. The commutative diagram

Σ∞P1Th(T(1))(−1) ∧ Σ∞P1Th(T(1))(−1)
Σ∞

P1 (µ1,1)(−2)
//

u1∧u1

²²

Σ∞P1Th(T(2))(−2)

u2

²²
MGL ∧MGL

µMGL // MGL
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in SH(k) implies that

µ∗1,1(u2) = u1 × u1 ∈ MGL4,2(Th(T(1)) ∧ Th(T(1))) = MGL4,2(Th(T(1)× T(1))).

The equalities

µ∗1,1(th
MGL(T(2))) = thMGL(µ∗1,1(T(2))) = thMGL(T(1)× T(1))

= thMGL(T(1))× thMGL(T(1))

imply that it remains to prove the injectivity of the map µ∗1,1. Consider the commu-
tative diagram

MGL∗,∗(Th(T(1)× T(1))) MGL∗,∗(Th(T(2)))
µ∗1,1oo

MGL∗,∗(Gr(1)×Gr(1))

Thom ∼=
OO

MGL∗,∗(Gr(2)),
ν∗1,1oo

Thom∼=
OO

where the vertical arrows are the Thom isomorphisms from Theorem 1.5 and
ν1,1 : Gr(1)×Gr(1) ↪→ Gr(2) is the embedding described by equation (6). For an ori-
ented commutative P1-ring spectrum (E, th), one has E∗,∗(Gr(2)) = E∗,∗(S)[[c1, c2]]
(the formal power series on c1, c2) by Theorem 2.2. On the other hand,

E∗,∗(Gr(1)×Gr(1)) = E∗,∗(S)[[t1, t2]]

(the formal power series on t1, t2) by Theorem 2.3 and the map ν∗1,1 sends c1 to t1 + t2
and c2 to t1t2. Whence ν∗1,1 is injective. The proofs of Lemma 2.8 and of Theorem 2.7
are complete.

3. Universality of MGL and formal group laws

In this section the universal property of the P1-spectrum MGL will be described
in terms of formal group laws. Fix a commutative P1-ring spectrum E and a homo-
morphism ϕ : MGL→ E of P1-ring spectra over S. Let z be the zero section of the
line bundle O(−1) over P∞. Then cMGL = z∗(thMGL) is a Chern orientation of MGL
and c = ϕ(cMGL) is a Chern orientation of E. The Chern orientation c defines in
the standard way a formal group law F over the commutative ring E2∗,∗(S) (see for
instance [6, Defn. 3.39] and set F := F−, where F− is the formal group law corre-
sponding to the class c(O(−1))).

If ϕnew : MGL→ E is another homomorphism of P1-ring spectra, then the ele-
ment cnew := ϕnew(cMGL) ∈ E2,1(P∞) defines another formal group law Fnew. More-
over it defines a unique formal power series Φ(t) ∈ E2∗,∗(S) such that cnew = Φ(c).
It is straightforward to check that Φ(t) is of the form t + b1t

2 + b2t
3 + · · · with

bi ∈ E−2i,−i(S) and Φ(F (t1, t2)) = Fnew(Φ(t1),Φ(t2)). In other words, Φ(t) is an iso-
morphism F → Fnew of formal group laws.

Theorem 3.1. Let (E, c) be an oriented commutative P1-ring spectrum over S. The
assignment ϕnew 7→ (Fnew,Φ(t)) is a bijection from the set of all homomorphisms
MGL→ E of P1-ring spectra in SH(S) to the set of all pairs

(
F ′(t1, t2), Ψ(t)

)
, where

F ′ is a formal group law over the ring E2∗,∗(S) and Ψ(t) : F (t1, t2)→ F ′(t1, t2) is an
isomorphism of formal group laws as above.
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Proof. Consider the set of all formal power series Ψ(t) ∈ E2∗,∗(S)[[t]] of the form
described above. This set forms a group under the substitution of the power series:
(Ψ2 ◦Ψ1)(t) := Φ2(Ψ1(t)). The series t is the unit of this group. For a series Ψ in this
group we will write Ψ−1 for its inverse.

By straightforward calculation one may check that the assignments

(F ′(t1, t2), Ψ(t)) 7→ Ψ(t) and Ψ(t) 7→ (Ψ(F (Ψ−1(t1), Ψ−1(t2))),Ψ(t))

are mutually inverse bijections of the set of all pairs from the theorem with the set
of all formal power series Ψ(t) ∈ E2∗,∗(S)[[t]] such that Ψ(t) = t + b1t

2 + b2t
3 + · · · ,

with bi ∈ E−2i,−i(S) for all i. Secondly, note that the set of all formal power series
Ψ(t) ∈ E2∗,∗(S)[[t]] such that Ψ(t) = t + b1t

2 + b2t
3 + · · · with bi ∈ E−2i,−i(S) is in

a bijective correspondence with the set of all Chern orientations c′ ∈ E2,1(P∞) of E.
Namely, a formal power series Ψ(t) as above maps to the Chern orientation Ψ(c) ∈
E2,1(P∞). Given a Chern orientation c′ of E, let Ψ(t) ∈ E2∗,∗(S)[[t]] be the unique
formal power series such that c′ = Ψ(c). This supplies two mutually inverse bijections.

To prove the theorem it remains to check that the assignment ϕnew 7→ ϕnew(cMGL)
is a bijection of the set of all homomorphisms MGL→ E of P1-ring spectra with the
set of all Chern orientations of E.

To do that, recall that the assignment ϕnew 7→ ϕnew(thMGL) is a bijection of the
set of all ring morphisms ϕnew : MGL→ E with the set of all Thom orientations of E
(see Theorem 2.7). As well the set of Thom orientations of E is in in bijection with the
set of Chern orientations via the assignment th 7→ z∗(th) (see [6, Thm. 3.5]). Clearly
z∗(ϕnew(thMGL)) = ϕnew(cMGL). Thus the assignment ϕnew 7→ ϕnew(cMGL) is indeed
a bijection, which completes the proof.

Remark 3.2. The bijection inverse to ϕnew 7→ (Fnew,Φ(t)) is given as follows. Take
cnew := Φ(c), construct a Thom classes theory using formulas (2) and (3), and let
ϕ : MGL→ E be the unique homomorphism of P1-ring spectra such that for every
n the composition Σ∞P1Th(T(n))(−n) un−−→ MGL

ϕ−→ E coincides with the Thom class
th(T(n)) of the bundle T(n) (here un is the canonical morphism from Theorem 2.7).
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