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EXCISION FOR K-THEORY OF CONNECTIVE RING SPECTRA

BJØRN IAN DUNDAS and HARALD ØYEN KITTANG

(communicated by Charles Weibel)

Abstract
We extend Geisser and Hesselholt’s result on “bi-relative K-

theory” from discrete rings to connective ring spectra. That is,
if A is a homotopy cartesian n-cube of ring spectra (satisfying
connectivity hypotheses), then the (n + 1)-cube induced by the
cyclotomic trace

K(A)→ TC(A)

is homotopy cartesian after profinite completion. In other words,
the fiber of the profinitely completed cyclotomic trace satisfies
excision.

1. Introduction

Topological K-theory is a cohomology theory. Most importantly it satisfies exci-
sion; so if for instance X is a CW-complex defined by gluing two subcomplexes X1

and X2 along their intersection X12, then the Mayer-Vietoris sequence

· · · → K0(X)→ K0(X1)⊕K0(X2)→ K0(X12)→ K1(X)→ · · ·
is exact. In other words, the square of spectra

K(X) −−−−→ K(X1)y
y

K(X2) −−−−→ K(X12)

is homotopy cartesian.
This is not true in algebraicK-theory: given maps f2 : A2 → A12 and f1 : A1 → A12

of rings, let A0 = A1 ×A12 A2 be the pullback (corresponding in the commutative case
to Spec(A0) being formed by gluing Spec(A1) and Spec(A2) along Spec(A12)). Then

K(A0) −−−−→ K(A1)
y

yK(f1)

K(A2)
K(f2)−−−−→ K(A12)

need not be homotopy cartesian. It is true that under surjectivity conditions on f1
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and f2 the Mayer-Vietoris sequence is exact in low degrees, but this does not continue
in higher degrees. See [19] for an amusing account, for instance showing that even if
all maps in the square are surjective, there does not exist a functor K3 such that the
Mayer-Vietoris sequence can be extended.

In a series of papers ([11], [8], [10], [9]) Geller, Reid and Weibel explored the
idea that cyclic homology should be a precise measure for the failure of excision in
the algebraic K-theory of Q-algebras, and did some conjectural calculations. The
problem remained open (although it IS an exercise in [13]), until Cortiñas released a
preprint [3] claiming the conjecture using Suslin and Wodzicki’s results on nonunital
rings [18].

In a recent preprint [7] Geisser and Hesselholt give the corresponding result after
profinite completion, with the difference that cyclic homology has to be replaced by
topological cyclic homology TC. The result from [7] we generalize is the following.
Let

A =





A0 −−−−→ A1

y
yf1

A2 −−−−→
f2

A12





be a cartesian square of discrete rings with f1 surjective; then the cube K(A)→
TC(A) is homotopy cartesian after profinite completion. A word of explanation: K(A)
is the square of spectra

K(A0) −−−−→ K(A1)y
yK(f1)

K(A2)
K(f2)−−−−→ K(A12)

and similarly for TC(A). The cyclotomic trace K → TC then gives a map of squares.
Considering the map of squares as a cube, the theorem states that this cube is ho-
motopy cartesian after profinite completion.

Another appealing formulation is that the homotopy fiber of the profinitely com-
pleted cyclotomic trace satisfies excision.

In this paper we extend the theorem from rings to ring spectra: let S be the sphere
spectrum in any of the popular theories of spectra with strict symmetric monoidal
smash product; then we have the following result.

Theorem 1.1. Consider a homotopy cartesian diagram A of connective S-algebras

A0 −−−−→ A1

y
yf1

A2 −−−−→
f2

A12,

where f1 is 0-connected. Then the cube

K(A) −→ TC(A)

induced by the cyclotomic trace, is homotopy cartesian after profinite completion.
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The proof of the theorem is delightfully simple. It follows by the theorems of
McCarthy [16], the first author [4], and Geisser and Hesselholt [7] in addition to an
elementary observation about homotopy cartesian diagrams of ring spectra.

Actually we prove a stronger and more technical result in Proposition 2.1 and then
show that the conditions in Theorem 1.1 imply those of Proposition 2.1.

We mention that Theorem 1.1 holds integrally by work in progress of the second
author.

Example 1.2. As an example, let k be a connective S-algebra, and consider the “cusp”
C over k gotten by the homotopy pullback

C −−−−→ k[t]y
y

k −−−−→ k[t]/t2

(if k is a discrete ring, C ∼= k[x, y]/(x2 − y3), hence the name). Letting F be the profi-
nite completion of the homotopy fiber of the cyclotomic trace, the diagram remains
homotopy cartesian after applying F . However, by [4] the map F (k)→ F (k[t]/t2)
is an equivalence, and so F (C)→ F (k[t]) is an equivalence. The rightmost term
may then be calculated from Nil-terms (if k is not “regular”, then the Nil-term
in K(k[t]) ' K(k)×NilKk will not vanish) and TC(k[t]).

Hence, one can calculate K(C) if one can describe TC(C), TC(k[t]), K(k) and the
Nil-terms (and all the maps connecting them).

Remark 1.3. One might be tempted to believe that the crucial condition on our square
of S-algebras is that it is homotopy cartesian, but unfortunately the conclusion of the
theorem is false without the surjectivity assumption on π0f

1. A counterexample can
be derived without calculations from the homotopy cartesian square (the maps are
the natural inclusions)

Z −−−−→ Z[t]
y

y
Z[t−1] −−−−→ Z[t, t−1]

and its sibling with the p-adic integers Zp̂ instead of Z. By the fundamental theorem
of algebraic K-theory, the iterated fibers of the two K-theory squares are K(Z) and
K(Zp̂) respectively. They are very different: K1(Z) ∼= Z/2 and K1(Zp̂) ∼= Z/(p− 1)×
Zp̂. On the other hand, the topological cyclic homology of the integral and p-adic
square agree after p-completion.

The example above has the deficiency that Milnor’s theorem [1, Section IX.5] does
not apply: the associated square of categories of finitely generated projective modules
is not a fiber square. We know of no examples of squares of rings for which the Milnor
theorem applies where the conclusion of the main theorem does not hold.

A natural conjecture would be that the fiber of the cyclotomic trace takes fiber
squares of exact categories to homotopy cartesian squares. Beyond the obvious ex-
tensions that follow from the theorems of Cortiñas and Geisser-Hesselholt, the case
of the projective line is our only support for this conjecture.
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There is a direct proof of the extension of Geisser and Hesselholt’s theorem to
simplicial rings not using Goodwillie’s conjecture [16], [4]. This proof is interesting in
that it gives a hands on approach to the problem, and conceivably a way to weaken
the conditions of the theorem. We will not pursue those questions here.

1.1. Plan
In Section 2 we prove a proposition that turns out to be stronger than the main

theorem 1.1. We do not require the square of S-algebras to be homotopy cartesian,
but rather impose criteria on the path components.

In Section 3 we address the problem that π0 does not send homotopy cartesian
squares to cartesian squares. We also prove some multirelative extensions.

1.2. Conventions
The algebraic K-theory discussed in this paper is the nonconnective version of

algebraic K-theory as defined by Thomason [20, Section 6] extended to connec-
tive S-algebras. Thomason’s construction is functorial, and is also performed on
the cyclotomic trace (see below). Since for a connective S-algebra A we have that
K1(A) ∼= K1(π0A), we get little new: Ki(A) ∼= Ki(π0A) for all i 6 1. In particular, if
A→ B induces an isomorphism on π0 (as is the case for the vertical maps in the theo-
rem), then the relative groups nonconnective K-theory vanish in negative dimensions.
The same considerations apply to TC.

Topological cyclic homology TC is taken to be integral topological cyclic homology
as defined by Goodwillie [12], but appears in this paper only after profinite comple-
tion, and so agrees with the product over all primes p of the p-completion of the
p-typical version TC(−; p) appearing in [2]. The cyclotomic trace is given as in [5].

All displayed diagrams commute. The term “connective” is reserved for −1-con-
nected spectra.

2. Sufficient conditions on the path components

In this section we prove Proposition 2.1 (and a multirelative version, Corollary 2.2)
that turns out to be stronger than the main theorem 1.1. We do not require the
square of S-algebras to be homotopy cartesian, but rather impose criteria on the
path components.

Proposition 2.1. Let A be a diagram

A0 −−−−→ A1

y
y

A2 −−−−→ A12

of connective S-algebras such that π0A
1 → π0A

12 is surjective and the induced map
of rings

π0A
0 → π0A

1 ×π0A12 π0A
2

is a surjection with nilpotent kernel. Then the cube

K(A)→ TC(A)
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induced by the trace map is homotopy cartesian after profinite completion.

Proof. Let F be the profinite completion of the homotopy fiber of the cyclotomic
trace K → TC. Since π0A

1 → π0A
12 is surjective, Geisser and Hesselholt’s theorem

implies that the square

F (π0A
1 ×π0A12 π0A

2) −−−−→ F (π0A
1)

y
y

F (π0A
2) −−−−→ F (π0A

12)

is homotopy cartesian. The assumption that π0A
0 → π0A

1 ×π0A12 π0A
2 is a surjection

with nilpotent kernel, opens for the use of McCarthy’s theorem [16] and we may
conclude that

F (π0A
0)→ F (π0A

1 ×π0A12 π0A
2)

is an equivalence. Hence the square F (π0A) is homotopy cartesian.
Now, by [4], each of the vertical maps in the cube

F (A)y
F (π0A)

are equivalences, and the result follows.

The above results automatically give theorems about n-cubes for n > 1. Recall
that if S is a finite set, then an S-cube is a functor from the category PS of subsets
of S, and that if |S| is the cardinality of S, one often uses the term |S|-cube. Hence
a 0-cube is an object, a 1-cube is a map and a 2-cube is a commuting square.

Corollary 2.2. Let A be an S-cube of connective S-algebras such that for all U ⊆ S
the canonical map

pU : π0A
U → lim←−−−−−

U(T⊆S

π0A
T

is surjective, and in addition that p∅ has nilpotent kernel. Then the (|S|+ 1)-cube

K(A)→ TC(A)

induced by the cyclotomic trace is homotopy cartesian after profinite completion.

Proof. Note that the surjectivity condition on the cube is symmetric in the sense
that the condition is satisfied for all subcubes. In particular, all maps in the cube
are 0-connected. By the same reasoning as in Proposition 2.1 we may immediately
reduce to the case of discrete rings. For concreteness, let S = {1, . . . , n}, and assume
by induction that the corollary has been proven for cubes of cardinality less than n.

Write S′ for {1, . . . , n− 1}. Let A[∅] be the cartesian (n− 1)-cube obtained by
restricting the functor A to PS′ and replacing A∅ with lim←−−−−−−∅6=T⊆S′

AT , and let A[n]
be the cartesian (n− 1)-cube obtained by restricting A to the complement of PS′
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and replacing A{n} with lim←−−−−−−−{n}(T⊆S
AT . Then by induction, the corollary applies to

A[∅], A[n] and to the square

A∅ −−−−→ A{n}y
y

lim←−−−−−−∅6=T⊆S′
AT −−−−→ lim←−−−−−−−{n}(T⊆S

AT .

Notice that the conditions in the corollary are unnecessarily restrictive. If for
instance n = 3 we see that demanding that e.g., A{1} → A{1,2}, A{1,3} → A{1,2,3},
A{3} → A{1,3} ×A{1,2,3} A{2,3}, and A∅ → lim←−−∅6=T

AT are surjective (and the last map
has a nilpotent kernel) is enough to conclude that K(A)→ TC(A) is cartesian after
profinite completion. There are many variants.

3. Homotopy cartesian squares and π0

Theorem 1.1 now follows immediately from Proposition 2.1 and

Proposition 3.1. Let A be a homotopy cartesian diagram of connective S-algebras

A0 g′−−−−→ A1

f ′
y

yf

A2 −−−−→
g

A12

such that π0A
1 → π0A

12 is surjective. Then the induced map

h : π0A
0 → π0A

1 ×π0A12 π0A
2

is a surjection with square-zero kernel.

Proof. First we reduce the proof to the corresponding statement for simplicial rings
as found in Lemma 3.2.

Since all S-algebras and the vertical fibers are connective, we may use Γ-spaces as
our model for spectra, and monoids under the smash product of Lydakis [14] as our
model for S-algebras. For details, see [6, Chapter II].

Let H be the Eilenberg-Mac Lane construction sending a simplicial ring to a con-
nective S-algebra. The functor Z̃ which sends a pointed set X to the free abelian
group Z̃X = Z[X]/Z[∗] extends to an endofunctor on the category of connective S-
algebras. Furthermore, there is a functor R from connective S-algebras to simplicial
rings and a natural chain of stable equivalences connecting Z̃ and HR. Proofs may be
found in the published version [4, Proposition 3.5] or more directly applicable in [6,
Corollary II.2.2.5].

Now, the functor Z̃ preserves homotopy cartesian diagrams of Γ-spaces, and so if
A is a homotopy cartesian diagram of connective S-algebras, then Z̃A is a homotopy
cartesian diagram of connective S-algebras which is equivalent to H of a homotopy
cartesian diagram RA of simplicial rings.
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Furthermore, the obvious map A → Z̃A is 1-connected (see e.g., [4, Proposition
3.3]), and so we get isomorphisms

π0A ∼= π0Z̃A ∼= π0HRA ∼= π0RA
of squares of rings. Lemma 3.2 applied to the homotopy cartesian square RA of rings,
then gives the result.

Lemma 3.2. Let A be a homotopy cartesian diagram of simplicial rings

A0 g′−−−−→ A1

f ′
y

yf

A2 −−−−→
g

A12

such that π0A
1 → π0A

12 is surjective. Then the induced map

h : π0A
0 −→ π0A

1 ×π0A12 π0A
2

is a surjection with square-zero kernel.

Proof. Chasing long exact sequences of homotopy groups yields that h is surjective.
In proving that the kernel of π0A

0 → π0A
1 ×π0A12 π0A

2 is square-zero, the idea is
to pick two elements in ker(h) ⊆ π0A

0 and show, by making an appropriate choice
of representatives, that the product of the representatives is homotopic to 0 in A0.
This implies that the kernel is square-zero. The proof is an exercise in manipulating
simplicial homotopies and we refer to [15] for details. For homotopic simplices x and
y in a simplicial abelian group G, we write x ∼ y. If x and y happen to be zero-
simplices, then being homotopic means that there is a 1-simplex z with d0z = x and
d1z = y.

We may assume that A1 → A12 is a fibration. According to [17, p. II.3.10], maps of
simplicial groups are surjective if and only if they are both fibrations and 0-connected,
and so the assumption that π0A

1 → π0A
12 is surjective implies that A1 → A12 is a

surjection.
Let [u0] ∈ ker(h) be represented by u0 ∈ A0

0. Then h([u0]) = ([f ′u0], [g′u0]) = 0 in
the pullback, and f ′(u0) ∼ 0 and g′(u0) ∼ 0 as 0-simplices in A2 and A1 respectively.
The homotopies are given by 1-simplices u2 ∈ A2

1 with d0u2 = f ′u0 and d1u2 = 0 and
u1 ∈ A1

1 with d0u1 = g′u0 and d1u1 = 0. These simplices correspond to based maps
u2 : I → A2 and u1 : I → A1 respectively and by abuse of notation we name the maps
after their corresponding simplices. As u0 is a 0-simplex of A0 it corresponds to a
based map u0 : S0 → A0. All this fits into the following diagram of pointed simplicial
sets

I ←−−−− S0 −−−−→ I

u2

y
yu0

yu1

A2 f ′←−−−− A0 g′−−−−→ A1

and it represents an element in ker(h).
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Since f ′ is a fibration of simplicial rings, we may lift u2 : I → A2 to a based map
u : I → A0. It will usually not be compatible with the map u0 : S0 → A0, but we
do have that [u0] = [u0 − d0u] and f ′(u0 − d0u) = 0, showing that it is enough to
consider the situation where u2 = 0, that is, diagrams of the form

∗ ←−−−− S0 −−−−→ I
y

yu0

yu1

A2 f ′←−−−− A0 g′−−−−→ A1.

(3.1)

This diagram induces a (based) map u12 : S1 → A12, and is our “appropriate choice”.
Let [u0] and [v0] be any two elements in ker(h) and pick representatives for them

as in diagram (3.1).
Consider the map s0(g′u0) · v1 : I → A1. The dot denotes multiplication in A1. The

map is a simplicial homotopy from g′(u0) · g′(v0) to 0 since

d1(s0(g′u0) · v1) = d1s0(g′u0) · d1(v1) = g′(u0) · 0 = 0,

and
d0(s0(g′u0) · v1) = d0s0(g′u0) · d0(v1) = g′(u0) · g′(v0).

Because we picked a representative u0 ∈ ker(f ′) we get

f(s0(g′u0) · v1) = s0(fg′(u0)) · f(v1) = s0(gf ′(u0)) · f(v1) = 0 · f(v1) = 0.

The equations above show that we get a well-defined and based map

(0, s0(g′u0) · v1) : I → A2 ×A12 A1,

determining a simplicial homotopy from (0, g′u0 · g′v0) to 0. Under the weak equiva-
lence A0 ' A2 ×A12 A1, the element (0, g′u0 · g′v0) corresponds to the product u0 · v0,
showing that it is homotopic to 0.

Example 3.3. An example of the situation in Lemma 3.2 where the kernel of h is
nontrivial may be helpful. Consider the diagram of simplicial rings

Z[ε]/ε2 −−−−→ Zy
y

Z −−−−→ Z[S1]

in which both maps to Z are projections and both maps from Z are inclusion into the
simplicial ring Z[S1]. All rings in the diagram but Z[S1] are discrete. The diagram
is homotopy cartesian which is easily checked as the zeroth homotopy groups are the
only nontrivial homotopy groups of the fibers. In this case

h : Z[ε]/ε2 −→ π0Z×π0Z[S1] π0Z ∼= Z

is the projection with square-zero kernel Z〈ε〉, the infinite cyclic group generated by ε.

The connectivity hypothesis on f1 is annoying in that it makes it difficult to state
minimal hypotheses for good multirelative versions. As a crude corollary of the main
result one has the following:
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Corollary 3.4. Let A be a homotopy cartesian S-cube of connective S-algebras such
that for all U ⊆ S the canonical map

pU : AU → holim←−−−−−
U(T⊆S

AT

is 0-connected. Then the (|S|+ 1)-cube

K(A)→ TC(A)

induced by the cyclotomic trace is homotopy cartesian after profinite completion.

Note that p∅ is an equivalence (and thus 0-connected) because A is assumed to be
homotopy cartesian. When U = S, the homotopy limit is taken over the empty set
and pS : AS → ∗ is clearly 0-connected.

Proof of Corollary 3.4. The proof of this corollary is exactly as the proof of Corollary
2.2, except that you remove π0 (and replace the limits by homotopy limits or replace
the cube with a fiber cube so that limits and homotopy limits agree up to stable
equivalence).

Remark 3.5. Corollary 3.4 is not optimal. For instance if n = 3, it would also suffice
that the maps A∅ → A{3}, A{1} → A{1,2} and A{2,3} → A{1,2,3} were 0-connected (in
addition to homotopy cartesianness of the cube). Note that this condition is actually
not contained in the one given in the corollary, but is one of the many variants
possible. We spell out this example.

Let F be the profinite completion of the fiber of the cyclotomic trace. We may
assume all maps are fibrations. Then F applied to the squares

A{1,3} ×A{1,2,3} A{2,3} −−−−→ A{2,3}
y

y
A{1,3} −−−−→ A{1,2,3},

A{1} ×A{1,2} A{2} −−−−→ A{2}y
y

A{1} −−−−→ A{1,2}

give homotopy cartesian squares.
Consider the square

A∅ −−−−→ A{3}
y

y
A{1} ×A{1,2} A{2} −−−−→ A{1,3} ×A{1,2,3} A{2,3}.

This square is homotopy cartesian since the entire cube is, and by assumption the top
map is 0-connected. Since everything is connective it follows that the bottom map is
0-connected too, and so the main theorem applies again to show that F applied to
this square is homotopy cartesian. Collecting the pieces we get that F applied to the
cube is homotopy cartesian.

Theorem 1.1 implies that for n = 2, we only need f1 (or f2) to be 0-connected,
but the condition in 3.4 requires both to be 0-connected; this shows again that the
statement of 3.4 is not optimal.
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